201
|
Abstract
The structural basis for the synthesis of specific proteins within distinct intraneuronal compartments is unknown. We studied the distribution of poly(A) mRNA within cultured cerebrocortical neurons using high resolution in situ hybridization to identify cytoskeletal components that may anchor mRNA. After 1 day in culture, poly(A) mRNA was distributed throughout all of the initial neurites, including the axon-like process. At 4 days in culture, poly(A) mRNA was distributed throughout the cell body and dendritic processes, but confined to the proximal segment of the axon. Poly(A) mRNA was bound to the cytoskeleton as demonstrated by resistance to detergent extraction. Perturbation of microtubules with colchicine resulted in a major reduction of dendritic poly(A) mRNA; however, this distribution was unaffected by cytochalasin. Ultrastructural in situ hybridization revealed that poly(A) mRNA and associated ribosomes were excluded from tightly bundled microtubules.
Collapse
Affiliation(s)
- G J Bassell
- Center for Neurologic Disease, Brigham and Women's Hospital, Boston, Massachusetts 02115
| | | | | |
Collapse
|
202
|
Van Veen MP, Van Pelt J. Neuritic growth rate described by modeling microtubule dynamics. Bull Math Biol 1994; 56:249-73. [PMID: 8186754 DOI: 10.1007/bf02460642] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
A model is developed to describe neuronal elongation as a result of the polymerization of microtubules and elastic stretching of the neurites by force produced by the growth cone. The model for a single segment with a single growth cone revealed a constant elongation rate, while the concentration of tubulin in the soma rises, and the concentration of tubulin becomes constant in the growth cone. Extending the model to a neurite with a single branch point and two growth cones revealed the same results. When the assembly or the disassembly rate of microtubules is unequal in both growth cones, transient retraction of one of the terminal segments occurs, which results in complete retraction of the segment when the difference in (dis)assembly rate between the two growth cones is large enough. When the model is applied to large trees, a maximal sustainable number of terminal segments as a function of the production rate of tubulin appears. Mechanisms to stop outgrowth are discussed in relation to the establishment of synaptical contacts between cells.
Collapse
Affiliation(s)
- M P Van Veen
- Netherlands Institute for Brain Research, Amsterdam
| | | |
Collapse
|
203
|
Black MM. Microtubule transport and assembly cooperate to generate the microtubule array of growing axons. PROGRESS IN BRAIN RESEARCH 1994; 102:61-77. [PMID: 7800833 DOI: 10.1016/s0079-6123(08)60532-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
MTs are major architectural elements in growing axons. MTs overlap with each other along the axon, forming an array that is continuous from the cell body to the tip of the axon. The MT array constitutes a scaffolding that mechanically supports the elongate shape of the axon and also contributes directly to its shape. MTs also direct the transport of vesicular organelles between the cell body and the axon, and thereby determine, in part, the composition of the axon. In this article, I have discussed mechanisms involved in the elaboration of the MT array in growing axons, and I have emphasized the distinct but complementary roles of polymer transport mechanisms and local assembly dynamics. MTs for the axon originate in the cell body, and they are delivered to the axon by the polymer transport mechanisms. These mechanisms thus contribute directly to the shape of the axon by supplying it with essential architectural elements. The shape of the axon is further modulated by dynamic processes that alter cytoskeletal structure locally along its length. These dynamic processes include the assembly/disassembly mechanisms which influence polymer length and possibly number locally along the axon by subunit exchange between the monomer and polymer pools. In addition, the polymer transport mechanisms themselves are subject to modulation along the axon, as demonstrated by the observation that transport rate of MTs varies along the length of individual axons (Reinsch et al., 1991). Such local variations can, in and of themselves, change the number of MTs along the axon, and thereby focally affect axon shape. Thus, the dynamic processes of polymer transport and local assembly act cooperatively to shape the MT array of the axon, and thereby contribute directly to the elaboration of axonal morphology.
Collapse
Affiliation(s)
- M M Black
- Department of Anatomy and Cell Biology, Temple University School of Medicine, Philadelphia, PA 19140
| |
Collapse
|
204
|
Schoenfeld TA, Obar RA. Diverse distribution and function of fibrous microtubule-associated proteins in the nervous system. INTERNATIONAL REVIEW OF CYTOLOGY 1994; 151:67-137. [PMID: 7912236 DOI: 10.1016/s0074-7696(08)62631-5] [Citation(s) in RCA: 91] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- T A Schoenfeld
- Department of Psychology, Clark University, Worcester, Massachusetts 01610
| | | |
Collapse
|
205
|
Abstract
Eukaryotic cells rapidly reorganize their microtubule cytoskeleton during the cell cycle, differentiation, and cell migration. In this study, we have purified a heterodimeric protein, katanin, that severs and disassembles microtubules to tubulin dimers. The disassembled tubulin can repolymerize, indicating that it is not irreversibly modified or denatured in the reaction. Katanin is a microtubule-stimulated ATPase and requires ATP hydrolysis to sever microtubules. Katanin represents a novel type of enzyme that utilizes energy from nucleotide hydrolysis to break tubulin-tubulin bonds within a microtubule polymer, a process that may aid in disassembling complex microtubule arrays within cells.
Collapse
Affiliation(s)
- F J McNally
- Department of Pharmacology, University of California, San Francisco 94143
| | | |
Collapse
|
206
|
Yu W, Centonze VE, Ahmad FJ, Baas PW. Microtubule nucleation and release from the neuronal centrosome. J Biophys Biochem Cytol 1993; 122:349-59. [PMID: 8320258 PMCID: PMC2119640 DOI: 10.1083/jcb.122.2.349] [Citation(s) in RCA: 103] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
We have proposed that microtubules (MTs) destined for axons and dendrites are nucleated at the centrosome within the cell body of the neuron, and are then released for translocation into these neurites (Baas, P. W., and H. C. Joshi. 1992. J. Cell Biol. 119:171-178). In the present study, we have tested the capacity of the neuronal centrosome to act as a generator of MTs for relocation into other regions of the neuron. In cultured sympathetic neurons undergoing active axonal outgrowth, MTs are present throughout the cell body including the region around the centrosome, but very few (< 10) are directly attached to the centrosome. These results indicate either that the neuronal centrosome is relatively inactive with regard to MT nucleation, or that most of the MTs nucleated at the centrosome are rapidly released. Treatment for 6 h with 10 micrograms/ml nocodazole results in the depolymerization of greater than 97% of the MT polymer in the cell body. Within 5 min after removal of the drug, hundreds of MTs have assembled in the region of the centrosome, and most of these MTs are clearly attached to the centrosome. A portion of the MTs are not attached to the centrosome, but are aligned side-by-side with the attached MTs, suggesting that the unattached MTs were released from the centrosome after nucleation. In addition, unattached MTs are present in the cell body at decreasing levels with increasing distance from the centrosome. By 30 min, the MT array of the cell body is indistinguishable from that of controls. The number of MTs attached to the centrosome is once again diminished to fewer than 10, suggesting that the hundreds of MTs nucleated from the centrosome after 5 min were subsequently released and translocated away from the centrosome. These results indicate that the neuronal centrosome is a highly potent MT-nucleating structure, and provide strong indirect evidence that MTs nucleated from the centrosome are released for translocation into other regions of the neuron.
Collapse
Affiliation(s)
- W Yu
- Department of Anatomy, University of Wisconsin Medical School, Madison 53706
| | | | | | | |
Collapse
|
207
|
LeClerc N, Kosik KS, Cowan N, Pienkowski TP, Baas PW. Process formation in Sf9 cells induced by the expression of a microtubule-associated protein 2C-like construct. Proc Natl Acad Sci U S A 1993; 90:6223-7. [PMID: 8327502 PMCID: PMC46900 DOI: 10.1073/pnas.90.13.6223] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
To understand the roles of various microtubule-associated proteins (MAPs) in the development of axons and dendrites, we have expressed individual neuronal MAPs in normally rounded Sf9 host cells. We previously reported that expression of tau protein in these cells results in the elaboration of long processes containing dense bundles of microtubules (MTs). These bundles generally terminate in the hillock region of the cell body, and almost all of the MTs within the bundles are oriented with their plus ends distal to the cell body. Here we report the expression of a construct that approximates the MAP2C sequence and also induces the elaboration of processes with dense bundles of predominantly plus-end-distal MTs. Whereas tau generally results in a single process, there is a significantly greater tendency for the MAP2C-like construct to induce multiple processes. In contrast to the tau processes, the MT bundle in these processes extends far into the cell body. This latter observation suggests that MAP2C and tau have different effects on MT assembly and/or transport events in the cell. Although both of these MAPs can organize MTs that are competent to participate in process formation, the detailed organization of MTs induced by each of the two constructs is distinctive, and these differences may be relevant to axonal and dendritic differentiation.
Collapse
Affiliation(s)
- N LeClerc
- Harvard Medical School, Boston, MA 02115
| | | | | | | | | |
Collapse
|
208
|
Meichsner M, Doll T, Reddy D, Weisshaar B, Matus A. The low molecular weight form of microtubule-associated protein 2 is transported into both axons and dendrites. Neuroscience 1993; 54:873-80. [PMID: 8341422 DOI: 10.1016/0306-4522(93)90581-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
In the developing brain microtubule-associated protein MAP2 occurs as both a high molecular weight form, MAP2b, which is present only in dendrites, and a low molecular weight form, MAP2c, which is also present in axons. Because the MAP2c amino acid sequence is entirely contained within that of MAP2b it is not possible to raise a MAP2c-specific antibody, so that it has been impossible to determine whether MAP2c is present in dendrites along with MAP2b. To answer this question we have generated a MAP2c cDNA clone tagged with a 10 amino acid epitope from human c-myc. This additional sequence does not alter either the binding of MAP2c to microtubules or its effects on microtubules in non-neuronal cells. When expressed in cultured primary neurons by transfection, the myc tag allowed the distribution of MAP2c to be determined independently of endogenous MAP2 protein by immunostaining with an anti-myc antibody. This showed that MAP2c is present in all processes, indicating that it can enter all kinds of processes and is stable in their cytoplasm. The results further suggest that the selective association of high molecular weight MAP2 with dendrites depends on a mechanism that prevents either its entrance or survival in the axonal compartment.
Collapse
Affiliation(s)
- M Meichsner
- Friedrich Miescher Institute, Basel, Switzerland
| | | | | | | | | |
Collapse
|
209
|
Baas PW, Ahmad FJ. The transport properties of axonal microtubules establish their polarity orientation. J Biophys Biochem Cytol 1993; 120:1427-37. [PMID: 8449987 PMCID: PMC2119746 DOI: 10.1083/jcb.120.6.1427] [Citation(s) in RCA: 95] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
It is well established that axonal microtubules (MTs) are uniformly oriented with their plus ends distal to the neuronal cell body (Heidemann, S. R., J. M. Landers, and M. A. Hamborg. 1981. J. Cell Biol. 91:661-665). However, the mechanisms by which these MTs achieve their uniform polarity orientation are unknown. Current models for axon growth differ with regard to the contributions of MT assembly and transport to the organization and elaboration of the axonal MT array. Do the transport properties or assembly properties of axonal MTs determine their polarity orientation? To distinguish between these possibilities, we wished to study the initiation and outgrowth of axons under conditions that would arrest MT assembly while maintaining substantial levels of preexisting polymer in the cell body that could still be transported into the axon. We found that we could accomplish this by culturing rat sympathetic neurons in the presence of nanomolar levels of vinblastine. In concentrations of the drug up to and including 100 nM, the neurons actively extend axons. The vinblastine-axons are shorter than control axons, but clearly contain MTs. To quantify the effects of the drug on MT mass, we compared the levels of polymer throughout the cell bodies and axons of neurons cultured overnight in the presence of 0, 16, and 50 nM vinblastine with the levels of MT polymer in freshly plated neurons before axon outgrowth. Without drug, the total levels of polymer increase by roughly twofold. At 16 nM vinblastine, the levels of polymer are roughly equal to the levels in freshly plated neurons, while at 50 nM, the levels of polymer are reduced by about half this amount. Thus, 16 nM vinblastine acts as a "kinetic stabilizer" of MTs, while 50 nM results in some net MT disassembly. At both drug concentrations, there is a progressive increase in the levels of MT polymer in the axons as they grow, and a corresponding depletion of polymer from the cell body. These results indicate that highly efficient mechanisms exist in the neuron to transport preassembled MTs from the cell body into the axon. These mechanisms are active even at the expense of the cell body, and even under conditions that promote some MT disassembly in the neuron. MT polarity analyses indicate that the MTs within the vinblastine-axons, like those in control axons, are uniformly plus-end-distal.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- P W Baas
- Department of Anatomy, University of Wisconsin Medical School, Madison 53706
| | | |
Collapse
|
210
|
Lafont F, Rouget M, Rousselet A, Valenza C, Prochiantz A. Specific responses of axons and dendrites to cytoskeleton perturbations: an in vitro study. J Cell Sci 1993; 104 ( Pt 2):433-43. [PMID: 8505371 DOI: 10.1242/jcs.104.2.433] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Several factors can influence the development of axons and dendrites in vitro. Some of these factors modify the adhesion of neurons to their substratum. We have previously shown that the threshold of neuron-substratum adhesion necessary for initiation and elongation of dendrites is higher than that required for axonal growth. To explain this difference we propose that, in order to antagonize actin-driven surface tension, axons primarily rely on the compression forces of microtubules whereas dendrites rely on adhesion. This model was tested by seeding the cells in conditions allowing the development either of axons or of axons and dendrites, then adding cytochalasin B or nocodazole 1 hour or 24 hours after plating. The addition of cytochalasin B, which depolymerizes actin filaments and thus reduces actin-tensile forces, increases the length of both axons and dendrites, indicating that both axons and dendrites have to antagonize surface tension in order to elongate. The addition of nocodazole, which acts primarily on microtubules, slightly reduces dendrite elongation and totally abolishes axonal growth. Similar results are obtained when the drugs are added 1 or 24 hours after plating, suggesting that the same mechanisms are at work both in initiation and in elongation. Finally, we find that in the presence of cytochalasin B axons adopt a curly morphology, a fact that could be explained by the importance of tensile forces in antagonizing the asymmetry created by polarized microtubules presenting a uniform minus/plus orientation.
Collapse
Affiliation(s)
- F Lafont
- CNRS URA 1414, Ecole Normale Supérieure, Développement et Evolution du Système Nerveux, Paris, France
| | | | | | | | | |
Collapse
|
211
|
Ferreira A, Palazzo RE, Rebhun LI. Preferential dendritic localization of pericentriolar material in hippocampal pyramidal neurons in culture. CELL MOTILITY AND THE CYTOSKELETON 1993; 25:336-44. [PMID: 8402954 DOI: 10.1002/cm.970250404] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Centrosomes are unique cytoplasmic structures which serve as microtubule organizing centers (MTOC). In most animal cells centrosomes consist of one or more pair of centrioles surrounded by electron dense amorphous pericentriolar material (PCM) responsible for nucleation of microtubules. In the present study we analyzed the pattern of induction and localization of proteins of the PCM at different stages of neuronal development in cell cultures prepared from the embryonic hippocampus. For this purpose we used a human polyclonal antibody that recognizes two proteins of the PCM (100 kd and 60 kd, respectively). The results indicate that in mature neurons, pericentriolar immunoreactive material is preferentially localized in dendritic processes, and that throughout the course of neurite development and differentiation it is systematically excluded from the neuron's axon. Western blot analysis showed that during neuronal development in situ, there is an increase in the immunoreactivity for both proteins recognized by this antibody. In contrast, in hippocampal pyramidal neurons that develop in culture, there is an increase in the 60 kd polypeptide, while the 100 kd one is not detected after 7 days in vitro.
Collapse
Affiliation(s)
- A Ferreira
- Department of Biology, University of Virginia, Charlottesville
| | | | | |
Collapse
|
212
|
van Lookeren Campagne M, Dotti CG, Verkleij AJ, Gispen WH, Oestreicher AB. Redistribution of B-50/growth-associated protein 43 during differentiation and maturation of rat hippocampal neurons in vitro. Neuroscience 1992; 51:601-19. [PMID: 1336822 DOI: 10.1016/0306-4522(92)90300-q] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Morphologically polarized hippocampal neurons, grown in culture for two days, contain immunoreactivity of the growth-associated protein B-50 along the plasma membrane of both dendrites and axons. In mature hippocampal neurons, both in vitro and in vivo, B-50 is located in the axon. In order to assess at which stage during neuronal differentiation B-50 is selectively located in the axon, an immuno-light and electron-microscopic study was performed on rat hippocampal neurons developing in vitro. B-50 immunofluorescence was detected in the axon, dendrites and soma of two-day-old polarized neurons. Simultaneously, microtubule-associated protein 2, a marker specific to dendritic microtubules, was predominantly found in the soma, the short dendritic processes and at the base of axonal growth cones. In hippocampal neurons cultured beyond seven days in vitro, microtubule-associated protein 2 immunofluorescence is restricted to the cell soma and dendrites. The spatial distribution of B-50, however, varies. In solitary neurons maturing without interneuronal contacts, B-50 immunofluorescence is observed in axons and in the dendrosomatic domain characterized by the presence of microtubule-associated protein 2. In contrast, in high-density cell cultures B-50 immunofluorescence is absent in the cell body and dendrites, but punctate in axons running along the dendrites. Electron microscopy was carried out on hippocampal neurons of eight to 21 days in vitro to study the process of redistribution of B-50 at the subcellular level. In neurons of eight days in vitro with prominent synapses, B-50 immunoreactivity is significantly elevated at the axonal plasma membrane compared to the plasma membrane of the dendrites and the soma. In neurons from the same culture without synapses, B-50 immunoreactivity is distributed rather densely along the plasma membrane of the soma, dendrites, and on the axonal plasma membrane. A similar B-50 distribution is observed in mature neurons cultured at low cell density without interneuronal cell contacts, for 15 days in vitro. In high-density cell cultures of 21 days in vitro, B-50 is virtually absent at the plasma membrane of the soma and dendrites, and heterogenously distributed along the plasma membrane of axon and axonal varicosities. Our results indicate that selective sorting of B-50 into axons occurs after initial morphological polarization of hippocampal neurons and is correlated with the formation of synapses and with the cessation of dendritic outgrowth.
Collapse
Affiliation(s)
- M van Lookeren Campagne
- Rudolf Magnus Institute, Division of Molecular Neurobiology, University of Utrecht, The Netherlands
| | | | | | | | | |
Collapse
|
213
|
Abstract
The molecular mechanism of microtubule bundling has been enveloped in controversy for the past few years. At the centre of the debate are MAPs: are they necessary for the formation of microtubule bundles? In this article, Gloria Lee and Roland Brandt weigh the evidence and propose that microtubule stability might be the crucial factor in microtubule bundling. Perhaps then MAPs might act as spacer molecules between microtubules.
Collapse
Affiliation(s)
- G Lee
- Center for Neurologic Diseases, Brigham and Women's Hospital, Program in Neurosciences, Harvard Medical School, Boston, MA 02115, USA
| | | |
Collapse
|
214
|
Baas PW, Joshi HC. Gamma-tubulin distribution in the neuron: implications for the origins of neuritic microtubules. J Biophys Biochem Cytol 1992; 119:171-8. [PMID: 1527168 PMCID: PMC2289632 DOI: 10.1083/jcb.119.1.171] [Citation(s) in RCA: 100] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Axons and dendrites contain dense microtubule (MT) assays that are not attached to a traditional MT nucleating structure such as the centrosome. Nevertheless, the MTs within these neurites are highly organized with respect to their polarity, and consist of a regular 13-protofilament lattice, the two known characteristics of MTs nucleated at the centrosome. These observations suggest either that axonal and dendritic MTs arise at the centrosome, or that they are nucleated locally, following a redistribution of MT nucleating material from the centrosome during neuronal development. To begin distinguishing between these possibilities, we have determined the distribution of gamma-tubulin within cultured sympathetic neurons. gamma-tubulin, a newly discovered protein which is specifically localized to the pericentriolar region of nonneuronal cells (Zheng, Y., M. K. Jung, and B. R. Oakley. 1991. Cell. 65:817-823; Stearns, T., L. Evans, and M. Kirschner. 1991. Cell. 65:825-836), has been shown to play a critical role in MT nucleation in vivo (Joshi, H. C., M. J. Palacios, L. McNamara, and D. W. Cleveland. 1992. Nature (Lond.). 356:80-83). Because the gamma-tubulin content of individual cells is extremely low, we relied principally on the high degree of resolution and sensitivity afforded by immunoelectron microscopy. Our studies reveal that, like the situation in nonneuronal cells, gamma-tubulin is restricted to the pericentriolar region of the neuron. Furthermore, serial reconstruction analyses indicate that the minus ends of MTs in both axons and dendrites are free of gamma-tubulin immunoreactivity. The absence of gamma-tubulin from the axon was confirmed by immunoblot analyses of pure axonal fractions obtained from explant cultures. The observation that gamma-tubulin is restricted to the pericentriolar region of the neuron provides compelling support for the notion that MTs destined for axons and dendrites are nucleated at the centrosome, and subsequently released for translocation into these neurites.
Collapse
Affiliation(s)
- P W Baas
- Department of Anatomy, University of Wisconsin Medical School, Madison 53706
| | | |
Collapse
|
215
|
Abstract
The axonal and somatodendritic domains of neurons differ in their cytoskeletal and membrane composition, complement of organelles, and capacity for macromolecular synthesis. Recently there has been progress in elucidating the cellular mechanisms that underlie the establishment and maintenance of neuronal polarity, including microtubule organization and the sorting, transport, and anchoring of membrane proteins.
Collapse
Affiliation(s)
- A M Craig
- Department of Neuroscience, University of Virginia School of Medicine, Charlottesville 22908
| | | | | |
Collapse
|
216
|
Van Lookeren Campagne M, Dotti CG, Jap Tjoen San ER, Verkleij AJ, Gispen WH, Oestreicher AB. B-50/GAP43 localization in polarized hippocampal neurons in vitro: an ultrastructural quantitative study. Neuroscience 1992; 50:35-52. [PMID: 1407559 DOI: 10.1016/0306-4522(92)90380-k] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Hippocampal pyramidal neurons cultured in vitro gradually develop morphologically and biochemically distinct axons and dendrites, resulting in functional neuronal polarization [Dotti C. G. et al. (1988) J. Neurosci. 8, 1454-1468]. We have studied the distribution of the growth-associated protein B-50 in hippocampal neurons of the rat at stage 3 of development by means of light and electron microscopic immunocytochemistry. Hippocampal neurons grown for two to three days in vitro were aldehyde fixed and immunolabelled using polyclonal rabbit antibodies to B-50 and goat anti-rabbit immunoglobulins tagged with 1 nm gold particles. In order to permit visualization by both light and electron microscopy, the gold probes were silver intensified. Light microscopy demonstrated the absence of B-50 immunostaining in living neurons and the presence after permeabilization by fixation and subsequent treatment of the neurons with sodium borohydride, indicating that B-50 is located intracellularly. Both immunofluorescence and immunogold-silver labelling revealed that B-50 immunoreactivity outlined all neurites of the morphologically polarized neurons. For quantitative electron microscopy, six morphologically polarized neurons (developmental stage 3) were carefully selected from immunolabelled Epon-embedded neurons and processed completely to ultrathin sections. In this way the ultrastructural localization of B-50 has been studied in the cell body, the neurites and their growth cones. For each sectioned neuron, the relative distribution of the gold-silver deposits (representing B-50) over the plasma membrane of various cellular compartments was quantitated. B-50 is located at the plasma membrane of the neuronal cell body and all neurites including their growth cones. The density of B-50 on the plasma membrane of growth cones is not different from that of the neuritic shaft. In addition, B-50 is present on the cytosolic side of the membrane of small electron-lucent vesicles (average diameter 102.7 +/- 2.5 nm) resembling transport vesicles. These vesicles are present in the cell body and the neurites. A two-fold concentration is found in the central region of the growth cones, suggesting a role of these vesicles in axonal transport, membrane insertion and (or) recycling. Since, at the onset of neuronal polarization, B-50 is present at the plasma membrane in all compartments of the hippocampal neuron, we suggest that at this stage of development B-50 does not participate directly in the processes leading to morphological polarization.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
|
217
|
Gallo JM, Hanger DP, Twist EC, Kosik KS, Anderton BH. Expression and phosphorylation of a three-repeat isoform of tau in transfected non-neuronal cells. Biochem J 1992; 286 ( Pt 2):399-404. [PMID: 1530572 PMCID: PMC1132912 DOI: 10.1042/bj2860399] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The neuronal microtubule-associated protein, tau, is expressed as a set of isoforms containing either three or four tandemly repeated 31-amino-acid motifs in the C-terminal half of the molecule that can bind to microtubules. Three-repeat forms are the only ones expressed early in development. A single three-repeat isoform of tau has been stably expressed in non-neuronal cells which do not express endogenous tau. Chinese hamster ovary (CHO) cells were transfected with a full-length cDNA coding for the foetal form of human tau cloned downstream of the simian virus 40 (SV40) promoter, and a cell line constitutively expressing tau, CHO[pSVtau3], was isolated. Double-label immunofluorescence microscopy reveals that tau co-localizes with the microtubular network of normal or taxol-treated CHO[pSVtau3] cells, without inducing any dramatic change in cell morphology. Tau is expressed in CHO[pSVtau3] cells as three bands in SDS/PAGE recognized by antibodies to tau, the slow-migrating tau species being the most abundant. Tau also appears as three bands in a heat-stable fraction from CHO[pSVtau3] cells, but a single band of enhanced immunoreactivity is detected following treatment of this fraction with alkaline phosphatase. This single band co-migrates with the fast-migrating band of untreated fractions or whole-cell extracts. In conclusion, a three-repeat isoform of tau is capable of binding to microtubules in transfected non-neuronal cells; furthermore, in this system, the protein is phosphorylated in at least two different states inducing a reduced electrophoretic mobility.
Collapse
Affiliation(s)
- J M Gallo
- Department of Neurology, King's College School of Medicine and Dentistry, London SE5, U.K
| | | | | | | | | |
Collapse
|
218
|
Ferreira A, Niclas J, Vale RD, Banker G, Kosik KS. Suppression of kinesin expression in cultured hippocampal neurons using antisense oligonucleotides. J Cell Biol 1992; 117:595-606. [PMID: 1533397 PMCID: PMC2289440 DOI: 10.1083/jcb.117.3.595] [Citation(s) in RCA: 169] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Kinesin, a microtubule-based force-generating molecule, is thought to translocate organelles along microtubules. To examine the function of kinesin in neurons, we sought to suppress kinesin heavy chain (KHC) expression in cultured hippocampal neurons using antisense oligonucleotides and study the phenotype of these KHC "null" cells. Two different antisense oligonucleotides complementary to the KHC sequence reduced the protein levels of the heavy chain by greater than 95% within 24 h after application and produced identical phenotypes. After inhibition of KHC expression for 24 or 48 h, neurons extended an array of neurites often with one neurite longer than the others; however, the length of all these neurites was significantly reduced. Inhibition of KHC expression also altered the distribution of GAP-43 and synapsin I, two proteins thought to be transported in association with membranous organelles. These proteins, which are normally localized at the tips of growing neurites, were confined to the cell body in antisense-treated cells. Treatment of the cells with the corresponding sense oligonucleotides affected neither the distribution of GAP-43 and synapsin I, nor the length of neurites. A full recovery of neurite length occurred after removal of the antisense oligonucleotides from the medium. These data indicate that KHC plays a role in the anterograde translocation of vesicles containing GAP-43 and synapsin I. A deficiency in vesicle delivery may also explain the inhibition of neurite outgrowth. Despite the inhibition of KHC and the failure of GAP-43 and synapsin I to move out of the cell body, hippocampal neurons can extend processes and acquire as asymmetric morphology.
Collapse
Affiliation(s)
- A Ferreira
- Department of Neuroscience, University of Virginia School of Medicine, Charlottesville 22908
| | | | | | | | | |
Collapse
|
219
|
Baas PW, Ahmad FJ. The plus ends of stable microtubules are the exclusive nucleating structures for microtubules in the axon. J Cell Biol 1992; 116:1231-41. [PMID: 1740474 PMCID: PMC2289361 DOI: 10.1083/jcb.116.5.1231] [Citation(s) in RCA: 91] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Microtubules (MTs) in the axon have a uniform polarity orientation that is recapitulated during recovery from episodes of MT depolymerization (Heidemann, S. R., M. A. Hamborg, S. J. Thomas, B. Song, S. Lindley, and D. Chu. 1984. J. Cell Biol. 99:1289-1295). This tight regulation of their organization indicates that axonal MTs are spatially regulated by discrete nucleating structures comparable in function to the centrosome. Several authors have proposed that an especially stable class of MTs in the axon may serve as these nucleating structures. In a previous report (Baas, P. W., and M. M. Black. 1990. J. Cell Biol. 111:495-509), we determined that the axons of cultured sympathetic neurons contain two classes of MT polymer, stable and labile, that differ in their sensitivity to nocodazole by roughly 35-fold. The stable and labile polymer represent long-lived and recently assembled polymer, respectively. We also determined that these two classes of polymer can be visually distinguished at the immunoelectron microscopic level based on their content of tyrosinated alpha-tubulin: the labile polymer stains densely, while the stable polymer does not stain. In the present study, we have taken advantage of these observations to directly identify MT nucleating structures in the axon. Neuron cultures were treated with nocodazole for 6 h to completely depolymerize the labile polymer in the axon, and substantially shorten the stable polymer. The cultures were then rinsed free of the drug, permitted to reassemble polymer for various periods of time, and prepared for immunoelectron microscopic localization of tyrosinated alpha-tubulin. Serial reconstruction of consecutive thin sections was undertaken to determine the spatial relationship between the stable MTs and the newly assembled polymer. All of the new polymer assembled in direct continuity with the plus ends of stable MTs, indicating that these ends are assembly competent, and hence capable of acting as nucleating structures. Our results further indicate that no self-assembly of MTs occurs in the axon, nor do any MT nucleating structures exist in the axon other than the plus ends of stable MTs. Thus the plus ends of stable MTs are the exclusive nucleating structures for MTs in the axon.
Collapse
Affiliation(s)
- P W Baas
- Department of Anatomy, University of Wisconsin Medical School, Madison 53706
| | | |
Collapse
|
220
|
Abstract
Microtubules, with intermediate filaments and microfilaments, are the components of the cell skeleton which determinates the shape of a cell. Microtubules are involved in different functions including the assembly of mitotic spindle, in dividing cells, or axon extension, in neurons. In the first case, microtubules are highly dynamic, while in the second case microtubules are quite stable, suggesting that microtubule with different physical properties (stability) are involved in different functions. Thus, to understand the mechanisms of microtubule functions it is very important to understand microtubule dynamics. Historically, tubulin, the main component of microtubules, was first characterized as the major component of the mitotic spindle that binds to colchicine. Afterwards, it was found that tubulin is particularly more abundant in brain than in other tissues. Therefore, the roles of microtubules in mitosis, and in neurons, have been more extensively analyzed and, in this review, these roles will be discussed.
Collapse
Affiliation(s)
- J Avila
- Centro de Biología Molecular (CSIC-UAM), Universidad Autónoma de Madrid, Spain
| |
Collapse
|
221
|
Baas PW, Pienkowski TP, Kosik KS. Processes induced by tau expression in Sf9 cells have an axon-like microtubule organization. J Biophys Biochem Cytol 1991; 115:1333-44. [PMID: 1955477 PMCID: PMC2289232 DOI: 10.1083/jcb.115.5.1333] [Citation(s) in RCA: 109] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
We have indirectly analyzed the role of tau in generating the highly organized microtubule (MT) array of the axon. Axons contain MT arrays of uniform polarity orientation, plus ends distal to the cell body (Heidemann, S. R., J. M. Landers, and M. A. Hamborg. 1981. J. Cell Biol. 91:661-673). Surprisingly, these MTs do not radiate from a single discrete nucleating structure in the cell body (Sharp, G. A., K. Weber, and M. Osborn. 1982. Eur. J. Cell Biol. 29: 97-103), but rather stop and start at multiple sites along the length of the axon (Bray, D., and M. B. Bunge. 1981. J. Neurocytol. 10:589-605). When Sf9 ovarian cells are induced to express high levels of tau protein, they develop cellular processes which are similar in appearance to axons and which contain dense arrays of MTs (Knops, J., K. S. Kosik, G. Lee, J. D. Pardee, L. Cohen-Gould, and L. McConlogue. 1991. J. Cell Biol. 114:725-734). We have analyzed the organization of MTs within these arrays, and determined it to be similar, but not identical, to the organization of MTs within the axon. The caliber, MT number, and MT density vary significantly from process to process, but on average are manyfold higher in the tau-induced processes than typically found in axons. Greater than 89% of the MTs in the processes are oriented with their plus ends distal to the cell body, and this proportion is even higher in the processes that are most similar to axons with regard to caliber, MT number, and MT density. Similar to the situation in the axon, MTs are discontinuous along the length of the tau-induced processes, and do not emanate from any observable nucleating structure in the cell body. We have also identified bundles of MTs throughout the cell bodies of the Sf9 cells induced to express tau. Similar to the MT arrays in the processes, these MT bundles are not visibly associated with any other cytological structures that might regulate their polarity orientation. Nevertheless, these bundles consist of MTs most (greater than 82%) of which have the same polarity orientation. Collectively, these results suggest that tau may play a fundamental role in generating MT organization in the axon. In particular, a key property of tau may be to bundle MTs preferentially with the same polarity orientation.
Collapse
Affiliation(s)
- P W Baas
- Department of Anatomy, University of Wisconsin Medical School, Madison 53706
| | | | | |
Collapse
|
222
|
Abstract
We have investigated the stability, alpha-tubulin composition, and polarity orientation of microtubules (MTs) in the axons and dendrites of cultured sympathetic neurons. MT stability was evaluated in terms of sensitivity to nocodazole, a potent anti-MT drug. Nocodazole sensitivity was assayed by quantifying the loss of MT polymer as a function of time in 2 micrograms/ml of the drug. MTs in the axon and the dendrite exhibit striking similarities in their drug sensitivity. In both types of neurites, the kinetics of MT loss are biphasic, and are consistent with the existence of two types of MT polymer that depolymerize with half-times of MT polymer that depolymerize with half-times of approximately 3.5 min and approximately 130 min. We define the more rapidly depolymerizing polymer as drug-labile and the more slowly depolymerizing polymer as drug-stable. The proportion of MT polymer that is drug-stable is greater in axons (58%) than in dendrites (25%). On the basis of current understanding of the mechanism of action of nocodazole, we suggest that the drug-labile and drug-stable polymer observed in both axons and dendrites correspond to two distinct types of polymer that differ in their relative rates of turnover in vivo. In a previous study, we established that in the axon, these drug-stable and drug-labile types of MT polymer exist in the form of distinct domains on individual MTs, with the labile domain situated at the plus end of the stable domain (Baas and Black, J Cell Biol 111:495-509, 1990). Because of the great difference in drug sensitivity between the drug-labile and drug-stable MT polymer, we were able to dissect them apart by appropriate treatments with nocodazole. This permitted us to evaluate the drug-labile and drug-stable polymer in terms of polarity orientation and relative content of alpha-tubulin variants generated by posttranslational detyrosination or acetylation. In both the axon and the dendrite, the modified as well as unmodified alpha-tubulins are present in both drug-labile and drug-stable polymer, but at different levels. Specifically, the modified forms of alpha-tubulin are enriched in the drug-stable MT polymer compared to the drug-labile MT polymer. In studies on MT polarity orientation, we demonstrate that in axons, MTs are uniformly plus-end-distal, whereas in dendrites, MTs are non uniform in their polarity orientation, with roughly equal levels of the MTs having each orientation.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- P W Baas
- Department of Anatomy, University of Wisconsin Medical School, Madison 53706
| | | | | | | |
Collapse
|
223
|
Denny JB. MAP5 in cultured hippocampal neurons: expression diminishes with time and growth cones are not immunostained. JOURNAL OF NEUROCYTOLOGY 1991; 20:627-36. [PMID: 1940978 DOI: 10.1007/bf01187065] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
A monoclonal antibody was used to determine both the expression of the microtubule-associated protein MAP5 in cultured foetal rat hippocampal neurons as a function of culture age and the cellular distribution of the protein. When cultures at days 2 and 3 were examined by fluorescence microscopy, MAP5 immunostaining was localized intensely in neuronal cell bodies and neurites but not in growth cones. Extensive labelling of axons was seen at days 4 and 5. MAP5 staining was still prominent in neurons after 16 days in culture, and neurites at this time had grown over astrocytes but had completely avoided islands of non-astrocytic cells. MAP5 immunostaining was almost undetectable in cells that had been in culture for 20 days. The decreasing expression of MAP5 in cultured neurons as a function of time parallels that previously shown for MAP5 in intact neonatal rat brain. The effect of elevated temperature on MAP5 expression was also examined. Neurons grown for 9 days at 40 degrees C showed the same cellular distribution of MAP5 as cells grown at 37 degrees C. In particular, growth cones were again negative for MAP5 immunostaining. The absence of MAP5 in growth cones appears consistent with the fact that these structures contain labile microtubules. MAP5 has been shown to be a component of microtubule crossbridges and its absence might thus be expected to contribute to microtubule lability.
Collapse
Affiliation(s)
- J B Denny
- Division of Life Sciences, University of Texas, San Antonio 78285
| |
Collapse
|
224
|
Parton RG, Dotti CG, Bacallao R, Kurtz I, Simons K, Prydz K. pH-induced microtubule-dependent redistribution of late endosomes in neuronal and epithelial cells. J Cell Biol 1991; 113:261-74. [PMID: 2010463 PMCID: PMC2288934 DOI: 10.1083/jcb.113.2.261] [Citation(s) in RCA: 91] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The interaction between late endocytic structures and microtubules in polarized cells was studied using a procedure previously shown to cause microtubule-dependent redistribution of lysosomes in fibroblasts and macrophages (Heuser, J. 1989. J. Cell Biol. 108:855-864). In cultured rat hippocampal neurons, low cytoplasmic pH caused cation-independent mannose-6-phosphate receptor-enriched structures to move out of the cell body and into the processes. In filter grown MDCK cells lowering the cytosolic pH to approximately 6.5 caused late endosomes to move to the base of the cell and this process was shown to be microtubule dependent. Alkalinization caused a shift in distribution towards the apical pole of the cell. The results are consistent with low pH causing the redistribution of late endosomes towards the plus ends of the microtubules. In MDCK cells the microtubules orientated vertically in the cell may play a role in this process. The shape changes that accompanied the redistribution of the late endosomes in MDCK cells were examined by electron microscopy. On low pH treatment fragmentation of the late endosomes was observed whereas after microtubule depolymerization individual late endosomal structures appeared to fuse together. The late endosomes of the MDCK cell appear to be highly pleomorphic and dependent on microtubules for their form and distribution in the cell.
Collapse
Affiliation(s)
- R G Parton
- European Molecular Biology Laboratory, Cell Biology Program, Heidelberg, Federal Republic of Germany
| | | | | | | | | | | |
Collapse
|
225
|
Morphogenesis of the antenna of the male silkmoth. Antheraea polyphemus, III. Development of olfactory sensilla and the properties of hair-forming cells. Tissue Cell 1991; 23:821-51. [DOI: 10.1016/0040-8166(91)90034-q] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/1991] [Indexed: 01/25/2023]
|
226
|
Bré MH, Pepperkok R, Hill AM, Levilliers N, Ansorge W, Stelzer EH, Karsenti E. Regulation of microtubule dynamics and nucleation during polarization in MDCK II cells. J Biophys Biochem Cytol 1990; 111:3013-21. [PMID: 2269664 PMCID: PMC2116395 DOI: 10.1083/jcb.111.6.3013] [Citation(s) in RCA: 82] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
MDCK cells form a polarized epithelium when they reach confluence in tissue culture. We have previously shown that concomitantly with the establishment of intercellular junctions, centrioles separate and microtubules lose their radial organization (Bacallao, R., C. Antony, C. Dotti, E. Karsenti, E.H.K. Stelzer, and K. Simons. 1989. J. Cell Biol. 109:2817-2832. Buendia, B., M.H. Bré, G. Griffiths, and E. Karsenti. 1990. 110:1123-1136). In this work, we have examined the pattern of microtubule nucleation before and after the establishment of intercellular contacts. We analyzed the elongation rate and stability of microtubules in single and confluent cells. This was achieved by microinjection of Paramecium axonemal tubulin and detection of the newly incorporated subunits by an antibody directed specifically against the Paramecium axonemal tubulin. The determination of newly nucleated microtubule localization has been made possible by the use of advanced double-immunofluorescence confocal microscopy. We have shown that in single cells, newly nucleated microtubules originate from several sites concentrated in a region localized close to the nucleus and not from a single spot that could correspond to a pair of centrioles. In confluent cells, newly nucleated microtubules were still more dispersed. The microtubule elongation rate of individual microtubules was not different in single and confluent cells (4 microns/min). However, in confluent cells, the population of long lived microtubules was strongly increased. In single or subconfluent cells most microtubules showed a t1/2 of less than 30 min, whereas in confluent monolayers, a large population of microtubules had a t1/2 of greater than 2 h. These results, together with previous observations cited above, indicate that during the establishment of polarity in MDCK cells, microtubule reorganization involves both a relocalization of microtubule-nucleating activity and increased microtubule stabilization.
Collapse
Affiliation(s)
- M H Bré
- European Molecular Biology Laboratory, Heidelberg, Federal Republic of Germany
| | | | | | | | | | | | | |
Collapse
|
227
|
Baas PW, Black MM. Individual microtubules in the axon consist of domains that differ in both composition and stability. J Cell Biol 1990; 111:495-509. [PMID: 2199458 PMCID: PMC2116207 DOI: 10.1083/jcb.111.2.495] [Citation(s) in RCA: 297] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
We have explored the composition and stability properties of individual microtubules (MTs) in the axons of cultured sympathetic neurons. Using morphometric means to quantify the MT mass remaining in axons after various times in 2 micrograms/ml nocodazole, we observed that approximately 48% of the MT mass in the axon is labile, depolymerizing with a t1/2 of approximately 5 min, whereas the remaining 52% of the MT mass is stable, depolymerizing with a t1/2 of approximately 240 min. Immunofluorescence analyses show that the labile MTs in the axon are rich in tyrosinated alpha-tubulin, whereas the stable MTs contain little or no tyrosinated alpha-tubulin and are instead rich in posttranslationally detyrosinated and acetylated alpha-tubulin. These results were confirmed quantitatively by immunoelectron microscopic analyses of the distribution of tyrosinated alpha-tubulin among axonal MTs. Individual MT profiles were typically either uniformly labeled for tyrosinated alpha-tubulin all along their length, or were completely unlabeled. Roughly 48% of the MT mass was tyrosinated, approximately 52% was detyrosinated, and approximately 85% of the tyrosinated MTs were depleted within 15 min of nocodazole treatment. Thus, the proportion of MT profiles that were either tyrosinated or detyrosinated corresponded precisely with the proportion of MTs that were either labile or stable respectively. We also observed MT profiles that were densely labeled for tyrosinated alpha-tubulin at one end but completely unlabeled at the other end. In all of these latter cases, the tyrosinated, and therefore labile domain, was situated at the plus end of the MT, whereas the detyrosinated, and therefore stable domain was situated at the minus end of the MT, and in each case there was an abrupt transition between the two domains. Based on the frequency with which these latter MT profiles were observed, we estimate that minimally 40% of the MTs in the axon are composite, consisting of a stable detyrosinated domain in direct continuity with a labile tyrosinated domain. The extreme drug sensitivity of the labile domains suggests that they are very dynamic, turning over rapidly within the axon. The direct continuity between the labile and stable domains indicates that labile MTs assemble directly from stable MTs. We propose that stable MTs act as MT nucleating structures that spatially regulate MT dynamics in the axon.
Collapse
Affiliation(s)
- P W Baas
- Department of Anatomy and Cell Biology, Temple University School of Medicine, Philadelphia, Pennsylvania 19140
| | | |
Collapse
|
228
|
Goslin K, Banker G. Rapid changes in the distribution of GAP-43 correlate with the expression of neuronal polarity during normal development and under experimental conditions. J Cell Biol 1990; 110:1319-31. [PMID: 2139034 PMCID: PMC2116093 DOI: 10.1083/jcb.110.4.1319] [Citation(s) in RCA: 95] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Hippocampal neurons growing in culture initially extend several, short minor processes that have the potential to become either axons or dendrites. The first expression of polarity occurs when one of these minor processes begins to elongate rapidly, becoming the axon. Before axonal outgrowth, the growth-associated protein GAP-43 is distributed equally among the growth cones of the minor processes; it is preferentially concentrated in the axonal growth cone once polarity has been established (Goslin, K., D. Schreyer, J. Skene, and G. Banker. 1990. J. Neurosci. 10:588-602). To determine when the selective segregation of GAP-43 begins, we followed individual cells by video microscopy, fixed them as soon as the axon could be distinguished, and localized GAP-43 by immunofluorescence microscopy. Individual minor processes acquired axonal growth characteristics within a period of 30-60 min, and GAP-43 became selectively concentrated to the growth cones of these processes with an equally rapid time course. We also examined changes in the distribution of GAP-43 after transection of the axon. After an axonal transection that is distant from the soma, neuronal polarity is maintained, and the original axon begins to regrow almost immediately. In such cases, GAP-43 became selectively concentrated in the new axonal growth cone within 12-30 min. In contrast, when the axon is transected close to the soma, polarity is lost; the original axon rarely regrows, and there is a significant delay before a new axon emerges. Under these circumstances, GAP-43 accumulated in the new growth cone much more slowly, suggesting that its ongoing selective routing to the axon had been disrupted by the transection. These results demonstrate that the selective segregation of GAP-43 to the growth cone of a single process is closely correlated with the acquisition of axonal growth characteristics and, hence, with the expression of polarity.
Collapse
Affiliation(s)
- K Goslin
- Department of Neuroscience, University of Virginia School of Medicine, Charlottesville 22908
| | | |
Collapse
|