201
|
Carini JP, Klamt F, Bassani VL. Flavonoids from Achyrocline satureioides: promising biomolecules for anticancer therapy. RSC Adv 2014. [DOI: 10.1039/c3ra43627f] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
|
202
|
Phytoagents for cancer management: regulation of nucleic acid oxidation, ROS, and related mechanisms. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2013; 2013:925804. [PMID: 24454991 PMCID: PMC3886269 DOI: 10.1155/2013/925804] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Revised: 09/27/2013] [Accepted: 10/05/2013] [Indexed: 12/28/2022]
Abstract
Accumulation of oxidized nucleic acids causes genomic instability leading to senescence, apoptosis, and tumorigenesis. Phytoagents are known to reduce the risk of cancer development; whether such effects are through regulating the extent of nucleic acid oxidation remains unclear. Here, we outlined the role of reactive oxygen species in nucleic acid oxidation as a driving force in cancer progression. The consequential relationship between genome instability and cancer progression highlights the importance of modulation of cellular redox level in cancer management. Current epidemiological and experimental evidence demonstrate the effects and modes of action of phytoagents in nucleic acid oxidation and provide rationales for the use of phytoagents as chemopreventive or therapeutic agents. Vitamins and various phytoagents antagonize carcinogen-triggered oxidative stress by scavenging free radicals and/or activating endogenous defence systems such as Nrf2-regulated antioxidant genes or pathways. Moreover, metal ion chelation by phytoagents helps to attenuate oxidative DNA damage caused by transition metal ions. Besides, the prooxidant effects of some phytoagents pose selective cytotoxicity on cancer cells and shed light on a new strategy of cancer therapy. The “double-edged sword” role of phytoagents as redox regulators in nucleic acid oxidation and their possible roles in cancer prevention or therapy are discussed in this review.
Collapse
|
203
|
Del Turco S, Sartini S, Sentieri C, Saponaro C, Navarra T, Dario B, Da Settimo F, La Motta C, Basta G. A novel 2,3-diphenyl-4H-pyrido[1,2-a]pyrimidin-4-one derivative inhibits endothelial cell dysfunction and smooth muscle cell proliferation/activation. Eur J Med Chem 2013; 72:102-9. [PMID: 24361522 DOI: 10.1016/j.ejmech.2013.11.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Revised: 11/14/2013] [Accepted: 11/21/2013] [Indexed: 11/24/2022]
Abstract
Hyper-proliferation and migration of vascular smooth muscle cells and endothelial cell dysfunction are central events in the development of neo-intimal lesions. Pursuing our interest in the synthesis of bioisosters of flavonoids, we studied in depth a novel synthetic 2,3-diphenyl-4H-pyrido[1,2-a]pyrimidin-4-one derivative, examining its effects in vitro on induced-cell proliferation and activation in human aortic smooth muscle cells (HAoSMCs) and in human umbilical vein endothelial cells (HUVECs). Compared with two well known flavonoids, apigenin and quercetin, the novel compound, 2-(3,4-dimethoxyphenyl)-3-phenyl-4H-pyrido[1,2-a]pyrimidin-4-one, 3, was not toxic for HUVECs, even at high concentrations and for long incubation times, while the two flavonoids were not tolerated, even at concentrations as low as 10 μmol/L. Compound 3 inhibited selectively, and in a concentration-dependent manner, the proliferation of HAoSMCs but not that of HUVECs. In HUVECs, it inhibited the cytokine-induced vascular cell adhesion molecule-1 expression, but not the cyclooxygenase-2 (COX-2) expression. Instead, in HAoSMC, it inhibited the induction of COX-2 expression and the relative release of prostaglandin E2. In addition, it inhibited the transcription of the matrix metalloproteinase-9 and its activity. Thanks to its multiple and tissue-specific function, 2-(3,4-dimethoxyphenyl)-3-phenyl-4H-pyrido[1,2-a]pyrimidin-4-one might replace or assist the action of current drugs eluted by coronary stents, in order to promote a functional repair of damaged wall.
Collapse
Affiliation(s)
- Serena Del Turco
- CNR, Institute of Clinical Physiology, Via G. Moruzzi, 1, 56124 Pisa, Italy
| | - Stefania Sartini
- Department of Pharmacy, University of Pisa, Via Bonanno, 6, 56126 Pisa, Italy
| | - Cassandra Sentieri
- CNR, Institute of Clinical Physiology, Via G. Moruzzi, 1, 56124 Pisa, Italy
| | - Chiara Saponaro
- CNR, Institute of Clinical Physiology, Via G. Moruzzi, 1, 56124 Pisa, Italy
| | - Teresa Navarra
- CNR, Institute of Clinical Physiology, Via G. Moruzzi, 1, 56124 Pisa, Italy
| | - Bianca Dario
- Department of Pharmacy, University of Pisa, Via Bonanno, 6, 56126 Pisa, Italy
| | - Federico Da Settimo
- Department of Pharmacy, University of Pisa, Via Bonanno, 6, 56126 Pisa, Italy
| | - Concettina La Motta
- Department of Pharmacy, University of Pisa, Via Bonanno, 6, 56126 Pisa, Italy.
| | - Giuseppina Basta
- CNR, Institute of Clinical Physiology, Via G. Moruzzi, 1, 56124 Pisa, Italy.
| |
Collapse
|
204
|
Chirumbolo S. Anticancer properties of the flavone wogonin. Toxicology 2013; 314:60-4. [DOI: 10.1016/j.tox.2013.08.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Accepted: 08/16/2013] [Indexed: 11/27/2022]
|
205
|
Yao YL, Shao J, Zhang C, Wu JH, Zhang QH, Wang JJ, Zhu W. Proliferation of colorectal cancer is promoted by two signaling transduction expression patterns: ErbB2/ErbB3/AKT and MET/ErbB3/MAPK. PLoS One 2013; 8:e78086. [PMID: 24205104 PMCID: PMC3813539 DOI: 10.1371/journal.pone.0078086] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Accepted: 09/07/2013] [Indexed: 02/04/2023] Open
Abstract
One of the recent breakthroughs in cancer research is the identification of activating mutations in various receptor tyrosine kinase(RTK) pathways in many cancers including colorectal cancer(CRC). We hypothesize that, alternative to mutations, overexpression of various oncogenic RTKs may also underpin CRC pathogenesis, and different RTK may couple with distinct downstream signaling pathways in different subtypes of human CRC. By immunohistochemistry, we show here that RTK members ErbB2, ErbB3 and c-Met were in deed differentially overexpressed in colorectal cancer patient samples leading to constitutive activation of RTK signaling pathways. Using ErbB2 specific inhibitor Lapatinib and c-Met specific inhibitor PHA-665752, we further demonstrated that this constitutive activation of RTK signaling is necessary for the survival of colorectal cancer cells. Furthermore, we show that RTK overexpression pattern dictates the use of downstream AKT and/or MAPK pathways. Our data are important additions to current oncogenic mutation models, and further explain the clinical variation in therapeutic responses of colorectal cancer. Our findings advocate for more personalized therapy tailored to individual patients based on their type of RTK expression in addition to their mutation status.
Collapse
Affiliation(s)
- Yong-Liang Yao
- Department of Clinical Laboratory, Kunshan First People's Hospital, Affiliated to Jiangsu University, Kunshan, Jiangsu, China
| | | | | | | | | | | | | |
Collapse
|
206
|
Yu CP, Hsieh YW, Lin SP, Chi YC, Hariharan P, Chao PDL, Hou YC. Potential modulation on P-glycoprotein and CYP3A by soymilk and miso: in vivo and ex-vivo studies. Food Chem 2013; 149:25-30. [PMID: 24295672 DOI: 10.1016/j.foodchem.2013.10.058] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Revised: 08/23/2013] [Accepted: 10/14/2013] [Indexed: 10/26/2022]
Abstract
P-glycoprotein (P-gp) and CYP3A4 both play very important roles in drug bioavailability, resistance and interactions. Our in vitro studies indicated that P-gp function was activated by many isoflavones. This study investigated the in vivo effects of soymilk and miso, isoflavone-rich soy foods, on P-gp and CYP3A by tracing the pharmacokinetics of cyclosporine (CSP), a probe drug of P-gp. Rats were orally administered CSP with and without soymilk or miso. A specific monoclonal fluorescence polarisation immunoassay was used to determine the blood concentration of CSP. The results showed that soymilk and miso significantly decreased the C(max) of CSP by 64.5% and 78.3%, and reduced the AUC(0-540) by 64.9% and 78.3%, respectively. Mechanism studies revealed that the activities of P-gp and CYP3A4 were induced by soymilk and miso. In conclusion, ingestion of soymilk and miso significantly activated the functions of P-gp and CYP3A.
Collapse
Affiliation(s)
- C P Yu
- School of Pharmacy, China Medical University, Taichung 404, Taiwan, ROC
| | | | | | | | | | | | | |
Collapse
|
207
|
Romano B, Fasolino I, Pagano E, Capasso R, Pace S, De Rosa G, Milic N, Orlando P, Izzo AA, Borrelli F. The chemopreventive action of bromelain, from pineapple stem (Ananas comosusL.), on colon carcinogenesis is related to antiproliferative and proapoptotic effects. Mol Nutr Food Res 2013; 58:457-65. [PMID: 24123777 DOI: 10.1002/mnfr.201300345] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Revised: 07/25/2013] [Accepted: 07/26/2013] [Indexed: 12/15/2022]
Affiliation(s)
- Barbara Romano
- Department of Pharmacy; University of Naples Federico II; Naples Italy
| | - Ines Fasolino
- Department of Pharmacy; University of Naples Federico II; Naples Italy
| | - Ester Pagano
- Department of Pharmacy; University of Naples Federico II; Naples Italy
| | - Raffaele Capasso
- Department of Pharmacy; University of Naples Federico II; Naples Italy
| | - Simona Pace
- Department of Pharmacy; University of Naples Federico II; Naples Italy
| | - Giuseppe De Rosa
- Department of Pharmacy; University of Naples Federico II; Naples Italy
| | - Natasa Milic
- Department of Pharmacy; Faculty of Medicine, University of Novi Sad; Novi Sad Serbia
| | - Pierangelo Orlando
- Institute of Protein Biochemistry; National Research Council; Naples Italy
| | - Angelo A. Izzo
- Department of Pharmacy; University of Naples Federico II; Naples Italy
| | | |
Collapse
|
208
|
Shukla S, Bhaskaran N, Babcook MA, Fu P, Maclennan GT, Gupta S. Apigenin inhibits prostate cancer progression in TRAMP mice via targeting PI3K/Akt/FoxO pathway. Carcinogenesis 2013; 35:452-60. [PMID: 24067903 DOI: 10.1093/carcin/bgt316] [Citation(s) in RCA: 126] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Forkhead box O (FoxO) transcription factors play an important role as tumor suppressor in several human malignancies. Disruption of FoxO activity due to loss of phosphatase and tensin homolog and activation of phosphatidylinositol-3 kinase (PI3K)/Akt are frequently observed in prostate cancer. Apigenin, a naturally occurring plant flavone, exhibits antiproliferative and anticarcinogenic activities through mechanisms, which are not fully defined. In the present study, we show that apigenin suppressed prostate tumorigenesis in transgenic adenocarcinoma of the mouse prostate (TRAMP) mice through the PI3K/Akt/FoxO-signaling pathway. Apigenin-treated TRAMP mice (20 and 50 μg/mouse/day, 6 days/week for 20 weeks) exhibited significant decrease in tumor volumes of the prostate as well as completely abolished distant organ metastasis. Apigenin treatment resulted in significant decrease in the weight of genitourinary apparatus (P < 0.0001), dorsolateral (P < 0.0001) and ventral prostate (P < 0.028), compared with the control group. Apigenin-treated mice showed reduced phosphorylation of Akt (Ser473) and FoxO3a (Ser253), which correlated with its increased nuclear retention and decreased binding of FoxO3a with 14-3-3. These events lead to reduced proliferation as assessed by Ki-67 and cyclin D1, along with upregulation of FoxO-responsive proteins BIM and p27/Kip1. Complementing in vivo results, similar observations were noted in human prostate cancer LNCaP and PC-3 cells after apigenin treatment. Furthermore, binding of FoxO3a with p27/Kip1 was markedly increased after 10 and 20 μM apigenin treatment resulting in G0/G1-phase cell cycle arrest, which was consistent with the effects elicited by PI3K/Akt inhibitor, LY294002. These results provide convincing evidence that apigenin effectively suppressed prostate cancer progression, at least in part, by targeting the PI3K/Akt/FoxO-signaling pathway.
Collapse
Affiliation(s)
- Sanjeev Shukla
- Department of Urology, Case Western Reserve University and The Urology Institute, University Hospitals Case Medical Center, Cleveland, OH 44106, USA
| | | | | | | | | | | |
Collapse
|
209
|
Shathish K, Guruvayoorappan C. Decalepis hamiltonii inhibits tumor progression and metastasis by regulating the inflammatory mediators and nuclear factor κB subunits. Integr Cancer Ther 2013; 13:141-51. [PMID: 24013642 DOI: 10.1177/1534735413502075] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
UNLABELLED Metastasis is an extremely complex process that is a major problem in the management of cancer. In the present study, we had evaluated the antimetastatic activity of DECALEPIS HAMILTONI: using B16F-10 melanoma-induced experimental lung metastasis in a C57BL/6 mice model. D HAMILTONI treatment significantly ( : < .01) inhibited lung tumor nodule formation and reduced the lung collagen hydroxyproline, hexosamine, and uronic acid levels. Similarly serum sialic acid and γ-glutamyl transpeptidase levels were also significantly inhibited after D HAMILTONI treatment. The levels of proinflammatory cytokines such as tumor necrosis factor α, interleukin (IL)-1β, IL-6, granulocyte monocyte colony-stimulating factor, and IL-2 in the serum of these animals were significantly altered after D HAMILTONI treatment. The serum NO level was also found to be significantly decreased after D HAMILTONI treatment. This decreased NO level after D HAMILTONI treatment was also accompanied by decreased inducible NO synthase and cyclooxygenase-2 expression. The study reveals that D HAMILTONI treatment could alter proinflammatory cytokine production and could inhibit the activation and nuclear translocation of p65 and p50 subunits of nuclear factor κB in B16F-10 cells.
Collapse
|
210
|
Kang J, Kim E, Kim W, Seong KM, Youn H, Kim JW, Kim J, Youn B. Rhamnetin and cirsiliol induce radiosensitization and inhibition of epithelial-mesenchymal transition (EMT) by miR-34a-mediated suppression of Notch-1 expression in non-small cell lung cancer cell lines. J Biol Chem 2013; 288:27343-27357. [PMID: 23902763 DOI: 10.1074/jbc.m113.490482] [Citation(s) in RCA: 142] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Radioresistance is a major cause of decreasing the efficiency of radiotherapy for non-small cell lung cancer (NSCLC). To understand the radioresistance mechanisms in NSCLC, we focused on the radiation-induced Notch-1 signaling pathway involved in critical cell fate decisions by modulating cell proliferation. In this study, we investigated the use of Notch-1-regulating flavonoid compounds as novel therapeutic drugs to regulate radiosensitivity in NSCLC cells, NCI-H1299 and NCI-H460, with different levels of radioresistance. Rhamnetin and cirsiliol were selected as candidate Notch-1-regulating radiosensitizers based on the results of assay screening for activity and pharmacological properties. Treatment with rhamnetin or cirsiliol reduced the proliferation of NSCLC cells through the suppression of radiation-induced Notch-1 expression. Indeed, rhamnetin and cirsiliol increased the expression of tumor-suppressive microRNA, miR-34a, in a p53-dependent manner, leading to inhibition of Notch-1 expression. Consequently, reduced Notch-1 expression promoted apoptosis through significant down-regulation of the nuclear factor-κB pathway, resulting in a radiosensitizing effect on NSCLC cells. Irradiation-induced epithelial-mesenchymal transition was also notably attenuated in the presence of rhamnetin and cirsiliol. Moreover, an in vivo xenograft mouse model confirmed the radiosensitizing and epithelial-mesenchymal transition inhibition effects of rhamnetin and cirsiliol we observed in vitro. In these mice, tumor volume was significantly reduced by combinational treatment with irradiation and rhamnetin or cirsiliol compared with irradiation alone. Taken together, our findings provided evidence that rhamnetin and cirsiliol can act as promising radiosensitizers that enhance the radiotherapeutic efficacy by inhibiting radiation-induced Notch-1 signaling associated with radioresistance possibly via miR-34a-mediated pathways.
Collapse
Affiliation(s)
- JiHoon Kang
- Department of Biological Sciences, Pusan National University, Busan 609-735
| | - EunGi Kim
- Department of Biological Sciences, Pusan National University, Busan 609-735
| | - Wanyeon Kim
- Department of Biological Sciences, Pusan National University, Busan 609-735
| | - Ki Moon Seong
- Division of Radiation Effect Research, Radiation Health Research Institute, Korea Hydro and Nuclear Power Co., Ltd., Seoul 132-703
| | - HyeSook Youn
- Department of Bioscience and Biotechnology/Institute of Bioscience, Sejong University, Seoul 143-747
| | - Jung Woo Kim
- Department of Life Science and Biotechnology, Pai Chai University, Daejeon 302-735
| | - Joon Kim
- School of Life Sciences and Biotechnology and BioInstitute, Korea University, Seoul 136-701, South Korea
| | - BuHyun Youn
- Department of Biological Sciences, Pusan National University, Busan 609-735.
| |
Collapse
|
211
|
Ma C, Lv H, Zhang X, Chen Z, Shi J, Lu M, Lin Z. Identification of regioisomers of methylated kaempferol and quercetin by ultra high performance liquid chromatography quadrupole time-of-flight (UHPLC-QTOF) tandem mass spectrometry combined with diagnostic fragmentation pattern analysis. Anal Chim Acta 2013; 795:15-24. [PMID: 23998533 DOI: 10.1016/j.aca.2013.07.038] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Revised: 07/13/2013] [Accepted: 07/17/2013] [Indexed: 11/24/2022]
Abstract
The O-methylation of active flavonoids can enhance their antiallergic, anticancerous, and cardioprotective effects depending on the methylation position. Thus, it is biologically and pharmacologically important to differentiate methylated flavonoid regioisomers. In this study, we examined the regioisomers of methylated kaempferol and quercetin using ultra high performance liquid chromatography quadrupole time-of-flight tandem mass spectrometry. The methyl groups on the flavonoids can generally be cleaved as methyl radicals in a position-independent manner. We found that methyl groups can be cleaved as methane. If there are protons adjacent the methoxy on the flavonol rings, intra-molecule proton transfer can occur via collision-induced dissociation, and one molecule of methane can then be eliminated. The remaining charged fragment ([M+H-CH4](+)) reflects the adjacent structure and is specific to the methoxy position. Furthermore, the retro Diels-Alder (RDA) fragmentation of methylated flavonols can generate fragments with the methoxy at the original methylated ring. Combining the position-specific [M+H-CH4](+) fragment with the RDA fragments provides a diagnostic pattern for rapidly identifying methylated regioisomeric flavonols. Along with their retention behaviour, we have successfully identified ten regioisomers of methylated kaempferol and quercetin, which include six compounds previously reported in plants and shown to be biologically active. The developed approach is sensitive, rapid, reliable, and requires few standard compounds. It is highly efficient for characterising the specificity of novel flavonoid O-methyltransferases and can help direct enzymatic or chemical syntheses during the early stages of drug discovery. This method also has potential for use in identifying other methylated isomeric flavonoids.
Collapse
Affiliation(s)
- Chengying Ma
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, Zhejiang 310008, China
| | | | | | | | | | | | | |
Collapse
|
212
|
Romano B, Pagano E, Montanaro V, Fortunato AL, Milic N, Borrelli F. Novel Insights into the Pharmacology of Flavonoids. Phytother Res 2013; 27:1588-96. [DOI: 10.1002/ptr.5023] [Citation(s) in RCA: 171] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Accepted: 05/15/2013] [Indexed: 01/23/2023]
Affiliation(s)
- Barbara Romano
- Department of Urology; University of Naples Federico II; via D. Montesano 49 80131 Naples Italy
| | - Ester Pagano
- Department of Urology; University of Naples Federico II; via D. Montesano 49 80131 Naples Italy
| | - Vittorino Montanaro
- Department of Pharmacy; University of Naples Federico II; via Pansini 5 80131 Naples Italy
| | - Alfonso L. Fortunato
- Department of Urology; University of Naples Federico II; via D. Montesano 49 80131 Naples Italy
| | - Natasa Milic
- Department of Pharmacy; Faculty of Medicine, University of Novi Sad; Hajduk Veljkova, 3 21000 Novi Sad Serbia
| | - Francesca Borrelli
- Department of Urology; University of Naples Federico II; via D. Montesano 49 80131 Naples Italy
| |
Collapse
|
213
|
Flavonoid naringenin: a potential immunomodulator for Chlamydia trachomatis inflammation. Mediators Inflamm 2013; 2013:102457. [PMID: 23766556 PMCID: PMC3676976 DOI: 10.1155/2013/102457] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Revised: 04/07/2013] [Accepted: 04/08/2013] [Indexed: 12/21/2022] Open
Abstract
Chlamydia trachomatis, the agent of bacterial sexually transmitted infections, can manifest itself as either acute cervicitis, pelvic inflammatory disease, or a chronic asymptomatic infection. Inflammation induced by C. trachomatis contributes greatly to the pathogenesis of disease. Here we evaluated the anti-inflammatory capacity of naringenin, a polyphenolic compound, to modulate inflammatory mediators produced by mouse J774 macrophages infected with live C. trachomatis. Infected macrophages produced a broad spectrum of inflammatory cytokines (GM-CSF, TNF, IL-1β, IL-1α, IL-6, IL-12p70, and IL-10) and chemokines (CCL4, CCL5, CXCL1, CXCL5, and CXCL10) which were downregulated by naringenin in a dose-dependent manner. Enhanced protein and mRNA gene transcript expressions of TLR2 and TLR4 in addition to the CD86 costimulatory molecule on infected macrophages were modulated by naringenin. Pathway-specific inhibition studies disclosed that p38 mitogen-activated-protein kinase (MAPK) is involved in the production of inflammatory mediators by infected macrophages. Notably, naringenin inhibited the ability of C. trachomatis to phosphorylate p38 in macrophages, suggesting a potential mechanism of its attenuation of concomitantly produced inflammatory mediators. Our data demonstrates that naringenin is an immunomodulator of inflammation triggered by C. trachomatis, which possibly may be mediated upstream by modulation of TLR2, TLR4, and CD86 receptors on infected macrophages and downstream via the p38 MAPK pathway.
Collapse
|
214
|
Shin SY, Yoon H, Ahn S, Kim DW, Kim SH, Koh D, Lee YH, Lim Y. Chromenylchalcones showing cytotoxicity on human colon cancer cell lines and in silico docking with aurora kinases. Bioorg Med Chem 2013; 21:4250-8. [PMID: 23719279 DOI: 10.1016/j.bmc.2013.04.086] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Revised: 04/26/2013] [Accepted: 04/27/2013] [Indexed: 11/17/2022]
Abstract
Due to toxicity problems, various plant-derived compounds have been screened to find the chemotherapeutic agents. As anticancer therapeutic agents, chalcones have advantages such as poor interaction with DNA and low risk of mutagenesity. Chromenones show anticancer activities too. Therefore, hybrids of chalcone and chromenone may be potent chemotherapeutic agents. We prepared 16 synthetic chromenylchalcones and applied a clonogenic long-term survival assay method for them on HCT116 human colorectal cancer cell lines. One of chromenylchalcones tested here, chromenylchalcone 11, showed IC50 of 93.1nM which can be competed with the IC50 values of well-known flavonoids such as catechin gallate and epicatechin gallate. Further biological experiments including cell cycle analysis, apoptosis assay, Western blot analysis, and immunofluorescent microscopy were carried out for this compound. In addition, in vitro kinases binding assay performed to explain its molecular mechanism demonstrated the compound inhibited aurora kinases. The binding modes between chromenylchalcone 11 and aurora kinases were elucidated using in silico docking experiments. These findings could be used for designing cancer therapeutic or preventive plant-derived chromenylchalcone agents.
Collapse
Affiliation(s)
- Soon Young Shin
- Department of Biological Sciences, College of Biological Science and Biotechnology, Konkuk University, Seoul 143-701, South Korea
| | | | | | | | | | | | | | | |
Collapse
|
215
|
Yao J, Zhao L, Mao Z, Chen S, Wong KC, To J, Brinton RD. Potentiation of brain mitochondrial function by S-equol and R/S-equol estrogen receptor β-selective phytoSERM treatments. Brain Res 2013; 1514:128-41. [PMID: 23428542 DOI: 10.1016/j.brainres.2013.02.021] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Revised: 01/26/2013] [Accepted: 02/09/2013] [Indexed: 12/23/2022]
Abstract
Previously we developed an estrogen receptor β-selective phytoestrogenic (phytoSERM) combination, which contains a mixture of genistein, daidzein, and racemic R/S-equol. The phytoSERM combination was found neuroprotective and non-feminizing both in vitro and in vivo. Further, it prevented or alleviated physical and neurological changes associated with human menopause and Alzheimer's disease. In the current study, we conducted translational analyses to compare the effects of racemic R/S-equol-containing with S-equol-containing phytoSERM therapeutic combinations on mitochondrial markers in rat hippocampal neuronal cultures and in a female mouse ovariectomy (OVX) model. Data revealed that both the S-equol and R/S-equol phytoSERM treatments regulated mitochondrial function, with S-equol phytoSERM combination eliciting greater response in mitochondrial potentiation. Both phytoSERM combination treatments increased expression of key proteins and enzymes involved in energy production, restored the OVX-induced decrease in activity of key bioenergetic enzymes, and reduced OVX-induced increase in lipid peroxidation. Comparative analyses on gene expression profile revealed similar regulation between S-equol phytoSERM and R/S-equol phytoSERM treatments with minimal differences. Both combinations regulated genes involved in essential bioenergetic pathways, including glucose metabolism and energy sensing, lipid metabolism, cholesterol trafficking, redox homeostasis and β-amyloid production and clearance. Further, no uterotrophic response was induced by either of the phytoSERM combinations. These findings indicate translational validity for development of an ER β selective S-equol phytoSERM combination as a nutraceutical to prevent menopause-associated symptoms and to promote brain metabolic activity. This article is part of a Special Issue entitled Hormone Therapy.
Collapse
Affiliation(s)
- Jia Yao
- University of Southern California, Pharmacology and Pharmaceutical Sciences, School of Pharmacy, 1985 Zonal Avenue, PSC-502, Los Angeles, CA 90033, United States
| | | | | | | | | | | | | |
Collapse
|
216
|
|
217
|
Wocławek-Potocka I, Mannelli C, Boruszewska D, Kowalczyk-Zieba I, Waśniewski T, Skarżyński DJ. Diverse effects of phytoestrogens on the reproductive performance: cow as a model. Int J Endocrinol 2013; 2013:650984. [PMID: 23710176 PMCID: PMC3655573 DOI: 10.1155/2013/650984] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Accepted: 03/04/2013] [Indexed: 12/12/2022] Open
Abstract
Phytoestrogens, polyphenolic compounds derived from plants, are more and more common constituents of human and animal diets. In most of the cases, these chemicals are much less potent than endogenous estrogens but exert their biological effects via similar mechanisms of action. The most common source of phytoestrogen exposure to humans as well as ruminants is soybean-derived foods that are rich in the isoflavones genistein and daidzein being metabolized in the digestive tract to even more potent metabolites-para-ethyl-phenol and equol. Phytoestrogens have recently come into considerable interest due to the increasing information on their adverse effects in human and animal reproduction, increasing the number of people substituting animal proteins with plant-derived proteins. Finally, the soybean becomes the main source of protein in animal fodder because of an absolute prohibition of bone meal use for animal feeding in 1995 in Europe. The review describes how exposure of soybean-derived phytoestrogens can have adverse effects on reproductive performance in female adults.
Collapse
Affiliation(s)
- Izabela Wocławek-Potocka
- Department of Reproductive Immunology and Pathology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10 Street, 10-747 Olsztyn, Poland
| | - Chiara Mannelli
- Department of Reproductive Immunology and Pathology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10 Street, 10-747 Olsztyn, Poland
- Department of Life Sciences, Doctoral School in Life Sciences, University of Siena, Miniato via A. Moro 2 St., 53100 Siena, Italy
| | - Dorota Boruszewska
- Department of Reproductive Immunology and Pathology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10 Street, 10-747 Olsztyn, Poland
| | - Ilona Kowalczyk-Zieba
- Department of Reproductive Immunology and Pathology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10 Street, 10-747 Olsztyn, Poland
| | - Tomasz Waśniewski
- Department of Gynecology and Obstetrics, Faculty of Medical Sciences, University of Warmia and Masuria, Zolnierska 14 C St., 10-561 Olsztyn, Poland
| | - Dariusz J. Skarżyński
- Department of Reproductive Immunology and Pathology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10 Street, 10-747 Olsztyn, Poland
- *Dariusz J. Skarżyński:
| |
Collapse
|
218
|
Bendich A, Wilson T. Flavonoids and nutritional health in older adults: the state of the science. J Nutr Gerontol Geriatr 2012; 31:173-175. [PMID: 22888836 DOI: 10.1080/21551197.2012.698210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
|