201
|
Li M, Choo B, Wong ZM, Filmus J, Buick RN. Expression of OCI-5/glypican 3 during intestinal morphogenesis: regulation by cell shape in intestinal epithelial cells. Exp Cell Res 1997; 235:3-12. [PMID: 9281346 DOI: 10.1006/excr.1997.3629] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
OCI-5, the rat homologue of human glypican 3 (GPC3), is believed to be involved in morphogenesis and growth control during development. The finding that GPC3 is mutated in patients with the Simpson-Golabi-Behmel overgrowth syndrome is consistent with this idea. In this report, using RNA in situ hybridization, expression of OCI-5 in the developing intestine is detected in both endoderm- and mesenchyme-derived cells in a phased manner related to age and proximal/distal position. To investigate the mechanism of its regulation during intestinal development, OCI-5 expression was studied in the primitive rat intestinal epithelial cell line IEC-18. The expression of the OCI-5 transcript is increased in IEC-18 cells at confluence, in low calcium media, and during spheroid culture, all conditions which result in the cells acquiring a more rounded cell shape. In contrast, cytoskeletal disruption with colchicine causes cells to flatten and spread and abolishes both the confluence- and the low calcium-dependent induction of OCI-5. Treatment with vanadate, a phosphatase inhibitor, causes cells to acquire a spindle-shaped morphology and prevents OCI-5 induction in all situations. Nuclear run-on analysis demonstrates that the rate of OCI-5 transcription is increased at confluence, in low calcium media, and during spheroid culture of IEC-18, and decreased by treatment of cells with colchicine. Together, these data suggest that OCI-5 expression is regulated in IEC-18 by cell shape. The pattern of expression of OCI-5 in the developing intestine is consistent with it playing a role in epithelial-mesenchymal interactions during intestinal morphogenesis, when cell shape changes are likely to occur.
Collapse
Affiliation(s)
- M Li
- Ontario Cancer Institute/Princess Margaret Hospital, Toronto, Ontario, Canada
| | | | | | | | | |
Collapse
|
202
|
Haerry TE, Heslip TR, Marsh JL, O'Connor MB. Defects in glucuronate biosynthesis disrupt Wingless signaling in Drosophila. Development 1997; 124:3055-64. [PMID: 9272947 DOI: 10.1242/dev.124.16.3055] [Citation(s) in RCA: 147] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In vitro experiments suggest that glycosaminoglycans (GAGs) and the proteins to which they are attached (proteoglycans) are important for modulating growth factor signaling. However, in vivo evidence to support this view has been lacking, in part because mutations that disrupt the production of GAG polymers and the core proteins have not been available. Here we describe the identification and characterization of Drosophila mutants in the suppenkasper (ska) gene. The ska gene encodes UDP-glucose dehydrogenase which produces glucuronic acid, an essential component for the synthesis of heparan and chondroitin sulfate. ska mutants fail to put heparan side chains on proteoglycans such as Syndecan. Surprisingly, mutant embryos produced by germ-line clones of this general metabolic gene exhibit embryonic cuticle phenotypes strikingly similar to those that result from loss-of-function mutations in genes of the Wingless (Wg) signaling pathway. Zygotic loss of ska leads to reduced growth of imaginal discs and pattern defects similar to wg mutants. In addition, genetic interactions of ska with wg and dishevelled mutants are observed. These data demonstrate the importance of proteoglycans and GAGs in Wg signaling in vivo and suggest that Wnt-like growth factors may be particularly sensitive to perturbations of GAG biosynthesis.
Collapse
Affiliation(s)
- T E Haerry
- Developmental Biology Center, Department of Molecular Biology and Biochemistry, University of California, Irvine 92697, USA
| | | | | | | |
Collapse
|
203
|
Larraín J, Alvarez J, Hassell JR, Brandan E. Expression of perlecan, a proteoglycan that binds myogenic inhibitory basic fibroblast growth factor, is down regulated during skeletal muscle differentiation. Exp Cell Res 1997; 234:405-12. [PMID: 9260911 DOI: 10.1006/excr.1997.3648] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Heparan sulfate proteoglycans (HSPG) have been shown to be involved in the activation of tyrosine kinase receptors by basic fibroblasts growth factor (bFGF), a strong inhibitor of skeletal muscle differentiation. Skeletal muscle fibers contact extracellular matrix (ECM) that surrounds individual fibers (endomysium) and bundles of several fibers (perimysium). Perlecan is a HSPG present in the majority of basement membranes. In this study we evaluated the expression and localization of perlecan during differentiation of C2C12 skeletal muscle cells. C2C12 myoblasts incubated with [35S]Na2SO4 synthesize a HSPG that can be specifically immunoprecipitated with antibodies against murine perlecan. The immunoprecipitated HSPG eluted from a Sepharose CL-4B with a Kav of 0.44. Analysis of the core protein of the HSPG immunoprecipitated from [35S]methionine-labeled C2C12 after treatment with heparitinase revealed two polypeptides of 170 and over 300 kDa. The amount of polypeptides immunoprecipitated decreased with muscle differentiation. Immunocytolocalization studies indicate that perlecan is localized on the myoblast surface and by immunogold staining we have demonstrated that it is associated with patches of incipient extracellular matrix. The expression of perlecan mRNA decreased substantially during skeletal muscle differentiation, in contrast to the increase in transcripts for specific skeletal muscle proteins such as myogenin and creatine kinase. By immunofluorescence microscopy almost no perlecan staining associated with the surface of myotubes was observed. All these results suggests that perlecan, a HSPG that binds myogenic inhibitory bFGF, normally associated with basement membranes in adult tissues is present on the surface of myoblasts and its expression is down regulated during skeletal muscle differentiation.
Collapse
Affiliation(s)
- J Larraín
- Unidad de Neurobiología Molecular, Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, P. Universidad Católicade Chile, Casilla, Santiago
| | | | | | | |
Collapse
|
204
|
Larraín J, Cizmeci-Smith G, Troncoso V, Stahl RC, Carey DJ, Brandan E. Syndecan-1 expression is down-regulated during myoblast terminal differentiation. Modulation by growth factors and retinoic acid. J Biol Chem 1997; 272:18418-24. [PMID: 9218485 DOI: 10.1074/jbc.272.29.18418] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Syndecan-1 is an integral membrane proteoglycan involved in the interaction of cells with extracellular matrix proteins and growth factors. It is transiently expressed in several condensing mesenchymal tissues after epithelial induction. In this study we evaluated the expression of syndecan-1 during skeletal muscle differentiation. The expression of syndecan-1 as determined by Northern blot analyses and immunofluorescence microscopy is down-regulated during differentiation. The transcriptional activity of a syndecan-1 promoter construct is also down-regulated in differentiating muscle cells. The decrease in syndecan-1 gene expression is not dependent on the presence of E-boxes, binding sites for the MyoD family of transcription factors in the promoter region, or myogenin expression. Deletion of the region containing the E-boxes or treatment of differentiating cells with sodium butyrate, an inhibitor of myogenin expression, had no effect on syndecan-1 expression. Basic fibroblast growth factor and transforming growth factor type beta, which are inhibitors of myogenesis, had little effect on syndecan-1 expression. When added together, however, they induced syndecan-1 expression. Retinoic acid, an inducer of myogenesis, inhibited syndecan-1 expression and abolished the effect of the growth factors. These results indicate that syndecan-1 expression is down-regulated during myogenesis and that growth factors and retinoic acid modulate syndecan-1 expression by a mechanism that is independent of myogenin.
Collapse
Affiliation(s)
- J Larraín
- Department of Cell and Molecular Biology, Faculty of Biological Sciences, Catholic University of Chile, Casilla 114-D, Santiago, Chile
| | | | | | | | | | | |
Collapse
|
205
|
Walz A, McFarlane S, Brickman YG, Nurcombe V, Bartlett PF, Holt CE. Essential role of heparan sulfates in axon navigation and targeting in the developing visual system. Development 1997; 124:2421-30. [PMID: 9199368 DOI: 10.1242/dev.124.12.2421] [Citation(s) in RCA: 97] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Heparan sulfate (HS) is abundant in the developing brain and is a required co-factor for many types of fibroblast growth factor (FGF) signaling in vitro. We report that some HSs, when added exogenously to the developing Xenopus optic pathway, severely disrupt target recognition causing axons from the retina to bypass their primary target, the optic tectum. Significantly, HS sidechains from a neuroepithelial perlecan variant that preferentially bind FGF-2, HS(FGF-2), cause aberrant targeting, whereas those that preferentially bind FGF-1 do not. Charge-matched fragments of HS(FGF-2) show that the mistargeting activity associates with the FGF-binding fragments. Heparitinase removal of native HSs at the beginning of optic tract formation retards retinal axon elongation; addition of FGF-2 restores axon extension but axons lose directionality. Late HS removal, after axons have extended through the tract, elicits a tectal bypass phenotype indicating a growth promoting and guidance function for native HSs. Our results demonstrate that different HS sidechains from the same core protein differentially affect axon growth in vivo, possibly due to their distinct FGF-binding preferences, and suggest that growth factors and HSs are important partners in regulating axon growth and guidance in the developing visual system.
Collapse
Affiliation(s)
- A Walz
- Department of Biology 0366, University of California San Diego, La Jolla 92093-0366, USA
| | | | | | | | | | | |
Collapse
|
206
|
Subramanian SV, Fitzgerald ML, Bernfield M. Regulated shedding of syndecan-1 and -4 ectodomains by thrombin and growth factor receptor activation. J Biol Chem 1997; 272:14713-20. [PMID: 9169435 DOI: 10.1074/jbc.272.23.14713] [Citation(s) in RCA: 296] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The syndecan family of transmembrane heparan sulfate proteoglycans is abundant on the surface of all adherent mammalian cells. Syndecans bind and modify the action of various growth factors/cytokines, proteases/antiproteases, cell adhesion molecules, and extracellular matrix components. Syndecan expression is highly regulated during wound repair, a process orchestrated by many of these effectors. Each syndecan ectodomain is shed constitutively by cultured cells, but the mechanism and significance of this shedding are not understood. Therefore, we examined (i) whether physiological agents active during wound repair influence syndecan shedding, and (ii) whether wound fluids contain shed syndecan ectodomains. Using SVEC4-10 endothelial cells we find that certain proteases and growth factors accelerate shedding of the syndecan-1 and -4 ectodomains. Protease-accelerated shedding is completely inhibited by serum-containing media. Thrombin activity is duplicated by the 14-amino acid thrombin receptor agonist peptide that directly activates the thrombin receptor and is not inhibited by serum. Epidermal growth factor family members accelerate shedding but FGF-2, platelet-derived growth factor-AB, transforming growth factor-beta, tumor necrosis factor-alpha, and vascular endothelial cell growth factor 165 do not. Shed ectodomains are soluble, stable in the conditioned medium, have the same size core proteins regardless whether shed at a basal rate, or accelerated by thrombin or epidermal growth factor-family members and are found in acute human dermal wound fluids. Thus, shedding is accelerated by activation of at least two distinct receptor classes, G protein-coupled (thrombin) and protein tyrosine kinase (epidermal growth factor). Proteases and growth factors active during wound repair can accelerate syndecan shedding from cell surfaces. Regulated shedding of syndecans suggests physiological roles for the soluble proteoglycan ectodomains.
Collapse
Affiliation(s)
- S V Subramanian
- Joint Program in Neonatology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | |
Collapse
|
207
|
McFall AJ, Rapraeger AC. Identification of an adhesion site within the syndecan-4 extracellular protein domain. J Biol Chem 1997; 272:12901-4. [PMID: 9148893 DOI: 10.1074/jbc.272.20.12901] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The syndecan family of cell surface proteoglycans regulates cell adhesion and growth factor signaling by binding components of the extracellular matrix and growth factors. To date, all known ligand interactions are via the covalently attached glycosaminoglycan chains. To assay for potential extracellular interactions via the core proteins directly, the recombinant extracellular domain of syndecan-4 (S4ED), one of the four syndecan family members, was tested as a substratum for the attachment of mammalian cells. Human foreskin fibroblasts bind to mouse S4ED, and both mouse and chicken S4ED can block this binding, with 50% inhibition observed between 0.1 and 1 x 10(-7) M. The extracellular domain of another syndecan family member, syndecan-1, fails to compete for cell binding to mouse S4ED. Amino acids 56-109 of the 120-amino acid mouse S4ED compete fully, suggesting that the cell binding domain is within this region. The ability of syndecan-4 to interact with molecules at the cell surface via its core protein as well as its glycosaminoglycan chains may uniquely regulate the formation of cell surface signaling complexes following engagement of this proteoglycan with its extracellular ligands.
Collapse
Affiliation(s)
- A J McFall
- Program in Cellular and Molecular Biology and Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, 53706-1532, USA
| | | |
Collapse
|
208
|
Bonneh-Barkay D, Shlissel M, Berman B, Shaoul E, Admon A, Vlodavsky I, Carey DJ, Asundi VK, Reich-Slotky R, Ron D. Identification of glypican as a dual modulator of the biological activity of fibroblast growth factors. J Biol Chem 1997; 272:12415-21. [PMID: 9139688 DOI: 10.1074/jbc.272.19.12415] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Heparan sulfate moieties of cell-surface proteoglycans modulate the biological responses to fibroblast growth factors (FGFs). We have reported previously that cell-associated heparan sulfates inhibit the binding of the keratinocyte growth factor (KGF), but enhance the binding of acidic FGF to the KGF receptor, both in keratinocytes, which naturally express this receptor, and in rat myoblasts, which ectopically express it (Reich-Slotky, R., Bonneh-Barkay, D., Shaoul, E., Berman, B., Svahn, C. M., and Ron, D. (1994) J. Biol. Chem. 269, 32279-32285). The proteoglycan bearing these modulatory heparan sulfates was purified to homogeneity from salt extracts of rat myoblasts by anion-exchange and FGF affinity chromatography and was identified as rat glypican. Affinity-purified glypican augmented the binding of acidic FGF and basic FGF to human FGF receptor-1 in a cell-free system. This effect was abolished following digestion of glypican by heparinase. Addition of purified soluble glypican effectively replaced heparin in supporting basic FGF-induced cellular proliferation of heparan sulfate-negative cells expressing recombinant FGF receptor-1. In keratinocytes, glypican strongly inhibited the mitogenic response to KGF while enhancing the response to acidic FGF. Taken together, these findings demonstrate that glypican plays an important role in regulating the biological activity of fibroblast growth factors and that, for different growth factors, glypican can either enhance or suppress cellular responsiveness.
Collapse
Affiliation(s)
- D Bonneh-Barkay
- Department of Biology, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | | | | | | | | | | | | | | | | | | |
Collapse
|
209
|
Miao HQ, Ornitz DM, Aingorn E, Ben-Sasson SA, Vlodavsky I. Modulation of fibroblast growth factor-2 receptor binding, dimerization, signaling, and angiogenic activity by a synthetic heparin-mimicking polyanionic compound. J Clin Invest 1997; 99:1565-75. [PMID: 9120000 PMCID: PMC507976 DOI: 10.1172/jci119319] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Heparan sulfate (HS) proteoglycans play a key role in cell proliferation induced by basic fibroblast growth factor (FGF-2) and other heparin-binding growth factors. To modulate the involvement of HS, we have used a synthetic, nonsulfated polyanionic aromatic compound (RG-13577) that mimics functional features of heparin/HS. FGF-2-stimulated proliferation of vascular endothelial cells was markedly inhibited in the presence of 5-10 microg/ml compound RG-13577 (poly-4-hydroxyphenoxy acetic acid; Mr approximately 5 kD). Direct interaction between RG-13577 and FGF-2 was demonstrated by the ability of the former to compete with heparin on binding to FGF-2. RG-13577 inhibited FGF-2 binding to soluble- and cell surface-FGF receptor 1 (FGFR1). Unlike heparin, RG-13577 alone failed to mediate dimerization of FGF-2. Moreover, it abrogated heparin-mediated dimerization of FGF-2 and FGFR1, as well as FGF-2 mitogenic activity in HS-deficient F32 lymphoid cells. The antiproliferative effect of compound RG-13577 was associated with abrogation of FGF-2-induced tyrosine phosphorylation of FGFR1 and of cytoplasmic proteins involved in FGF-2 signal transduction, such as p90 and mitogen-activated protein kinase. A more effective inhibition of tyrosine phosphorylation was obtained after removal of the cell surface HS by heparinase. In contrast, tyrosine phosphorylation of an approximately 200-kD protein was stimulated by RG-13577, but not by heparin or FGF-2. RG-13577 prevented microvessel outgrowth from rat aortic rings embedded in a collagen gel. Development of nontoxic polyanionic compounds may provide an effective strategy to inhibit FGF-2-induced cell proliferation associated with angiogenesis, arteriosclerosis, and restenosis.
Collapse
Affiliation(s)
- H Q Miao
- Department of Oncology, Hadassah-Hebrew University Hospital, Jerusalem, Israel
| | | | | | | | | |
Collapse
|
210
|
Friedl A, Chang Z, Tierney A, Rapraeger AC. Differential binding of fibroblast growth factor-2 and -7 to basement membrane heparan sulfate: comparison of normal and abnormal human tissues. THE AMERICAN JOURNAL OF PATHOLOGY 1997; 150:1443-55. [PMID: 9094999 PMCID: PMC1858159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Fibroblast growth factors (FGFs) play multiple roles during development and in adult tissues as paracrine regulators of growth and differentiation. FGFs signal through transmembrane receptor tyrosine kinases, but heparan sulfate is also required for signaling by members of the FGF family. In addition, heparan sulfate may be involved in determining tissue distribution of FGFs. Using biotinylated FGF-2 and FGF-7 (KGF) as probes, we have identified specific interactions between FGFs and heparan sulfates in human tissues. Both FGF species bind to tissue mast cells and to epithelial cell membranes. Binding to basement membrane heparan sulfate is tissue source dependent and specific. Although FGF-2 strongly binds to basement membrane heparan sulfate in skin and most other tissue sites examined, FGF-7 fails to bind to basement membrane heparan sulfate in most locations. However, in subendothelial matrix in blood vessels and in the basement membrane of a papillary renal cell carcinoma, strong FGF-7 binding is seen. In summary, distinct and specific affinities of heparan sulfates for different FGFs were identified that may affect growth factor activation and local distribution. Heparan sulfate may have a gatekeeper function to either restrict or permit diffusion of heparin-binding growth factors across the basement membrane.
Collapse
Affiliation(s)
- A Friedl
- Department of Pathology, University of Wisconsin-Madison 53792, USA
| | | | | | | |
Collapse
|
211
|
Song HH, Shi W, Filmus J. OCI-5/rat glypican-3 binds to fibroblast growth factor-2 but not to insulin-like growth factor-2. J Biol Chem 1997; 272:7574-7. [PMID: 9065409 DOI: 10.1074/jbc.272.12.7574] [Citation(s) in RCA: 110] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
OCI-5 encodes the rat homologue of glypican-3, a membrane-bound heparan sulfate proteoglycan that is mutated in the Simpson-Golabi-Behmel overgrowth syndrome. OCI-5 and glypican-3 are 95% identical. It has been recently suggested that glypican-3 interacts with insulin-like growth factor-2 (IGF-2) and that this interaction regulates IGF-2 activity. We report here that we have transfected OCI-5 into two different cell lines, and we have not been able to detect an interaction between the OCI-5 proteoglycan produced by the transfected cells and IGF-2. On the other hand, we have found that OCI-5 interacts with FGF-2, as has already been shown for glypican-1. This interaction is mediated by the heparan sulfate chains of OCI-5 because it can be inhibited by heparin or by heparitinase.
Collapse
Affiliation(s)
- H H Song
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario M4N 3M5, Canada
| | | | | |
Collapse
|
212
|
Delehedde M, Deudon E, Boilly B, Hondermarck H. Production of sulfated proteoglycans by human breast cancer cell lines: Binding to fibroblast growth factor-2. J Cell Biochem 1997. [DOI: 10.1002/(sici)1097-4644(19970315)64:4<605::aid-jcb9>3.0.co;2-v] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
213
|
Veugelers M, Vermeesch J, Reekmans G, Steinfeld R, Marynen P, David G. Characterization of glypican-5 and chromosomal localization of human GPC5, a new member of the glypican gene family. Genomics 1997; 40:24-30. [PMID: 9070915 DOI: 10.1006/geno.1996.4518] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The four vertebrate glypican-related integral membrane proteoglycans identified so far constitute a discrete family of heparan sulfate proteoglycans that are linked to the cell surface via glycosyl phosphatidylinositol. In addition to the GPI anchor and substitution with heparan sulfate, the members of this family show significant sequence homology and share a unique and characteristic cysteine motif. Starting from an EST entry that showed significant sequence similarity to MXR7 and OCI-5 (coding, respectively, for human and rat glypican-3), we have isolated a human cDNA coding for glypican-5, a novel member of this proteoglycan family. The gene for this novel glypican (GPC5) maps to 13q32. In the adult, it is primarily expressed in brain tissue.
Collapse
Affiliation(s)
- M Veugelers
- Laboratory for Glycobiology, University of Leuven, Belgium
| | | | | | | | | | | |
Collapse
|
214
|
Alternative splicing of human prostaglandin G/H synthase mRNA and evidence of differential regulation of the resulting transcripts by transforming growth factor beta 1, interleukin 1 beta, and tumor necrosis factor alpha. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(19)50092-8] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|