201
|
Mesa RA, Loegering D, Powell HL, Flatten K, Arlander SJH, Dai NT, Heldebrant MP, Vroman BT, Smith BD, Karp JE, Eyck CJT, Erlichman C, Kaufmann SH, Karnitz LM. Heat shock protein 90 inhibition sensitizes acute myelogenous leukemia cells to cytarabine. Blood 2005; 106:318-27. [PMID: 15784732 PMCID: PMC1895127 DOI: 10.1182/blood-2004-09-3523] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Previous studies demonstrated that ataxia telangiectasia mutated- and Rad3-related (ATR) kinase and its downstream target checkpoint kinase 1 (Chk1) facilitate survival of cells treated with nucleoside analogs and other replication inhibitors. Recent results also demonstrated that Chk1 is depleted when cells are treated with heat shock protein 90 (Hsp90) inhibitor 17-allylamino-17-demethoxygeldanamycin (17-AAG). The present study examined the effects of 17-AAG and its major metabolite, 17-aminogeldanamycin (17-AG), on Chk1 levels and cellular responses to cytarabine in human acute myelogenous leukemia (AML) cell lines and clinical isolates. Cytarabine, at concentrations as low as 30 nM, caused activating phosphorylation of Chk1, loss of the phosphatase Cdc25A, and S-phase slowing. Conversely, treatment with 100 to 300 nM 17-AAG for 24 hours caused Chk1 depletion that was accompanied by diminished cytarabine-induced S-phase accumulation, decreased Cdc25A degradation, and enhanced cytotoxicity as measured by inhibition of colony formation and induction of apoptosis. Additional studies demonstrated that small inhibitory RNA (siRNA) depletion of Chk1 also sensitized cells to cytarabine, whereas disruption of the phosphatidylinositol 3-kinase (PI3k) signaling pathway, which is also blocked by Hsp90 inhibition, did not. Collectively, these results suggest that treatment with 17-AAG might represent a means of reversing checkpoint-mediated cytarabine resistance in AML.
Collapse
Affiliation(s)
- Ruben A Mesa
- Division of Hematology, Department of Medicine, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
202
|
Gunjan A, Paik J, Verreault A. Regulation of histone synthesis and nucleosome assembly. Biochimie 2005; 87:625-35. [PMID: 15989979 DOI: 10.1016/j.biochi.2005.02.008] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2004] [Accepted: 02/10/2005] [Indexed: 11/25/2022]
Abstract
Histone deposition onto nascent DNA is the first step in the process of chromatin assembly during DNA replication. The process of nucleosome assembly represents a daunting task for S-phase cells, partly because cells need to rapidly package nascent DNA into nucleosomes while avoiding the generation of excess histones. Consequently, cells have evolved a number of nucleosome assembly factors and regulatory mechanisms that collectively function to coordinate the rates of histone and DNA synthesis during both normal cell cycle progression and in response to conditions that interfere with DNA replication.
Collapse
Affiliation(s)
- Akash Gunjan
- Cancer Research UK, London Research Institute, Clare Hall Laboratories, Blanche Lane, South Mimms, Hertfordshire EN6 3LD, United Kingdom
| | | | | |
Collapse
|
203
|
Patzke S, Hauge H, Sioud M, Finne EF, Sivertsen EA, Delabie J, Stokke T, Aasheim HC. Identification of a novel centrosome/microtubule-associated coiled-coil protein involved in cell-cycle progression and spindle organization. Oncogene 2005; 24:1159-73. [PMID: 15580290 DOI: 10.1038/sj.onc.1208267] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Here we describe the identification of a novel vertebrate-specific centrosome/spindle pole-associated protein (CSPP) involved in cell-cycle regulation. The protein is predicted to have a tripartite domain structure, where the N- and C-terminal domains are linked through a coiled-coil mid-domain. Experimental analysis of the identified domains revealed that spindle association is dependent on the N-terminal and the coiled-coil mid domain. The expression of CSPP at the mRNA level was detected in all tested cell lines and in testis tissue. Ectopic expression of CSPP in HEK293T cells blocked cell-cycle progression in early G1 phase and in mitosis in a dose-dependent manner. Interestingly, mitosis-arrested cells contained aberrant spindles and showed impairment of chromosome congression. Inhibition of CSPP gene expression by small interfering RNAs induced cell-cycle arrest/delay in S phase. This phenotype was characterized by elevated levels of cyclin A, decreased levels of cyclin E and hyperphosphorylation of the S-phase checkpoint kinase Chk1. The activation of Chk1 may indicate a replication stress response due to an inappropriate G1/S-phase transition. Taken together, we demonstrate that CSPP is associated with centrosomes and microtubules and may play a role in the regulation of G(1)/S-phase progression and spindle assembly.
Collapse
Affiliation(s)
- Sebastian Patzke
- Department of Immunology, The Norwegian Radium Hospital, Montebello, 0310 Oslo, Norway
| | | | | | | | | | | | | | | |
Collapse
|
204
|
Abstract
Chk1 is an evolutionarily conserved protein kinase that functions to ensure genomic integrity upon genotoxic stress. Studies to date have revealed striking similarities among Chk1 pathways of different organisms. In this review we discuss what is known about Chk1 activation and what downstream factors are regulated by Chk1 to counter replication blocks and DNA damage induced by UV, IR, and other genotoxic agents. Where applicable, we also compare the role of Chk1 with that of the Chk2 protein kinase in the checkpoint responses.
Collapse
Affiliation(s)
- Yinhuai Chen
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | | |
Collapse
|
205
|
Flatten K, Dai NT, Vroman BT, Loegering D, Erlichman C, Karnitz LM, Kaufmann SH. The role of checkpoint kinase 1 in sensitivity to topoisomerase I poisons. J Biol Chem 2005; 280:14349-55. [PMID: 15699047 DOI: 10.1074/jbc.m411890200] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Agents that target topoisomerase I are widely utilized to treat human cancer. Previous studies have indicated that both the ataxia telangiectasia mutated (ATM)/checkpoint kinase (Chk) 2 and ATM- and Rad 3-related (ATR)/Chk1 checkpoint pathways are activated after treatment with these agents. The relative contributions of these two pathways to survival of cells after treatment with topoisomerase I poisons are currently unknown. To address this issue, we assessed the roles of ATR, Chk1, ATM, and Chk2 in cells treated with the topoisomerase I poisons camptothecin and 7-ethyl-10-hydroxycamptothecin (SN-38), the active metabolite of irinotecan. Colony forming assays demonstrated that down-regulation of ATR or Chk1 sensitized cells to SN-38 and camptothecin. In contrast, ATM and Chk2 had minimal effect of sensitivity to SN-38 or camptothecin. Additional experiments demonstrated that the Hsp90 inhibitor 17-allylamino-17-demethoxygeldanamycin, which down-regulates Chk1, also sensitized a variety of human carcinoma cell lines to SN-38. Collectively, these results show that the ATR/Chk1 pathway plays a predominant role in the response to topoisomerase I inhibitors in carcinoma cells and identify a potential approach for enhancing the efficacy of these drugs.
Collapse
Affiliation(s)
- Karen Flatten
- Division of Oncology Research, Mayo Clinic College of Medicine, Rochester, Minnesota 55905, USA
| | | | | | | | | | | | | |
Collapse
|
206
|
Syljuåsen RG, Sørensen CS, Nylandsted J, Lukas C, Lukas J, Bartek J. Inhibition of Chk1 by CEP-3891 accelerates mitotic nuclear fragmentation in response to ionizing Radiation. Cancer Res 2005; 64:9035-40. [PMID: 15604269 DOI: 10.1158/0008-5472.can-04-2434] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The human checkpoint kinase Chk1 has been suggested as a target for cancer treatment. Here, we show that a new inhibitor of Chk1 kinase, CEP-3891, efficiently abrogates both the ionizing radiation (IR)-induced S and G(2) checkpoints. When the checkpoints were abrogated by CEP-3891, the majority (64%) of cells showed fragmented nuclei at 24 hours after IR (6 Gy). The formation of nuclear fragmentation in IR-treated human cancer cells was directly visualized by time-lapse video microscopy of U2-OS cells expressing a green fluorescent protein-tagged histone H2B protein. Nuclear fragmentation occurred as a result of defective chromosome segregation when irradiated cells entered their first mitosis, either prematurely without S and G(2) checkpoint arrest in the presence of CEP-3891 or after a prolonged S and G(2) checkpoint arrest in the absence of CEP-3891. The nuclear fragmentation was clearly distinguishable from apoptosis because caspase activity and nuclear condensation were not induced. Finally, CEP-3891 not only accelerated IR-induced nuclear fragmentation, it also increased the overall cell killing after IR as measured in clonogenic survival assays. These results demonstrate that transient Chk1 inhibition by CEP-3891 allows premature mitotic entry of irradiated cells, thereby leading to accelerated onset of mitotic nuclear fragmentation and increased cell death.
Collapse
Affiliation(s)
- Randi G Syljuåsen
- Department of Cell Cycle and Cancer and Apoptosis Laboratory, Institute of Cancer Biology, Danish Cancer Society, Copenhagen, Denmark
| | | | | | | | | | | |
Collapse
|
207
|
Sørensen CS, Hansen LT, Dziegielewski J, Syljuåsen RG, Lundin C, Bartek J, Helleday T. The cell-cycle checkpoint kinase Chk1 is required for mammalian homologous recombination repair. Nat Cell Biol 2005; 7:195-201. [PMID: 15665856 DOI: 10.1038/ncb1212] [Citation(s) in RCA: 503] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2004] [Accepted: 12/03/2004] [Indexed: 12/25/2022]
Abstract
The essential checkpoint kinase Chk1 is required for cell-cycle delays after DNA damage or blocked DNA replication. However, it is unclear whether Chk1 is involved in the repair of damaged DNA. Here we establish that Chk1 is a key regulator of genome maintenance by the homologous recombination repair (HRR) system. Abrogation of Chk1 function with small interfering RNA or chemical antagonists inhibits HRR, leading to persistent unrepaired DNA double-strand breaks (DSBs) and cell death after replication inhibition with hydroxyurea or DNA-damage caused by camptothecin. After hydroxyurea treatment, the essential recombination repair protein RAD51 is recruited to DNA repair foci performing a vital role in correct HRR. We demonstrate that Chk1 interacts with RAD51, and that RAD51 is phosphorylated on Thr 309 in a Chk1-dependent manner. Consistent with a functional interplay between Chk1 and RAD51, Chk1-depleted cells failed to form RAD51 nuclear foci after exposure to hydroxyurea, and cells expressing a phosphorylation-deficient mutant RAD51(T309A) were hypersensitive to hydroxyurea. These results highlight a crucial role for the Chk1 signalling pathway in protecting cells against lethal DNA lesions through regulation of HRR.
Collapse
|
208
|
Genomic Instability:Signaling Pathways Orchestrating the Responsesto Ionizing Radiation and Cisplatin. Genome Integr 2005. [DOI: 10.1007/7050_010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
209
|
Wu X, Roth JA, Zhao H, Luo S, Zheng YL, Chiang S, Spitz MR. Cell Cycle Checkpoints, DNA Damage/Repair, and Lung Cancer Risk. Cancer Res 2005. [DOI: 10.1158/0008-5472.349.65.1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Abstract
Given that defects in cell cycle control and DNA repair capacity may contribute to tumorigenesis, we hypothesized that patients with lung cancer would be more likely than healthy controls to exhibit deficiencies in cell cycle checkpoints and/or DNA repair capacity as gauged by cellular response to in vitro carcinogen exposure. In an ongoing case-control study of 155 patients with newly diagnosed lung cancer and 153 healthy controls, we used the comet assay to investigate the roles of cell cycle checkpoints and DNA damage/repair capability in lung tumorigenesis. The median γ-radiation-induced and benzo(a)pyrene diol epoxide–induced Olive tail moments, the comet assay parameter for measuring DNA damage, were significantly higher in the case group (5.31 and 4.22, respectively) than in the control group (4.42 and 2.83, respectively; P < 0.001). Higher tail moments of γ-radiation and benzo(a)pyrene diol epoxide–induced comets were significantly associated with 2.32- and 4.49-fold elevated risks, respectively, of lung cancer. The median γ-radiation-induced increases of cells in the S and G2 phases were significantly lower in cases (22.2% and 12.2%, respectively) than in controls (31.1% and 14.9%, respectively; P < 0.001). Shorter durations of the S and G2 phases resulted in 4.54- and 1.85-fold increased risks, respectively, of lung cancer. Also observed were joint effects between γ-radiation-induced increases of S and G2 phase frequencies and mutagen-induced comets. In addition, we found that in controls, the S phase decreased as tail moment increased. This study is significant because it provides the first molecular epidemiologic evidence linking defects in cell cycle checkpoints and DNA damage/repair capacity to elevated lung cancer risk.
Collapse
Affiliation(s)
| | - Jack A. Roth
- 2Thoracic & Cardiovascular Surgery, University of Texas M.D. Anderson Cancer Center, Houston, Texas and
| | - Hua Zhao
- 1Epidemiology and Departments of
| | | | - Yun-Ling Zheng
- 3Cancer Genetics and Epidemiology Program, Lombardi Cancer Center, Georgetown University Medical Center, Washington, District of Columbia, USA
| | | | | |
Collapse
|
210
|
Stiff T, Reis C, Alderton GK, Woodbine L, O'Driscoll M, Jeggo PA. Nbs1 is required for ATR-dependent phosphorylation events. EMBO J 2004; 24:199-208. [PMID: 15616588 PMCID: PMC544916 DOI: 10.1038/sj.emboj.7600504] [Citation(s) in RCA: 139] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2004] [Accepted: 11/12/2004] [Indexed: 01/11/2023] Open
Abstract
Nijmegen breakage syndrome (NBS) is characterised by microcephaly, developmental delay, characteristic facial features, immunodeficiency and radiosensitivity. Nbs1, the protein defective in NBS, functions in ataxia telangiectasia mutated protein (ATM)-dependent signalling likely facilitating ATM phosphorylation events. While NBS shares overlapping characteristics with ataxia telangiectasia, it also has features overlapping with ATR-Seckel (ATR: ataxia-telangiectasia and Rad3-related protein) syndrome, a subclass of Seckel syndrome mutated in ATR. We show that Nbs1 also facilitates ATR-dependent phosphorylation. NBS cell lines show a similar defect in ATR phosphorylation of Chk1, c-jun and p-53 in response to UV irradiation- and hydroxyurea (HU)-induced replication stalling. They are also impaired in ubiquitination of FANCD2 after HU treatment, which is ATR dependent. Following HU-induced replication arrest, NBS and ATR-Seckel cells show similarly impaired G2/M checkpoint arrest and an impaired ability to restart DNA synthesis at stalled replication forks. Moreover, NBS cells fail to retain ATR in the nucleus following HU treatment and extraction. Our findings suggest that Nbs1 functions in both ATR- and ATM-dependent signalling. We propose that the NBS clinical features represent the result of these combined defects.
Collapse
Affiliation(s)
- Tom Stiff
- Genome Damage and Stability Centre, University of Sussex, East Sussex, UK
| | - Caroline Reis
- Genome Damage and Stability Centre, University of Sussex, East Sussex, UK
| | - Gemma K Alderton
- Genome Damage and Stability Centre, University of Sussex, East Sussex, UK
| | - Lisa Woodbine
- Genome Damage and Stability Centre, University of Sussex, East Sussex, UK
| | - Mark O'Driscoll
- Genome Damage and Stability Centre, University of Sussex, East Sussex, UK
| | - Penny A Jeggo
- Genome Damage and Stability Centre, University of Sussex, East Sussex, UK
- Genome Damage and Stability Centre, University of Sussex, Falmer, Brighton, East Sussex BN1 9RQ, UK. Tel.: +44 1273 678482; Fax: +44 1273 678121; E-mail:
| |
Collapse
|
211
|
Luciani MG, Oehlmann M, Blow JJ. Characterization of a novel ATR-dependent, Chk1-independent, intra-S-phase checkpoint that suppresses initiation of replication in Xenopus. J Cell Sci 2004; 117:6019-30. [PMID: 15536124 PMCID: PMC2701543 DOI: 10.1242/jcs.01400] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
In most eukaryotes, replication origins fire asynchronously throughout S-phase according to a precise timing programme. When replication fork progression is inhibited, an intra-S-phase checkpoint is activated that blocks further origin firing and stabilizes existing replication forks to prevent them undergoing irreversible collapse. We show that chromatin incubated in Xenopus egg extracts displays a replication-timing programme in which firing of new replication origins during S phase depends on the continued activity of S-phase-inducing cyclin-dependent kinases. We also show that low concentrations of the DNA-polymerase inhibitor aphidicolin, which only slightly slows replication-fork progression, strongly suppress further initiation events. This intra-S-phase checkpoint can be overcome by caffeine, an inhibitor of the ATM/ATR checkpoint kinases, or by neutralizing antibodies to ATR. However, depletion or inhibition of Chk1 did not abolish the checkpoint. We could detect no significant effect on fork stability when this intra-S-phase checkpoint was inhibited. Interestingly, although caffeine could prevent the checkpoint from being activated, it could not rescue replication if added after the timing programme would normally have been executed. This suggests that special mechanisms might be necessary to reverse the effects of the intra-S-phase checkpoint once it has acted on particular origins.
Collapse
Affiliation(s)
- M Gloria Luciani
- Wellcome Trust Biocentre, University of Dundee, Dow Street, Dundee, DD1 5EH, UK
| | | | | |
Collapse
|
212
|
Takebayashi SI, Sugimura K, Saito T, Sato C, Fukushima Y, Taguchi H, Okumura K. Regulation of replication at the R/G chromosomal band boundary and pericentromeric heterochromatin of mammalian cells. Exp Cell Res 2004; 304:162-74. [PMID: 15707583 DOI: 10.1016/j.yexcr.2004.10.024] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2004] [Revised: 10/17/2004] [Accepted: 10/27/2004] [Indexed: 10/26/2022]
Abstract
Mammalian chromosomes consist of multiple replicons; however, in contrast to yeast, the details of this replication process (origin firing, fork progression and termination) relative to specific chromosomal domains remain unclear. Using direct visualization of DNA fibers, here we show that the rate of replication fork movement typically decreases in the early-mid S phase when the replication fork proceeds through the R/G chromosomal band boundary and pericentromeric heterochromatin. To support this, fluorescence in situ hybridization (FISH)-based replication profiles at the human 1q31.1 (R-band)-32.1 (G-band) regions revealed that replication timing switched around at the putative R/G chromosomal band boundary predicted by marked changes in GC content at the sequence level. Thus, the slowdown of replication fork movement is thought to be the general property of the band boundaries separating the functionally different chromosomal domains. By simultaneous visualization of replication fork movement and pericentromeric heterochromatin sequences on DNA fibers, we observed that this region is duplicated by many replication forks, some of which proceed unidirectionally, that originate from clustered replication origins. We showed that histone hyperacetylation is tightly associated with changes in the replication timing of pericentromeric heterochromatin induced by 5-aza-2'-deoxycytidine treatment. These results suggest that, similar to the yeast system, histone modification is involved in controlling the timing of origin firing in mammals.
Collapse
Affiliation(s)
- Shin-Ichiro Takebayashi
- Laboratory of Molecular and Cellular Biology, Faculty of Bioresources, Mie University, Tsu, Mie 514-8507, Japan.
| | | | | | | | | | | | | |
Collapse
|
213
|
Parsels LA, Parsels JD, Tai DCH, Coughlin DJ, Maybaum J. 5-fluoro-2'-deoxyuridine-induced cdc25A accumulation correlates with premature mitotic entry and clonogenic death in human colon cancer cells. Cancer Res 2004; 64:6588-94. [PMID: 15374972 DOI: 10.1158/0008-5472.can-03-3040] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The ability to inappropriately progress through S phase during drug treatment is a key determinant of tumor cell sensitivity to thymidylate synthase inhibitors such as 5-fluoro-2'-deoxyuridine (FdUrd). Previous studies suggest that SW620 cells, which are relatively resistant to FdUrd, have an intact early S-phase checkpoint that protects against FdUrd-induced DNA damage and cytotoxicity and that this checkpoint is defective in the relatively sensitive HT29 cells, which continue to progress through S phase during drug treatment. To test this hypothesis, we examined the expression and activation of known S-phase checkpoint mediators in FdUrd-treated SW620 and HT29 cells. FdUrd induced degradation of cdc25A in SW620, but not HT29 cells, in a manner that correlated with the previously described drug-induced S-phase arrest. This difference, however, could not be attributed to differences in either chk1 activation, which was similar in both cell lines, or chk2 activation, which only occurred in HT29 cells and correlated with uracil misincorporation/misrepair-induced DNA double-stranded breaks. These observations suggest that although FdUrd-induced S-phase arrest and associated cdc25A degradation are impaired in HT29 cells, signaling by ATM/ATR is intact upstream of chk1 and chk2. Finally, FdUrd induced premature mitotic entry, a phenomenon associated with deregulated cdc25A expression, in HT29 but not SW620 cells. Blocking cdc25A expression in HT29 cells with small interfering RNA attenuated FdUrd-induced premature mitotic entry, suggesting that progression of HT29 cells through S phase during drug treatment results in part from the inability of these cells to degrade cdc25A in response to FdUrd-induced DNA damage.
Collapse
Affiliation(s)
- Leslie Anne Parsels
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, Michigan 489109-0504, USA
| | | | | | | | | |
Collapse
|
214
|
Pham NA, Jacobberger JW, Schimmer AD, Cao P, Gronda M, Hedley DW. The dietary isothiocyanate sulforaphane targets pathways of apoptosis, cell cycle arrest, and oxidative stress in human pancreatic cancer cells and inhibits tumor growth in severe combined immunodeficient mice. Mol Cancer Ther 2004. [DOI: 10.1158/1535-7163.1239.3.10] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Abstract
Anticancer effects of the dietary isothiocyanate sulforaphane were investigated in the human pancreatic cancer cell lines MIA PaCa-2 and PANC-1. Sulforaphane-treated cells accumulated in metaphase as determined by flow cytometry [4C DNA content, cyclin A(−), cyclin B1(+), and phospho-histone H3 (Ser10)(+)]. In addition, treated cells showed nuclear apoptotic morphology that coincided with an activation of caspase-8, loss of mitochondrial membrane potential, and loss of plasma membrane integrity. The initial detection of caspase-3 cleavage occurring in G2-M arrest was independent of a change in phospho-cdc2 (Tyr15) protein; consequently, sulforaphane treatment combined with UCN-01 had no significant impact on cellular toxicity. Incubations at higher sulforaphane doses (>10 μmol/L) resulted in cleavage of caspase-3 in the G1 subpopulation, suggesting that the induction of apoptosis and the sulforaphane-induced mitosis delay at the lower dose are independently regulated. Cellular toxicity in MIA PaCa-2, and to a greater extent in PANC-1, was positively correlated with a decrease in cellular glutathione levels, whereas sustained increases in glutathione observed in MIA PaCa-2 cells or the simultaneous incubation with N-acetyl-l-cysteine in PANC-1 cells were associated with resistance to sulforaphane-induced apoptosis. Daily sulforaphane i.p. injections (375 μmol/kg/d for 3 weeks) in severe combined immunodeficient mice with PANC-1 s.c. tumors resulted in a decrease of mean tumor volume by 40% compared with vehicle-treated controls. Our findings suggest that, in addition to the known effects on cancer prevention, sulforaphane may have activity in established pancreatic cancer.
Collapse
Affiliation(s)
- Nhu-An Pham
- 1Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- 2Ontario Cancer Institute, Princess Margaret Hospital, Toronto, Ontario, Canada; and
| | | | - Aaron D. Schimmer
- 1Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- 2Ontario Cancer Institute, Princess Margaret Hospital, Toronto, Ontario, Canada; and
| | - Pinjiang Cao
- 2Ontario Cancer Institute, Princess Margaret Hospital, Toronto, Ontario, Canada; and
| | - Marcella Gronda
- 2Ontario Cancer Institute, Princess Margaret Hospital, Toronto, Ontario, Canada; and
| | - David W. Hedley
- 1Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- 2Ontario Cancer Institute, Princess Margaret Hospital, Toronto, Ontario, Canada; and
| |
Collapse
|
215
|
Bolderson E, Scorah J, Helleday T, Smythe C, Meuth M. ATM is required for the cellular response to thymidine induced replication fork stress. Hum Mol Genet 2004; 13:2937-45. [PMID: 15459181 DOI: 10.1093/hmg/ddh316] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Genetically distinct checkpoints, activated as a consequence of either DNA replication arrest or ionizing radiation-induced DNA damage, integrate DNA repair responses into the cell cycle programme. The ataxia-telangiectasia mutated (ATM) protein kinase blocks cell cycle progression in response to DNA double strand breaks, whereas the related ATR is important in maintaining the integrity of the DNA replication apparatus. Here, we show that thymidine, which slows the progression of replication forks by depleting cellular pools of dCTP, induces a novel DNA damage response that, uniquely, depends on both ATM and ATR. Thymidine induces ATM-mediated phosphorylation of Chk2 and NBS1 and an ATM-independent phosphorylation of Chk1 and SMC1. AT cells exposed to thymidine showed decreased viability and failed to induce homologous recombination repair (HRR). Taken together, our results implicate ATM in the HRR-mediated rescue of replication forks impaired by thymidine treatment.
Collapse
Affiliation(s)
- Emma Bolderson
- Institute for Cancer Studies, School of Medicine, University of Sheffield, UK
| | | | | | | | | |
Collapse
|
216
|
Jowsey PA, Doherty AJ, Rouse J. Human PTIP facilitates ATM-mediated activation of p53 and promotes cellular resistance to ionizing radiation. J Biol Chem 2004; 279:55562-9. [PMID: 15456759 DOI: 10.1074/jbc.m411021200] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mus musculus Pax2 transactivation domain-interacting protein (Ptip) is an essential gene required for the maintenance of genome stability, although its precise molecular role is unclear. Human PTIP (hPTIP) was recently isolated in a screen for proteins, translated from cDNA pools, capable of interacting with peptides phosphorylated by the ATM (ataxia telangiectasia-mutated)/ATR (ataxia telangiectasia-related) protein kinases. hPTIP was described as a 757-amino acid protein bearing four BRCT domains. Here we report that instead full-length endogenous hPTIP contains 1069 amino acids and six BRCT domains. hPTIP shows increased association with 53BP1 in response to ionizing radiation (IR) but not in response to other DNA-damaging agents. Whereas translocation of both 53BP1 and hPTIP to sites of IR-induced DNA damage occurs independently of ATM, IR-induced association of PTIP and 53BP1 requires ATM. Deletion analysis identified the domains of 53BP1 and hPTIP required for protein-protein interaction and focus formation. Data characterizing the cellular roles of hPTIP are also presented. Small interfering RNA was used to show that hPTIP is required for ATM-mediated phosphorylation of p53 at Ser(15) and for IR-induced up-regulation of the cyclin-dependent kinase inhibitor p21. Lowering hPTIP levels also increased cellular sensitivity to IR, suggesting that this protein plays a critical role in maintaining genome stability.
Collapse
Affiliation(s)
- Paul A Jowsey
- Medical Research Council Protein Phosphorylation Unit, Wellcome Trust Biocentre/Medical Sciences Institute Complex, Dow Street, University of Dundee, Dundee DD1 5EH, Scotland, United Kingdom
| | | | | |
Collapse
|
217
|
Melixetian M, Ballabeni A, Masiero L, Gasparini P, Zamponi R, Bartek J, Lukas J, Helin K. Loss of Geminin induces rereplication in the presence of functional p53. ACTA ACUST UNITED AC 2004; 165:473-82. [PMID: 15159417 PMCID: PMC2172361 DOI: 10.1083/jcb.200403106] [Citation(s) in RCA: 195] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Strict regulation of DNA replication is essential to ensure proper duplication and segregation of chromosomes during the cell cycle, as its deregulation can lead to genomic instability and cancer. Thus, eukaryotic organisms have evolved multiple mechanisms to restrict DNA replication to once per cell cycle. Here, we show that inactivation of Geminin, an inhibitor of origin licensing, leads to rereplication in human normal and tumor cells within the same cell cycle. We found a CHK1-dependent checkpoint to be activated in rereplicating cells accompanied by formation of gammaH2AX and RAD51 nuclear foci. Abrogation of the checkpoint leads to abortive mitosis and death of rereplicated cells. In addition, we demonstrate that the induction of rereplication is dependent on the replication initiation factors CDT1 and CDC6, and independent of the functional status of p53. These data show that Geminin is required for maintaining genomic stability in human cells.
Collapse
Affiliation(s)
- Marina Melixetian
- Department of Experimental Oncology, European Institute of Oncology, Via Ripamonti 435, 20141 Milan, Italy
| | | | | | | | | | | | | | | |
Collapse
|
218
|
Arlt MF, Xu B, Durkin SG, Casper AM, Kastan MB, Glover TW. BRCA1 is required for common-fragile-site stability via its G2/M checkpoint function. Mol Cell Biol 2004; 24:6701-9. [PMID: 15254237 PMCID: PMC444841 DOI: 10.1128/mcb.24.15.6701-6709.2004] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2004] [Revised: 03/04/2004] [Accepted: 05/04/2004] [Indexed: 01/26/2023] Open
Abstract
Common fragile sites are loci that form chromosome gaps or breaks when DNA synthesis is partially inhibited. Fragile sites are prone to deletions, translocations, and other rearrangements that can cause the inactivation of associated tumor suppressor genes in cancer cells. It was previously shown that ATR is critical to fragile-site stability and that ATR-deficient cells have greatly elevated fragile-site expression (A. M. Casper, P. Nghiem, M. F. Arlt, and T. W. Glover, Cell 111:779-789, 2002). Here we demonstrate that mouse and human cells deficient for BRCA1, due to mutation or knockdown by RNA interference, also have elevated fragile-site expression. We further show that BRCA1 functions in the induction of the G(2)/M checkpoint after aphidicolin-induced replication stalling and that this checkpoint function is involved in fragile-site stability. These data indicate that BRCA1 is important in fragile-site stability and that fragile sites are recognized by the G(2)/M checkpoint pathway, in which BRCA1 plays a key role. Furthermore, they suggest that mutations in BRCA1 or interacting proteins could lead to rearrangements at fragile sites in cancer cells.
Collapse
Affiliation(s)
- Martin F Arlt
- Department of Human Genetics, 4909 Buhl, Box 0618, 1241 E. Catherine Street, University of Michigan, Ann Arbor, MI 48109-0618, USA
| | | | | | | | | | | |
Collapse
|
219
|
Bassett S, Urrabaz R, Sun D. Cellular response and molecular mechanism of antitumor activity by leinamycin in MiaPaCa human pancreatic cancer cells. Anticancer Drugs 2004; 15:689-96. [PMID: 15269600 DOI: 10.1097/01.cad.0000136886.72917.6f] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Previous in vitro biochemical studies have revealed that the antitumor drug leinamycin causes oxidative DNA damage and DNA alkylation. However, it is still not clear whether the same mechanism(s) of action operate in cultured human tumor cells. Here, we evaluated the effects of leinamycin in the human pancreatic carcinoma cell line MiaPaCa. Leinamycin was highly toxic to MiaPaCa cells in vitro, with an IC50 value of 50 nM, and extensive DNA fragmentation was observed in leinamycin-treated MiaPaCa cells. Flow cytometric experiments showed that leinamycin was able to disrupt normal cell cycle progression, resulting in an initial arrest of the cells in S phase. With increased time or at higher concentrations of leinamycin, the population of cells in the sub-G1 phase gradually increased, indicative of apoptotic cell death due to DNA damage. Mammalian Chk2, but not Chk1 kinase, was found to be activated in MiaPaCa cells treated with leinamycin, indicating that cellular responses to leinamycin could be attributed to DNA strand break formation rather than DNA adduct formation. Like other DNA-damaging anticancer drugs, the downregulation of telomerase activity was also observed in MiaPaCa cells at cytotoxic concentrations. However, leinamycin failed to induce DNA ligase I expression in MiaPaCa cells, unlike other DNA-damaging agents, which are known to inhibit DNA replication by arresting DNA replication forks. Taken together, the results from our study indicate that the DNA strand breakage caused by the oxidative DNA-damaging property of leinamycin is directly related to the cellular responses of this drug in MiaPaCa cells over the DNA alkylation property in a dose-responsive manner.
Collapse
Affiliation(s)
- Stephen Bassett
- Department of Pharmacology and Toxicology, University of Arizona, Tucson 85724, USA
| | | | | |
Collapse
|
220
|
Zhu W, Chen Y, Dutta A. Rereplication by depletion of geminin is seen regardless of p53 status and activates a G2/M checkpoint. Mol Cell Biol 2004; 24:7140-50. [PMID: 15282313 PMCID: PMC479725 DOI: 10.1128/mcb.24.16.7140-7150.2004] [Citation(s) in RCA: 186] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2004] [Revised: 04/09/2004] [Accepted: 05/28/2004] [Indexed: 11/20/2022] Open
Abstract
Genomic DNA replication is tightly controlled to ensure that DNA replication occurs once per cell cycle; loss of this control leads to genomic instability. Geminin, a DNA replication inhibitor, plays an important role in regulation of DNA replication. To investigate the role of human geminin in the maintenance of genomic stability, we eliminated geminin by RNA interference in human cancer cells. Depletion of geminin led to overreplication and the formation of giant nuclei in cells that had wild-type or mutant p53. We found that overreplication caused by depletion of geminin activated both Chk1 and Chk2, which then phosphorylated Cdc25C on Ser216, resulting in its sequestration outside the nucleus, thus inhibiting cyclin B-Cdc2 activity. This activated G(2)/M checkpoint prevented cells with overreplicated DNA from entering mitosis. Addition of caffeine, UCN-01, or inhibitors of checkpoint pathways or silencing of Chk1 suppressed the accumulation of overreplicated cells and promoted apoptosis. From these results, we conclude that geminin is required for suppressing overreplication in human cells and that a G(2)/M checkpoint restricts the proliferation of cells with overreplicated DNA.
Collapse
Affiliation(s)
- Wenge Zhu
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | | | | |
Collapse
|
221
|
Wang J, Wiltshire T, Wang Y, Mikell C, Burks J, Cunningham C, Van Laar ES, Waters SJ, Reed E, Wang W. ATM-dependent CHK2 activation induced by anticancer agent, irofulven. J Biol Chem 2004; 279:39584-92. [PMID: 15269203 DOI: 10.1074/jbc.m400015200] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Irofulven (6-hydroxymethylacylfulvene, HMAF, MGI 114) is one of a new class of anticancer agents that are semisynthetic derivatives of the mushroom toxin illudin S. Preclinical studies and clinical trials have demonstrated that irofulven is effective against several tumor types. Mechanisms of action studies indicate that irofulven induces DNA damage, MAPK activation, and apoptosis. In this study we found that in ovarian cancer cells, CHK2 kinase is activated by irofulven while CHK1 kinase is not activated even when treated at higher concentrations of the drug. By using GM00847 human fibroblast expressing tetracycline-controlled, FLAG-tagged kinase-dead ATR (ATR.kd), it was demonstrated that ATR kinase does not play a major role in irofulven-induced CHK2 activation. Results from human fibroblasts proficient or deficient in ATM function (GM00637 and GM05849) indicated that CHK2 activation by irofulven is mediated by the upstream ATM kinase. Phosphorylation of ATM on Ser(1981), which is critical for kinase activation, was observed in ovarian cancer cell lines treated with irofulven. RNA interference results confirmed that CHK2 activation was inhibited after introducing siRNA for ATM. Finally, experiments done with human colon cancer cell line HCT116 and its isogenic CHK2 knockout derivative; and experiments done by expressing kinase-dead CHK2 in an ovarian cancer cell line demonstrated that CHK2 activation contributes to irofulven-induced S phase arrest. In addition, it was shown that NBS1, SMC1, and p53 were phosphorylated in an ATM-dependent manner, and p53 phosphorylation on serine 20 is dependent on CHK2 after irofulven treatment. In summary, we found that the anticancer agent, irofulven, activates the ATM-CHK2 DNA damage-signaling pathway, and CHK2 activation contributes to S phase cell cycle arrest induced by irofulven.
Collapse
Affiliation(s)
- Jian Wang
- Mary Babb Randolph Cancer Center, West Virginia University, Morgantown, West Virginia 26506, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
222
|
Park HU, Jeong JH, Chung JH, Brady JN. Human T-cell leukemia virus type 1 Tax interacts with Chk1 and attenuates DNA-damage induced G2 arrest mediated by Chk1. Oncogene 2004; 23:4966-74. [PMID: 15107832 DOI: 10.1038/sj.onc.1207644] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Checkpoint kinase 1 (Chk1) mediates diverse cellular responses to genotoxic stress, regulating the network of genome-surveillance pathways that coordinate cell cycle progression with DNA repair. Chk1 is essential for mammalian development and viability, and has been shown to be important for both S and G(2) checkpoints. We now present evidence that the HTLV-1 Tax protein interacts directly with Chk1 and impairs its kinase activities in vitro and in vivo. The direct and physical interaction of Chk1 and Tax was observed in HTLV-1-infected T cells (C81, HuT 102 and MT-2) and transfected fibroblasts (293 T) by coimmunoprecipitation and by in vitro GST pull-down assays. Interestingly, Tax inhibited the kinase activity of Chk1 protein in in vitro and in vivo kinase assays. Consistent with these results, Tax inhibited the phosphorylation-dependent degradation of Cdc25A and G(2) arrest in response to gamma-irradiation (IR) in a dose-dependent manner in vivo. The G(2) arrest did not require Chk2 or p53. These studies provide the first example of a viral transforming protein targeting Chk1 and provide important insights into checkpoint pathway regulation.
Collapse
Affiliation(s)
- Hyeon Ung Park
- Virus Tumor Biology Section, Laboratory of Cellular Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | |
Collapse
|
223
|
Lam MH, Liu Q, Elledge SJ, Rosen JM. Chk1 is haploinsufficient for multiple functions critical to tumor suppression. Cancer Cell 2004; 6:45-59. [PMID: 15261141 DOI: 10.1016/j.ccr.2004.06.015] [Citation(s) in RCA: 257] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2003] [Revised: 04/29/2004] [Accepted: 05/21/2004] [Indexed: 11/20/2022]
Abstract
The haploinsufficient tumor suppressor Chk1 is essential for embryonic cells, but the consequences of Chk1 loss in adult tissues are unknown. Using conditional Chk1 mice, we find that proliferating mammary cells lacking Chk1 undergo apoptosis leading to developmental defects. Conditional Chk1 heterozygosity increased the number of S phase cells and caused spontaneous DNA damage. Chk1+/- epithelia also exhibit a miscoordinated cell cycle in which S phase cells display an early mitotic phenotype. These cells maintain high levels of Cdc25A, which can promote inappropriate cell cycle transitions. Thus, Chk1 heterozygosity results in three distinct haploinsufficient phenotypes that can contribute to tumorigenesis: inappropriate S phase entry, accumulation of DNA damage during replication, and failure to restrain mitotic entry.
Collapse
Affiliation(s)
- Michael H Lam
- Baylor College of Medicine, Department of Molecular and Cellular Biology, Interdepartmental Program in Cellular and Molecular Biology, Houston, Texas 77030, USA
| | | | | | | |
Collapse
|
224
|
Schollaert KL, Poisson JM, Searle JS, Schwanekamp JA, Tomlinson CR, Sanchez Y. A role for Saccharomyces cerevisiae Chk1p in the response to replication blocks. Mol Biol Cell 2004; 15:4051-63. [PMID: 15229282 PMCID: PMC515340 DOI: 10.1091/mbc.e03-11-0792] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Replication blocks and DNA damage incurred during S phase activate the S-phase and intra-S-phase checkpoint responses, respectively, regulated by the Atrp and Chk1p checkpoint kinases in metazoans. In Saccharomyces cerevisiae, these checkpoints are regulated by the Atrp homologue Mec1p and the kinase Rad53p. A conserved role of these checkpoints is to block mitotic progression until DNA replication and repair are completed. In S. cerevisiae, these checkpoints include a transcriptional response regulated by the kinase Dun1p; however, dun1Delta cells are proficient for the S-phase-checkpoint-induced anaphase block. Yeast Chk1p kinase regulates the metaphase-to-anaphase transition in the DNA-damage checkpoint pathway via securin (Pds1p) phosphorylation. However, like Dun1p, yeast Chk1p is not required for the S-phase-checkpoint-induced anaphase block. Here we report that Chk1p has a role in the intra-S-phase checkpoint activated when yeast cells replicate their DNA in the presence of low concentrations of hydroxyurea (HU). Chk1p was modified and Pds1p was transiently phosphorylated in this response. Cells lacking Dun1p were dependent on Chk1p for survival in HU, and chk1Delta dun1Delta cells were defective in the recovery from replication interference caused by transient HU exposure. These studies establish a relationship between the S-phase and DNA-damage checkpoint pathways in S. cerevisiae and suggest that at least in some genetic backgrounds, the Chk1p/securin pathway is required for the recovery from stalled or collapsed replication forks.
Collapse
Affiliation(s)
- Kaila L Schollaert
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati College of Medicine, Cincinnati, OH 45267-0524, USA
| | | | | | | | | | | |
Collapse
|
225
|
Bao S, Lu T, Wang X, Zheng H, Wang LE, Wei Q, Hittelman WN, Li L. Disruption of the Rad9/Rad1/Hus1 (9–1–1) complex leads to checkpoint signaling and replication defects. Oncogene 2004; 23:5586-93. [PMID: 15184880 DOI: 10.1038/sj.onc.1207753] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The checkpoint sliding-clamp complex, Rad9/Rad1/Hus1, plays a critical role during initiation of checkpoint signals in response to DNA damage and replication disruption. We investigated the impact of loss of Rad1 on checkpoint function and on DNA replication in mammalian cells. We show that RAD1 is an essential gene for sustained cell proliferation and that loss of Rad1 causes destabilization of Rad9 and Hus1 and consequently disintegration of the sliding-clamp complex. In Rad1-depleted cells, Atr-dependent Chk1 activation was impaired whereas Atm-mediated Chk2 activation was unaffected, suggesting that the sliding clamp is required primarily in Atr-dependent signal activation. Disruption of sliding-clamp function also caused a major defect in S-phase control. Rad1-depleted cells exhibited an RDS phenotype, indicating that damage-induced S-phase arrest was compromised by Rad1 loss. Furthermore, lack of Rad1 also affected the efficiency of replication recovery from DNA synthesis blockage, resulting in a prolonged S phase. These deficiencies may perpetually generate DNA strand breakage as we have found chromosomal abnormalities in Rad1-depleted cells. We conclude that the Rad9/Rad1/Hus1 complex is essential for Atr-dependent checkpoint signaling, which may play critical roles in the facilitation of DNA replication and in the maintenance of genomic integrity.
Collapse
Affiliation(s)
- Shilai Bao
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | | | | | | | | | | | | | | |
Collapse
|
226
|
Tu LC, Melendy T, Beerman TA. DNA damage responses triggered by a highly cytotoxic monofunctional DNA alkylator, hedamycin, a pluramycin antitumor antibiotic. Mol Cancer Ther 2004. [DOI: 10.1158/1535-7163.577.3.5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Abstract
Long-term exposure (72 h) to hedamycin, a monofunctional DNA alkylator of the pluramycin class of antitumor antibiotics, decreased growth of mammalian cells by 50% at subnanomolar concentrations. Short-term treatment (4 h) rapidly reduced DNA synthesis by 50% also at subnanomolar concentrations, but substantially higher levels were needed to block RNA synthesis while protein synthesis even at very high hedamycin concentrations remained unaffected. Hedamycin treatment at concentrations below its growth IC50 induced only a transient and temporary accumulation of cells in G2. Somewhat higher concentrations resulted in substantial S-phase arrest, and at increasing concentrations, complete cell cycle arrest in G1 was observed without the appearance of a sub-G1 cell population. Neither inhibition of cell growth nor cell cycle arrest appeared to be dependent on ataxia and Rad-related kinase expression. DNA damage checkpoint proteins including p53, chk1, and chk2 were differentially activated by hedamycin depending on the concentration and duration of treatment. The level of downstream cell cycle regulators such as cdc25A, E2F1, cyclin E, and p21 were also altered under conditions that induced cell cycle arrest, but atypically, p21 overexpression was observed only in S-phase-arrested cells. Apoptotic indicators were only observed at moderate hedamycin concentrations associated with S-phase arrest, while increasing concentrations, when cells were arrested in G1, resulted in a reduction of these signals. Taken together, the responses of cells to hedamycin are distinct with regard to its effect on cell cycle but also in the unusual concentration-dependent manner of activation of DNA damage and cell cycle checkpoint proteins as well as the induction of apoptotic-associated events.
Collapse
Affiliation(s)
- Lan Chun Tu
- 1Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Buffalo, New York and
| | - Thomas Melendy
- 2Witebsky Center for Microbial Pathogenesis and Immunology and Departments of Microbiology and Biochemistry, University at Buffalo School of Medicine and Biomedical Sciences, Buffalo, New York
| | - Terry A. Beerman
- 1Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Buffalo, New York and
| |
Collapse
|
227
|
Murakami C, Miuzno T, Hanaoka F, Yoshida H, Sakaguchi K, Mizushina Y. Mechanism of cell cycle arrest by sulfoquinovosyl monoacylglycerol with a C18-saturated fatty acid (C18-SQMG). Biochem Pharmacol 2004; 67:1373-80. [PMID: 15013853 DOI: 10.1016/j.bcp.2003.12.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2003] [Accepted: 12/05/2003] [Indexed: 11/28/2022]
Abstract
We have screened the inhibitors of mammalian DNA polymerases from natural products, and in the process found that either sulfoglycolipids or sulfoquinovosyl monoacylglycerol with a C18-saturated fatty acid (C18-SQMG), potently and selectively inhibited the activity of mammalian DNA polymerase (pol) and moderately the pol alpha. C18-SQMG was a cancer cell growth suppressor and a promissive anti-tumor agent. The purpose of this study was to elucidate the cell growth inhibition mechanism of C18-SQMG using HeLa cells. Analyses of the cell cycle and cyclin expression suggested that C18-SQMG arrested the cell cycle at intra-S phase, and the inhibition manner of DNA replication by C18-SQMG was similar to that by hydroxyurea. However, the DNA replication block by C18-SQMG did not induce degradation of Cdc25A protein, which was required for the replication block by hydroxyurea. C18-SQMG somewhat delayed mitosis because it induced phosphorylation of protein kinases, such as checkpoint kinases 1 and 2. These results suggest that C18-SQMG at first blocked DNA replication at the S phase by inhibiting replicative DNA polymerases, such as alpha, and then as the result of the inhibition, the other checkpoint signals associated with the pol might have responded.
Collapse
Affiliation(s)
- Chikako Murakami
- Laboratory of Food and Nutritional Science, Department of Nutritional Science, Kobe-Gakuin University, Nishi-ku, Kobe, Hyogo 651-2180, Japan
| | | | | | | | | | | |
Collapse
|
228
|
Ishimi Y, Komamura-Kohno Y, Karasawa-Shimizu K, Yamada K. Levels of MCM4 phosphorylation and DNA synthesis in DNA replication block checkpoint control. J Struct Biol 2004; 146:234-41. [PMID: 15037254 DOI: 10.1016/j.jsb.2003.11.027] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2003] [Revised: 11/19/2003] [Indexed: 10/26/2022]
Abstract
Blockage of a DNA replication fork movement not only stabilizes the fork structure but also prevents initiation of DNA replication. We reported that MCM4, a subunit of a putative replicative DNA helicase, is extensively phosphorylated in the presence of hydroxyurea (HU) or after exposure to UV irradiation. Here we examined the relationship between levels of MCM4 phosphorylation and DNA synthesis during DNA replication checkpoint control and after release of the control. The results suggest that there is roughly inverse correlation between these two levels; namely the higher the level of MCM4 phosphorylation, the lower the level of DNA synthesis. The presence of HU or UV irradiation can stimulate phosphorylation at several cyclin-dependent kinase (CDK) sites in MCM4, which can lead to inhibition of MCM4/6/7 helicase activity. These results are consistent with the notion that the phosphorylation of MCM4 is involved in regulation of DNA synthesis in the checkpoint control.
Collapse
Affiliation(s)
- Yukio Ishimi
- Mitsubishi Kagaku Institute of Life Sciences, 11 Minamiooya, Machida, Tokyo 194-8511, Japan.
| | | | | | | |
Collapse
|
229
|
Andrews PD, Ovechkina Y, Morrice N, Wagenbach M, Duncan K, Wordeman L, Swedlow JR. Aurora B regulates MCAK at the mitotic centromere. Dev Cell 2004; 6:253-68. [PMID: 14960279 DOI: 10.1016/s1534-5807(04)00025-5] [Citation(s) in RCA: 369] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2003] [Revised: 08/22/2003] [Accepted: 12/11/2003] [Indexed: 10/26/2022]
Abstract
Chromosome orientation and alignment within the mitotic spindle requires the Aurora B protein kinase and the mitotic centromere-associated kinesin (MCAK). Here, we report the regulation of MCAK by Aurora B. Aurora B inhibited MCAK's microtubule depolymerizing activity in vitro, and phospho-mimic (S/E) mutants of MCAK inhibited depolymerization in vivo. Expression of either MCAK (S/E) or MCAK (S/A) mutants increased the frequency of syntelic microtubule-kinetochore attachments and mono-oriented chromosomes. MCAK phosphorylation also regulates MCAK localization: the MCAK (S/E) mutant frequently localized to the inner centromere while the (S/A) mutant concentrated at kinetochores. We also detected two different binding sites for MCAK using FRAP analysis of the different MCAK mutants. Moreover, disruption of Aurora B function by expression of a kinase-dead mutant or RNAi prevented centromeric targeting of MCAK. These results link Aurora B activity to MCAK function, with Aurora B regulating MCAK's activity and its localization at the centromere and kinetochore.
Collapse
Affiliation(s)
- Paul D Andrews
- Division of Gene Regulation and Expression, Wellcome Trust Biocentre, University of Dundee, Dow Street, Dundee DD1 5EH, United Kingdom.
| | | | | | | | | | | | | |
Collapse
|
230
|
Affiliation(s)
- Bin-Bing S Zhou
- Drug Discovery Biology, Incyte Corporation, Experimental Station, Rt. 141 & Henry Clay Road, Bldg 400, Wilmington, DE 19880, USA.
| | | |
Collapse
|
231
|
Loegering D, Arlander SJH, Hackbarth J, Vroman BT, Roos-Mattjus P, Hopkins KM, Lieberman HB, Karnitz LM, Kaufmann SH. Rad9 protects cells from topoisomerase poison-induced cell death. J Biol Chem 2004; 279:18641-7. [PMID: 14988409 DOI: 10.1074/jbc.m313536200] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Previous studies have suggested two possible roles for Rad9 in mammalian cells subjected to replication stress or DNA damage. One model suggests that a Rad9-containing clamp is loaded onto damaged DNA, where it participates in Chk1 activation and subsequent events that contribute to cell survival. The other model suggests that Rad9 translocates to mitochondria, where it triggers apoptosis by binding to and inhibiting Bcl-2 and Bcl-x(L). To further study the role of Rad9, parental and Rad9(-/-) murine embryonic stem (ES) cells were treated with camptothecin, etoposide, or cytarabine, all prototypic examples of three classes of widely used anticancer agents. All three agents induced Rad9 chromatin binding. Each of these agents also triggered S-phase checkpoint activation in parental ES cells, as indicated by a caffeine-inhibitable decrease in [3H]thymidine incorporation into DNA and Cdc25A down-regulation. Interestingly, the ability of cytarabine to activate the S-phase checkpoint was severely compromised in Rad9(-/-) cells, whereas activation of this checkpoint by camptothecin and etoposide was unaltered, suggesting that the action of cytarabine is readily distinguished from that of classical topoisomerase poisons. Nonetheless, Rad9 deletion sensitized ES cells to the cytotoxic effects of all three agents, as evidenced by enhanced apoptosis and diminished colony formation. Collectively, these results suggest that the predominant role of Rad9 in ES cells is to promote survival after replicative stress and topoisomerase-mediated DNA damage.
Collapse
Affiliation(s)
- David Loegering
- Division of Oncology Research, Mayo Clinic, Rochester, Minnesota 55905, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
232
|
Pichierri P, Franchitto A. Werner syndrome protein, the MRE11 complex and ATR: menage-à-trois in guarding genome stability during DNA replication? Bioessays 2004; 26:306-13. [PMID: 14988932 DOI: 10.1002/bies.10411] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The correct execution of the DNA replication process is crucially import for the maintenance of genome integrity of the cell. Several types of sources, both endogenous and exogenous, can give rise to DNA damage leading to the DNA replication fork arrest. The processes by which replication blockage is sensed by checkpoint sensors and how the pathway leading to resolution of stalled forks is activated are still not completely understood. However, recent emerging evidence suggests that one candidate for a sensor of replication stress is ATR and that, together with a member of RecQ family helicases, Werner syndrome protein (WRN) and MRE11 complex, can collaborate to promote the restarting of DNA synthesis through the resolution of stalled replication forks. Here, we discuss how WRN, the MRE11 complex and the ATR kinase could work together in response to replication blockage to avoid DNA replication fork collapse and genome instability.
Collapse
|
233
|
Yoshida K, Oyaizu N, Dutta A, Inoue I. The destruction box of human Geminin is critical for proliferation and tumor growth in human colon cancer cells. Oncogene 2004; 23:58-70. [PMID: 14712211 DOI: 10.1038/sj.onc.1206987] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
A domain-specific disruption was performed on the destruction box sequence of endogenous Geminin gene, an inhibitor of the DNA replication initiation complex, in a human cancer cell line HCT116 resulting in the formation of a protein that was stable in the G1 phase of the cell cycle. Although the total amount of Geminin in asynchronous cultures was not elevated, the G1-specific stabilization of Geminin, diminished chromatin loading of minichromosome maintenance complex, inhibited DNA replication, and resulted in the accumulation of cells in G1. The mutated Geminin suppressed in vivo tumorigenicity and in vitro cell growth. Cells carrying this mutation failed to support the replication of a plasmid bearing the oriP replicator of Epstein-Barr virus. The DNA damage checkpoint pathway was activated in the mutated cells with increased levels of p53 protein and its target, the p21 protein. All these deficits were rescued by overexpression of Cdt1, a replication initiator protein that binds to Geminin. Therefore, alteration of the cell cycle-dependent regulation of endogenous Geminin in human cells without increasing total protein level inhibits DNA replication and suppresses tumor growth.
Collapse
Affiliation(s)
- Kenichi Yoshida
- Division of Genetic Diagnosis, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, Japan.
| | | | | | | |
Collapse
|
234
|
Mochida S, Esashi F, Aono N, Tamai K, O'Connell MJ, Yanagida M. Regulation of checkpoint kinases through dynamic interaction with Crb2. EMBO J 2004; 23:418-28. [PMID: 14739927 PMCID: PMC1271744 DOI: 10.1038/sj.emboj.7600018] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2003] [Accepted: 10/29/2003] [Indexed: 01/30/2023] Open
Abstract
ATR/Rad3-like kinases promote the DNA damage checkpoint through regulating Chk1 that restrains the activation of cyclin-dependent kinases. In fission yeast, Crb2, a BRCT-domain protein that is similar to vertebrate 53BP1, plays a crucial role in establishing this checkpoint. We report here that Crb2 regulates DNA damage checkpoint through temporal and dynamic interactions with Rad3, Chk1 and replication factor Cut5. The active complex formation between Chk1 and Crb2 is regulated by Rad3 and became maximal during the checkpoint arrest. Chk1 activation seems to need two steps of interaction changes: the loss of Rad3-Chk1 and Rad3-Crb2 interactions, and the association between hyperphosphorylated forms of Chk1 and Crb2. Chk1 is the major checkpoint kinase for the arrest of DNA polymerase mutants. The in vitro assay of Chk1 showed that its activation requires the presence of Crb2 BRCT. Hyperphosphorylation of Crb2 is also dependent on its intact BRCT. Finally, we show direct interaction between Rad3 and Crb2, which is inhibitory to Rad3 activity. Hence, Crb2 is the first to interact with both Rad3 and Chk1 kinases.
Collapse
Affiliation(s)
- Satoru Mochida
- Graduate School of Biostudies, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto, Japan
| | - Fumiko Esashi
- Graduate School of Biostudies, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto, Japan
| | - Nobuki Aono
- Graduate School of Biostudies, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto, Japan
| | - Katsuyuki Tamai
- CycLex Co., Ltd, MBL Ina Laboratory, Oohara, Terasawaoka, Ina, Nagano, Japan
| | - Matthew J O'Connell
- Mount Sinai School of Medicine, Derald H Ruttenberg Cancer Center, New York, NY, USA
- Peter MacCallum Cancer Institute, St Andrew's Place, East Melbourne, Australia
| | - Mitsuhiro Yanagida
- Graduate School of Biostudies, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto, Japan
- Department of Gene Mechanisms, Graduate School of Biostudies, Kyoto University, Kitashirakawa-Oiwakecho, J-Sakyo-ku, Kyoto 606-8502, Japan. Tel.: +81 75 753 4205/06; Fax: +81 75 753 4208; E-mail:
| |
Collapse
|
235
|
Florensa R, Bachs O, Agell N. ATM/ATR-independent inhibition of cyclin B accumulation in response to hydroxyurea in nontransformed cell lines is altered in tumour cell lines. Oncogene 2004; 22:8283-92. [PMID: 14614452 DOI: 10.1038/sj.onc.1207159] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The DNA replication checkpoint is an inhibitory pathway ensuring that mitosis occurs only after completion of DNA synthesis. Its function may be relevant to the stability of the genome. The essential elements of this checkpoint are ATM/ATR kinases that indirectly lead to the phosphorylation and inhibition of the mitosis-promoting factor (Cdc2/cyclin B1). The function of this checkpoint was analysed in diverse nontransformed and tumour-derived cell lines. All cell lines tested arrested mitosis entry when DNA synthesis was inhibited by hydroxyurea (HU) treatment. But, unlike what has been described in yeast and Xenopus, in normal rat kidney (NRK) cells and NIH 3T3 fibroblasts, the arrest induced by HU treatment was not abrogated by caffeine, an ATM and ATR inhibitor. This indicated the presence of an ATM/ATR-independent response to DNA synthesis inhibition in these nontransformed mammalian cell lines. Interestingly, the behaviour of different tumour cell lines after caffeine treatment varied. While SW480, NP29, NP18 and HeLa cells did not enter mitosis in the presence of caffeine after HU treatment, in CaCo2, DLD1, HCT116 and HT29 caffeine abrogated the checkpoint response. In nontransformed cell lines, lack of cyclin B1 accumulation was observed when DNA synthesis was inhibited. This response was not abrogated by caffeine. In the tumour cell lines, a good correlation between the ability to arrest cell cycle when DNA synthesis was inhibited in the presence of caffeine and the lack of cyclin B1 accumulation was observed. Thus, there is an ATM/ATR-independent checkpoint response that leads to a decrease in cyclin B1 accumulation. However, this response is not functional in some tumour cell lines. Using inhibitors of p38alpha and beta, Mek1, 2 and p53-/- knocked-out fibroblasts, we showed that these proteins were also not involved in this particular checkpoint response. Lack of cyclin B1 accumulation after DNA synthesis inhibition in NRK cells was not due to increased degradation of the protein, but correlated with a decrease in mRNA accumulation.
Collapse
Affiliation(s)
- Roger Florensa
- Departament de Biologia Cel.lular i Anatomia Patològica, Institut d'Investigacions Biomèdiques August Pi i Sunyer, Facultat de Medicina, Universitat de Barcelona, 08036 Barcelona, Spain
| | | | | |
Collapse
|
236
|
Gonzalez S, Prives C, Cordon-Cardo C. p73alpha regulation by Chk1 in response to DNA damage. Mol Cell Biol 2003; 23:8161-71. [PMID: 14585975 PMCID: PMC262369 DOI: 10.1128/mcb.23.22.8161-8171.2003] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The checkpoint kinase 1 (Chk1) is an essential component of the DNA damage checkpoint. Previous studies have demonstrated an indispensable role for the p53-related transcription factor p73alpha in DNA damage-induced apoptosis. Here, we provide evidence that p73alpha is a target of Chk1. We found that endogenous p73alpha is serine phosphorylated by endogenous Chk1 upon DNA damage, which is a mechanism required for the apoptotic-inducing function of p73alpha. Consistent with this, we discovered that endogenous p73alpha interacts with Chk1 and is phosphorylated by Chk1 at serine 47 in vitro and in vivo. In contrast, Chk2 does not phosphorylate p73alpha in vitro. Moreover, mutation of serine 47 abolishes both Chk1-dependent phosphorylation of p73alpha upon DNA damage in vivo and the ability of Chk1 to upregulate the transactivation capacity of p73alpha. Our data indicate a novel biochemical pathway through which the p73alpha proapoptotic function requires DNA damage-triggered p73alpha phosphorylation by Chk1.
Collapse
Affiliation(s)
- Susana Gonzalez
- Division of Molecular Pathology, Memorial Sloan-Kettering Cancer Center, New York, NY 10021, USA
| | | | | |
Collapse
|
237
|
Gardner LB, Li F, Yang X, Dang CV. Anoxic fibroblasts activate a replication checkpoint that is bypassed by E1a. Mol Cell Biol 2003; 23:9032-45. [PMID: 14645516 PMCID: PMC309642 DOI: 10.1128/mcb.23.24.9032-9045.2003] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2003] [Revised: 06/25/2003] [Accepted: 09/02/2003] [Indexed: 11/20/2022] Open
Abstract
Little is known about cell cycle regulation in hypoxic cells, despite its significance. We utilized an experimentally tractable model to study the proliferative responses of rat fibroblasts when rendered hypoxic (0.5% oxygen) or anoxic (<0.01% oxygen). Hypoxic cells underwent G1 arrest, whereas anoxic cells also demonstrated S-phase arrest due to suppression of DNA initiation. Upon reoxygenation, only those cells arrested in G1 were able to resume proliferation. The oncoprotein E1a induced p53-independent apoptosis in anoxic cells, which when suppressed by Bcl-2 permitted proliferation despite anoxia. E1a expression led to marked increases in the transcription factor E2F, and overexpression of E2F-1 allowed proliferation in hypoxic cells, although it had minimal effect on the anoxic suppression of DNA initiation. We thus demonstrate two distinct cell cycle responses to low oxygen and suggest that alterations that lead to increased E2F can overcome hypoxic G1 arrest but that additional alterations, promoted by E1a expression, are necessary for neoplastic cells to proliferate despite anoxia.
Collapse
Affiliation(s)
- Lawrence B Gardner
- Division of Hematology, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| | | | | | | |
Collapse
|
238
|
Joerges C, Kuntze I, Herzinger T, Herzinge T. Induction of a caffeine-sensitive S-phase cell cycle checkpoint by psoralen plus ultraviolet A radiation. Oncogene 2003; 22:6119-28. [PMID: 13679850 DOI: 10.1038/sj.onc.1206613] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Induction of interstrand crosslinks (ICLs) in chromosomal DNA is considered a major reason for the antiproliferative effect of psoralen plus ultraviolet A (PUVA). It is unclear as to whether PUVA-induced cell cycle arrest is caused by ICLs mechanically stalling replication forks or by triggering cell cycle checkpoints. Cell cycle checkpoints serve to maintain genomic stability by halting cell cycle progression to prevent replication of damaged DNA templates or segregation of broken chromosomes. Here, we show that HaCaT keratinocytes treated with PUVA arrest with S-phase DNA content. Cells that had completed DNA replication were not perturbed by PUVA and passed through mitosis. Cells treated with PUVA during G1-phase continued traversing G1 until arresting in early S-phase. PUVA induced rapid phosphorylation of the Chk1 checkpoint kinase at Ser345 and a concomitant decrease in Cdc25A levels. Chk1 phosphorylation, decrease of Cdc25 A levels and S-phase arrest were abolished by caffeine, demonstrating that active checkpoint signaling rather than passive mechanical blockage by ICLs causes the PUVA-induced replication arrest. Overexpression of Cdc25A only partially overrode the S-phase arrest, suggesting that additional signaling events implement PUVA-induced S-phase arrest.
Collapse
Affiliation(s)
- Christoph Joerges
- Klinik und Poliklinik für Dermatologie und Allergologie, Ludwig-Maximilians-University, Frauenlobstr. 9-11, D-80337 Munich, Germany
| | | | | | | |
Collapse
|
239
|
Arlander SJH, Eapen AK, Vroman BT, McDonald RJ, Toft DO, Karnitz LM. Hsp90 inhibition depletes Chk1 and sensitizes tumor cells to replication stress. J Biol Chem 2003; 278:52572-7. [PMID: 14570880 DOI: 10.1074/jbc.m309054200] [Citation(s) in RCA: 145] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
DNA damage and replication stress activate the Chk1 signaling pathway, which blocks S phase progression, stabilizes stalled replication forks, and participates in G2 arrest. In this study, we show that Chk1 interacts with Hsp90, a molecular chaperone that participates in the folding, assembly, maturation, and stabilization of specific proteins known as clients. Consistent with Chk1 being an Hsp90 client, we also found that Chk1 but not Chk2 is destabilized in cells treated with the Hsp90 inhibitor 17-allylamino-17-demethoxygeldanamycin (17-AAG). 17-AAG-mediated Chk1 loss blocked the ability of Chk1 to target Cdc25A for proteolytic destruction, demonstrating that the Chk1 signaling pathway was disrupted in the 17-AAG-treated cells. Finally, 17-AAG-mediated disruption of Chk1 activation dramatically sensitized various tumor cells to gemcitabine, an S phase-active chemotherapeutic agent. Collectively, our studies identify Chk1 as a novel Hsp90 client and suggest that pharmacologic inhibition of Hsp90 may sensitize tumor cells to chemotherapeutic agents by disrupting Chk1 function during replication stress.
Collapse
Affiliation(s)
- Sonnet J H Arlander
- Department of Molecular Pharmacology, Mayo Graduate School, Mayo Clinic and Foundation, Rochester, Minnesota 55905, USA
| | | | | | | | | | | |
Collapse
|
240
|
Cortez D. Caffeine inhibits checkpoint responses without inhibiting the ataxia-telangiectasia-mutated (ATM) and ATM- and Rad3-related (ATR) protein kinases. J Biol Chem 2003; 278:37139-45. [PMID: 12847089 DOI: 10.1074/jbc.m307088200] [Citation(s) in RCA: 113] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The ataxia-telangiectasia-mutated (ATM) and ATM- and Rad3-related (ATR) kinases regulate cell cycle checkpoints by phosphorylating multiple substrates including the CHK1 and -2 protein kinases and p53. Caffeine has been widely used to study ATM and ATR signaling because it inhibits these kinases in vitro and overcomes cell cycle checkpoint responses in vivo. Thus, caffeine has been thought to overcome the checkpoint through its ability to prevent phosphorylation of ATM and ATR substrates. Surprisingly, I have found that multiple ATM-ATR substrates including CHK1 and -2 are hyperphosphorylated in cells treated with caffeine and genotoxic agents such as hydroxyurea or ionizing radiation. ATM autophosphorylation in cells is also increased when caffeine is used in combination with inhibitors of replication suggesting that ATM activity is not inhibited in vivo by caffeine. Furthermore, CHK1 hyperphosphorylation induced by caffeine in combination with hydroxyurea is ATR-dependent suggesting that ATR activity is stimulated by caffeine. Finally, the G2/M checkpoint in response to ionizing radiation or hydroxyurea is abrogated by caffeine treatment without a corresponding decrease in ATM-ATR-dependent signaling. This data suggests that although caffeine is an inhibitor of ATM-ATR kinase activity in vitro, it can block checkpoints without inhibiting ATM-ATR activation in vivo.
Collapse
Affiliation(s)
- David Cortez
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee 37232, USA.
| |
Collapse
|
241
|
Krause DR, Jonnalagadda JC, Gatei MH, Sillje HHW, Zhou BB, Nigg EA, Khanna K. Suppression of Tousled-like kinase activity after DNA damage or replication block requires ATM, NBS1 and Chk1. Oncogene 2003; 22:5927-37. [PMID: 12955071 DOI: 10.1038/sj.onc.1206691] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The human Tousled-like kinases 1 and 2 (TLK) have been shown to be active during S phase of the cell cycle. TLK activity is rapidly suppressed by DNA damage and by inhibitors of replication. Here we report that the signal transduction pathway, which leads to transient suppression of TLK activity after the induction of double-strand breaks (DSBs) in the DNA, is dependent on the presence of a functional ataxia-telangiectasia-mutated kinase (ATM). Interestingly, we have discovered that rapid suppression of TLK activity after low doses of ultraviolet (UV) irradiation or aphidicolin-induced replication block is also ATM-dependent. The nature of the signal that triggers ATM-dependent downregulation of TLK activity after UVC and replication block remains unknown, but it is not due exclusively to DSBs in the DNA. We also demonstrate that TLK suppression is dependent on the presence of a functional Nijmegan Breakage Syndrome protein (NBS1). ATM-dependent phosphorylation of NBS1 is required for the suppression of TLK activity, indicating a role for NBS1 as an adaptor or scaffold in the ATM/TLK pathway. ATM does not phosphorylate TLK directly to regulate its activity, but Chk1 does phosphorylate TLK1 GST-fusion proteins in vitro. Using Chk1 siRNAs, we show that Chk1 is essential for the suppression of TLK activity after replication block, but that ATR, Chk2 and BRCA1 are dispensable for TLK suppression. Overall, we propose that ATM activation is not linked solely to DSBs and that ATM participates in initiating signaling pathways in response to replication block and UV-induced DNA damage.
Collapse
Affiliation(s)
- Darren R Krause
- Signal Transduction Lab, Cancer and Cell Biology Division, Queensland Institute of Medical Research, 300 Herston Rd, Qld 4029, Australia.
| | | | | | | | | | | | | |
Collapse
|
242
|
Abstract
Claspin is a newly identified protein that regulates Chk1 activation in Xenopus. In the present study we investigated the role of human Claspin in the DNA damage/replication checkpoint in mammalian cells. We observed that human Claspin is a cell cycle regulated protein that peaks at S/G2 phase. Claspin localizes in the nuclei, but it only associates with Chk1 following replication stress or other types of DNA damage. In addition, Claspin is phosphorylated in response to replication stress, and this phosphorylation appears to be required for its association with Chk1. Moreover, Claspin interacts with the checkpoint proteins ATR and Rad9. Given that both the ATR and Rad9-Rad1-Hus1 complexes are involved in Chk1 activation, it is possible that Claspin works as an adaptor molecule bringing these molecules together. Using small interfering RNA technology, we have shown that down-regulation of Claspin expression inhibits Chk1 activation in response to replication stress. More importantly, down-regulation of Claspin augments the premature chromatin condensation induced by hydroxyurea, inhibits the UV-induced reduction of DNA synthesis, and decreases cell survival. Taken together, these data imply a potentially critical role for Claspin in replication checkpoint control in mammalian cells.
Collapse
|
243
|
Hutchins JRA, Dikovskaya D, Clarke PR. Regulation of Cdc2/cyclin B activation in Xenopus egg extracts via inhibitory phosphorylation of Cdc25C phosphatase by Ca(2+)/calmodulin-dependent protein [corrected] kinase II. Mol Biol Cell 2003; 14:4003-14. [PMID: 14517314 PMCID: PMC206995 DOI: 10.1091/mbc.e03-02-0061] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Activation of Cdc2/cyclin B kinase and entry into mitosis requires dephosphorylation of inhibitory sites on Cdc2 by Cdc25 phosphatase. In vertebrates, Cdc25C is inhibited by phosphorylation at a single site targeted by the checkpoint kinases Chk1 and Cds1/Chk2 in response to DNA damage or replication arrest. In Xenopus early embryos, the inhibitory site on Cdc25C (S287) is also phosphorylated by a distinct protein kinase that may determine the intrinsic timing of the cell cycle. We show that S287-kinase activity is repressed in extracts of unfertilized Xenopus eggs arrested in M phase but is rapidly stimulated upon release into interphase by addition of Ca2+, which mimics fertilization. S287-kinase activity is not dependent on cyclin B degradation or inactivation of Cdc2/cyclin B kinase, indicating a direct mechanism of activation by Ca2+. Indeed, inhibitor studies identify the predominant S287-kinase as Ca2+/calmodulin-dependent protein kinase II (CaMKII). CaMKII phosphorylates Cdc25C efficiently on S287 in vitro and, like Chk1, is inhibited by 7-hydroxystaurosporine (UCN-01) and debromohymenialdisine, compounds that abrogate G2 arrest in somatic cells. CaMKII delays Cdc2/cyclin B activation via phosphorylation of Cdc25C at S287 in egg extracts, indicating that this pathway regulates the timing of mitosis during the early embryonic cell cycle.
Collapse
Affiliation(s)
- James R A Hutchins
- Biomedical Research Centre, Ninewells Hospital and Medical School, University of Dundee, Dundee DD1 9SY, Scotland, United Kingdom
| | | | | |
Collapse
|
244
|
Ishimi Y, Komamura-Kohno Y, Kwon HJ, Yamada K, Nakanishi M. Identification of MCM4 as a target of the DNA replication block checkpoint system. J Biol Chem 2003; 278:24644-50. [PMID: 12714602 DOI: 10.1074/jbc.m213252200] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Inhibition of the progression of DNA replication prevents further initiation of DNA replication and allows cells to maintain arrested replication forks, but the proteins that are targets of the replication checkpoint system remain to be identified. We report here that human MCM4, a subunit of the putative DNA replicative helicase, is extensively phosphorylated in HeLa cells when they are incubated in the presence of inhibitors of DNA synthesis or are exposed to UV irradiation. The data presented here indicate that the consecutive actions of ATR-CHK1 and CDK2 kinases are involved in this phosphorylation in the presence of hydroxyurea. The phosphorylation sites in MCM4 were identified using specific anti-phosphoantibodies. Based on results that showed that the DNA helicase activity of the MCM4-6-7 complex is negatively regulated by CDK2 phosphorylation, we suggest that the phosphorylation of MCM4 in the checkpoint control inhibits DNA replication, which includes blockage of DNA fork progression, through inactivation of the MCM complex.
Collapse
Affiliation(s)
- Yukio Ishimi
- Biomolecular and Technology Department, Mitsubishi Kagaku Institute of Life Sciences, 11 Minamiooya, Machida, Tokyo 194-8511, Japan.
| | | | | | | | | |
Collapse
|
245
|
Iguchi T, Miyakawa Y, Yamamoto K, Kizaki M, Ikeda Y. Nitrogen-containing bisphosphonates induce S-phase cell cycle arrest and apoptosis of myeloma cells by activating MAPK pathway and inhibiting mevalonate pathway. Cell Signal 2003; 15:719-27. [PMID: 12742232 DOI: 10.1016/s0898-6568(03)00007-x] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Bisphosphonates have been used for the treatment of hypercalcemia associated with malignancies and osteoporosis. It was previously reported that the mevalonate pathway is involved in nitrogen-containing bisphosphonate-induced apoptosis in osteoclasts and myeloma cells. The aim of this study was to determine the effects of two bisphosphonates, incadronate, and newly developed bisphosphonate YM529 on human myeloma cells, U266, RPMI-8226, and HS-Sultan. Both incadronate and YM529 induced S-phase cell cycle arrest and apoptosis in these myeloma cells. Treatment of the myeloma cells with cell-permeable substrates for mevalonate pathways, geranylgeraniol, and farnesol prevented bisphosphonate-mediated growth suppression. Checkpoint kinases, Chk1/2, and MAPK became phosphorylated after stimulation with bisphosphonates in the myeloma cells. Bisphosphonate-induced apoptosis was partially prevented by the pretreatment with MAPK inhibitor. These results demonstrate that incadronate and YM529 suppress the proliferation of myeloma cells through mevalonate pathway and MAPK pathway.
Collapse
Affiliation(s)
- Toyotaka Iguchi
- Department of Internal Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | | | | | | | | |
Collapse
|
246
|
Abstract
Accumulation of mutations and chromosomal aberrations is one of the hallmarks of cancer cells. This enhanced genetic instability is fueled by defects in the genome maintenance mechanisms including DNA repair and cell cycle checkpoint pathways. Here, we discuss the emerging roles of the mammalian Chk1 and Chk2 kinases as key signal transducers within the complex network of genome integrity checkpoints, as candidate tumor suppressors disrupted in sporadic as well as some hereditary malignancies and as potential targets of new anticancer therapies.
Collapse
Affiliation(s)
- Jiri Bartek
- Department of Cell Cycle and Cancer, Institute of Cancer Biology, Danish Cancer Society, Copenhagen, Denmark.
| | | |
Collapse
|
247
|
Nishijima H, Nishitani H, Saito N, Nishimoto T. Caffeine mimics adenine and 2'-deoxyadenosine, both of which inhibit the guanine-nucleotide exchange activity of RCC1 and the kinase activity of ATR. Genes Cells 2003; 8:423-35. [PMID: 12694532 DOI: 10.1046/j.1365-2443.2003.00644.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND Both caffeine and the inactivation of RCC1, the guanine-nucleotide exchange factor (GEF) of Ran, induce premature chromatin condensation (PCC) in hamster BHK21 cells arrested in the S-phase, suggesting that RCC1 is a target for caffeine. RESULTS Caffeine inhibited the Ran-GEF activity of RCC1 by preventing the binary complex formation of Ran-RCC1. Inhibition of the Ran-GEF activity of RCC1 by caffeine and its derivatives was correlated with their ability to induce PCC. Since caffeine is a derivative of xanthine, the bases and nucleosides were screened for their ability to inhibit RCC1. Adenine, adenosine, and all of the 2'-deoxynucleosides inhibited the Ran-GEF activity of RCC1; however, only adenine and 2'-deoxyadenosine (2'-dA) induced PCC. A factor(s) other than RCC1, should therefore be involved in PCC-induction. We found that both adenine and 2'-dA, but none of the other 2'-deoxynucleosides, inhibited the kinase activity of ATR, similar to that of caffeine. The ATR pathway was also abrogated by the inactivation of RCC1 in tsBN2 cells. CONCLUSION The effect of caffeine on cell-cycle control mimics the biological effect of adenine and 2'-dA, both of which inhibit ATR. dATP, a final metabolite of adenine and 2'-dA, is suggested to inhibit ATR, resulting in PCC.
Collapse
Affiliation(s)
- Hitoshi Nishijima
- Department of Molecular Biology, Graduate School of Medical Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | | | | | | |
Collapse
|
248
|
Miao H, Seiler JA, Burhans WC. Regulation of cellular and SV40 virus origins of replication by Chk1-dependent intrinsic and UVC radiation-induced checkpoints. J Biol Chem 2003; 278:4295-304. [PMID: 12424256 DOI: 10.1074/jbc.m204264200] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
DNA replication is inhibited by DNA damage through cis effects on replication fork progression and trans effects associated with checkpoints. In this study, we employed a combined pulse labeling and neutral-neutral two-dimensional gel-based approach to compare the effects of a DNA damaging agent frequently employed to invoke checkpoints, UVC radiation, on the replication of cellular and simian virus 40 (SV40) chromosomes in intact cells. UVC radiation induced similar inhibitory effects on the initiation and elongation phases of cellular and SV40 DNA replication. The initiation-inhibitory effects occurred independently of p53 and were abrogated by the ATM and ATR kinase inhibitor caffeine, or the Chk1 kinase inhibitor UCN-01. Inhibition of cellular origins was also abrogated by the expression of a dominant-negative Chk1 mutant. These results indicate that UVC induces a Chk1- and ATR or ATM-dependent checkpoint that targets both cellular and SV40 viral replication origins. Loss of Chk1 and ATR or ATM function also stimulated initiation of cellular and viral DNA replication in the absence of UVC radiation, revealing the existence of a novel intrinsic checkpoint that targets both cellular and SV40 viral origins of replication in the absence of DNA damage or stalled DNA replication forks. This checkpoint inhibits the replication in early S phase cells of a region of the repetitive rDNA locus that replicates in late S phase. The ability to detect these checkpoints using the well characterized SV40 model system should facilitate analysis of the molecular basis for these effects.
Collapse
Affiliation(s)
- Huiyi Miao
- Department of Cancer Genetics, Roswell Park Cancer Institute, Buffalo, New York 14263, USA
| | | | | |
Collapse
|
249
|
Zachos G, Rainey MD, Gillespie DA. Chk1-deficient tumour cells are viable but exhibit multiple checkpoint and survival defects. EMBO J 2003; 22:713-23. [PMID: 12554671 PMCID: PMC140744 DOI: 10.1093/emboj/cdg060] [Citation(s) in RCA: 190] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The conserved protein kinase Chk1 is believed to play an important role in checkpoint responses to aberrant DNA structures; however, genetic analysis of Chk1 functions in metazoans is complicated by lethality of Chk1-deficient embryonic cells. We have used gene targeting to eliminate Chk1 function in somatic DT40 B-lymphoma cells. We find that Chk1-deficient DT40 cells are viable, but fail to arrest in G(2)/M in response to and are hypersensitive to killing by ionizing radiation. Chk1-deficient cells also fail to maintain viable replication forks or suppress futile origin firing when DNA polymerase is inhibited, leading to incomplete genome duplication and diminished cell survival after release from replication arrest. In contrast to embryonic cells, however, Chk1 is not required to delay mitosis when DNA synthesis is inhibited. Thus, Chk1 is dispensable for normal cell division in somatic DT40 cells but is essential for DNA damage-induced G(2)/M arrest and a subset of replication checkpoint responses. Furthermore, Chk1-dependent processes promote tumour cell survival after perturbations of DNA structure or metabolism.
Collapse
Affiliation(s)
| | | | - David A.F. Gillespie
- Beatson Institute for Cancer Research, Cancer Research UK Beatson Laboratories, Garscube Estate, Switchback Road, Glasgow G61 1BD and
Institute of Biomedical and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK Corresponding author e-mail:
| |
Collapse
|
250
|
Clay-Farrace L, Pelizon C, Santamaria D, Pines J, Laskey RA. Human replication protein Cdc6 prevents mitosis through a checkpoint mechanism that implicates Chk1. EMBO J 2003; 22:704-12. [PMID: 12554670 PMCID: PMC140731 DOI: 10.1093/emboj/cdg046] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In yeasts, the replication protein Cdc6/Cdc18 is required for the initiation of DNA replication and also for coupling S phase with the following mitosis. In metazoans a role for Cdc6 has only been shown in S phase entry. Here we provide evidence that human Cdc6 (HuCdc6) also regulates the onset of mitosis, as overexpression of HuCdc6 in G(2) phase cells prevents entry into mitosis. This block is abolished when HuCdc6 is expressed together with a constitutively active Cyclin B/CDK1 complex or with Cdc25B or Cdc25C. An inhibitor of Chk1 kinase activity, UCN-01, overcomes the HuCdc6 mediated G(2) arrest indicating that HuCdc6 blocks cells in G(2) phase via a checkpoint pathway involving Chk1. When HuCdc6 is overexpressed in G(2), we detected phosphorylation of Chk1. Thus, HuCdc6 can trigger a checkpoint response, which could ensure that all DNA is replicated before mitotic entry. We also present evidence that the ability of HuCdc6 to block mitosis may be regulated by its phosphorylation.
Collapse
Affiliation(s)
- Lorena Clay-Farrace
- MRC Cancer Cell Unit, Hutchison/MRC Research Centre, Hills Road, Cambridge CB2 2XZ, Wellcome/Cancer Research UK Institute, Tennis Court Road, Cambridge CB2 1QR, Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK Corresponding author e-mail:
| | - Cristina Pelizon
- MRC Cancer Cell Unit, Hutchison/MRC Research Centre, Hills Road, Cambridge CB2 2XZ, Wellcome/Cancer Research UK Institute, Tennis Court Road, Cambridge CB2 1QR, Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK Corresponding author e-mail:
| | - David Santamaria
- MRC Cancer Cell Unit, Hutchison/MRC Research Centre, Hills Road, Cambridge CB2 2XZ, Wellcome/Cancer Research UK Institute, Tennis Court Road, Cambridge CB2 1QR, Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK Corresponding author e-mail:
| | - Jonathon Pines
- MRC Cancer Cell Unit, Hutchison/MRC Research Centre, Hills Road, Cambridge CB2 2XZ, Wellcome/Cancer Research UK Institute, Tennis Court Road, Cambridge CB2 1QR, Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK Corresponding author e-mail:
| | - Ronald A. Laskey
- MRC Cancer Cell Unit, Hutchison/MRC Research Centre, Hills Road, Cambridge CB2 2XZ, Wellcome/Cancer Research UK Institute, Tennis Court Road, Cambridge CB2 1QR, Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK Corresponding author e-mail:
| |
Collapse
|