201
|
Ji J, Wu L, Feng J, Mo W, Wu J, Yu Q, Li S, Zhang J, Dai W, Xu X, Mao Y, Xu S, Chen K, Li J, Guo C. Cafestol preconditioning attenuates apoptosis and autophagy during hepatic ischemia-reperfusion injury by inhibiting ERK/PPARγ pathway. Int Immunopharmacol 2020; 84:106529. [PMID: 32344356 DOI: 10.1016/j.intimp.2020.106529] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 04/01/2020] [Accepted: 04/18/2020] [Indexed: 02/07/2023]
Abstract
OBJECTIVE The study was aimed to explore the hepatocellular protective functions of cafestol during hepatic ischemia-reperfusion injury and the possible mechanisms. METHODS Ninety male Balb/c mice were randomly divided into seven groups, including normal control group, L-cafestol(20mg/kg) group, H-cafestol(40mg/kg) group, sham group, IR group, L-cafestol(20mg/kg) + IR group, H-cafestol(40mg/kg) + IR group. Serum liver enzymes (ALT, AST), inflammation mediators, proteins associated with apoptosis and autophagy, indicators linked with ERK/PPARγ pathway, and liver histopathology were measured using ELISA, qRT-PCR, immunohistochemical staining, and western blotting at 2, 8, and 24 hours after reperfusion. RESULTS Our findings confirmed that cafestol preconditioning groups could reduce the levels of ALT and AST, alleviate liver pathological damage, suppress the release of inflammation mediators, inhibit the production of pro-apoptosis protein including caspase-3, caspase-9 and Bax, decrease the expression of autophagy-linked protein including Beclin-1 and LC3, increase anti-apoptosis protein Bcl-2, and restrain the activation of ERK and PPARγ. CONCLUSION Cafestol preconditioning could attenuate inflammatory response, apoptosis and autophagy on hepatic ischemia reperfusion injury by suppressing ERK/PPARγ pathway.
Collapse
Affiliation(s)
- Jie Ji
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Liwei Wu
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Jiao Feng
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Wenhui Mo
- Department of Gastroenterology, Shidong Hospital of Shanghai, Shanghai 200433, China
| | - Jianye Wu
- Department of Gastroenterology, Putuo People's Hospital, Tongji University School of Medicine, Shanghai 200060, China
| | - Qiang Yu
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Sainan Li
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Jie Zhang
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China; Shanghai Tenth Hospital, School of Clinical Medicine of Nanjing Medical University, Shanghai 200072, China
| | - Weiqi Dai
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China; Department of Gastroenterology, Putuo People's Hospital, Tongji University School of Medicine, Shanghai 200060, China; Department of Gastroenterology, Zhongshan Hospital of Fudan University, Shanghai 200032, China; Shanghai Institute of Liver Diseases, Zhongshan Hospital of Fudan University, Shanghai, 200032, China; Shanghai Tongren Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200336, China
| | - Xuanfu Xu
- Department of Gastroenterology, Shidong Hospital of Shanghai, Shanghai 200433, China
| | - Yuqing Mao
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200080, China
| | - Shizan Xu
- Department of Gastroenterology, Jinshan Hospital of Fudan University, Jinshan, Shanghai 201508, China
| | - Kan Chen
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Jingjing Li
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China; Department of Gastroenterology, Putuo People's Hospital, Tongji University School of Medicine, Shanghai 200060, China.
| | - Chuanyong Guo
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China.
| |
Collapse
|
202
|
Zhao TM, Wang Y, Deng Y, Fan XF, Cao XC, Hou LJ, Mao LH, Lin L, Zhao W, Wang BM, Jiang K, Zhao JW, Sun C. Bicyclol Attenuates Acute Liver Injury by Activating Autophagy, Anti-Oxidative and Anti-Inflammatory Capabilities in Mice. Front Pharmacol 2020; 11:463. [PMID: 32362825 PMCID: PMC7181473 DOI: 10.3389/fphar.2020.00463] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 03/25/2020] [Indexed: 12/25/2022] Open
Abstract
Bicyclol, a novel synthetic antihepatitis drug, has been shown to protect against liver injury via various pharmacological activities. The purpose of the current study was to further investigate the protective effect of bicyclol against carbon tetrachloride (CCl4)-induced acute liver injury (ALI) and its underlying molecular mechanism, particularly autophagic machinery, anti-oxidative, and anti-inflammatory potentials. Our results found that treatment with bicyclol significantly reduced CCl4-induced hepatotoxicity by alleviating histopathological liver changes, decreasing the alanine transaminase levels, promoting autophagic flux, attenuating the expression of inflammatory cytokines, and modulating oxidative markers. Furthermore, bicyclol efficiently induced the conversion of LC3 and enhanced the liver expressions of ATG7 and Beclin-1. Meanwhile, bicyclol induced the activation of nuclear factor erythroid 2-related factor 2 (Nrf2) and p62. These protective effects may be mediated by activation of AMP-activated protein kinase and inhibition of mTOR or MAPK signaling pathways. Taken together, our study firstly suggests that bicyclol has protective potential against CCl4-induced hepatotoxicity, which might be closely associated with induction of autophagy, concomitant anti-oxidative stress, and anti-inflammatory response.
Collapse
Affiliation(s)
- Tian-Ming Zhao
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Institute of Digestive Disease, Tianjin Medical University General Hospital, Tianjin, China
| | - Ya Wang
- Department of Gastroenterology, Shanxi Academy of Medical Sciences Shanxi Bethune Hospital, Taiyuan, China
| | - You Deng
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Institute of Digestive Disease, Tianjin Medical University General Hospital, Tianjin, China
| | - Xiao-Fei Fan
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Institute of Digestive Disease, Tianjin Medical University General Hospital, Tianjin, China
| | - Xiao-Cang Cao
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Institute of Digestive Disease, Tianjin Medical University General Hospital, Tianjin, China
| | - Li-Jun Hou
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Institute of Digestive Disease, Tianjin Medical University General Hospital, Tianjin, China
| | - Li-Hong Mao
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Institute of Digestive Disease, Tianjin Medical University General Hospital, Tianjin, China
| | - Lin Lin
- Department of Gastroenterology, Tianjin Medical University General Hospital Airport Hospital, Tianjin, China
| | - Wei Zhao
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Institute of Digestive Disease, Tianjin Medical University General Hospital, Tianjin, China
| | - Bang-Mao Wang
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Institute of Digestive Disease, Tianjin Medical University General Hospital, Tianjin, China
| | - Kui Jiang
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Institute of Digestive Disease, Tianjin Medical University General Hospital, Tianjin, China
| | - Jing-Wen Zhao
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Institute of Digestive Disease, Tianjin Medical University General Hospital, Tianjin, China
| | - Chao Sun
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Institute of Digestive Disease, Tianjin Medical University General Hospital, Tianjin, China.,Department of Gastroenterology, Tianjin Medical University General Hospital Airport Hospital, Tianjin, China
| |
Collapse
|
203
|
Lu W, Mei J, Yang J, Wu Z, Liu J, Miao P, Chen Y, Wen Z, Zhao Z, Kong H, Wu C, Yang Y, Chen M. ApoE deficiency promotes non-alcoholic fatty liver disease in mice via impeding AMPK/mTOR mediated autophagy. Life Sci 2020; 252:117601. [PMID: 32304762 DOI: 10.1016/j.lfs.2020.117601] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 03/11/2020] [Accepted: 03/23/2020] [Indexed: 02/06/2023]
Abstract
AIM This work was to investigate the relationship between ApoE and autophagy regulated by AMPK/mTOR pathway in the pathological process of NAFLD. MAIN METHODS Both WT and ApoE-/- mice were divided into two groups and allocated into either a normal chow (ND) or a high-fat diet (HFD) for 8 weeks. After that, we detected the indicators of lipid accumulation, hepatic injury, mitochondrial function hallmark, autophagy, apoptosis, inflammation, and oxidative stress by commercially available kits, immunohistochemistry, immunofluorescent staining, and western blot. KEY FINDING We found the lipid levels of serum and liver, and hepatic injury were significantly increased in the ApoE-/--HFD group compared to other groups. ApoE-/- mice exhibited increased deposition of fat in liver tissue. The PGC1α, NRF1, ATP, p-AMPK, AMPK, Beclin1, and LC3 levels were downregulated and ROS, p-mTOR, and mTOR were increased in the ApoE-/--HFD group compared to WT-HFD group. When treated with AMPK and autophagy activators, AICAR and rapamycin, these pathologies and protein levels can be rescued. The expression levels of apoptosis-related proteins, inflammation, and oxidative stress were increased in the ApoE-/--HFD group compared to the WT-HFD group. SIGNIFICANCE Our results indicated that ApoE deficiency can regulate AMPK/mTOR pathway, which leads to NAFLD most likely by modulating hepatic mitochondrial function.
Collapse
Affiliation(s)
- Wanpeng Lu
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
| | - Jinyu Mei
- Department of Otorhinolaryngology, Head and Neck Surgery, The Second Hospital of Anhui Medical University, Hefei, Anhui 230601, China
| | - Juan Yang
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
| | - Zhihan Wu
- First Clinical Medical College, Anhui Medical University, Hefei 230032, China
| | - Jiayuan Liu
- First Clinical Medical College, Anhui Medical University, Hefei 230032, China
| | - Pengyu Miao
- First Clinical Medical College, Anhui Medical University, Hefei 230032, China
| | - Yiliang Chen
- School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Zhenfan Wen
- School of Life Sciences, Anhui Medical University, Hefei 230032, China
| | - Zhongting Zhao
- School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Hua Kong
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
| | - Chao Wu
- Department of Pharmacy, The First Affiliated Hospital of Anhui University of Chinese Medicine, 117 Meishan Road, Hefei 230031, China
| | - Yan Yang
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China.
| | - Ming Chen
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China.
| |
Collapse
|
204
|
COX-2 in liver fibrosis. Clin Chim Acta 2020; 506:196-203. [PMID: 32184095 DOI: 10.1016/j.cca.2020.03.024] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 03/13/2020] [Accepted: 03/13/2020] [Indexed: 02/07/2023]
Abstract
As a vital inducible sensor, cyclooxygenase-2 (COX-2) plays an important role in the progress of hepatic fibrogenesis. Activation of hepatic stellate cells (HSCs) in the liver can significantly accelerate the onset and development of liver fibrosis. COX-2 overexpression triggers inflammation that is an important inducer in hepatic fibrosis. Increasing evidence indicates that COX-2 is involved in the main pathogenesis of liver fibrosis, such as inflammation, apoptosis, and cell senescence. Moreover, COX-2 expression is altered in patients and animal models with non-alcoholic fatty liver disease or cirrhosis. These findings suggest that COX-2 has a broad and critical role in the development of liver fibrosis. In this review, we summarize the latest advances in the regulation and signal transduction of COX-2 and its impact on liver fibrosis.
Collapse
|
205
|
Xu Z, Wu Y, Wang F, Li X, Wang P, Li Y, Wu J, Li Y, Jiang T, Pan X, Zhang X, Xie L, Xiao J, Liu Y. Fibroblast Growth Factor 1 Ameliorates Diabetes-Induced Liver Injury by Reducing Cellular Stress and Restoring Autophagy. Front Pharmacol 2020; 11:52. [PMID: 32194395 PMCID: PMC7062965 DOI: 10.3389/fphar.2020.00052] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 01/16/2020] [Indexed: 01/01/2023] Open
Abstract
Background Type 2 diabetes (T2D) is a metabolic dysfunction disease that causes several complications. Liver injury is one of these that severely affects patients with diabetes. Fibroblast growth factor 1 (FGF1) has glucose-lowering activity and plays a role in modulation of several liver injuries. Nevertheless, the effects and potential mechanisms of FGF1 against diabetes-induced liver injury are unknown. Methods To further investigate the effect of FGF1 on diabetic liver injury, we divided db/db mice into two groups and intraperitoneally (i.p.) injected either with FGF1 at 0.5 mg/kg body weight or saline every other day for 4 weeks. Then body weights were measured. Serum and liver tissues were collected for biochemical and molecular analyses. Results FGF1 significantly reduced blood glucose and ameliorated diabetes-induced liver steatosis, fibrosis, and apoptosis. FGF1 also restored defective hepatic autophagy in db/db mice. Mechanistic investigations showed that diabetes markedly induced oxidative stress and endoplasmic reticulum stress and that FGF1 treatment significantly attenuated these effects. Conclusions FGF1-associated glucose level reduction and amelioration of cellular stress are potential protective effects of FGF1 against diabetes-induced liver injury.
Collapse
Affiliation(s)
- Zeping Xu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Yanqing Wu
- Institute of Life Sciences, Wenzhou University, Wenzhou, China
| | - Fan Wang
- The Second Affiliated Hospital, Xinjiang Medical University, Urumqi, China.,Beijing Hui-Long-Guan Hospital, Peking University, Beijing, China
| | - Xiaofeng Li
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Ping Wang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Yuying Li
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Junnan Wu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Yiyang Li
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Ting Jiang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Xindian Pan
- School of Medicine, Hangzhou Normal University, Hangzhou, China
| | - Xie Zhang
- Department of Pharmacy, Ningbo Medical Treatment Center, Li Huili Hospital, Ningbo, China
| | - Longteng Xie
- Department of Infection Diseases, Ningbo Fourth Hospital, Xiangshan, China
| | - Jian Xiao
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Yanlong Liu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China.,Center for Health Assessment, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
206
|
Wan F, Zhong G, Ning Z, Liao J, Yu W, Wang C, Han Q, Li Y, Pan J, Tang Z, Huang R, Hu L. Long-term exposure to copper induces autophagy and apoptosis through oxidative stress in rat kidneys. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 190:110158. [PMID: 31918257 DOI: 10.1016/j.ecoenv.2019.110158] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 12/28/2019] [Accepted: 12/31/2019] [Indexed: 05/15/2023]
Abstract
Copper (Cu) is an essential trace element for most organisms. However, excessive Cu can be highly toxic. The purpose of this study was to elucidate the mechanism underlying Cu toxicity in the kidneys of rats after treatment with CuCl2 (15 [control], 30, 60, or 120 mg/kg in the diet) for 180 days. Histological and ultrastructural changes, antioxidant enzyme activity, and the mRNA and protein levels of apoptosis and autophagy-related genes were measured. The results showed that Cu exposure led to significant accumulation of copper in kidneys and disorganized kidney morphology. The activities of total anti-oxidation capacity (T-AOC) and superoxide dismutase (SOD) in the kidneys decreased significantly, while the malondialdehyde (MDA) content increased. Furthermore, excessive Cu markedly upregulated the expression of autophagy and apoptosis-related genes (LC3A, LC3B, ATG-5, Beclin-1, Caspase3, CytC, P53, Bax), but downregulated the expression of P62, mTOR and BCL-2. Moreover, the LC3B/LC3A, ATG-5, Beclin-1, P53, Caspase3 proteins were up-regulated while P62 was down-regulated in the kidney tissues of the treatment groups. Overall, these findings provide strong evidence that excess Cu can trigger autophagy and apoptosis via the mitochondrial pathway by inducing oxidative stress in rat kidneys.
Collapse
Affiliation(s)
- Fang Wan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Gaolong Zhong
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Zhijun Ning
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Jianzhao Liao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Wenlan Yu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Congcong Wang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Qingyue Han
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Ying Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Jiaqiang Pan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Zhaoxin Tang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Riming Huang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, 510642, China.
| | - Lianmei Hu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
207
|
El-Kashef DH, Abdelrahman RS. Montelukast ameliorates Concanavalin A-induced autoimmune hepatitis in mice via inhibiting TNF-α/JNK signaling pathway. Toxicol Appl Pharmacol 2020; 393:114931. [PMID: 32109511 DOI: 10.1016/j.taap.2020.114931] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Revised: 02/17/2020] [Accepted: 02/24/2020] [Indexed: 01/19/2023]
Abstract
BACKGROUND Concanavalin A (ConA) is a well-established model to induce autoimmune hepatitis (AIH) in mice which mimics pathological alterations that occur in human. The pathogenesis of ConA-induced AIH involves many signaling pathways. Montelukast is a leukotriene receptor antagonist that is mainly used in the management of asthma. The antioxidant, anti-inflammatory and anti-apoptotic effects of montelukast have been reported in previous studies. Lately, montelukast has been documented to confer protection against various inflammatory diseases. Up to date, no study has explored the effect of montelukast on AIH induced by ConA. AIM AND METHOD This study aims to detect the protective effects of montelukast (10 mg/kg) on ConA (20 mg/kg)- induced AIH in mice and to demonstrate its hepatoprotective mechanisms. Hepatic function, histological changes, oxidative stress, inflammation, autophagy, and apoptotic markers were investigated. RESULTS Hepatic function and histological data revealed that treatment with montelukast significantly attenuated ConA-induced hepatic damage. Montelukast significantly reduced JNK level and NFκB p65 expression, and inhibited proinflammatory cytokines (TNF-α and IL-6) as well as oxidative stress (MDA, NO, and GSH). Moreover, inflammatory cells (CD4+ infiltration and the levels of apoptotic markers (Bax and caspase-3) besides autophagy biomarkers (Beclin1 and LC3) were reduced. CONCLUSION Our results suggest that montelukast could be a potential therapeutic drug against the ConA-induced AIH through its anti-oxidant, anti-inflammatory, anti- autophagy as well as anti-apoptotic properties.
Collapse
Affiliation(s)
- Dalia H El-Kashef
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, 35516 Mansoura, Egypt
| | - Rehab S Abdelrahman
- Department of Pharmacology and Toxicology, College of Pharmacy, Taibah University, Al-Madina Al-Munawwarah, 30001, Saudi Arabia. Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, 35516, Mansoura, Egypt.
| |
Collapse
|
208
|
Krauskopf J, Gosink MM, Schomaker S, Caiment F, Warner R, Johnson K, Kleinjans J, Aubrecht J. The MicroRNA-based Liquid Biopsy Improves Early Assessment of Lethal Acetaminophen Poisoning: A Case Report. AMERICAN JOURNAL OF CASE REPORTS 2020; 21:e919289. [PMID: 32086430 PMCID: PMC7049075 DOI: 10.12659/ajcr.919289] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 01/24/2020] [Accepted: 11/04/2019] [Indexed: 01/08/2023]
Abstract
BACKGROUND Acetaminophen overdose is the most common cause of acute liver failure. Nevertheless, new biomarker approaches enabling early prediction of the outcome of the acetaminophen overdose are needed. Recently, using next-generation sequencing analysis of serum from human study participants we uncovered injury-specific signatures of circulating microRNAs (miRNAs) that represented underlying molecular mechanisms of toxicity. This case study is first to show the application of miRNA profiling to assess prognosis of acetaminophen poisoning. CASE REPORT The patient was admitted to the hospital following supra therapeutic acetaminophen ingestion. The patient showed elevated levels of biomarkers of hepatocellular injury alanine aminotransferase, aspartate transaminase, and glutamate dehydrogenase. Even though treatment with N-acetyl cysteine was initiated 24 hours post-ingestion, levels of alanine-aminotransferase and aspartate transaminase peaked at about 40 hours post ingestion of acetaminophen. We analyzed global circulating miRNA levels from 24 consecutive serum samples from this study participant covering the period from admission to time of death. CONCLUSIONS The resulting global miRNA profiles were compared with profiles from study participants with non-lethal acetaminophen poisoning and healthy controls. At the admission, the miRNA profiles of both lethal and non-lethal acetaminophen poisoning showed induction of cellular stress and oxidative damage. Later, the miRNA profiles of the lethal poisoning featured fibrosis and coagulation pathways while profiles of non-lethal cases resembled those of healthy study participants. Although additional confirmatory studies are needed, our case study is first to indicate that global miRNA profiles to be used as liquid biopsies have potential to facilitate the assessment of acetaminophen poisoning.
Collapse
Affiliation(s)
- Julian Krauskopf
- Department of Toxicogenomics, Maastricht University, Maastricht, The Netherlands
| | - Mark M. Gosink
- Department of Pathology, University of Michigan, Ann Arbor, MI, U.S.A
| | - Shelli Schomaker
- Drug Safety Research and Development, Pfizer, Inc., Groton, CT, U.S.A
| | - Florian Caiment
- Department of Toxicogenomics, Maastricht University, Maastricht, The Netherlands
| | - Roscoe Warner
- Department of Pathology, University of Michigan, Ann Arbor, MI, U.S.A
| | - Kent Johnson
- Department of Pathology, University of Michigan, Ann Arbor, MI, U.S.A
| | - Jos Kleinjans
- Department of Toxicogenomics, Maastricht University, Maastricht, The Netherlands
| | - Jiri Aubrecht
- Drug Safety Research and Development, Pfizer, Inc., Groton, CT, U.S.A
| |
Collapse
|
209
|
Lyu M, Jiao L, Zhou J, Li H, Meng Z, Xie W, Ren J, Bian Q, Ying B. Do genetic polymorphisms of B-cell CLL/lymphoma 2 confer susceptibility to anti-tuberculous therapy-associated drug-induced liver injury? Int J Infect Dis 2020; 91:223-231. [PMID: 31838216 DOI: 10.1016/j.ijid.2019.12.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 11/29/2019] [Accepted: 12/01/2019] [Indexed: 02/05/2023] Open
Abstract
OBJECTIVES The aim of this study was to identify the relationship between B-cell CLL/lymphoma 2 (BCL2) polymorphisms and susceptibility to anti-tuberculous therapy-associated drug-induced liver injury (ATT-DILI). METHODS A total of 746 tuberculosis (TB) patients were enrolled in this study. Twenty-one selected single nucleotide polymorphisms in BCL2 were analyzed by custom-by-design 2×48-Plex SNPscan kit. The allele and genotype frequencies between patients with and without ATT-DILI were compared using three different genetic models. RESULTS A total of 727/746 participants were successfully genotyped, and 112 of them were diagnosed with ATT-DILI. The A allele of rs8085707, G allele of rs76986960, and A allele of rs949037 conferred an increased risk of ATT-DILI, with estimated odd ratios (ORs) of 2.181 (95% confidence interval (CI) 1.345-3.536, p=0.001), 1.983 (95% CI 1.060-3.709, p=0.029), and 1.390 (95% CI 1.032-1.873, p=0.03), respectively. Bonferroni correction indicated that the A allele of rs8085707 was a risk factor for ATT-DILI (Bonferroni correction: p=0.026). The additive model suggested that patients with the AA genotype of rs8085707 had a significantly higher risk of ATT-DILI compared with those with the GG genotype (Bonferroni correction: p=0.036). The influence of BCL2 polymorphisms on clinical characteristics (clinical symptoms, disease subtypes, and laboratory indicators) was also identified. CONCLUSIONS This study is novel in suggesting an association between BCL2 polymorphisms and the risk of ATT-DILI.
Collapse
Affiliation(s)
- Mengyuan Lyu
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China; West China School of Medicine, Sichuan University, Chengdu, Sichuan, China
| | - Lin Jiao
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China; West China School of Medicine, Sichuan University, Chengdu, Sichuan, China
| | - Jian Zhou
- West China School of Medicine, Sichuan University, Chengdu, Sichuan, China
| | - Haijun Li
- Clinical Laboratory, Guangyuan Central Hospital, Guangyuan, Sichuan, China
| | - Zirui Meng
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China; West China School of Medicine, Sichuan University, Chengdu, Sichuan, China
| | - Wanhong Xie
- Clinical Laboratory, Wangcang Country People's Hospital, Guangyuan, Sichuan, China
| | - Jing Ren
- Clinical Laboratory, Guangyuan Central Hospital, Guangyuan, Sichuan, China
| | - Qin Bian
- Clinical Laboratory, Guangyuan Central Hospital, Guangyuan, Sichuan, China
| | - Binwu Ying
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China; West China School of Medicine, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
210
|
Sun R, Zhai R, Ma C, Miao W. Combination of aloin and metformin enhances the antitumor effect by inhibiting the growth and invasion and inducing apoptosis and autophagy in hepatocellular carcinoma through PI3K/AKT/mTOR pathway. Cancer Med 2020; 9:1141-1151. [PMID: 31830378 PMCID: PMC6997051 DOI: 10.1002/cam4.2723] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 10/21/2019] [Accepted: 11/09/2019] [Indexed: 01/27/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a devastating and highly metastatic cancer worldwide. Metformin (MET) is the priority drug for treatment of type 2 diabetes; however, it possesses multiple biological effects like anticancer and hepatoprotective activity. Herein, we examined the effects of aloin (barbaloin) and MET as well as combination treatment in HCC cell line in vitro and in vivo. As a result, aloin and MET alone exhibited inhibitory effects on proliferation and invasion of HepG2 and Bel-7402 cells. Specially, combination treatment of aloin and MET showed enhanced inhibitory effects in vitro. Aloin and MET alone induced apoptosis and autophagy in vitro. Similarly, aloin and MET cooperated to promote apoptosis and autophagy in HepG2 and Bel-7402 cells. In the HepG2 xenograft models, aloin in combination with MET confine tumor growth and facilitate apoptosis and autophagy. Both the in vitro and in vivo results showed that aloin and MET alone as well as combination treatment activated the PI3K/AKT/mTOR pathway. Overall, our research demonstrated that the concomitant treatment with aloin and MET enhances the antitumor effect by inhibiting the growth and invasion as well as inducing apoptosis and autophagy in HCC through PI3K/AKT/mTOR pathway.
Collapse
Affiliation(s)
- Ruijie Sun
- Department of Hepatobiliary SurgeryJining First People 's HospitalJiningShandongChina
| | - Ruiren Zhai
- Department of Cancer CenterTumor Center Shandong Sunshine HospitalWeifangShandongChina
| | - Changlin Ma
- Department of Hepatobiliary SurgeryJining First People 's HospitalJiningShandongChina
| | - Wei Miao
- Department of Health CareJining First People's HospitalJiningShandongChina
| |
Collapse
|
211
|
Yang Q, Luo C, Zhang X, Liu Y, Wang Z, Cacciamani P, Shi J, Cui Y, Wang C, Sinha B, Peng B, Tong G, Das G, Shah E, Gao Y, Li W, Tu Y, Qian D, Shah K, Akbar M, Zhou S, Song BJ, Wang X. Tartary buckwheat extract alleviates alcohol-induced acute and chronic liver injuries through the inhibition of oxidative stress and mitochondrial cell death pathway. Am J Transl Res 2020; 12:70-89. [PMID: 32051738 PMCID: PMC7013218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 12/18/2019] [Indexed: 06/10/2023]
Abstract
Alcohol use disorder (AUD) is an enormous public health problem that poses significant social, medical, and economic burdens. Under AUD, the liver is one of the most adversely affected organs. As current therapies and protective drugs for AUD-mediated liver injury are very limited, the prevention and therapy of alcoholic liver disease are urgently needed. The present study aims to investigate the beneficial effects of tartary buckwheat extract (TBE), the important component of Maopu tartary buckwheat liquor, on both alcoholic-induced acute and chronic liver injuries. We show that the TBE administration, similar to curcumin, significantly reduces the elevated serum aspartate aminotransferase and alanine aminotransferase levels, improves liver index, alleviates the elevated contents of hepatic malondialdehye, and restores the decreased contents of hepatic glutathione both in acute and chronic liver injuries in alcohol-exposed rats. Furthermore, histopathological analyses show that a medium dose of TBE (16.70 ml/kg body weight) alleviates hepatocyte morphology changes in both acute and chronic alcohol exposure models. We also show the protective effects of TBE on the cell death rates of alcohol-exposed primary cultured hepatocytes, HepG2 hepatoma, and Huh 7 hepatoma cells. Furthermore, we demonstrate that TBE exerts hepatoprotection partly through inhibiting the mitochondrial cell death pathway by reducing cytochrome c release, caspase-9 and -3 activities, and the number of TUNEL-positive cells. These effects of TBE were accompanied by enhanced levels of Bcl-2 and Bcl-xL and autophagic cell death pathway by reducing Beclin-1 expression, as well as through promoting its anti-oxidant capacity by suppressing reactive oxygen species production. This study demonstrates, for the first time, the protective effect of TBE against alcohol-induced acute and chronic liver injury in vivo and in vitro. Given the dietary nature of tartary buckwheat, pueraria, lycium barbarum, and hawthorn, the oral intake of TBE or liquor contained TBE, e.g., Maopu Tartary buckwheat liquor, compared with pure liquor consumption alone, may have the potential to alleviate alcoholic-induced liver injuries.
Collapse
Affiliation(s)
- Qiang Yang
- Hubei Provincial Key Lab for Quality and Safety of Traditional Chinese Medicine Health Food, Jing Brand Research InstituteDaye, Hubei, China
| | - Chengliang Luo
- Brigham and Women’s Hospital, Harvard Medical SchoolBoston, MA, USA
- Department of Forensic Medicine, Medical College of Soochow UniversitySuzhou, Jiangsu, China
| | - Xinmu Zhang
- Brigham and Women’s Hospital, Harvard Medical SchoolBoston, MA, USA
| | - Yuancai Liu
- Hubei Provincial Key Lab for Quality and Safety of Traditional Chinese Medicine Health Food, Jing Brand Research InstituteDaye, Hubei, China
| | - Zufeng Wang
- Brigham and Women’s Hospital, Harvard Medical SchoolBoston, MA, USA
- Department of Forensic Medicine, Medical College of Soochow UniversitySuzhou, Jiangsu, China
| | | | - Jiao Shi
- Hubei Provincial Key Lab for Quality and Safety of Traditional Chinese Medicine Health Food, Jing Brand Research InstituteDaye, Hubei, China
| | - Yongchun Cui
- Brigham and Women’s Hospital, Harvard Medical SchoolBoston, MA, USA
| | - Chunling Wang
- Brigham and Women’s Hospital, Harvard Medical SchoolBoston, MA, USA
| | - Bharati Sinha
- Brigham and Women’s Hospital, Harvard Medical SchoolBoston, MA, USA
| | - Bin Peng
- Brigham and Women’s Hospital, Harvard Medical SchoolBoston, MA, USA
| | - Guoqiang Tong
- Hubei Provincial Key Lab for Quality and Safety of Traditional Chinese Medicine Health Food, Jing Brand Research InstituteDaye, Hubei, China
| | - Gapika Das
- Brigham and Women’s Hospital, Harvard Medical SchoolBoston, MA, USA
| | - Elisha Shah
- Brigham and Women’s Hospital, Harvard Medical SchoolBoston, MA, USA
| | - Yuan Gao
- Departments of Orthopedic Surgery, Brigham and Women’s Hospital, Harvard Medical SchoolBoston, MA, USA
| | - Wei Li
- Brigham and Women’s Hospital, Harvard Medical SchoolBoston, MA, USA
| | - Yanyang Tu
- Brigham and Women’s Hospital, Harvard Medical SchoolBoston, MA, USA
| | - Dongyang Qian
- Departments of Orthopedic Surgery, Brigham and Women’s Hospital, Harvard Medical SchoolBoston, MA, USA
| | - Khalid Shah
- Brigham and Women’s Hospital, Harvard Medical SchoolBoston, MA, USA
| | - Mohammed Akbar
- Division of Neuroscience & Behavior, National Institute on Alcohol Abuse and Alcoholism, National Institutes of HealthRockville, MD, USA
| | - Shuanhu Zhou
- Departments of Orthopedic Surgery, Brigham and Women’s Hospital, Harvard Medical SchoolBoston, MA, USA
| | - Byoung-Joon Song
- Section of Molecular Pharmacology and Toxicology, Laboratory of Membrane Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of HealthRockville, MD, USA
| | - Xin Wang
- Brigham and Women’s Hospital, Harvard Medical SchoolBoston, MA, USA
| |
Collapse
|
212
|
Grefhorst A, van de Peppel IP, Larsen LE, Jonker JW, Holleboom AG. The Role of Lipophagy in the Development and Treatment of Non-Alcoholic Fatty Liver Disease. Front Endocrinol (Lausanne) 2020; 11:601627. [PMID: 33597924 PMCID: PMC7883485 DOI: 10.3389/fendo.2020.601627] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 12/14/2020] [Indexed: 12/13/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) or metabolic (dysfunction) associated liver disease (MAFLD), is, with a global prevalence of 25%, the most common liver disorder worldwide. NAFLD comprises a spectrum of liver disorders ranging from simple steatosis to steatohepatitis, fibrosis, cirrhosis and eventually end-stage liver disease. The cause of NAFLD is multifactorial with genetic susceptibility and an unhealthy lifestyle playing a crucial role in its development. Disrupted hepatic lipid homeostasis resulting in hepatic triglyceride accumulation is an hallmark of NAFLD. This disruption is commonly described based on four pathways concerning 1) increased fatty acid influx, 2) increased de novo lipogenesis, 3) reduced triglyceride secretion, and 4) reduced fatty acid oxidation. More recently, lipophagy has also emerged as pathway affecting NAFLD development and progression. Lipophagy is a form of autophagy (i.e. controlled autolysosomal degradation and recycling of cellular components), that controls the breakdown of lipid droplets in the liver. Here we address the role of hepatic lipid homeostasis in NAFLD and specifically review the current literature on lipophagy, describing its underlying mechanism, its role in pathophysiology and its potential as a therapeutic target.
Collapse
Affiliation(s)
- Aldo Grefhorst
- Department of Experimental Vascular Medicine, Amsterdam University Medical Centers, location AMC, Amsterdam, Netherlands
- *Correspondence: Aldo Grefhorst,
| | - Ivo P. van de Peppel
- Section of Molecular Metabolism and Nutrition, Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Lars E. Larsen
- Department of Experimental Vascular Medicine, Amsterdam University Medical Centers, location AMC, Amsterdam, Netherlands
- Section of Molecular Metabolism and Nutrition, Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Johan W. Jonker
- Section of Molecular Metabolism and Nutrition, Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Adriaan G. Holleboom
- Department of Vascular Medicine, Amsterdam University Medical Centers, location AMC, Amsterdam, Netherlands
| |
Collapse
|
213
|
Geng N, Jin Y, Li Y, Zhu S, Bai H. AKR1B10 Inhibitor Epalrestat Facilitates Sorafenib-Induced Apoptosis and Autophagy Via Targeting the mTOR Pathway in Hepatocellular Carcinoma. Int J Med Sci 2020; 17:1246-1256. [PMID: 32547320 PMCID: PMC7294918 DOI: 10.7150/ijms.42956] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 05/04/2020] [Indexed: 12/12/2022] Open
Abstract
Sorafenib is the standard systemic treatment for advanced hepatocellular carcinoma (HCC), and improving its therapeutic effects is crucial for addressing cancer aggression. We previously reported that epalrestat, an aldo-keto reductase 1B10 inhibitor, enhanced sorafenib's inhibitory effects on HCC xenograft in nude mice. This study aimed to elucidate the mechanism of epalrestat's anti-tumour enhancing effects on sorafenib. HepG2 cells were treated with sorafenib, epalrestat, and their combination. Cell proliferation was assessed with Cell Counting Kit-8 and colony formation assays. AKR1B10 supernate concentration and enzyme activity were detected by ELISA assay and the decrease of optical density of NADPH at 340 nm. Cell cycle and apoptosis analyses were performed with flow cytometry. Western blots clarified the molecular mechanism underlying effects on cell cycle, apoptosis, and autophagy. The anti-tumour mechanism was then validated in vivo through TUNEL and immunohistochemistry staining of HCC xenograft sections. Epalrestat combined with sorafenib inhibited HepG2 cellular proliferation in vitro, arrested the cell cycle at G0/G1, and promoted apoptosis and autophagy. Treatment with a specific mTOR activator MHY-1485 increased mTOR phosphorylation, while suppressing apoptosis and autophagy. Consistent with in vitro results, data from the HCC-xenograft nude mouse model also indicated that combined treatment inhibited the mTOR pathway and promoted apoptosis and autophagy. In conclusion, epalrestat heightens sorafenib's anti-cancer effects via blocking the mTOR pathway, thus inducing cell cycle arrest, apoptosis, and autophagy.
Collapse
Affiliation(s)
- Nan Geng
- Department of Infectious Disease, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Yuanyuan Jin
- Laboratory of Biomaterials and Translational Medicine, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510630, China
| | - Yurong Li
- Department of Infectious Disease, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Shixuan Zhu
- Department of Infectious Disease, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Han Bai
- Department of Infectious Disease, Shengjing Hospital of China Medical University, Shenyang 110004, China
| |
Collapse
|
214
|
Abstract
Background Oxidative stress and high salt intake could be independent or intertwined risk factors in the origin of hypertension. Kidneys are the major organ to regulate sodium homeostasis and blood pressure and the renal dopamine system plays a pivotal role in sodium regulation during sodium replete conditions. Oxidative stress has been implicated in renal dopamine dysfunction and development of hypertension, especially in salt‐sensitive animal models. Here we show the nexus between high salt intake and oxidative stress causing renal tubular dopamine oxidation, which leads to mitochondrial and lysosomal dysfunction and subsequently causes renal inflammation and hypertension. Methods and Results Male Sprague Dawley rats were divided into the following groups, vehicle (V)—tap water, high salt (HS)—1% NaCl, L‐buthionine‐sulfoximine (BSO), a prooxidant, and HS plus BSO without and with antioxidant resveratrol (R) for 6 weeks. Oxidative stress was significantly higher in BSO and HS+BSO–treated rat compared with vehicle; however, blood pressure was markedly higher in the HS+BSO group whereas an increase in blood pressure in the BSO group was modest. HS+BSO–treated rats had significant renal dopamine oxidation, lysosomal and mitochondrial dysfunction, and increased renal inflammation; however, HS alone had no impact on organelle function or inflammation. Resveratrol prevented oxidative stress, dopamine oxidation, organelle dysfunction, inflammation, and hypertension in BSO and HS+BSO rats. Conclusions These data suggest that dopamine oxidation, especially during increased sodium intake and oxidative milieu, leads to lysosomal and mitochondrial dysfunction and renal inflammation with subsequent increase in blood pressure. Resveratrol, while preventing oxidative stress, protects renal function and mitigates hypertension.
Collapse
Affiliation(s)
- Anees A Banday
- Heart and Kidney Institute College of Pharmacy University of Houston TX
| | | |
Collapse
|
215
|
Genipin Ameliorates Carbon Tetrachloride-Induced Liver Injury in Mice via the Concomitant Inhibition of Inflammation and Induction of Autophagy. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:3729051. [PMID: 31885784 PMCID: PMC6927019 DOI: 10.1155/2019/3729051] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 11/04/2019] [Accepted: 11/07/2019] [Indexed: 01/07/2023]
Abstract
Genipin, as the most effective ingredient of various traditional medications, encompasses antioxidative, anti-inflammatory, and antibacterial capacities. More recently, it is suggested that genipin protects against septic liver damage by restoring autophagy. The purpose of the current study was to explore the protective effect of genipin against carbon tetrachloride- (CCl4-) induced acute liver injury (ALI) and its underlying molecular machinery. Our results indicated that treatment with genipin significantly reduced CCl4-induced hepatotoxicity by ameliorating histological liver changes, decreasing the aspartate aminotransferase and alanine transaminase levels, alleviating the secretion of inflammatory cytokines, and promoting autophagic flux. Moreover, genipin effectively induced the conversion of LC3 and inhibition of p62 accumulation. The liver expressions of ATG5, ATG7, and ATG12 were significantly increased by genipin pretreatment in the ALI mice model. This protective effect may be mediated by the inhibition of mTOR and the activation of p38 MAPK signaling pathways. Meanwhile, genipin attenuated CCl4-induced inflammatory response by inhibiting the NF-κB and STAT3 signaling pathway. In addition, pretreatment with autophagy inhibitor 3-methyladenine (3-MA) or inhibition of p38 MAPK by SB203580 abolished the hepatoprotective effect of genipin. Taken together, our study implicates that genipin has a protective potential against CCl4-induced hepatotoxicity, which might be strongly associated with the induction of autophagy and the attenuation of inflammatory response.
Collapse
|
216
|
Cristofolini A, Merkis C, Fiorimanti M, Magnoli A, Caverzan M, Cavaglieri L. Saccharomyces cerevisiae RC016 modulates the apoptotic pathways in rat livers treated with aflatoxin B1. WORLD MYCOTOXIN J 2019. [DOI: 10.3920/wmj2019.2472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The aim was to study the effect of probiotic Saccharomyces cerevisiae RC016 on the expression of apoptotic protein Bax, Bcl-2, DR4 and c-FLIP, in liver of rats exposed to aflatoxin B1 (AFB1). Four treatments were applied to inbred male Wistar rats: uncontaminated feed control, S. cerevisiae RC016 control, contaminated feed with 100 μg/kg AFB1 and contaminated feed with 100 μg/kg AFB1 + daily oral dose 108 viable S. cerevisiae RC016 cells. Histological technique and high-resolution light microscopy (HRLM) were performed to the study of tissue morphology, the TUNEL assay was used to determine the apoptosis cellular and the expression of Bax, Bcl-2, DR4 and c-FLIP was determinate through immunohistochemistry. In liver the necrotic lesions observed with AFB1 treatment were reduced with the addition of yeast. The highest apoptotic index (IAp) was found in the yeast control, with AFB1 decrease significantly the IAp, while with the addition of yeast increase the IAp of liver cells. This was confirmed by HRLM. DR4 receptor was not present in any of the treatments. The immunolabeling of c-FLIP showed a statistically significant increase in the treatments with S. cerevisiae. The extrinsic pathway of apoptosis through the FAS-receptors would neither be active in the apoptotic process observed in rat livers in the treatments with yeast. Significant differences between proteins Bax and Bcl-2 and effect of treatments on the immunolabeling of Bax were determinate. The exposure to AFB1 decreased the IAp in the livers; while the addition of the yeast produced a significant statistically increase of IAp. In this study it was determined that the apoptosis in liver would be induced by the intrinsic pathway through Bax. These suggest that the incorporation of the autocrine strain S. cerevisiae RC016 increases the apoptosis in liver, counteracting the adverse effect of aflatoxin B1 and favouring the tissue remodulation.
Collapse
Affiliation(s)
- A. Cristofolini
- Área de Microscopía Electrónica, Departamento de Patología Animal, Facultad de Agronomía y Veterinaria, Universidad Nacional de Río Cuarto, Route 36 Km 601, Río Cuarto, Córdoba, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - C. Merkis
- Área de Microscopía Electrónica, Departamento de Patología Animal, Facultad de Agronomía y Veterinaria, Universidad Nacional de Río Cuarto, Route 36 Km 601, Río Cuarto, Córdoba, Argentina
| | - M. Fiorimanti
- Área de Microscopía Electrónica, Departamento de Patología Animal, Facultad de Agronomía y Veterinaria, Universidad Nacional de Río Cuarto, Route 36 Km 601, Río Cuarto, Córdoba, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - A. Magnoli
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
- Departamento de Producción Animal, Facultad de Agronomía y Veterinaria, Universidad Nacional de Río Cuarto, Córdoba, Argentina
| | - M. Caverzan
- Área de Microscopía Electrónica, Departamento de Patología Animal, Facultad de Agronomía y Veterinaria, Universidad Nacional de Río Cuarto, Route 36 Km 601, Río Cuarto, Córdoba, Argentina
| | - L. Cavaglieri
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
- Departamento de Microbiología e Inmunología Facultad de Ciencias Exactas Físico Químicas y Naturales Universidad Nacional de Río Cuarto, Río Cuarto, Córdoba, Argentina
| |
Collapse
|
217
|
Wang Q, Li X, Wang Q, Xie J, Xie C, Fu X. Heat shock pretreatment improves mesenchymal stem cell viability by heat shock proteins and autophagy to prevent cisplatin-induced granulosa cell apoptosis. Stem Cell Res Ther 2019; 10:348. [PMID: 31771642 PMCID: PMC6880355 DOI: 10.1186/s13287-019-1425-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 09/19/2019] [Accepted: 09/24/2019] [Indexed: 12/21/2022] Open
Abstract
Background Bone marrow mesenchymal stem cells (BMSCs) can partially repair chemotherapy-induced ovarian damage. However, low survival rate after transplantation hampers the therapeutic efficiency of BMSCs. Heat shock pretreatment (HSP) effectively improves the cell survival. This study attempted to investigate the mechanisms of HSP on BMSCs survival and the effects of heat shock-pretreated BMSCs (HS-MSCs) on cisplatin-induced granulosa cell (GC) apoptosis. Methods BMSCs were isolated, cultured, and identified. After receiving HSP for different duration times in a 42 °C water bath, the apoptotic rates of BMSCs were detected by Annexin V-FITC/PI to determine the optimal condition of HSP. Cisplatin was added to the medium of HS-MSCs to simulate chemotherapy environment. The proliferative curve, apoptotic rate, and viability of HS-MSCs were determined by CCK-8, Annexin V-FITC/PI, and Hoechst33342/PI respectively to explore the alteration of biological characteristics. The levels of heat shock protein 70 and 90 (HSP70 and HSP90) and the expressions of autophagy-related markers (Beclin1 and LC3B) were detected by Western blot. In addition, the autophagosomes were observed by transmission electronic microscopy to discuss the possible mechanisms. The GCs were isolated, cultured, and identified. The HS-MSCs were co-cultured with GCs before and after the addition of cisplatin. Then, the apoptotic rate and viability of GCs were detected to investigate the therapeutic and preventive effects of HS-MSCs on GC apoptosis. Results After receiving HSP at 42 °C for 1 h, BMSCs represented the lowest apoptotic rate. After the addition of cisplatin, the apoptotic rate of HS-MSCs (11.94% ± 0.63%) was lower than that of BMSCs (14.30% ± 0.80%) and the percentage of HS-MSCs expressing bright blue/dull red fluorescence was lower than that of BMSCs. The expression of HSP70 and HSP90 increased, while the number of autophagosomes, the expression of Beclin1, and the LC3BII/LC3BI ratio decreased in HS-MSCs. The apoptotic rates of GCs co-cultured with HS-MSCs before and after the addition of cisplatin were 39.88% ± 1.65% and 36.72% ± 0.96%, both lower than those of cisplatin-induced GCs (53.81% ± 1.89%). Conclusion HSP can alleviate the apoptosis and improve the survival of BMSCs under chemotherapy environment. The mechanism may be associated with the elevated expression of HSP70 and HSP90 and the attenuation of autophagy. Moreover, HS-MSCs have both therapeutic and preventive effects on cisplatin-induced GC apoptosis.
Collapse
Affiliation(s)
| | - Xinran Li
- Department of Obstetrics and Gynecology, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Qingru Wang
- Department of Obstetrics and Gynecology, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Jiaxin Xie
- Department of Obstetrics and Gynecology, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Chuhai Xie
- Department of Orthopedics, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Xiafei Fu
- Department of Obstetrics and Gynecology, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong, People's Republic of China.
| |
Collapse
|
218
|
Li G, Shi M, Zhao S, Long Y, Zhu Y. Toxicity response of silkworm intestine to Bacillus cereus SW7-1 pathogen. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 692:1282-1290. [PMID: 31539960 DOI: 10.1016/j.scitotenv.2019.07.349] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 07/20/2019] [Accepted: 07/21/2019] [Indexed: 06/10/2023]
Abstract
Bacillus cereus is a foodborne pathogen that causes gastrointestinal disease in hosts. The interactions between pathogenic bacteria and silkworms (Bombyx mori L.) involve complex processes. This study aimed to investigate the potential genetic traits of B. cereus SW7-1 and profile the toxicity response of silkworm intestine upon infection by the SW7-1 pathogen. Bacterial genome sequencing and polymerase chain reaction (PCR) detection indicated that B. cereus SW7-1 possesses multiple antibiotic-resistant genes and nine virulence factor genes. Then, silkworm larvae were infected with SW7-1. Comparative transcriptomic analysis revealed that 273 differentially expressed genes (DEGs) with known functions were successfully annotated to the silkworm reference genome. Specifically, 18 DEGs were up-regulated, and 255 DEGs were down-regulated. Compared with the control group, the treated group revealed down-regulated DEGs that are related to stress reactions, immunity, autophagy and apoptosis, DNA replication, ribosomal stress, and carbohydrate metabolism. Quantitative real time PCR analysis showed that many key genes in the Toll pathway, immune deficiency pathway, Janus kinase/signal transducers and activators of transcription pathway, and melanization reaction were up-regulated. Thus, B. cereus SW7-1 pathogen could damage the silkworm intestine, as confirmed by the histological section assay. In addition, SW7-1 can affect the normal physiological functions of intestinal cells. This study contributes toward an improved understanding of the toxicity response of silkworm to the B. cereus pathogen and provides new insights into the molecular mechanisms of the complex interactions between pathogenic microbes and silkworms.
Collapse
Affiliation(s)
- Guannan Li
- State Key Laboratory of Silkworm Genome Biology, College of Biotechnology, Southwest University, Chongqing 400715, China.
| | - Min Shi
- State Key Laboratory of Silkworm Genome Biology, College of Biotechnology, Southwest University, Chongqing 400715, China
| | - Shan Zhao
- State Key Laboratory of Silkworm Genome Biology, College of Biotechnology, Southwest University, Chongqing 400715, China
| | - Yaohang Long
- School of Biology and Engineering, Guizhou Medical University, Guiyang 550025, China
| | - Yong Zhu
- State Key Laboratory of Silkworm Genome Biology, College of Biotechnology, Southwest University, Chongqing 400715, China.
| |
Collapse
|
219
|
Luo J, Long Y, Ren G, Zhang Y, Chen J, Huang R, Yang L. Punicalagin Reversed the Hepatic Injury of Tetrachloromethane by Antioxidation and Enhancement of Autophagy. J Med Food 2019; 22:1271-1279. [PMID: 31718395 PMCID: PMC6918856 DOI: 10.1089/jmf.2019.4411] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Hepatic injury is significant in the pathogenesis and development of many types of liver diseases. Punicalagin (PU) is a bioactive antioxidant polyphenol found in pomegranates. To explore its protective effect against carbon tetrachloride (CCl4)-induced liver injury and the mechanism, Institute of Cancer Research (ICR) mice and L02 cells were used to observe the changes of serum biochemical indicators, histopathological liver structure, cell viability, antioxidative indices, and autophagy-related proteins were assessed. In ICR mice, PU ameliorated the CCl4-induced increase of the serum aspartate aminotransferase, alanine aminotransferase, the activity of liver lactate dehydrogenase, and the damage of histopathological structure, and exhibited a hepatoprotective effect against CCl4. PU attenuated oxidative stress by decreasing the liver malondialdehyde level and increasing the activities of liver superoxide dismutase, glutathione peroxidase, and the expression of the liver nuclear factor E2-related factor (Nrf2) protein. Furthermore, according to the vivo and vitro experiments, PU might activate autophagy through the mediation of the Akt/FOXO3a and P62/Nrf2 signaling pathway. Taken together, these results suggest that PU may protect against CCl4-induced liver injury through the upregulation of antioxidative activities and autophagy.
Collapse
Affiliation(s)
- Jingfang Luo
- Department of Nutrition and Food Hygiene, Xiangya School of Public Health, Central South University, Changsha, Hunan, China
| | - Yi Long
- Children's Medical Center, Hunan Provincial People's Hospital, Changsha, Hunan, China
| | - Guofeng Ren
- Department of Nutrition and Food Hygiene, Xiangya School of Public Health, Central South University, Changsha, Hunan, China
| | - Yahui Zhang
- Department of Nutrition and Food Hygiene, Xiangya School of Public Health, Central South University, Changsha, Hunan, China
| | - Jihua Chen
- Department of Nutrition and Food Hygiene, Xiangya School of Public Health, Central South University, Changsha, Hunan, China
| | - Ruixue Huang
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, Hunan, China
| | - Lina Yang
- Department of Nutrition and Food Hygiene, Xiangya School of Public Health, Central South University, Changsha, Hunan, China
| |
Collapse
|
220
|
Li S, Yi Z, Deng M, Scott MJ, Yang C, Li W, Lei Z, Santerre NM, Loughran P, Billiar TR. TSLP protects against liver I/R injury via activation of the PI3K/Akt pathway. JCI Insight 2019; 4:129013. [PMID: 31723054 DOI: 10.1172/jci.insight.129013] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 10/10/2019] [Indexed: 01/09/2023] Open
Abstract
Thymic stromal lymphopoietin (TSLP) is a cytokine mainly released by epithelial cells that plays important roles in inflammation, autoimmune disease, and cancer. While TSLP is expressed in the liver at high levels, the role of TSLP in liver ischemia/reperfusion (I/R) injury remains unknown. Experiments were carried out to determine the role of TSLP in liver I/R injury. Wild-type (WT) and TSLP receptor-knockout (TSLPR-/-) mice were subjected to liver partial warm I/R injury. Liver injury was assessed by measuring serum alanine aminotransferase (ALT) level, necrotic areas by liver histology, hepatocyte death, and local hepatic inflammatory responses. Signal pathways were explored in vivo and in vitro to identify possible mechanisms for TSLP in I/R injury. TSLP and TSLPR protein expression increased during liver I/R in vivo and following hepatocyte hypoxia/reoxygenation in vitro. Deletion of TSLPR or neutralization of TSLP with anti-TSLP antibody exacerbated liver injury in terms of serum ALT levels as well as necrotic areas in liver histology. Administration of exogenous recombinant mouse TSLP to WT mice significantly reduced liver damage compared with controls, but failed to prevent I/R injury in TSLPR-/- mice. TSLP induced autophagy in hepatocytes during liver I/R injury. Mechanistically, Akt was activated in WT mice during liver I/R injury. The opposite results were observed in TSLPR-/- mice. In addition, TSLP could directly induce Akt activation in hepatocytes independent of nonparenchymal cells in vitro. Furthermore, the Akt agonist, insulin-like growth factor-1 (IGF-1), prevented I/R injury in TSLPR-/- mice and an Akt inhibitor, LY294002, blocked the protective effects of TSLP in WT mice subjected to I/R. Our data indicate that TSLP protects against liver I/R injury via activation of the PI3K/Akt pathway. Through this pathway, TSLP induces autophagy in hepatocytes. Thus, TSLP is a potent inhibitor of stress-induced hepatocyte necrosis.
Collapse
Affiliation(s)
- Shilai Li
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Department of Emergency, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Zhongjie Yi
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Department of Hepatobiliary Surgery, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Meihong Deng
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Melanie J Scott
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Chenxuan Yang
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,School of Medicine, Tsinghua University, Beijing, China
| | - Wenbo Li
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Department of Plastic Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Zhao Lei
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Department of Hepatobiliary Surgery, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Nicole M Santerre
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Patricia Loughran
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Center for Biologic Imaging, University of Pittsburgh, Pennsylvania, USA
| | - Timothy R Billiar
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
221
|
He B, Jiang D. HOTAIR-induced apoptosis is mediated by sponging miR-130a-3p to repress chondrocyte autophagy in knee osteoarthritis. Cell Biol Int 2019; 44:524-535. [PMID: 31642563 DOI: 10.1002/cbin.11253] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 10/19/2019] [Indexed: 12/13/2022]
Abstract
Knee osteoarthritis (KOA) is a multifactorial disease characterized by the loss of articular cartilage. Hox transcript antisense intergenic RNA (HOTAIR) long non-coding RNA (lncRNA) is highly expressed in some cases of OA; however, its role in chondrocyte apoptosis in KOA and the mechanism by which HOTAIR mediates apoptosis in chondrocytes are not completely understood. Here, we evaluated the effects of HOTAIR on chondrocyte apoptosis in KOA. Our results showed that HOTAIR expression was significantly upregulated in cartilage tissues located at the femoral condyles or tibial plateaus of OA resection regions when compared with control regions in patients with normal non-weight-bearing area femoral condyle articular cartilage. Overexpression of HOTAIR caused a sharp increase in apoptosis rates and a reduction in the viability of chondrocytes. These effects were accompanied by the upregulation of Bax expression and the proteolytic cleavage of caspase 3 expression and downregulation of survivin and Bcl-2 expression. The silencing of HOTAIR produced the opposite effects. Moreover, the cartilaginous expression of miR-130a-3p was notably reduced in the OA resection regions of KOA patients. Luciferase assays showed that HOTAIR-adsorbed and reduced the levels of miR-130a-3p in chondrocytes. Further, inhibition of miR-130a-3p remarkably promoted the apoptosis of chondrocytes and repressed cell growth, while the silencing of HOTAIR could rescue the apoptosis mediated by miR-130a-3p inhibition. Chondrocyte autophagy was suppressed in a HOTAIR-dependent, miR-130a-3p inhibitor-mediated manner. Overall, our data revealed that aberrantly high expression of HOTAIR resulted in massive apoptosis events caused by the sponging of miR-130a-3p to suppress autophagy in chondrocytes, which, in turn, might trigger KOA. Therefore, inhibition of HOTAIR-mediated apoptosis might be a potential mechanism that can be targeted by gene therapy of KOA.
Collapse
Affiliation(s)
- Bin He
- Department of Orthopaedics, the First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, P.R. China
| | - Dianming Jiang
- Department of Orthopaedics, the First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, P.R. China
| |
Collapse
|
222
|
Ochratoxin A exposure causes meiotic failure and oocyte deterioration in mice. Theriogenology 2019; 148:236-248. [PMID: 31735432 DOI: 10.1016/j.theriogenology.2019.11.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 10/24/2019] [Accepted: 11/09/2019] [Indexed: 01/10/2023]
Abstract
Ochratoxin A (OTA) is a mycotoxin produced by fungi and occurs naturally in various foodstuffs and some animal-derived products. This mycotoxin can cause deleterious effects on kidney, liver, central nervous, and immune system. However, potential mechanisms regarding how OTA disrupts the mammalian oocyte quality have not been clearly defined. In this study, we proved that OTA weakened oocyte quality by impairing oocyte meiotic maturation. We found that female mice treated with 1 mg/kg body weight OTA by intraperitoneal (IP) injection for 7 days displayed ovarian dysfunction and decreased offspring number. We also found that OTA treatment at 7.5 μM for 16 h decreased the rate of first polar body extrusion by disrupting spindle and chromosome alignment. In addition, OTA caused oxidative stress by inducing the accumulation of reactive oxygen species and consumption of antioxidants during meiosis, consequently resulting in oocytes apoptosis. Mitochondrial damage and insufficient energy supply were also observed in OTA-pretreated oocytes, which led to the meiotic failure of oocyte. Moreover, the epigenetic modifications were also affected, showing with altered 5 mC, 5hmC, H3K9ac, and H3K9me3 levels in mice oocytes. In summary, these results showed that OTA could decrease oocyte maturation and fertility by inducing oxidative stress and epigenetic changes.
Collapse
|
223
|
Xue R, Zhu X, Jia L, Wu J, Yang J, Zhu Y, Meng Q. Mitofusin2, a rising star in acute-on-chronic liver failure, triggers macroautophagy via the mTOR signalling pathway. J Cell Mol Med 2019; 23:7810-7818. [PMID: 31557386 PMCID: PMC6815802 DOI: 10.1111/jcmm.14658] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 07/22/2019] [Accepted: 08/11/2019] [Indexed: 02/06/2023] Open
Abstract
Acute-on-chronic liver failure (ACLF) is a life-threatening syndrome with poor prognosis. Several studies have begun to prove that mitochondria play a crucial role in liver failure. Mitofusin2 (Mfn2) plays a key role in maintaining the integrity of mitochondrial morphology and function. However, the role and underlying mechanisms of Mfn2 on cell autophagy of ACLF remain unclear. Our aim was to explore the effect of Mfn2 on several biological functions involving cell autophagy in ACLF. In this study, we constructed an ACLF animal model and a hepatocyte autophagy model, using adenovirus and lentivirus to deliver Mfn2 to liver cells, in order to assess the effect of Mfn2 on autophagy and apoptosis in ACLF. Furthermore, we explored the biological mechanism of Mfn2-induced autophagy of ACLF using Western blotting, RT-PCR and electron microscopy. We found that Mfn2 significantly attenuated ACLF, characterized by ameliorated gross appearance and microscopic histopathology of liver, and reduced serum AST, ALT, and TBIL levels. Mfn2 improved the expressions of LC3-II, Atg5 and Bcl-2 and down-regulated the expression of P62 and Bax in ACLF. Like rapamycin, Mfn2 also significantly inhibited the expressions of p-PI3K, p-Akt and p-mTOR in ACLF. In conclusion, our findings suggest that Mfn2 influences multiple biological functions of ACLF via the PI3K/Akt/mTOR signalling pathway. This study will provide a reliable theoretical basis for the application of Mfn2 as an effective target for ACLF treatment, reversing or delaying the process of ACLF.
Collapse
Affiliation(s)
- Ran Xue
- Department of Critical Care Medicine of Liver DiseaseBeijing You‐An HospitalCapital Medical UniversityBeijingChina
| | - Xuemin Zhu
- Department of Critical Care Medicine of Liver DiseaseBeijing You‐An HospitalCapital Medical UniversityBeijingChina
| | - Lin Jia
- Department of Critical Care Medicine of Liver DiseaseBeijing You‐An HospitalCapital Medical UniversityBeijingChina
| | - Jing Wu
- Department of Critical Care Medicine of Liver DiseaseBeijing You‐An HospitalCapital Medical UniversityBeijingChina
| | - Jing Yang
- Department of Critical Care Medicine of Liver DiseaseBeijing You‐An HospitalCapital Medical UniversityBeijingChina
| | - Yueke Zhu
- Department of Critical Care Medicine of Liver DiseaseBeijing You‐An HospitalCapital Medical UniversityBeijingChina
| | - Qinghua Meng
- Department of Critical Care Medicine of Liver DiseaseBeijing You‐An HospitalCapital Medical UniversityBeijingChina
| |
Collapse
|
224
|
The Effect of Heat Stress on Autophagy and Apoptosis of Rumen, Abomasum, Duodenum, Liver and Kidney Cells in Calves. Animals (Basel) 2019; 9:ani9100854. [PMID: 31652592 PMCID: PMC6826413 DOI: 10.3390/ani9100854] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 10/20/2019] [Accepted: 10/21/2019] [Indexed: 12/12/2022] Open
Abstract
The objective of this study was to assess the effect of heat stress on the autophagy and apoptosis of the rumen, abomasum, duodenum, liver and kidney in calves. Two groups of Holstein male calves were selected with similar birth weights and health conditions. Heat stress (HT): Six calves (birth weight 42.2 ± 2.3) were raised from July 15 to August 19. Cooling (CL): Six calves (birth weight 41.5 ± 3.1 kg) were raised from April 10 to May 15. All the calves were euthanized following captive bolt gun stunning at 35 d of age. The expression of protein 1 light chain 3-Ⅱ (LC3-Ⅱ) and caspase3 in the rumen, abomasum, duodenum, liver and kidney were determined by western blotting. In addition, other possible relevant serum biochemical parameters were evaluated. Significant differences were observed in alkaline phosphatase (ALP), albumin (ALB) and glucose (Glu). The results showed that heat stress could increase the autophagy and apoptosis of the kidney, duodenum and abomasum. However, heat stress had no effect on the autophagy and apoptosis of the liver. Additionally, the expression of caspase-3 in the rumen in HT was significantly lower than that in CL. In conclusion, the effects of heat stress on autophagy and apoptosis are organ-specific. The results provide knowledge regarding autophagy and autophagy in calf heat stress management.
Collapse
|
225
|
Histone deacetylase 6 inhibitor ACY1215 offers a protective effect through the autophagy pathway in acute liver failure. Life Sci 2019; 238:116976. [PMID: 31634464 DOI: 10.1016/j.lfs.2019.116976] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 10/08/2019] [Accepted: 10/15/2019] [Indexed: 02/07/2023]
Abstract
AIM The purpose of the present study was to elucidate the protective effect of histone deacetylase 6 inhibitor ACY1215 on autophagy pathway in acute liver failure (ALF). MAIN METHODS Lipopolysaccharide (LPS) and d-galactosamine (D-Gal) were used to induce ALF model in C57BL/6 mice. D-Gal and tumor necrosis factor alpha (TNF-α) were applied in L02 cell. Autophagy inhibitor 3-MA and ACY1215 were conducted to induce 3-MA group, ACY1215 group and ACY1215+3-MA group. RESULTS ACY1215 improved liver histological and functional changes in ALF mice model, whereas the autophagy inhibitor 3-MA aggravated liver tissue pathological and functional damage in ALF mice model group. The apoptotic levels (including apoptotic index/rate and apoptotic proteins) in ALF mice and L02 cell were ameliorated with treatment ACY1215. 3-MA accentuated the apoptotic levels in ACY1215 group. D-Gal/TNF-α could reduce L02 cell mitochondrial membrane potential (ΔΨm) in control group. ACY1215 increased the ΔΨm in ALF model. 3-MA also further reduced the ΔΨm in ACY1215 group. ACY1215 could induce autophagy in ALF mice and cell model group accompanied with an increase in expression of LC3-II and beclin-1 proteins and down-regulation of p62 protein. Moreover, the expression of LC3-II and beclin1 proteins were greatly reduced and the expression of p62 protein was ascended after intervention with 3-MA in ACY1215 group. SIGNIFICANCE Histone deacetylase 6 inhibitor ACY1215 could protect acute liver failure mice and L02 cell by inhibiting apoptosis pathway through enhancing autophagy way.
Collapse
|
226
|
Li Y, Ruan DY, Jia CC, Zheng J, Wang GY, Zhao H, Yang Q, Liu W, Yi SH, Li H, Wang GS, Yang Y, Chen GH, Zhang Q. Aging aggravates hepatic ischemia-reperfusion injury in mice by impairing mitophagy with the involvement of the EIF2α-parkin pathway. Aging (Albany NY) 2019; 10:1902-1920. [PMID: 30089704 PMCID: PMC6128434 DOI: 10.18632/aging.101511] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 07/28/2018] [Indexed: 02/07/2023]
Abstract
Hepatic ischemia-reperfusion (I/R) injury fundamentally influences the performance of aged liver grafts. The significance of mitophagy in the age dependence of sensitivity to I/R injury remains poorly understood. Here, we show that aging aggravated hepatic I/R injury with decreased mitophagy in mice. The enhancement of mitophagy resulted in significant protection against hepatic I/R injury. Parkin, an E3 ubiquitin ligase, was found depleted by I/R in aged livers. In oxygen-glucose deprivation reperfusion (OGD-Rep.)-treated L02 cells, parkin silencing impaired mitophagy and aggravated cell damage through a relative large mitochondrial membrane potential transition. The phosphorylation of the endoplasmic reticulum stress response protein EIF2α, which was also reduced in the aged liver, induced parkin expression both in vivo and vitro. Forty-six hepatic biopsy specimens from liver graft were collected 2 hours after complete revascularization, followed by immunohistochemical analyses. Parkin expression was negatively correlated to donor age and the peak level of aspartate aminotransferase within first week after liver transplantation. Our translational study demonstrates that aging aggravated hepatic I/R injury by impairing the age-dependent mitophagy function via an insufficient parkin expression and identifies a new strategy to evaluate the capacity of an aged liver graft in the process of I/R through the parkin expression.
Collapse
Affiliation(s)
- Yang Li
- Department of Liver Surgery and Liver Transplantation, Guangzhou Clinical Research and Translation Center for Liver Disease, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China.,Guangdong Key laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangdong 510630, China
| | - Dan-Yun Ruan
- Department of Medical Oncology, The Third Affiliated Hospital of Sun Yat-sen University, Guangdong 510630, China
| | - Chang-Chang Jia
- Department of Biotherapy, The Third Affiliated Hospital of Sun Yat-sen University, Guangdong 510630, China.,Guangdong Key laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangdong 510630, China
| | - Jun Zheng
- Department of Liver Surgery and Liver Transplantation, Guangzhou Clinical Research and Translation Center for Liver Disease, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China.,Guangdong Key laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangdong 510630, China
| | - Guo-Ying Wang
- Department of Liver Surgery and Liver Transplantation, Guangzhou Clinical Research and Translation Center for Liver Disease, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Hui Zhao
- Department of Liver Surgery and Liver Transplantation, Guangzhou Clinical Research and Translation Center for Liver Disease, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Qing Yang
- Department of Liver Surgery and Liver Transplantation, Guangzhou Clinical Research and Translation Center for Liver Disease, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Wei Liu
- Department of Liver Surgery and Liver Transplantation, Guangzhou Clinical Research and Translation Center for Liver Disease, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China.,Guangdong Key laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangdong 510630, China
| | - Shu-Hong Yi
- Department of Liver Surgery and Liver Transplantation, Guangzhou Clinical Research and Translation Center for Liver Disease, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Hua Li
- Department of Liver Surgery and Liver Transplantation, Guangzhou Clinical Research and Translation Center for Liver Disease, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Gen-Shu Wang
- Department of Liver Surgery and Liver Transplantation, Guangzhou Clinical Research and Translation Center for Liver Disease, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Yang Yang
- Department of Liver Surgery and Liver Transplantation, Guangzhou Clinical Research and Translation Center for Liver Disease, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Gui-Hua Chen
- Department of Liver Surgery and Liver Transplantation, Guangzhou Clinical Research and Translation Center for Liver Disease, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Qi Zhang
- Department of Biotherapy, The Third Affiliated Hospital of Sun Yat-sen University, Guangdong 510630, China.,Guangdong Key laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangdong 510630, China
| |
Collapse
|
227
|
Liang S, Liu H, Liu S, Wei M, Gao F, Xue J, Sun L, Wang M, Jiang H, Chen L. Homocysteine induces human mesangial cell apoptosis via the involvement of autophagy and endoplasmic reticulum stress. RSC Adv 2019; 9:31720-31727. [PMID: 35527928 PMCID: PMC9072727 DOI: 10.1039/c9ra04248b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 09/15/2019] [Indexed: 12/26/2022] Open
Abstract
Homocysteine (Hcy) level characterizes a progressive increase in chronic kidney disease (CKD). In fact, Hcy accumulation is considered to be a crucial biochemical culprit in CKD progression, but the mechanism underlying this remains poorly understood. This study investigated the role of Hcy in glomerular mesangial cell (MC) apoptosis and the potential involvement of autophagy and endoplasmic reticulum (ER) stress in this process, shedding light on Hcy toxicity in kidney disease. Human mesangial cells (HMCs) were incubated with different concentrations of Hcy for different times. Flow cytometry was used to determine the proportion of apoptotic cells and western blotting was used to analyze protein levels after the administration of Hcy, endoplasmic reticulum inhibitor 4-phenylbutyric acid (4-PBA), and Atg5 siRNA. The results demonstrated that the cell viability gradually decreased and the proportion of HMCs undergoing apoptosis increased with increasing Hcy concentration and prolonged incubation time. Meanwhile, levels of the apoptosis-related proteins Bax and cleaved caspase-3 were significantly increased, while ER stress-related proteins such as ATF4, CHOP, GRP78, and phospho-eIF2α significantly increased. Levels of cleaved LC3, and beclin1 and Atg5 proteins also increased, accompanied by p62 degradation, indicating autophagy activation. 4-PBA effectively inhibited ER stress and reversed Hcy-induced apoptosis and autophagy. Moreover, Atg5 siRNA alleviated Hcy-induced apoptosis. Taken together, these results suggest that Hcy induces HMC apoptosis in a dose- and time-dependent manner via the activation of Atg5-dependent autophagy triggered by ER stress. This study suggests a novel strategy against Hcy toxicity in kidney injury and should help in clarifying the pathogenesis of CKD.
Collapse
Affiliation(s)
- Shanshan Liang
- Dialysis Department of Nephrology Hospital, The First Affiliated Hospital of Xi'an Jiaotong University West Yanta Road 277 Xi'an 710061 Shaanxi China +86 29 85324729 +86 29 85324729
| | - Hua Liu
- Dialysis Department of Nephrology Hospital, The First Affiliated Hospital of Xi'an Jiaotong University West Yanta Road 277 Xi'an 710061 Shaanxi China +86 29 85324729 +86 29 85324729
| | - Sixiu Liu
- Dialysis Department of Nephrology Hospital, The First Affiliated Hospital of Xi'an Jiaotong University West Yanta Road 277 Xi'an 710061 Shaanxi China +86 29 85324729 +86 29 85324729
| | - Meng Wei
- Dialysis Department of Nephrology Hospital, The First Affiliated Hospital of Xi'an Jiaotong University West Yanta Road 277 Xi'an 710061 Shaanxi China +86 29 85324729 +86 29 85324729
| | - Fanfan Gao
- Dialysis Department of Nephrology Hospital, The First Affiliated Hospital of Xi'an Jiaotong University West Yanta Road 277 Xi'an 710061 Shaanxi China +86 29 85324729 +86 29 85324729
| | - Jinhong Xue
- Dialysis Department of Nephrology Hospital, The First Affiliated Hospital of Xi'an Jiaotong University West Yanta Road 277 Xi'an 710061 Shaanxi China +86 29 85324729 +86 29 85324729
| | - Lingshuang Sun
- Dialysis Department of Nephrology Hospital, The First Affiliated Hospital of Xi'an Jiaotong University West Yanta Road 277 Xi'an 710061 Shaanxi China +86 29 85324729 +86 29 85324729
| | - Meng Wang
- Dialysis Department of Nephrology Hospital, The First Affiliated Hospital of Xi'an Jiaotong University West Yanta Road 277 Xi'an 710061 Shaanxi China +86 29 85324729 +86 29 85324729
| | - Hongli Jiang
- Dialysis Department of Nephrology Hospital, The First Affiliated Hospital of Xi'an Jiaotong University West Yanta Road 277 Xi'an 710061 Shaanxi China +86 29 85324729 +86 29 85324729
| | - Lei Chen
- Dialysis Department of Nephrology Hospital, The First Affiliated Hospital of Xi'an Jiaotong University West Yanta Road 277 Xi'an 710061 Shaanxi China +86 29 85324729 +86 29 85324729
| |
Collapse
|
228
|
Challa TD, Wueest S, Lucchini FC, Dedual M, Modica S, Borsigova M, Wolfrum C, Blüher M, Konrad D. Liver ASK1 protects from non-alcoholic fatty liver disease and fibrosis. EMBO Mol Med 2019; 11:e10124. [PMID: 31595673 PMCID: PMC6783644 DOI: 10.15252/emmm.201810124] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Revised: 04/30/2019] [Accepted: 05/03/2019] [Indexed: 12/15/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is strongly associated with obesity and may progress to non-alcoholic steatohepatitis (NASH) and liver fibrosis. The deficit of pharmacological therapies for the latter mainly results from an incomplete understanding of involved pathological mechanisms. Herein, we identify apoptosis signal-regulating kinase 1 (ASK1) as a suppressor of NASH and fibrosis formation. High-fat diet-fed and aged chow-fed liver-specific ASK1-knockout mice develop a higher degree of hepatic steatosis, inflammation, and fibrosis compared to controls. In addition, pharmacological inhibition of ASK1 increased hepatic lipid accumulation in wild-type mice. In line, liver-specific ASK1 overexpression protected mice from the development of high-fat diet-induced hepatic steatosis and carbon tetrachloride-induced fibrosis. Mechanistically, ASK1 depletion blunts autophagy, thereby enhancing lipid droplet accumulation and liver fibrosis. In human livers of lean and obese subjects, ASK1 expression correlated negatively with liver fat content and NASH scores, but positively with markers for autophagy. Taken together, ASK1 may be a novel therapeutic target to tackle NAFLD and liver fibrosis.
Collapse
Affiliation(s)
- Tenagne D Challa
- Division of Pediatric Endocrinology and DiabetologyUniversity Children's HospitalZurichSwitzerland
- Children's Research CenterUniversity Children's HospitalZurichSwitzerland
| | - Stephan Wueest
- Division of Pediatric Endocrinology and DiabetologyUniversity Children's HospitalZurichSwitzerland
- Children's Research CenterUniversity Children's HospitalZurichSwitzerland
| | - Fabrizio C Lucchini
- Division of Pediatric Endocrinology and DiabetologyUniversity Children's HospitalZurichSwitzerland
- Children's Research CenterUniversity Children's HospitalZurichSwitzerland
- Zurich Center for Integrative Human PhysiologyUniversity of ZurichZurichSwitzerland
| | - Mara Dedual
- Division of Pediatric Endocrinology and DiabetologyUniversity Children's HospitalZurichSwitzerland
- Children's Research CenterUniversity Children's HospitalZurichSwitzerland
- Zurich Center for Integrative Human PhysiologyUniversity of ZurichZurichSwitzerland
| | - Salvatore Modica
- Institute of Food, Nutrition and HealthETH ZurichSchwerzenbachSwitzerland
| | - Marcela Borsigova
- Division of Pediatric Endocrinology and DiabetologyUniversity Children's HospitalZurichSwitzerland
- Children's Research CenterUniversity Children's HospitalZurichSwitzerland
| | - Christian Wolfrum
- Institute of Food, Nutrition and HealthETH ZurichSchwerzenbachSwitzerland
| | | | - Daniel Konrad
- Division of Pediatric Endocrinology and DiabetologyUniversity Children's HospitalZurichSwitzerland
- Children's Research CenterUniversity Children's HospitalZurichSwitzerland
- Zurich Center for Integrative Human PhysiologyUniversity of ZurichZurichSwitzerland
| |
Collapse
|
229
|
Tsukui T, Chen Z, Fuda H, Furukawa T, Oura K, Sakurai T, Hui SP, Chiba H. Novel Fluorescence-Based Method To Characterize the Antioxidative Effects of Food Metabolites on Lipid Droplets in Cultured Hepatocytes. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:9934-9941. [PMID: 31402655 DOI: 10.1021/acs.jafc.9b02081] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
A fluorescence microscopic method for characterizing size, quantity, and oxidation of lipid droplets (LDs) in HepG2 cells was developed. LDs were induced by palmitic (PA), oleic (OA), or linoleic acids (LA) and stained with two fluorescent probes for neutral lipids and lipid peroxides. Each fatty acid increased the number of LDs and oxidized LDs (oxLDs) and the degree of LD oxidation time dependently, as well as increased intracellular triglyceride hydroperoxides. LDs induced by LA without 2,2'-azobis(2-amidinopropane)dihydrochloride (AAPH) showed the most significant oxidation degree over PA and OA, especially in large LDs (area ≥ 3 μm2, oxLD/LD = 52.3 ± 21.7%). Under this condition, two food-derived antioxidants were evaluated, and both of them significantly improved the LD characteristics. Moreover, chlorogenic acid reduced the quantity of large LDs by 74.0-87.6% in a dose-dependent manner. The proposed method provides a new approach to evaluate the effect of dietary antioxidants on LD characteristics.
Collapse
Affiliation(s)
- Takayuki Tsukui
- Department of Nutrition , Sapporo University of Health Sciences , Nakanuma Nishi-4-3-1-15 , Higashi-ku, Sapporo 007-0894 , Japan
| | - Zhen Chen
- Faculty of Health Sciences , Hokkaido University , Kita-12, Nishi-5 , Kita-ku, Sapporo 060-0812 , Japan
| | - Hirotoshi Fuda
- Faculty of Health Sciences , Hokkaido University , Kita-12, Nishi-5 , Kita-ku, Sapporo 060-0812 , Japan
| | - Takayuki Furukawa
- Faculty of Health Sciences , Hokkaido University , Kita-12, Nishi-5 , Kita-ku, Sapporo 060-0812 , Japan
| | - Kotaro Oura
- Faculty of Health Sciences , Hokkaido University , Kita-12, Nishi-5 , Kita-ku, Sapporo 060-0812 , Japan
| | - Toshihiro Sakurai
- Faculty of Health Sciences , Hokkaido University , Kita-12, Nishi-5 , Kita-ku, Sapporo 060-0812 , Japan
| | - Shu-Ping Hui
- Faculty of Health Sciences , Hokkaido University , Kita-12, Nishi-5 , Kita-ku, Sapporo 060-0812 , Japan
| | - Hitoshi Chiba
- Department of Nutrition , Sapporo University of Health Sciences , Nakanuma Nishi-4-3-1-15 , Higashi-ku, Sapporo 007-0894 , Japan
| |
Collapse
|
230
|
The triazole linked galactose substituted dicyano compound can induce autophagy in NSCLC cell lines. Gene 2019; 712:143935. [DOI: 10.1016/j.gene.2019.06.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 03/11/2019] [Accepted: 06/13/2019] [Indexed: 02/07/2023]
|
231
|
Rao X, Wang Y. Apolipoprotein A-I improves hepatic autophagy through the AMPK pathway. Biochimie 2019; 165:210-218. [PMID: 31401190 DOI: 10.1016/j.biochi.2019.08.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 08/05/2019] [Indexed: 10/26/2022]
Abstract
Dysfunction in lipid metabolism may result in a decrease in hepatic autophagy, which contributes to the pathogenesis of non-alcoholic steatohepatitis. ATP-binding cassette transporter A1 transports free cholesterol and phospholipids to apolipoprotein A-I (apoA-I) to form nascent high-density lipoprotein particles. Results from previous studies showed that the overexpression of apoA-I significantly reduced levels of hepatic lipids and endoplasmic reticulum stress by modifying lipid transport. Here, we investigated the effects of apoA-I overexpression on hepatic autophagy in cultured hepatocytes and mice. The overexpression of apoA-I in HepG2 cells resulted in an increase in the levels of autophagy as well as the phosphorylation of AMP-activated protein kinase α (AMPKα) and ULK1 and a decrease in the phosphorylation of mammalian target of rapamycin (mTOR). An AMPK inhibitor and siRNA eliminated this apoA-I effect. Consistently, apoA-I transgenic mice showed increased autophagy and AMPKα phosphorylation. These results suggest that apoA-I overexpression alleviates steatohepatitis by increasing hepatic autophagy through the AMPK-mTOR-ULK1 pathway.
Collapse
Affiliation(s)
- Xia Rao
- Department of Cell Biology, Municipal Laboratory for Liver Protection and Regulation of Regeneration, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Yutong Wang
- Department of Cell Biology, Municipal Laboratory for Liver Protection and Regulation of Regeneration, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China.
| |
Collapse
|
232
|
Rogalska A, Gajek A, Marczak A. Suppression of autophagy enhances preferential toxicity of epothilone A and epothilone B in ovarian cancer cells. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 61:152847. [PMID: 31029905 DOI: 10.1016/j.phymed.2019.152847] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 01/21/2019] [Accepted: 01/26/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND Epothilones are microtubule-targeting agents that induce death in a variety of cancer cell types. Here, we focus on the cellular and molecular mechanisms underlying epothilone A (Epo A) and epothilone B (Epo B)-induced autophagy and apoptosis in ovarian cancer cells, compared to the actions of the widely used clinical chemotherapy drug paclitaxel (PTX). MATERIALS AND METHODS Autophagy was examined in two cell lines, SKOV-3 (human ovarian adenocarcinoma) and OV-90 (human ovarian papillary serous adenocarcinoma), which differ in the levels of p-glycoprotein and drug resistance, based on the LC3 ELISA assay, fluorescence detection of autophagosome formation, morphological changes evaluated via acridine orange staining, and visualization of LC3 protein using confocal microscopy. Cell viability was detected using the 3-(4,5-dimethylthiazol-2-yl)-2,5 diphenyltetrazolium bromide (MTT) assay. Apoptosis was measured via the caspase-3/7 assay and immunofluorescence labeling of caspase-3. Differences in microtubule organization in epothilone-treated cells were investigated using specific antibodies against β-tubulin. All probes were analyzed both in the presence and absence of the autophagy inhibitor, bafilomycin A1 (Baf), and apoptosis inhibitor, Z-FA-FMK. RESULTS Epothilone and PTX treatment induced a dose-dependent decrease in cell viability, along with increased apoptosis and disruption of microtubule dynamics. Furthermore, under conditions of inhibition of autophagy with Baf, apoptosis triggered by these compounds was significantly increased. CONCLUSION Our collective results suggest that treatment with epothilones in combination with autophagy inhibitors present a potentially more effective chemotherapeutic approach for ovarian cancer.
Collapse
Affiliation(s)
- Aneta Rogalska
- Department of Medical Biophysics, Institute of Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland.
| | - Arkadiusz Gajek
- Department of Medical Biophysics, Institute of Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland
| | - Agnieszka Marczak
- Department of Medical Biophysics, Institute of Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland
| |
Collapse
|
233
|
Wei YM, Luan ZH, Liu BW, Wang YH, Chang YX, Xue HQ, Ren JH. Autophagy in Triptolide-Mediated Cytotoxicity in Hepatic Cells. Int J Toxicol 2019; 38:436-444. [PMID: 31342801 DOI: 10.1177/1091581819864518] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Triptolide is a major active ingredient isolated from the traditional Chinese herb Tripterygium wilfordii Hook F. However, its use in clinical practice is limited due to its severe hepatotoxicity. Autophagy, a highly conserved intracellular process, is essential for maintaining cytoplasmic homeostasis. Considering that abnormalities in autophagy are closely associated with drug-mediated hepatotoxicity, we applied human normal liver HL7702 cells to elucidate the roles of autophagy in triptolide-induced hepatotoxicity. Our study revealed that triptolide was cytotoxic to HL7702 cells. It markedly increased autophagosome formation and expression of autophagy-related proteins, namely Beclin1 and microtubule-associated protein 1 light chain 3II, and induced oxidative stress. These proautophagic effects were counteracted by pretreatment with N-acetylcysteine, a reactive oxygen species scavenger. Moreover, the pharmacological suppression of autophagy further exacerbated triptolide-elicited decrease in cell viability, increase in lactate dehydrogenase leakage, and activation of apoptosis proteases (caspase 3 and caspase 9). Our findings suggest that triptolide-induced oxidative stress consequently enhances autophagic activity, and autophagy is a cytoprotective mechanism against triptolide-induced cytotoxicity in HL7702 cells.
Collapse
Affiliation(s)
- Yan Ming Wei
- College of Chinese Medicine and Food Engineering, Shanxi University of Chinese Medicine, Jinzhong, Shanxi, People's Republic of China
| | - Zhi Hua Luan
- Experimental Management Centre, Shanxi University of Chinese Medicine, Jinzhong, Shanxi, People's Republic of China
| | - Bi Wang Liu
- Experimental Management Centre, Shanxi University of Chinese Medicine, Jinzhong, Shanxi, People's Republic of China
| | - Yong Hui Wang
- Experimental Management Centre, Shanxi University of Chinese Medicine, Jinzhong, Shanxi, People's Republic of China
| | - Yin Xia Chang
- College of Chinese Medicine and Food Engineering, Shanxi University of Chinese Medicine, Jinzhong, Shanxi, People's Republic of China
| | - Hui Qing Xue
- Experimental Management Centre, Shanxi University of Chinese Medicine, Jinzhong, Shanxi, People's Republic of China
| | - Jin Hong Ren
- College of Chinese Medicine and Food Engineering, Shanxi University of Chinese Medicine, Jinzhong, Shanxi, People's Republic of China
| |
Collapse
|
234
|
Mahmoud AR, Ali FEM, Abd-Elhamid TH, Hassanein EHM. Coenzyme Q 10 protects hepatocytes from ischemia reperfusion-induced apoptosis and oxidative stress via regulation of Bax/Bcl-2/PUMA and Nrf-2/FOXO-3/Sirt-1 signaling pathways. Tissue Cell 2019; 60:1-13. [PMID: 31582012 DOI: 10.1016/j.tice.2019.07.007] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Revised: 07/09/2019] [Accepted: 07/22/2019] [Indexed: 12/12/2022]
Abstract
Coenzyme Q10 (CoQ10) is a component of the mitochondrial electron transport chain and regarded as a strong anti-oxidant agent. In this study, we focused on the mechanistic insights involved in the hepato-protective effects of CoQ10 against hepatic ischemia reperfusion (IR) injury. Our results revealed that CoQ10 significantly improved hepatic dysfunctions and oxidative stress caused by IR injury. Interestingly, as compared to IR subjected rat, CoQ10 inhibited apoptosis by marked down-regulation of both Bax and PUMA genes while the level of Bcl-2 gene was significantly increased. Moreover, CoQ10 up-regulated PI3K, Akt and mTOR protein expressions while it inhibited the expression of both GSK-3β and β-catenin. Additionally, CoQ10 restored oxidant/antioxidant balance via marked activated Nrf-2 protein as well as up-regulation of both Sirt-1 and FOXO-3 genes. Moreover, CoQ10 strongly inhibited inflammatory response through down-regulation of NF-κB-p65 and decrease both JAK1 and STAT-3 protein expressions with a subsequent modulating circulating inflammatory cytokines. Furthermore, histopathological analysis showed that CoQ10 remarkably ameliorated the histopathological damage induced by IR injury. Taken together, our results suggested and proved that CoQ10 provided a hepato-protection against hepatic IR injury via inhibition of apoptosis, oxidative stress, inflammation and their closed related pathways.
Collapse
Affiliation(s)
- Amany R Mahmoud
- Department of Human Anatomy and Embryology, Faculty of Medicine, Assiut University, Assiut, Egypt; Department of Anatomy, Unaizah College of Medicine, Qassim University, Unaizah Al Qassim Region, Saudi Arabia
| | - Fares E M Ali
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut, 71524, Egypt.
| | - Tarek Hamdy Abd-Elhamid
- Department of Histology and Cell Biology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Emad H M Hassanein
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut, 71524, Egypt
| |
Collapse
|
235
|
Xue R, Yang J, Jia L, Zhu X, Wu J, Zhu Y, Meng Q. Mitofusin2, as a Protective Target in the Liver, Controls the Balance of Apoptosis and Autophagy in Acute-on-Chronic Liver Failure. Front Pharmacol 2019; 10:601. [PMID: 31231215 PMCID: PMC6561379 DOI: 10.3389/fphar.2019.00601] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Accepted: 05/10/2019] [Indexed: 01/08/2023] Open
Abstract
Aim: Acute-on-chronic liver failure (ACLF) is closely related to mitochondrial dysfunction. Previous studies showed the vital role of mitofusin2 (Mfn2) in the regulation of mitochondrial function. However, the effect of Mfn2 on ACLF remains unknown. As one of mitochondrial-related pathways, BNIP3-mediated pathway controls the balance between apoptosis and autophagy. However, the relationship between Mfn2 and BNIP3-mediated pathway in ACLF is still obscure. The aim of our study is to clarify the effect of Mfn2 and potential molecular mechanisms in ACLF. Methods: We collected liver tissue from ACLF patients and constructed an ACLF animal model and a hepatocyte autophagy injury model, using adenovirus and lentivirus to deliver Mfn2 and Mfn2-siRNA to liver cells, in order to assess the effect of Mfn2 on autophagy and apoptosis in ACLF. We explored the biological mechanisms of Mfn2-induced autophagy and apoptosis of ACLF through Western blotting, Quantitative Real-Time PCR (RT-PCR), transmission electron microscopy, immunofluorescence, immunohistochemical staining, and hematoxylin–eosin staining. Results: Compared with the normal liver tissue, the expressions of Mfn2, Atg5, Beclin1, and LC3-II/I were significantly decreased and the expression of P62 was much higher in patients with ACLF. Mfn2 significantly attenuated ACLF, characterized via microscopic histopathology and reduced serum AST and ALT levels. Mfn2 promoted the expressions of ATP synthase β, Atg5, Beclin1, LC3-II/I, and Bcl2 and reduced the expressions of P62, Bax, and BNIP3. Conclusions: Mfn2 plays a protective role in the progression of ACLF. BNIP3-mediated signaling pathway is not the only factor associated with Mfn2 controlling the balance of apoptosis and autophagy in ACLF. Mfn2 will provide a promising therapeutic target for patients with ACLF.
Collapse
Affiliation(s)
- Ran Xue
- Department of Critical Care Medicine of Liver Disease, Beijing You-An Hospital, Capital Medical University, Beijing, China
| | - Jing Yang
- Department of Critical Care Medicine of Liver Disease, Beijing You-An Hospital, Capital Medical University, Beijing, China
| | - Lin Jia
- Department of Critical Care Medicine of Liver Disease, Beijing You-An Hospital, Capital Medical University, Beijing, China
| | - Xuemin Zhu
- Department of Critical Care Medicine of Liver Disease, Beijing You-An Hospital, Capital Medical University, Beijing, China
| | - Jing Wu
- Department of Critical Care Medicine of Liver Disease, Beijing You-An Hospital, Capital Medical University, Beijing, China
| | - Yueke Zhu
- Department of Critical Care Medicine of Liver Disease, Beijing You-An Hospital, Capital Medical University, Beijing, China
| | - Qinghua Meng
- Department of Critical Care Medicine of Liver Disease, Beijing You-An Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
236
|
Liu J, Wang H, Wang J, Chang Q, Hu Z, Shen X, Feng J, Zhang Z, Wu X. Total flavonoid aglycones extract in Radix Scutellariae induces cross-regulation between autophagy and apoptosis in pancreatic cancer cells. JOURNAL OF ETHNOPHARMACOLOGY 2019; 235:133-140. [PMID: 30738116 DOI: 10.1016/j.jep.2019.02.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 01/31/2019] [Accepted: 02/03/2019] [Indexed: 06/09/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Radix Scutellariae (RS), the dried root of Scutellariae baicalensis Georgi, known as a herbal medicine in several Asian countries including China, has been widely used to treat inflammation, hypertension, cardiovascular disease as well as cancer. The total flavonoid aglycone extracted (TFAE) was extracted by ethyl acetate and this extraction methodology was optimized and obtained the protection of Chinese patents. AIM OF THE STUDY To investigate the underlying mechanism of the chemotherapeutic effects of TFAE in inducing autophagy and apoptosis in pancreatic cancer cells in vitro and in vivo. MATERIALS AND METHODS We performed CCK8 assays, AnnexinV-FITC/PI staining, flow cytometry assays, transmission electron microscopy, immunofluorescence analysis and Western blot to study the molecular mechanism of TFAE in inducing autophagy and apoptosis in pancreatic cancer cells in vitro and in vivo. RESULTS In vitro, TFAE exhibits significant anti-tumor activity against pancreatic cancer cell lines, especially for BxPC3 (IC50 = 6.5 μg mL-1). Moreover, TFAE induces apoptosis and autophagy as evidenced by the increased apoptosis or autophagy-related protein level, the increased the fraction of apoptotic cells and the punctuate patterns of LC3 II. Furthermore, TFAE induce autophagy through PI3K/Akt/mTOR inhibition. Interestingly, pharmacological block autophagy by 3-MA enhanced TFAE-induced apoptosis, indicating that TFAE induced autophagy functions as a cytoprotective process against apoptosis. In vivo, 150 mg/kg TFAE inhibited the BxPC3 tumor growth in immune deficient mice with the inhibitory rate of 66.87% and induced both apoptosis and autophagy. CONCLUSION TFAE have anti-tumor activity against pancreatic cancer and can induce apoptosis and autophagy through PI3K/Akt/mTOR signal pathway. TFAE might be a potential anticancer drug to be further developed for human pancreatic cancer therapy.
Collapse
Affiliation(s)
- Jiazhe Liu
- Department of Hepatobiliary and Pancreatic Surgery, Minhang Branch, Zhongshan Hospital, Fudan University, Shanghai, China.
| | - Hongcheng Wang
- Department of General Surgery, Sixth People's Hospital Affiliated Shanghai Jiao Tong University, 600 Yi-Shan Road, Shanghai 200233, China.
| | - Jianfa Wang
- Department of Hepatobiliary and Pancreatic Surgery, Minhang Branch, Zhongshan Hospital, Fudan University, Shanghai, China.
| | - Qimeng Chang
- Department of Hepatobiliary and Pancreatic Surgery, Minhang Branch, Zhongshan Hospital, Fudan University, Shanghai, China.
| | - Zhiqiu Hu
- Department of Hepatobiliary and Pancreatic Surgery, Minhang Branch, Zhongshan Hospital, Fudan University, Shanghai, China.
| | - Xiaodong Shen
- Department of Hepatobiliary and Pancreatic Surgery, Minhang Branch, Zhongshan Hospital, Fudan University, Shanghai, China.
| | - Jinfeng Feng
- Department of Hepatobiliary and Pancreatic Surgery, Minhang Branch, Zhongshan Hospital, Fudan University, Shanghai, China.
| | - Ziping Zhang
- Department of Hepatobiliary and Pancreatic Surgery, Minhang Branch, Zhongshan Hospital, Fudan University, Shanghai, China.
| | - Xubo Wu
- Department of Hepatobiliary and Pancreatic Surgery, Minhang Branch, Zhongshan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
237
|
The effects of cigarette smoking extracts on cell cycle and tumor spread: novel evidence. Future Sci OA 2019. [DOI: 10.4155/fsoa-2019-0017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
238
|
Pezzuto A, Citarella F, Croghan I, Tonini G. The effects of cigarette smoking extracts on cell cycle and tumor spread: novel evidence. Future Sci OA 2019; 5:FSO394. [PMID: 31205749 PMCID: PMC6556819 DOI: 10.2144/fsoa-2019-0017] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Cigarette smoking is a major preventable risk factor for lung cancer, contributing to lung cancer progression and metastasis. Moreover, cigarette smoking correlates with increased metastasis frequency of pancreatic, breast and bladder cancer. The aim of this review was to examine the role of cigarette smoke extract in cell cycle and cancer progression. Clinical impact and the effects of cigarette smoke extract on carcinogenesis are discussed. 98 of the over 5000 chemicals in tobacco smoke are known carcinogens that can act on cancer genes such as K-RAS and p53. Through various mechanisms these compounds can activate molecules involved in the cell cycle, such as cyclins, and molecules involved in apoptosis and autophagy, such as Beclin-1 or LC3B. A search of the literature, including in vitro and in vivo studies, was carried out and the results summarized. There is evidence of cancerogenic effects of cigarette smoke compounds. Cigarette smoke extract is a tobacco condensate obtained by filtration processes. Studies have shown that it can modify the cell cycle, inducing uncontrolled cell proliferation. This effect occurs through activation of genetic and epigenetic pathways and increasing the expression of proteins involved in inflammation. The pathways activated by cigarette smoke extract open up opportunities for researchers to develop new targeted therapies toward the specific molecules involved. Furthermore, the effects exerted by cigarette smoke extract on normal epithelial cells hold potential for use in the development of prevention medicine and early cancer diagnosis.
Collapse
Affiliation(s)
- Aldo Pezzuto
- Cardiovascular & Thoracic Department, AOU Sant'Andrea, Sapienza - Università di Roma, Roma, Italy
| | | | - Ivana Croghan
- Department of Medicine Clinical Research Office & Primary Care Internal Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Giuseppe Tonini
- Oncology Department, Campus Bio-Medico Università di Roma, Roma, Italy
| |
Collapse
|
239
|
Denk H, Stumptner C, Abuja PM, Zatloukal K. Sequestosome 1/p62-related pathways as therapeutic targets in hepatocellular carcinoma. Expert Opin Ther Targets 2019; 23:393-406. [PMID: 30987486 DOI: 10.1080/14728222.2019.1601703] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Protein sequestosome 1/p62 (p62) plays a crucial role in vital complex and interacting signaling pathways in normal and neoplastic cells. P62 is involved in autophagy, defense against oxidative stress via activation of the Keap1/Nrf2 system, in protein aggregation and sequestration, and in apoptosis. Autophagy contributes to cell survival and proliferation by eliminating damaged organelles, potentially toxic protein aggregates and invading microorganisms, and by providing nutrients under starvation conditions. The same holds true for oxidative stress defense, which may prevent genomic alterations and tumor initiation but also protect established tumor cells and promote tumor progression. Cross-talk between autophagy and apoptosis is regulated by a signaling network with the involvement of p62. Areas covered: The review deals with structure, function, and regulation of p62 and its role in liver carcinogenesis. Emphasis is placed on mechanisms leading to overexpression of p62 and its accumulation as inclusion bodies in HCC and on the impact of p62-dependent signaling pathways in tumor cells with the aim to explore the possible role of p62 as the therapeutic target. Expert opinion: Depending on the context, targeting p62 or interference with related pathways, such as autophagy, is a potential therapeutic strategy in HCC. However, the heterogeneity of this tumor entity and the complexity and mutual interactions of the p62-dependent pathways involved are challenges for a targeted therapy since interference with p62-mediated regulatory processes could result likewise in inhibition of tumorigenesis and in its promotion and thus provoke harmful side effects. Therapy-related patient stratification based on reliable markers to better define pathogenic principles of the tumor is a necessity when this type of treatment is considered.
Collapse
Affiliation(s)
- Helmut Denk
- a Institute of Pathology , Medical University of Graz , Graz , Austria
| | - Conny Stumptner
- a Institute of Pathology , Medical University of Graz , Graz , Austria
| | - Peter M Abuja
- a Institute of Pathology , Medical University of Graz , Graz , Austria
| | - Kurt Zatloukal
- a Institute of Pathology , Medical University of Graz , Graz , Austria
| |
Collapse
|
240
|
Guo H, Gao K, Zou X, Deng Q, Chen M, Liu F. [Crocetin promotes autophagy in injured rat hepatocytes induced by lipopolysaccharide and D-galactosamine in vitro]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2019; 38:1121-1125. [PMID: 30377103 DOI: 10.12122/j.issn.1673-4254.2018.09.16] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
OBJECTIVE To observe the effect of crocetin on autophagy in rat hepatocytes exposed to lipopolysaccharide (LPS) and D-galactosamine (D-gal) and explore the mechanism. METHODS Cultured rat hepatocytes were exposed to LPS (1 mg/L) and Dgal (60 mg/L) to induce cell injury and treated with crocetin, 3MA, or crocetin+3MA. Twelve hours after the treatments, the cells were examined for levels of ALT, AST and LDH in the supernatant using ELISA. LC3 fluorescence in the cells following immunofluorescence staining was observed using fluorescence microscopy. Autophagosomes in the cells were observed by transmission electron microscopy, and the cellular expressions of LC3, p62 and SIRT1 were detected using Western blotting. RESULTS The levels of ALT, AST and LDH in the hepatocytes were elevated after LPS- and D-gal-induced injury, reached the highest levels after 3MA treatment, but were decreased significantly by crocetin treatment. LC3 fluorescence increased obviously in the injured hepatoctyes, and the increment was the most obvious in crocetin-treated cells; LC3 fluorescence was decreased significantly after 3MA treatment. Cell injury induced obvious increase in autophagy in the hepatocytes, and the number of autophagosomes increased significantly after crocetin treatment but was reduced significantly after 3MA treatment. The cell injury caused an obvious up-regulation of LC3 and SIRT1 expression and down-regulated p62 expression. LC3 and SIRT1 expression levels were the highest and the expression of p62 was the lowest in cells with crocetin treatment. 3MA treatment significantly reduced the expression of LC3 and SIRT1 and increased the expression of p62 in the injured cells. CONCLUSIONS Autophagy is increased in injured rat hepatocytes, and crocetin can promote autophagy in the injured cells to reduce further cell injury.
Collapse
Affiliation(s)
- Hongxing Guo
- Department of Gastroenterology, the Fifth Affiliated Hospital, Southern Medical University, Guangzhou 510900, China
| | - Ke Gao
- Department of Pathology, the Fifth Affiliated Hospital, Southern Medical University, Guangzhou 510900, China
| | - Xingjian Zou
- Department of Gastroenterology, the Fifth Affiliated Hospital, Southern Medical University, Guangzhou 510900, China
| | - Qingwen Deng
- Department of Gastroenterology, the Fifth Affiliated Hospital, Southern Medical University, Guangzhou 510900, China
| | - Mengxue Chen
- Department of Gastroenterology, the Fifth Affiliated Hospital, Southern Medical University, Guangzhou 510900, China
| | - Faquan Liu
- Department of Gastroenterology, the Fifth Affiliated Hospital, Southern Medical University, Guangzhou 510900, China
| |
Collapse
|
241
|
Ke PY. Diverse Functions of Autophagy in Liver Physiology and Liver Diseases. Int J Mol Sci 2019; 20:E300. [PMID: 30642133 PMCID: PMC6358975 DOI: 10.3390/ijms20020300] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Revised: 01/05/2019] [Accepted: 01/08/2019] [Indexed: 01/09/2023] Open
Abstract
Autophagy is a catabolic process by which eukaryotic cells eliminate cytosolic materials through vacuole-mediated sequestration and subsequent delivery to lysosomes for degradation, thus maintaining cellular homeostasis and the integrity of organelles. Autophagy has emerged as playing a critical role in the regulation of liver physiology and the balancing of liver metabolism. Conversely, numerous recent studies have indicated that autophagy may disease-dependently participate in the pathogenesis of liver diseases, such as liver hepatitis, steatosis, fibrosis, cirrhosis, and hepatocellular carcinoma. This review summarizes the current knowledge on the functions of autophagy in hepatic metabolism and the contribution of autophagy to the pathophysiology of liver-related diseases. Moreover, the impacts of autophagy modulation on the amelioration of the development and progression of liver diseases are also discussed.
Collapse
Affiliation(s)
- Po-Yuan Ke
- Department of Biochemistry & Molecular Biology and Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan.
- Liver Research Center, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan.
- Division of Allergy, Immunology, and Rheumatology, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan.
| |
Collapse
|
242
|
Li M, Wang S, Li X, Kou R, Wang Q, Wang X, Zhao N, Zeng T, Xie K. Diallyl sulfide treatment protects against acetaminophen-/carbon tetrachloride-induced acute liver injury by inhibiting oxidative stress, inflammation and apoptosis in mice. Toxicol Res (Camb) 2019; 8:67-76. [PMID: 30713662 PMCID: PMC6334500 DOI: 10.1039/c8tx00185e] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Accepted: 10/25/2018] [Indexed: 12/13/2022] Open
Abstract
The purpose of the present study was to investigate the effects and underlying mechanisms of diallyl sulfide (DAS), an organosulfur compound extracted from garlic, on drug-induced or chemical-induced liver injury caused by acetaminophen (APAP) or carbon tetrachloride (CCl4) in mice. DAS (100, 200, or 400 μmol kg-1) was orally administered 1 hour before APAP or CCl4 intraperitoneal injection, and the serum and liver tissue were collected 24 hours after APAP or CCl4 exposure. The serum aminotransferase activities and liver histopathological examination showed that DAS exhibited obvious hepatoprotective effects against acute liver injury induced by APAP or CCl4. In addition, exposure to APAP or CCl4 resulted in an increased content of malonaldehyde as well as a decreased ratio of reduced to oxidized glutathione, and a decreased level of superoxide dismutase and catalase activity in the liver (p < 0.05); however, pretreatment with DAS restored the perturbations of the antioxidant system in the liver. Beyond that, DAS pretreatment reduced the APAP-/CCl4-induced increase in phosphorylation of inhibitor of kappa B alpha (IκBα) and p65 subunit of nuclear factor kappa B (NF-κB) expression in the cytoplasm and nucleus in the liver. DAS pretreatment also decreased the excessive level of TNF-α caused by APAP or CCl4 in serum (p < 0.05). Moreover, DAS pretreatment regulated the expression of cleaved caspase 3, Bax and Bcl-2 in the liver and suppressed APAP-/CCl4-induced hepatocyte apoptosis. In conclusion, DAS exhibits hepatoprotective effects against drug-induced and chemical-induced liver injuries induced by APAP or CCl4 in mice, probably due to its ability to reduce hepatic oxidative stress and inhibit inflammatory injury and hepatocyte apoptosis.
Collapse
Affiliation(s)
- Ming Li
- Institute of Toxicology , School of Public Health , Shandong University , Jinan , Shandong Province 250012 , China .
| | - Shuo Wang
- School of Pharmaceutical , Liaocheng University , Liaocheng , Shandong Province 252000 , China
| | - Xianjie Li
- Institute of Toxicology , School of Public Health , Shandong University , Jinan , Shandong Province 250012 , China .
| | - Ruirui Kou
- Institute of Toxicology , School of Public Health , Shandong University , Jinan , Shandong Province 250012 , China .
| | - Qiong Wang
- Institute of Toxicology , School of Public Health , Shandong University , Jinan , Shandong Province 250012 , China .
| | - Xujing Wang
- Institute of Toxicology , School of Public Health , Shandong University , Jinan , Shandong Province 250012 , China .
| | - Ning Zhao
- Institute of Toxicology , School of Public Health , Shandong University , Jinan , Shandong Province 250012 , China .
| | - Tao Zeng
- Institute of Toxicology , School of Public Health , Shandong University , Jinan , Shandong Province 250012 , China .
| | - Keqin Xie
- Institute of Toxicology , School of Public Health , Shandong University , Jinan , Shandong Province 250012 , China .
| |
Collapse
|
243
|
Abstract
Inbred mice are the most popular animals used for in vivo liver research. These mice are genetically defined, readily available, less expensive to maintain than larger animals, and enjoy a broad array of commercial reagents for scientific characterization. C57BL/6 mice are the most commonly used strain. However, other strains discussed, including BALB/c, C3H, A/J, and FVB/N, may be better suited to a particular disease model or line of investigation. Understanding the phenotypes of different inbred mouse strains facilitates informed decision making during experimental design. Model systems influenced by strain-dependent phenotype include tissue regeneration, drug-induced liver injury (DILI; e.g., acetaminophen), fibrosis (e.g., carbon tetrachloride, CCl₄), Fas-induced apoptosis, cholestasis, alcohol-induced liver disease and cirrhosis, nonalcoholic fatty liver disease and steatohepatitis (NAFLD/NASH), and hepatocellular carcinoma (HCC). Thoughtful consideration of the strengths and weaknesses of each inbred strain in a given model system will lead to more robust data and a clearer understanding of translational relevance to human liver disease.
Collapse
Affiliation(s)
- Arlin B. Rogers
- Department of Early Development, Alnylam Pharmaceuticals, Cambridge, MA, USA
| |
Collapse
|
244
|
Saad MA, Rastanawi AA, El-Yamany MF. Alogliptin abates memory injuries of hepatic encephalopathy induced by acute paracetamol intoxication via switching-off autophagy-related apoptosis. Life Sci 2018; 215:11-21. [DOI: 10.1016/j.lfs.2018.10.069] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 10/22/2018] [Accepted: 10/30/2018] [Indexed: 02/07/2023]
|
245
|
Dai C, Xiao X, Li D, Tun S, Wang Y, Velkov T, Tang S. Chloroquine ameliorates carbon tetrachloride-induced acute liver injury in mice via the concomitant inhibition of inflammation and induction of apoptosis. Cell Death Dis 2018; 9:1164. [PMID: 30478280 PMCID: PMC6255886 DOI: 10.1038/s41419-018-1136-2] [Citation(s) in RCA: 116] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 10/08/2018] [Accepted: 10/10/2018] [Indexed: 02/07/2023]
Abstract
This is the first study to investigate the hepatoprotective effect of CQ on acute liver injury caused by carbon tetrachloride (CCl4) in a murine model and the underlying molecular mechanisms. Ninety-six mice were randomly divided into the control (n = 8), CQ (n = 8), CCl4 (n = 40), and CCl4 + CQ (n = 40) treatment groups. In the CCl4 group, mice were intraperitoneally (i.p) injected with 0.3% CCl4 (10 mL/kg, dissolved in olive oil); in the CCl4 + CQ group, mice were i.p injected with CQ at 50 mg/kg at 2, 24, and 48 h before CCl4 administration. The mice in the control and CQ groups were administered with an equal vehicle or CQ (50 mg/kg). Mice were killed at 2, 6, 12, 24, 48 h post CCl4 treatment and their livers were harvested for analysis. The results showed that CQ pre-treatment markedly inhibited CCl4-induced acute liver injury, which was evidenced by decreased serum transaminase, aspartate transaminase and lower histological scores of liver injury. CQ pretreatment downregulated the CCl4-induced hepatic tissue expression of high-mobility group box 1 (HMGB1) and the levels of serum HMGB1 as well as IL-6 and TNF-α. Furthermore, CQ pre-treatment inhibited autophagy, downregulated NF-kB expression, upregulated p53 expression, increased the ratio of Bax/Bcl-2, and increased the activation of caspase-3 in hepatic tissue. This is the first study to demonstrate that CQ ameliorates CCl4-induced acute liver injury via the inhibition of HMGB1-mediated inflammatory responses and the stimulation of pro-apoptotic pathways to modulate the apoptotic and inflammatory responses associated with progress of liver damage.
Collapse
Affiliation(s)
- Chongshan Dai
- College of Veterinary Medicine, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing, 100193, P. R. China
| | - Xilong Xiao
- College of Veterinary Medicine, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing, 100193, P. R. China
| | - Daowen Li
- College of Veterinary Medicine, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing, 100193, P. R. China
| | - Sun Tun
- College of Veterinary Medicine, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing, 100193, P. R. China
| | - Ying Wang
- College of Veterinary Medicine, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing, 100193, P. R. China
| | - Tony Velkov
- Department of Pharmacology & Therapeutics, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, Victoria, 3010, Australia. .,Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria, 3052, Australia.
| | - Shusheng Tang
- College of Veterinary Medicine, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing, 100193, P. R. China.
| |
Collapse
|
246
|
Zhang Y, Miao LS, Cai YM, He JX, Zhang ZN, Wu G, Zheng J. TXNIP knockdown alleviates hepatocyte ischemia reperfusion injury through preventing p38/JNK pathway activation. Biochem Biophys Res Commun 2018; 502:409-414. [PMID: 29852169 DOI: 10.1016/j.bbrc.2018.05.185] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 05/28/2018] [Indexed: 10/14/2022]
Abstract
Hepatic ischemia and reperfusion (I/R) injury is a major cause of liver damage during liver transplantation, resection surgery, shock, and trauma. It has been reported that TXNIP expression was upregulated in a rat model of hepatic I/R injury. However, the role of TXNIP in the hepatic I/R injury is little known. In our study, we investigated the biological role of TXNIP and its potential molecular mechanism in the human hepatic cell line (HL7702 cells). Using oxygen-glucose deprivation and reoxygenation (OGD/R) to create a cell model of hepatic I/R injury, we found that the mRNA and protein expression levels of TXNIP were upregulated in HL7702 cells exposed to OGD/R. TXNIP overexpression remarkably promoted OGD/R-induced cell apoptosis and lactate dehydrogenase (LDH) release, both of which were significantly decreased by TXNIP knockdown. The production of malondialdehyde (MDA) was also increased by TXNIP overexpression, but was reduced by TXNIP knockdown. Moreover, TXNIP overexpression significantly upregulated the phosphorylation of p38 and JNK, which was remarkably inhibited by TXNIP knockdown. Additionally, p38-specific inhibitor SB203580 abrogated the effect of TXNIP overexpression on OGD/R-induced cell injury. Taken together, these results indicated that TXNIP knockdown alleviated hepatocyte I/R injury through preventing p38/JNK pathway activation. Thus, TXNIP might offer a novel potential therapeutic target for the treatment of hepatic I/R injury.
Collapse
Affiliation(s)
- Yong Zhang
- Department of Anesthesiology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Liang-Sheng Miao
- Department of Anesthesiology, Weinan Central Hospital, Weinan, Shaanxi Province, China
| | - Ying-Min Cai
- Department of Anesthesiology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Jia-Xuan He
- Department of Anesthesiology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Zhen-Ni Zhang
- Department of Anesthesiology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Gang Wu
- Department of Anesthesiology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China.
| | - Juan Zheng
- Department of Anesthesiology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| |
Collapse
|
247
|
Wang S, Zhu M, Wang Q, Hou Y, Li L, Weng H, Zhao Y, Chen D, Ding H, Guo J, Li M. Alpha-fetoprotein inhibits autophagy to promote malignant behaviour in hepatocellular carcinoma cells by activating PI3K/AKT/mTOR signalling. Cell Death Dis 2018; 9:1027. [PMID: 30301886 PMCID: PMC6177398 DOI: 10.1038/s41419-018-1036-5] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 08/30/2018] [Accepted: 09/03/2018] [Indexed: 02/07/2023]
Abstract
Alpha-fetoprotein (AFP) has been recognized as a key regulator of cell proliferation in hepatocellular carcinoma (HCC). However, whether AFP functions in cancer cell autophagy remains unknown. This study investigated the effects of AFP on autophagy in HCC cells. The role of AFP was studied in two HCC cell lines, PLC/PRF/5 and HLE. Cell autophagy, apoptosis, proliferation, migration and invasion were analysed with Western blotting, co-immunoprecipitation (CoIP), immunofluorescence, animal models, MTT assays, flow cytometry (FCM), Cell Counting Kit (CCK)-8, and scratch and transwell assays. In PLC/PRF/5 cells, AFP interacted with PTEN and activated PI3K/Akt/mTOR signalling. In HLE cells, overexpressed AFP similarly interacted with PTEN, leading to PI3K/Akt/mTOR activation and reduced cell autophagy. When AFP was silenced in PLC/PRF/5 cells, cell proliferation, tumour growth, migration and invasion were inhibited, and the numbers of S-phase and apoptotic cells were increased. In contrast, AFP overexpression in HLE cells enhanced cell proliferation, migration and invasion and reduced apoptosis. AFP-dependent autophagy, proliferation, migration and apoptosis were inhibited by rapamycin. In summary, AFP plays critical roles in the inhibition of autophagy and apoptosis in HCC cells and promotes proliferation, migration and invasion. The role of AFP in autophagy inhibition in HCC cells may involve the activation of PI3K/Akt/mTOR signalling.
Collapse
Affiliation(s)
- Shanshan Wang
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing, China.,Beijing Precision Medicine and Transformation Engineering Technology Research Center of Hepatitis and Liver Cancer, Beijing, China
| | - Mingyue Zhu
- Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Hainan Medical College, Haikou, China
| | - Qiaoyun Wang
- Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Hainan Medical College, Haikou, China
| | - Yuli Hou
- Clinical Laboratory Center, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Lei Li
- Department of Gastrointestinal and Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Honglei Weng
- Molecular Hepatology, University of Heidelberg, University Medical Center Mannheim, 68167, Mannheim, Germany
| | - Yan Zhao
- Clinical Laboratory Center, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Dexi Chen
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing, China.,Beijing Precision Medicine and Transformation Engineering Technology Research Center of Hepatitis and Liver Cancer, Beijing, China
| | - Huiguo Ding
- Department of Gastrointestinal and Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing, China.
| | - Junli Guo
- Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Hainan Medical College, Haikou, China.
| | - Mengsen Li
- Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Hainan Medical College, Haikou, China.
| |
Collapse
|
248
|
Bhogal RH, Weston CJ, Velduis S, G D Leuvenink H, Reynolds GM, Davies S, Nyguet-Thin L, Alfaifi M, Shepard EL, Boteon Y, Wallace L, Oo YH, Adams DH, Mirza DF, Mergental H, Muirhead G, Stephenson BTF, Afford SC. The Reactive Oxygen Species-Mitophagy Signaling Pathway Regulates Liver Endothelial Cell Survival During Ischemia/Reperfusion Injury. Liver Transpl 2018; 24:1437-1452. [PMID: 30040176 DOI: 10.1002/lt.25313] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 04/29/2018] [Accepted: 06/04/2018] [Indexed: 12/12/2022]
Abstract
Ischemia/reperfusion injury (IRI) is the main cause of complications following liver transplantation. Reactive oxygen species (ROS) were thought to be the main regulators of IRI. However, recent studies demonstrate that ROS activate the cytoprotective mechanism of autophagy promoting cell survival. Liver IRI initially damages the liver endothelial cells (LEC), but whether ROS-autophagy promotes cell survival in LEC during IRI is not known. Primary human LEC were isolated from human liver tissue and exposed to an in vitro model of IRI to assess the role of autophagy in LEC. The role of autophagy during liver IRI in vivo was assessed using a murine model of partial liver IRI. During IRI, ROS specifically activate autophagy-related protein (ATG) 7 promoting autophagic flux and the formation of LC3B-positive puncta around mitochondria in primary human LEC. Inhibition of ROS reduces autophagic flux in LEC during IRI inducing necrosis. In addition, small interfering RNA knockdown of ATG7 sensitized LEC to necrosis during IRI. In vivo murine livers in uninjured liver lobes demonstrate autophagy within LEC that is reduced following IRI with concomitant reduction in autophagic flux and increased cell death. In conclusion, these findings demonstrate that during liver IRI ROS-dependent autophagy promotes the survival of LEC, and therapeutic targeting of this signaling pathway may reduce liver IRI following transplantation.
Collapse
Affiliation(s)
- Ricky H Bhogal
- Centre for Liver Research, School of Infection and Immunity, Institute for Biomedical Research, The Medical School, Birmingham, United Kingdom
- The Liver Unit, University Hospitals of Birmingham, New Queen Elizabeth Hospital Birmingham, Birmingham, United Kingdom
| | - Christopher J Weston
- Centre for Liver Research, School of Infection and Immunity, Institute for Biomedical Research, The Medical School, Birmingham, United Kingdom
| | - Susanne Velduis
- University Medical Centre Groningen, University of Groningen, Groningen, the Netherlands
| | - Henri G D Leuvenink
- University Medical Centre Groningen, University of Groningen, Groningen, the Netherlands
| | - Gary M Reynolds
- Centre for Liver Research, School of Infection and Immunity, Institute for Biomedical Research, The Medical School, Birmingham, United Kingdom
| | - Scott Davies
- Centre for Liver Research, School of Infection and Immunity, Institute for Biomedical Research, The Medical School, Birmingham, United Kingdom
| | - Luu Nyguet-Thin
- Centre for Liver Research, School of Infection and Immunity, Institute for Biomedical Research, The Medical School, Birmingham, United Kingdom
| | - Mohammed Alfaifi
- Centre for Liver Research, School of Infection and Immunity, Institute for Biomedical Research, The Medical School, Birmingham, United Kingdom
| | - Emma L Shepard
- Centre for Liver Research, School of Infection and Immunity, Institute for Biomedical Research, The Medical School, Birmingham, United Kingdom
| | - Yuri Boteon
- Centre for Liver Research, School of Infection and Immunity, Institute for Biomedical Research, The Medical School, Birmingham, United Kingdom
| | - Lorraine Wallace
- Centre for Liver Research, School of Infection and Immunity, Institute for Biomedical Research, The Medical School, Birmingham, United Kingdom
| | - Ye H Oo
- Centre for Liver Research, School of Infection and Immunity, Institute for Biomedical Research, The Medical School, Birmingham, United Kingdom
| | - David H Adams
- Centre for Liver Research, School of Infection and Immunity, Institute for Biomedical Research, The Medical School, Birmingham, United Kingdom
| | - Darius F Mirza
- Centre for Liver Research, School of Infection and Immunity, Institute for Biomedical Research, The Medical School, Birmingham, United Kingdom
- The Liver Unit, University Hospitals of Birmingham, New Queen Elizabeth Hospital Birmingham, Birmingham, United Kingdom
| | - Hynek Mergental
- Centre for Liver Research, School of Infection and Immunity, Institute for Biomedical Research, The Medical School, Birmingham, United Kingdom
- The Liver Unit, University Hospitals of Birmingham, New Queen Elizabeth Hospital Birmingham, Birmingham, United Kingdom
| | - Gillian Muirhead
- Centre for Liver Research, School of Infection and Immunity, Institute for Biomedical Research, The Medical School, Birmingham, United Kingdom
| | - Barnaby T F Stephenson
- Centre for Liver Research, School of Infection and Immunity, Institute for Biomedical Research, The Medical School, Birmingham, United Kingdom
| | - Simon C Afford
- Centre for Liver Research, School of Infection and Immunity, Institute for Biomedical Research, The Medical School, Birmingham, United Kingdom
| |
Collapse
|
249
|
Pang L, Liu K. Tumor-suppressing effects of autophagy on hepatocellular carcinoma. LIVER RESEARCH 2018. [DOI: 10.1016/j.livres.2018.08.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
250
|
Lu H, Han M, Yuan X, Tursun K, Zhang Y, Li Y, Li Z, Feng S, Zhou L, Pan Z, Wang Q, Han K, Liu S, Cheng J. Role of IL-6-mediated expression of NS5ATP9 in autophagy of liver cancer cells. J Cell Physiol 2018; 233:9312-9319. [PMID: 29227529 DOI: 10.1002/jcp.26343] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 11/21/2017] [Accepted: 11/29/2017] [Indexed: 12/21/2022]
Abstract
This study aimed to investigate the relationship between interleukin-6 (IL-6) and NS5ATP9 in autophagy of liver cancer cells. Autophagy is one of the important regulators of the replication of hepatitis C virus and the survival of tumors. IL-6 is a multifunctional cytokine that plays an important role in autophagy and development of many kinds of tumors. However, the role of IL-6 in autophagy has not been fully explored. A previous study had shown that a novel gene, NS5ATP9, could modulate autophagy. The present study demonstrated that human IL-6 recombinant protein induced autophagy of HepG2 cells. Conversely, autophagy decreased after IL-6 was silenced or neutralized with monoclonal antibody against human IL-6. In addition, NS5ATP9 was upregulated by IL-6 via nuclear factor-kappaB activation, as detected by Western blot. Further studies indicated that the induction of autophagy by IL-6 could be attenuated by silencing NS5ATP9. Interestingly, the expression of NS5ATP9, in turn, resulted in the upregulation of IL-6. In conclusion, IL-6 could induce autophagy by expressing NS5ATP9, while NS5ATP9 upregulated IL-6 levels in turn, which further induced autophagy.
Collapse
Affiliation(s)
- Hongping Lu
- Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Emerging Infectious Diseases, Beijing, China
| | - Ming Han
- Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Emerging Infectious Diseases, Beijing, China.,Peking University Ditan Teaching Hospital, Beijing, China
| | - Xiaoxue Yuan
- Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Emerging Infectious Diseases, Beijing, China
| | - Kelbinur Tursun
- Beijing Key Laboratory of Emerging Infectious Diseases, Beijing, China.,The First Affiliated Hospital of Xinjiang Medical University, Xinjiang, China
| | - Yu Zhang
- Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Emerging Infectious Diseases, Beijing, China
| | - Yaru Li
- Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Emerging Infectious Diseases, Beijing, China
| | - Zhongshu Li
- Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Emerging Infectious Diseases, Beijing, China
| | - Shenghu Feng
- Beijing Key Laboratory of Emerging Infectious Diseases, Beijing, China.,Peking University Ditan Teaching Hospital, Beijing, China
| | - Li Zhou
- Beijing Key Laboratory of Emerging Infectious Diseases, Beijing, China.,Peking University Ditan Teaching Hospital, Beijing, China
| | - Zhipeng Pan
- Beijing Key Laboratory of Emerging Infectious Diseases, Beijing, China.,Dalian University, Dalian, China
| | - Qi Wang
- Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Emerging Infectious Diseases, Beijing, China
| | - Kai Han
- Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Emerging Infectious Diseases, Beijing, China
| | - Shunai Liu
- Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Emerging Infectious Diseases, Beijing, China
| | - Jun Cheng
- Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Emerging Infectious Diseases, Beijing, China.,Peking University Ditan Teaching Hospital, Beijing, China
| |
Collapse
|