201
|
Furness DN, Katori Y, Mahendrasingam S, Hackney CM. Differential distribution of beta- and gamma-actin in guinea-pig cochlear sensory and supporting cells. Hear Res 2006; 207:22-34. [PMID: 16024192 DOI: 10.1016/j.heares.2005.05.006] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2005] [Accepted: 05/12/2005] [Indexed: 11/15/2022]
Abstract
Sensory and supporting cells of the mammalian organ of Corti have cytoskeletons containing beta- and gamma-actin isoforms which have been described as having differing intracellular distributions in chick cochlear hair cells. Here, we have used post-embedding immunogold labelling for beta- and gamma-actin to investigate semiquantitatively how they are distributed in the guinea-pig cochlea and to compare different frequency locations. Amounts of beta-actin decrease and gamma-actin increase in the order, outer pillar cells, inner pillar cells, Deiters' cells and hair cells. There is also more beta-actin and less gamma-actin in outer pillar cells in higher than lower frequency regions. In hair cells, beta-actin is present in the cuticular plate but is more concentrated in the stereocilia, especially in the rootlets and towards the periphery of their shafts; labelling densities for gamma-actin differ less between these locations and it is the predominant isoform of the hair-cell lateral wall. Alignments of immunogold particles suggest beta-actin and gamma-actin form homomeric filaments. These data confirm differential distribution of these actin isoforms in the mammalian cochlea and reveal systematic differences between sensory and supporting cells. Increased expression of beta-actin in outer pillar cells towards the cochlear base may contribute to the greater stiffness of this region.
Collapse
Affiliation(s)
- D N Furness
- MacKay Institute of Communication and Neuroscience, School of Life Sciences, Keele University, Staffordshire ST5 5BG, United Kingdom.
| | | | | | | |
Collapse
|
202
|
Mhatre AN, Li Y, Atkin G, Maghnouj A, Lalwani AK. Expression of Myh9 in the mammalian cochlea: Localization within the stereocilia. J Neurosci Res 2006; 84:809-18. [PMID: 16862555 DOI: 10.1002/jnr.20993] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Mutations of non-muscle myosin Type IIA or MYH9 are linked to syndromic or nonsyndromic hearing loss. The biologic function of MYH9 in the auditory organ and the pathophysiology of its dysfunction remain to be determined. The mouse represents an excellent model for investigating the biologic role of MYH9 in the cells and tissues affected by its dysfunction. A primary step toward the understanding of the role of MYH9 in hearing and its dysfunction is the documentation of its cellular and sub-cellular localization within the cochlea, the auditory organ. We describe the localization of Myh9 within the mouse cochlea using a polyclonal anti-Myh9-antibody, generated against an 18 amino acid long peptide corresponding to the sequence at the C-terminus of mouse Myh9. The anti-Myh9 antibody identified a single, specific, immunoreactive band of 220 kDa in immunoblot analysis of homogenate from a variety of different mouse tissues. The Myh9 antibody cross-reacts with the rat but not the human orthologue. Myh9 is expressed predominantly within the spiral ligament as well as in the sensory hair cells of the organ of Corti. Confocal microscopy of cochlear surface preparations, identified Myh9 within the inner and outer hair cells and their stereocilia. Localization of Myh9 within the stereocilia raises the possibility that mutations of MYH9 may effect hearing loss though disruption of the stereocilia structure.
Collapse
Affiliation(s)
- Anand N Mhatre
- Laboratory of Molecular Otology, Department of Otolaryngology, New York University School of Medicine, New York, New York 10016, USA.
| | | | | | | | | |
Collapse
|
203
|
Tilney LG, DeRosier DJ. How to make a curved Drosophila bristle using straight actin bundles. Proc Natl Acad Sci U S A 2005; 102:18785-92. [PMID: 16357198 PMCID: PMC1323189 DOI: 10.1073/pnas.0509437102] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
This, our Inaugural Article as Academy Members, is ironically our swan song from the field of the actin cytoskeleton. By reviewing what we have learned and what we think is going on during development, we hope to lure you, the reader, into applying your skills to the bristle cell. The processes of the assembly and disassembly of actin bundles is laid out in time and space in an organism that lends itself to genetic manipulation. The cell provides every process you could want: filament nucleation, growth of microvilli, joining of microvillar bundles into modules, assembly of modules into bundles, time-dependent use of at least two crossbridging proteins, filament turnover, treadmilling, disassembly, and filament translocation.
Collapse
Affiliation(s)
- Lewis G Tilney
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | |
Collapse
|
204
|
Dougherty GW, Adler HJ, Rzadzinska A, Gimona M, Tomita Y, Lattig MC, Merritt RC, Kachar B. CLAMP, a novel microtubule-associated protein with EB-type calponin homology. CELL MOTILITY AND THE CYTOSKELETON 2005; 62:141-56. [PMID: 16206169 DOI: 10.1002/cm.20093] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Microtubules (MTs) are polymers of alpha and beta tubulin dimers that mediate many cellular functions, including the establishment and maintenance of cell shape. The dynamic properties of MTs may be influenced by tubulin isotype, posttranslational modifications of tubulin, and interaction with microtubule-associated proteins (MAPs). End-binding (EB) family proteins affect MT dynamics by stabilizing MTs, and are the only MAPs reported that bind MTs via a calponin-homology (CH) domain (J Biol Chem 278 (2003) 49721-49731; J Cell Biol 149 (2000) 761-766). Here, we describe a novel 27 kDa protein identified from an inner ear organ of Corti library. Structural homology modeling demonstrates a CH domain in this protein similar to EB proteins. Northern and Western blottings confirmed expression of this gene in other tissues, including brain, lung, and testis. In the organ of Corti, this protein localized throughout distinctively large and well-ordered MT bundles that support the elongated body of mechanically stiff pillar cells of the auditory sensory epithelium. When ectopically expressed in Cos-7 cells, this protein localized along cytoplasmic MTs, promoted MT bundling, and efficiently stabilized MTs against depolymerization in response to high concentration of nocodazole and cold temperature. We propose that this protein, designated CLAMP, is a novel MAP and represents a new member of the CH domain protein family.
Collapse
Affiliation(s)
- Gerard W Dougherty
- Section on Structural Cell Biology, NIDCD, NIH, Bethesda, Maryland 20892-8027, USA
| | | | | | | | | | | | | | | |
Collapse
|
205
|
D'Alterio C, Tran DDD, Yeung MWYA, Hwang MSH, Li MA, Arana CJ, Mulligan VK, Kubesh M, Sharma P, Chase M, Tepass U, Godt D. Drosophila melanogaster Cad99C, the orthologue of human Usher cadherin PCDH15, regulates the length of microvilli. ACTA ACUST UNITED AC 2005; 171:549-58. [PMID: 16260500 PMCID: PMC2171266 DOI: 10.1083/jcb.200507072] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Actin-based protrusions can form prominent structures on the apical surface of epithelial cells, such as microvilli. Several cytoplasmic factors have been identified that control the dynamics of actin filaments in microvilli. However, it remains unclear whether the plasma membrane participates actively in microvillus formation. In this paper, we analyze the function of Drosophila melanogaster cadherin Cad99C in the microvilli of ovarian follicle cells. Cad99C contributes to eggshell formation and female fertility and is expressed in follicle cells, which produce the eggshells. Cad99C specifically localizes to apical microvilli. Loss of Cad99C function results in shortened and disorganized microvilli, whereas overexpression of Cad99C leads to a dramatic increase of microvillus length. Cad99C that lacks most of the cytoplasmic domain, including potential PDZ domain–binding sites, still promotes excessive microvillus outgrowth, suggesting that the amount of the extracellular domain determines microvillus length. This study reveals Cad99C as a critical regulator of microvillus length, the first example of a transmembrane protein that is involved in this process.
Collapse
Affiliation(s)
- Cecilia D'Alterio
- Department of Zoology, University of Toronto, Toronto, Ontario, Canada, M5S 3G5
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
206
|
Jerdeva GV, Wu K, Yarber FA, Rhodes CJ, Kalman D, Schechter JE, Hamm-Alvarez SF. Actin and non-muscle myosin II facilitate apical exocytosis of tear proteins in rabbit lacrimal acinar epithelial cells. J Cell Sci 2005; 118:4797-812. [PMID: 16219687 PMCID: PMC1482462 DOI: 10.1242/jcs.02573] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The acinar epithelial cells of the lacrimal gland exocytose the contents of mature secretory vesicles containing tear proteins at their apical membranes in response to secretagogues. Here we use time-lapse confocal fluorescence microscopy and fluorescence recovery after photobleaching to investigate the changes in actin filaments located beneath the apical membrane during exocytosis evoked by the muscarinic agonist, carbachol (100 microM). Time-lapse confocal fluorescence microscopy of apical actin filaments in reconstituted rabbit lacrimal acini transduced with replication-deficient adenovirus containing GFP-actin revealed a relatively quiescent apical actin array in resting acini. Carbachol markedly increased apical actin filament turnover and also promoted transient actin assembly around apparent fusion intermediates. Fluorescence recovery after photobleaching measurements revealed significant (P< or =0.05) increases and decreases, respectively, in mobile fraction (Mf) and turnover times (t1/2) for apical actin filaments in carbachol-stimulated acini relative to untreated acini. The myosin inhibitors, 2,3-butanedione monoxime (BDM, 10 mM, 15 minutes) and ML-7 (40 microM, 15 minutes), significantly decreased carbachol-stimulated secretion of bulk protein and the exogenous secretory vesicle marker, syncollin-GFP; these agents also promoted accumulation of actin-coated structures which were enriched, in transduced acini, in syncollin-GFP, confirming their identity as fusion intermediates. Actin-coated fusion intermediates were sized consistent with incorporation of multiple rather than single secretory vesicles; moreover, BDM and ML-7 caused a shift towards formation of multiple secretory vesicle aggregates while significantly increasing the diameter of actin-coated fusion intermediates. Our findings suggest that the increased turnover of apical actin filaments and the interaction of actin with non-muscle myosin II assembled around aggregates of secretory vesicles facilitate exocytosis in lacrimal acinar epithelial cells.
Collapse
Affiliation(s)
- Galina V Jerdeva
- Department of Pharmaceutical Sciences, University of Southern California, 1985 Zonal Avenue, PSC 406A, Los Angeles, CA 90033, USA
| | | | | | | | | | | | | |
Collapse
|
207
|
Sousa AD, Cheney RE. Myosin-X: a molecular motor at the cell's fingertips. Trends Cell Biol 2005; 15:533-9. [PMID: 16140532 DOI: 10.1016/j.tcb.2005.08.006] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2005] [Revised: 07/12/2005] [Accepted: 08/19/2005] [Indexed: 10/25/2022]
Abstract
Research in several areas, including unconventional myosins and deafness genes, has converged recently on a group of myosins whose tails contain myosin tail homology 4 (MyTH4) and band 4.1, ezrin, radixin, moesin (FERM) domains. Although these 'MyTH-FERM' myosins are not present in yeast and plants, they are present in slime molds, worms, flies and mammals, where they mediate interactions between the cytoskeleton and the plasma membrane. The most broadly distributed MyTH-FERM myosin in vertebrate cells appears to be myosin-X (Myo10). This myosin can act as a link to integrins and microtubules, stimulate the formation of filopodia and undergo a novel form of motility within filopodia.
Collapse
Affiliation(s)
- Aurea D Sousa
- Medical Biomolecular Research Building, Department of Cell and Molecular Physiology, CB #7545, University of North Carolina at Chapel Hill, 27599-7545, USA
| | | |
Collapse
|
208
|
Roche JP, Wackym PA, Cioffi JA, Kwitek AE, Erbe CB, Popper P. In silico analysis of 2085 clones from a normalized rat vestibular periphery 3' cDNA library. Audiol Neurootol 2005; 10:310-22. [PMID: 16103642 PMCID: PMC1421512 DOI: 10.1159/000087348] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2005] [Accepted: 03/21/2005] [Indexed: 11/19/2022] Open
Abstract
The inserts from 2400 cDNA clones isolated from a normalized Rattus norvegicus vestibular periphery cDNA library were sequenced and characterized. The Wackym-Soares vestibular 3' cDNA library was constructed from the saccular and utricular maculae, the ampullae of all three semicircular canals and Scarpa's ganglia containing the somata of the primary afferent neurons, microdissected from 104 male and female rats. The inserts from 2400 randomly selected clones were sequenced from the 5' end. Each sequence was analyzed using the BLAST algorithm compared to the Genbank nonredundant, rat genome, mouse genome and human genome databases to search for high homology alignments. Of the initial 2400 clones, 315 (13%) were found to be of poor quality and did not yield useful information, and therefore were eliminated from the analysis. Of the remaining 2085 sequences, 918 (44%) were found to represent 758 unique genes having useful annotations that were identified in databases within the public domain or in the published literature; these sequences were designated as known characterized sequences. 1141 sequences (55%) aligned with 1011 unique sequences had no useful annotations and were designated as known but uncharacterized sequences. Of the remaining 26 sequences (1%), 24 aligned with rat genomic sequences, but none matched previously described rat expressed sequence tags or mRNAs. No significant alignment to the rat or human genomic sequences could be found for the remaining 2 sequences. Of the 2085 sequences analyzed, 86% were singletons. The known, characterized sequences were analyzed with the FatiGO online data-mining tool (http://fatigo.bioinfo.cnio.es/) to identify level 5 biological process gene ontology (GO) terms for each alignment and to group alignments with similar or identical GO terms. Numerous genes were identified that have not been previously shown to be expressed in the vestibular system. Further characterization of the novel cDNA sequences may lead to the identification of genes with vestibular-specific functions. Continued analysis of the rat vestibular periphery transcriptome should provide new insights into vestibular function and generate new hypotheses. Physiological studies are necessary to further elucidate the roles of the identified genes and novel sequences in vestibular function.
Collapse
Affiliation(s)
- Joseph P. Roche
- Department of Otolaryngology and Communication Sciences, Medical College of Wisconsin, Milwaukee, Wisc., USA
| | - P. Ashley Wackym
- Department of Otolaryngology and Communication Sciences, Medical College of Wisconsin, Milwaukee, Wisc., USA
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisc., USA
| | - Joseph A. Cioffi
- Department of Otolaryngology and Communication Sciences, Medical College of Wisconsin, Milwaukee, Wisc., USA
| | - Anne E. Kwitek
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisc., USA
| | - Christy B. Erbe
- Department of Otolaryngology and Communication Sciences, Medical College of Wisconsin, Milwaukee, Wisc., USA
| | - Paul Popper
- Department of Otolaryngology and Communication Sciences, Medical College of Wisconsin, Milwaukee, Wisc., USA
| |
Collapse
|
209
|
Rzadzinska AK, Derr A, Kachar B, Noben-Trauth K. Sustained cadherin 23 expression in young and adult cochlea of normal and hearing-impaired mice. Hear Res 2005; 208:114-21. [PMID: 16005171 DOI: 10.1016/j.heares.2005.05.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2005] [Accepted: 05/30/2005] [Indexed: 12/01/2022]
Abstract
Cadherin 23 encodes a single-pass transmembrane protein with 27 extracellular cadherin-domains and localizes to stereocilia where it functions as an inter-stereocilia link. Cadherin 23-deficient mice show congenital deafness in combination with circling behavior as a result of organizational defects in the stereocilia hair bundle; common inbred mouse strains carrying the hypomorphic Cdh23(753A) allele are highly susceptible to sensorineural hearing loss. Here, we show that an antibody (N1086) directed against the intracellular carboxyterminus reacts specifically with cadherin 23 and detects with high sensitivity the isoform devoid of the peptide encoded by exon 68 (CDH23Delta68). Cochlea, vestibule, eye, brain and testis produce the CDH23Delta68 isoform in abundance and form moieties with different molecular weight due to variations in glycosylation content. In the cochlea, CDH23Delta68 expression is highest at postnatal day 1 (P1) and P7; expression is down regulated through P14 and P21 and persists at a low steady-state level throughout adulthood (P160). Furthermore, CDH23Delta68 expression levels in young and adult cochlea are similar among normal and hearing deficient strains (C3HeB/FeJ, C57BL/6J and BUB/BnJ). Finally, by immunofluorescence using an antibody (Pb240) specific for ectodomain 14, we show that cadherin 23 localizes to stereocilia during hair bundle development in late gestation and early postnatal days. Cadherin 23-specific labeling becomes weaker as the hair bundle matures but faint labeling concentrated near the top of stereocilia is still detectable at P35. No labeling of cochlea stereocilia was observed with N1086. In conclusion, our data describe a cadherin 23-specific antibody with high affinity to the CDH23Delta68 isoform, reveal a dynamic cochlea expression and localization profile and show sustained cadherin 23 levels in adult cochlea of normal and hearing-impaired mice.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Animals, Newborn
- Antibody Specificity
- Base Sequence
- Cadherins/chemistry
- Cadherins/genetics
- Cadherins/immunology
- Cadherins/metabolism
- Cochlea/embryology
- Cochlea/growth & development
- Cochlea/metabolism
- Cochlea/pathology
- DNA, Complementary/genetics
- Female
- Gene Expression Regulation, Developmental
- Glycosylation
- Hearing Loss, Sensorineural/genetics
- Hearing Loss, Sensorineural/metabolism
- Hearing Loss, Sensorineural/pathology
- Male
- Mice
- Mice, Inbred C3H
- Mice, Inbred CBA
- Mice, Knockout
- Mice, Mutant Strains
- Rats
- Rats, Sprague-Dawley
- Tissue Distribution
Collapse
Affiliation(s)
- Agnieszka K Rzadzinska
- Section on Structural Cell Biology, Laboratory of Cellular Biology, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | |
Collapse
|
210
|
Di Pasquale G, Rzadzinska A, Schneider ME, Bossis I, Chiorini JA, Kachar B. A Novel Bovine Virus Efficiently Transduces Inner Ear Neuroepithelial Cells. Mol Ther 2005; 11:849-55. [PMID: 15922955 DOI: 10.1016/j.ymthe.2005.02.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2004] [Revised: 02/03/2005] [Accepted: 02/03/2005] [Indexed: 11/22/2022] Open
Abstract
Disruption of the cellular composition or arrangement of the sensory epithelia due to hair cell or supporting cell damage leads to hearing loss and vestibular dysfunctions. These peripheral hearing disorders make good targets for gene therapy; however, development requires efficient gene transfer methods for the inner ear. Here we characterized the cellular tropism of a novel adeno-associated bovine virus vector (BAAV) in cultured rat inner ear epithelia. To help identify transduced cells, we used beta-actin-GFP as a reporter gene. We found that BAAV efficiently transduced auditory and vestibular hair cells as well as all types of supporting cells with no apparent pathological effects. The number of transduced hair cells significantly increased in both a dose- and a time-dependent manner. Transduction was independent of the cells' maturation state and was observed in both P2 and P10 cultures. Interestingly, even after several days of incubation with BAAV, hair cells demonstrated varying progression of beta-actin-GFP incorporation into the stereocilia. This suggests that the onset of viral transduction can occur throughout the course of the experiment. Of the other tested AAVs, AAV2 and AAV5 transduced only a small percentage of inner and vestibular hair cells, respectively, whereas no transduction was detected with AAV4.
Collapse
Affiliation(s)
- Giovanni Di Pasquale
- Gene Therapy and Therapeutics Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD 20892, USA
| | | | | | | | | | | |
Collapse
|
211
|
Abstract
The dendritic nucleation model was devised to explain the cycle of actin dynamics resulting in actin filament network assembly and disassembly in two contexts--at the leading edge of motile cells and in the actin comet tails of intracellular pathogenic bacteria and viruses. Due to the detailed nature of its biochemical predictions, the model has provided an excellent focus for subsequent experimentation. This review summarizes recent work on actin dynamics in the context of the dendritic nucleation model. One outcome of this research is the possibility that additional proteins, as well as the six proteins included in the original model, might increase the efficiency of dendritic nucleation or modify the resulting actin network. In addition, actin dynamics at the leading edge might be influenced by a second actin filament network, independent of dendritic nucleation.
Collapse
|
212
|
Kennedy HJ, Crawford AC, Fettiplace R. Force generation by mammalian hair bundles supports a role in cochlear amplification. Nature 2005; 433:880-3. [PMID: 15696193 DOI: 10.1038/nature03367] [Citation(s) in RCA: 198] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2004] [Accepted: 01/17/2005] [Indexed: 11/08/2022]
Abstract
It is generally accepted that the acute sensitivity and frequency discrimination of mammalian hearing requires active mechanical amplification of the sound stimulus within the cochlea. The prevailing hypothesis is that this amplification stems from somatic electromotility of the outer hair cells attributable to the motor protein prestin. Thus outer hair cells contract and elongate in synchrony with the sound-evoked receptor potential. But problems arise with this mechanism at high frequencies, where the periodic component of the receptor potential will be attenuated by the membrane time constant. On the basis of work in non-mammalian vertebrates, force generation by the hair bundles has been proposed as an alternative means of boosting the mechanical stimulus. Here we show that hair bundles of mammalian outer hair cells can also produce force on a submillisecond timescale linked to adaptation of the mechanotransducer channels. Because the bundle motor may ultimately be limited by the deactivation rate of the channels, it could theoretically operate at high frequencies. Our results show the existence of another force generator in outer hair cells that may participate in cochlear amplification.
Collapse
Affiliation(s)
- H J Kennedy
- Department of Physiology, University of Wisconsin Medical School, Madison, Wisconsin 53706, USA
| | | | | |
Collapse
|
213
|
Baluska F, Hlavacka A, Volkmann D, Menzel D. Getting connected: actin-based cell-to-cell channels in plants and animals. Trends Cell Biol 2005; 14:404-8. [PMID: 15308205 DOI: 10.1016/j.tcb.2004.07.001] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
It has been known for more than one hundred years that plant cells are interconnected by cytoplasmic channels called plasmodesmata. This supracellularity was generally considered to be an exotic feature of walled plants containing immobile cells that are firmly enclosed within robust walls. Unexpectedly, intercellular channels in mobile animal cells have been discovered recently. These are extremely dynamic and sensitive to mechanical stress, which causes their rapid breakage and retraction. Both plasmodesmata and nanotubular cell-to-cell channels are supported by the actin cytoskeleton and exclude microtubules. In this article, we discuss the relevance of cell-to-cell channels not only for intercellular communication but also for the development and morphogenesis of multicellular organisms. We also suggest possible parallels between the cell-to-cell transport of endosomes and intracellular pathogens.
Collapse
Affiliation(s)
- Frantisek Baluska
- Institute of Cellular and Molecular Botany, University of Bonn, D-53115 Bonn, Germany.
| | | | | | | |
Collapse
|
214
|
Belyantseva IA, Boger ET, Naz S, Frolenkov GI, Sellers JR, Ahmed ZM, Griffith AJ, Friedman TB. Myosin-XVa is required for tip localization of whirlin and differential elongation of hair-cell stereocilia. Nat Cell Biol 2005; 7:148-56. [PMID: 15654330 DOI: 10.1038/ncb1219] [Citation(s) in RCA: 272] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2004] [Accepted: 12/17/2004] [Indexed: 11/09/2022]
Abstract
Stereocilia are microvilli-derived mechanosensory organelles that are arranged in rows of graded heights on the apical surface of inner-ear hair cells. The 'staircase'-like architecture of stereocilia bundles is necessary to detect sound and head movement, and is achieved through differential elongation of the actin core of each stereocilium to a predetermined length. Abnormally short stereocilia bundles that have a diminished staircase are characteristic of the shaker 2 (Myo15a(sh2)) and whirler (Whrn(wi)) strains of deaf mice. We show that myosin-XVa is a motor protein that, in vivo, interacts with the third PDZ domain of whirlin through its carboxy-terminal PDZ-ligand. Myosin-XVa then delivers whirlin to the tips of stereocilia. Moreover, if green fluorescent protein (GFP)-Myo15a is transfected into hair cells of Myo15a(sh2) mice, the wild-type pattern of hair bundles is restored by recruitment of endogenous whirlin to the tips of stereocilia. The interaction of myosin-XVa and whirlin is therefore a key event in hair-bundle morphogenesis.
Collapse
Affiliation(s)
- Inna A Belyantseva
- Section on Human Genetics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Rockville, MD 20850, USA
| | | | | | | | | | | | | | | |
Collapse
|
215
|
Goodyear RJ, Marcotti W, Kros CJ, Richardson GP. Development and properties of stereociliary link types in hair cells of the mouse cochlea. J Comp Neurol 2005; 485:75-85. [PMID: 15776440 DOI: 10.1002/cne.20513] [Citation(s) in RCA: 172] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The hair bundles of outer hair cells in the mature mouse cochlea possess three distinct cell-surface specializations: tip links, horizontal top connectors, and tectorial membrane attachment crowns. Electron microscopy was used to study the appearance and maturation of these link types and examine additional structures transiently associated with the developing hair bundle. At embryonic day 17.5 (E17.5), the stereocilia are interconnected by fine lateral links and have punctate elements distributed over their surface. Oblique tip links are also seen at this stage. By postnatal day 2 (P2), outer hair cell bundles have a dense cell coat, but have lost many of the lateral links seen at E17.5. At P2, ankle links appear around the base of the bundle and tectorial membrane attachment crowns are seen at the stereociliary tips. Ankle links become less apparent by P9 and are completely lost by P12. The appearance of horizontal top connectors, which persist into adulthood, occurs concomitant with this loss of ankle links. Treatment with the calcium chelator BAPTA or the protease subtilisin enabled these links to be further distinguished. Ankle links are susceptible to both treatments, tip links are only sensitive to BAPTA, and tectorial membrane attachment crowns are removed by subtilisin but not BAPTA. The cell-coat material is partially sensitive to subtilisin alone, while horizontal top connectors resist both treatments. These results indicate there is a rich, rapidly changing array of different links covering the developing hair bundle that becomes progressively refined to generate the mature complement by P19.
Collapse
MESH Headings
- Animals
- Animals, Newborn
- Chelating Agents/pharmacology
- Cochlea/embryology
- Cochlea/growth & development
- Cochlea/ultrastructure
- Egtazic Acid/analogs & derivatives
- Egtazic Acid/pharmacology
- Embryo, Mammalian
- Hair Cells, Auditory, Inner/drug effects
- Hair Cells, Auditory, Inner/embryology
- Hair Cells, Auditory, Inner/growth & development
- Hair Cells, Auditory, Inner/ultrastructure
- Hair Cells, Auditory, Outer/drug effects
- Hair Cells, Auditory, Outer/embryology
- Hair Cells, Auditory, Outer/growth & development
- Hair Cells, Auditory, Outer/ultrastructure
- In Vitro Techniques
- Mice
- Microscopy, Electron, Scanning/methods
- Subtilisin/pharmacology
- Tectorial Membrane/drug effects
- Tectorial Membrane/growth & development
- Tectorial Membrane/ultrastructure
Collapse
Affiliation(s)
- Richard J Goodyear
- School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QG, United Kingdom.
| | | | | | | |
Collapse
|
216
|
Hirono M, Denis CS, Richardson GP, Gillespie PG. Hair cells require phosphatidylinositol 4,5-bisphosphate for mechanical transduction and adaptation. Neuron 2004; 44:309-20. [PMID: 15473969 DOI: 10.1016/j.neuron.2004.09.020] [Citation(s) in RCA: 147] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2004] [Revised: 08/17/2004] [Accepted: 08/24/2004] [Indexed: 11/22/2022]
Abstract
After opening in response to mechanical stimuli, hair cell transduction channels adapt with fast and slow mechanisms that each depend on Ca(2+). We demonstrate here that transduction and adaptation require phosphatidylinositol 4,5-bisphosphate (PIP(2)) for normal kinetics. PIP(2) has a striking distribution in hair cells, being excluded from the basal region of hair bundles and apical surfaces of frog saccular hair cells. Localization of a phosphatidylinositol lipid phosphatase, Ptprq, to these PIP(2)-free domains suggests that Ptprq maintains low PIP(2) levels there. Depletion of PIP(2) by inhibition of phosphatidylinositol 4-kinase or sequestration by aminoglycosides reduces the rates of fast and slow adaptation. PIP(2) and other anionic phospholipids bind directly to the IQ domains of myosin-1c, the motor that mediates slow adaptation, permitting a strong interaction with membranes and likely regulating the motor's activity. PIP(2) depletion also causes a loss in transduction current. PIP(2) therefore plays an essential role in hair cell adaptation and transduction.
Collapse
MESH Headings
- Adaptation, Physiological/drug effects
- Adaptation, Physiological/physiology
- Animals
- Cells, Cultured
- Enzyme Inhibitors/pharmacology
- Hair Cells, Auditory, Inner/drug effects
- Hair Cells, Auditory, Inner/physiology
- Hair Cells, Auditory, Inner/ultrastructure
- Immunohistochemistry
- Mechanotransduction, Cellular/drug effects
- Mechanotransduction, Cellular/physiology
- Microscopy, Electron
- Myosins/metabolism
- Patch-Clamp Techniques
- Phosphatidylinositol 4,5-Diphosphate/metabolism
- Protein Tyrosine Phosphatases/drug effects
- Protein Tyrosine Phosphatases/metabolism
- Rana pipiens
Collapse
Affiliation(s)
- Moritoshi Hirono
- Oregon Hearing Research Center and Vollum Institute, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA
| | | | | | | |
Collapse
|
217
|
Orlova A, Shvetsov A, Galkin VE, Kudryashov DS, Rubenstein PA, Egelman EH, Reisler E. Actin-destabilizing factors disrupt filaments by means of a time reversal of polymerization. Proc Natl Acad Sci U S A 2004; 101:17664-8. [PMID: 15591338 PMCID: PMC539747 DOI: 10.1073/pnas.0407525102] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Actin, one of the most highly conserved and abundant eukaryotic proteins, is constantly being polymerized and depolymerized within cells as part of cellular motility, tissue formation and repair, and embryonic development. Many proteins exist that bind to monomeric or filamentous (F) forms of actin to regulate the polymerization state. It has become increasingly apparent that the ability of different proteins to bind to and regulate actin filament dynamics depends on the ability of the filament to exist in altered conformations. Yet, little is known about how these conformational changes occur at the molecular level. We have destabilized F-actin filaments by forming a disulfide that locks the "hydrophobic plug" to the body of the actin subunit or by altering the C terminus of actin with a tetramethylrhodamine label. We also examined F-actin filaments at short times after the initiation of polymerization. In all three cases, a substantial fraction of protomers can be found in a "tilted" state that also is induced by actin depolymerizing factor/cofilin proteins. These observations suggest that F-actin filaments are annealed over time into a stable filament and that actin-depolymerizing proteins can effect a time reversal of polymerization.
Collapse
Affiliation(s)
- Albina Orlova
- Department of Biochemistry and Molecular Genetics, University of Virginia Health Sciences Center, Charlottesville, VA 22908-0733, USA
| | | | | | | | | | | | | |
Collapse
|
218
|
Kikkawa Y, Mburu P, Morse S, Kominami R, Townsend S, Brown SDM. Mutant analysis reveals whirlin as a dynamic organizer in the growing hair cell stereocilium. Hum Mol Genet 2004; 14:391-400. [PMID: 15590699 DOI: 10.1093/hmg/ddi035] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Little is known of the molecular processes that lead to the growth of stereocilia on the surface of hair cells in the inner ear. The PDZ protein whirlin is known, by virtue of the whirler mutation, to be involved in the process of stereocilia elongation and actin polymerization in the sensory hair cells of mammals. We have investigated the function of whirlin and its putative interacting partner, myosin XVa, in the stereocilium using relevant mice mutants. We raised an antibody that detects the short isoform of the whirlin protein which has been demonstrated to rescue the stereocilia growth defect in the whirler mutant. We show that whirlin localizes at the tips of stereocilia. Expression of whirlin is dynamic during stereocilia growth, demonstrating an ordered appearance and fade-out across the stereocilia rows and revealing a novel molecular gradation of process traversing the stereocilia bundle. Fade-out of whirlin in inner hair cells precedes that of outer hair cells, consistent with the earlier maturation of inner hair cell stereocilia. In myosin XVa mutants in which stereocilia are shortened, whirlin expression in the stereocilia tips is stalled and fade-out is accelerated. In whirlin mutants, myosin XVa is still expressed in stereocilia, but its appearance at the stereocilia tip is delayed. The data indicate that whirlin expression is a critical and dynamic organizer for stereocilia elongation and actin polymerization.
Collapse
|
219
|
Delprat B, Michel V, Goodyear R, Yamasaki Y, Michalski N, El-Amraoui A, Perfettini I, Legrain P, Richardson G, Hardelin JP, Petit C. Myosin XVa and whirlin, two deafness gene products required for hair bundle growth, are located at the stereocilia tips and interact directly. Hum Mol Genet 2004; 14:401-10. [PMID: 15590698 DOI: 10.1093/hmg/ddi036] [Citation(s) in RCA: 140] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Defects in myosin XVa and the PDZ domain-containing protein, whirlin, underlie deafness in humans and mice. Hair bundles of mutant mice defective for either protein have abnormally short stereocilia. Here, we show that whirlin, like myosin XVa, is present at the very tip of each stereocilium in the developing and mature hair bundles of the cochlear and vestibular system. We found that myosin XVa SH3-MyTH4 region binds to the short isoform of whirlin (PR-PDZ3) that can rescue the stereocilia growth defect in whirlin defective mice. Moreover, the C-terminal MyTH4-FERM region of myosin XVa binds to the PDZ1 and PDZ2 domains of the long whirlin isoform. We conclude that a direct myosin XVa-whirlin interaction at the stereocilia tip is likely to control the elongation of stereocilia. Whirlin, unlike myosin XVa, is also transiently localized in the basal region of developing stereocilia in rat vestibular and cochlear hair cells until P4 and P12, respectively. Notably, whirlin also interacts with myosin VIIa that is present along the entire length of the stereocilia. Finally, we show that the transmembrane netrin-G1 ligand (NGL-1) binds to the PDZ1 and PDZ2 domains of whirlin and has an extracellular region that homophilically self-interacts in a Ca2+-dependent manner. The interaction between whirlin and NGL-1 might be involved in the stabilization of interstereociliar links.
Collapse
Affiliation(s)
- Benjamin Delprat
- Unité de Génétique des Déficits Sensoriels, INSERM U587, Institut Pasteur, 25 rue du Dr Roux, 75724 Paris, cedex 15, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
220
|
Abstract
PURPOSE OF REVIEW Hair cells and spiral ganglion neurons form functional pairings in the cochlea that transduce the mechanical energy of sound into signals that are carried to the brainstem. Mutations of genes affecting the development and maintenance of these two cell populations cause deafness in humans and other animals. This review highlights recent findings regarding the development of hair cell stereocilia and spiral ganglion neurons in the cochlea. RECENT FINDINGS Genes underlying Usher syndrome 1A have shed light on possible molecular participants in the development and structure of the hair cell stereocilia. Analysis of deaf mouse mutants have uncovered genes involved in stereocilia elongation and the orientation of the stereociliary bundles. Studies on the regulation of spiral ganglion neuronal survival and guidance suggest that the timing of expression of specific growth factors along the cochlear spiral is involved in maintaining the divergence of vestibular and cochlear nerve fibers. SUMMARY Examining human and mouse genes affecting hearing has not only provided insight into causes of human deafness, but has also opened a window into how stereociliary bundles are constructed and spiral ganglion neurons are preserved and guided during development. Synthesis of information from diverse lines of research pinpoints genes for screening or repair in the genetic medicine of the future and dramatizes the intimate relationship between strict adherence to complex developmental programs and hearing. In addition, future improvements in the efficacy of cochlear implants may depend on the preservation and manipulation of adult spiral ganglion neurons. Developmental mechanisms promise to yield insight into possible interventions to redirect or reconnect spiral ganglion neurons in damaged cochlea.
Collapse
Affiliation(s)
- Donna S Whitlon
- Department of Otolaryngology, Head and Neck Surgery and Institute for Neuroscience, Feinberg School of Medicine, Northwestern University, 303 E. Chicago Avenue, Searle Building 561, Chicago, IL 60611, USA.
| |
Collapse
|
221
|
Revenu C, Athman R, Robine S, Louvard D. The co-workers of actin filaments: from cell structures to signals. Nat Rev Mol Cell Biol 2004; 5:635-46. [PMID: 15366707 DOI: 10.1038/nrm1437] [Citation(s) in RCA: 234] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Cells have various surface architectures, which allow them to carry out different specialized functions. Actin microfilaments that are associated with the plasma membrane are important for generating these cell-surface specializations, and also provide the driving force for remodelling cell morphology and triggering new cell behaviour when the environment is modified. This phenomenon is achieved through a tight coupling between cell structure and signal transduction, a process that is modulated by the regulation of actin-binding proteins.
Collapse
Affiliation(s)
- Céline Revenu
- UMR144 Centre National de la Recherche Scientifique/Institut Curie, Paris, France
| | | | | | | |
Collapse
|
222
|
Sekerková G, Zheng L, Loomis PA, Changyaleket B, Whitlon DS, Mugnaini E, Bartles JR. Espins are multifunctional actin cytoskeletal regulatory proteins in the microvilli of chemosensory and mechanosensory cells. J Neurosci 2004; 24:5445-56. [PMID: 15190118 PMCID: PMC2855134 DOI: 10.1523/jneurosci.1279-04.2004] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Espins are associated with the parallel actin bundles of hair cell stereocilia and are the target of mutations that cause deafness and vestibular dysfunction in mice and humans. Here, we report that espins are also concentrated in the microvilli of a number of other sensory cells: vomeronasal organ sensory neurons, solitary chemoreceptor cells, taste cells, and Merkel cells. Moreover, we show that hair cells and these other sensory cells contain novel espin isoforms that arise from a different transcriptional start site and differ significantly from other espin isoforms in their complement of ligand-binding activities and their effects on actin polymerization. The novel espin isoforms of sensory cells bundled actin filaments with high affinity in a Ca(2+)-resistant manner, bound actin monomer via a WASP (Wiskott-Aldrich syndrome protein) homology 2 domain, bound profilin via a single proline-rich peptide, and caused a dramatic elongation of microvillus-type parallel actin bundles in transfected epithelial cells. In addition, the novel espin isoforms of sensory cells differed from other espin isoforms in that they potently inhibited actin polymerization in vitro, did not bind the Src homology 3 domain of the adapter protein insulin receptor substrate p53, and did not bind the acidic, signaling phospholipid phosphatidylinositol 4,5-bisphosphate. Thus, the espins constitute a family of multifunctional actin cytoskeletal regulatory proteins with the potential to differentially influence the organization, dimensions, dynamics, and signaling capabilities of the actin filament-rich, microvillus-type specializations that mediate sensory transduction in various mechanosensory and chemosensory cells.
Collapse
Affiliation(s)
- Gabriella Sekerková
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA
| | | | | | | | | | | | | |
Collapse
|
223
|
Tilney LG, Connelly PS, Ruggiero L, Vranich KA, Guild GM, Derosier D. The role actin filaments play in providing the characteristic curved form of Drosophila bristles. Mol Biol Cell 2004; 15:5481-91. [PMID: 15371540 PMCID: PMC532027 DOI: 10.1091/mbc.e04-06-0472] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Drosophila bristles display a precise orientation and curvature. An asymmetric extension of the socket cell overlies the newly emerging bristle rudiment to provide direction for bristle elongation, a process thought to be orchestrated by the nerve dendrite lying between these cells. Scanning electron microscopic analysis of individual bristles showed that curvature is planar and far greater near the bristle base. Correlated with this, as development proceeds the pupa gradually recedes from the inner pupal case (an extracellular layer that encloses the pupa) leading to less bristle curvature along the shaft. We propose that the inner pupal case induces elongating bristles to bend when they contact this barrier. During elongation the actin cytoskeleton locks in this curvature by grafting together the overlapping modules that comprise the long filament bundles. Because the bristle is curved, the actin bundles on the superior side must be longer than those on the inferior side. This is accomplished during grafting by greater elongation of superior side modules. Poor actin cross-bridging in mutant bristles results in altered curvature. Thus, the pattern of bristle curvature is a product of both extrinsic factors-the socket cell and the inner pupal case--and intrinsic factors--actin cytoskeleton assembly.
Collapse
Affiliation(s)
- Lewis G Tilney
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104-6018, USA
| | | | | | | | | | | |
Collapse
|
224
|
Gow A, Davies C, Southwood CM, Frolenkov G, Chrustowski M, Ng L, Yamauchi D, Marcus DC, Kachar B. Deafness in Claudin 11-null mice reveals the critical contribution of basal cell tight junctions to stria vascularis function. J Neurosci 2004; 24:7051-62. [PMID: 15306639 PMCID: PMC4615685 DOI: 10.1523/jneurosci.1640-04.2004] [Citation(s) in RCA: 176] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2004] [Revised: 06/09/2004] [Accepted: 06/09/2004] [Indexed: 11/21/2022] Open
Abstract
Generation of a strong electrical potential in the cochlea is uniquely mammalian and may reflect recent evolutionary advances in cellular voltage-dependent amplifiers. This endocochlear potential is hypothesized to dramatically improve hearing sensitivity, a concept that is difficult to explore experimentally, because manipulating cochlear function frequently causes rapid degenerative changes early in development. Here, we examine the deafness phenotype in adult Claudin 11-null mice, which lack the basal cell tight junctions that give rise to the intrastrial compartment and find little evidence of cochlear pathology. Potassium ion recycling is normal in these mutants, but endocochlear potentials were below 30 mV and hearing thresholds were elevated 50 dB sound pressure level across the frequency spectrum. Together, these data demonstrate the central importance of basal cell tight junctions in the stria vascularis and directly verify the two-cell hypothesis for generation of endocochlear potential. Furthermore, these data indicate that endocochlear potential is an essential component of the power source for the mammalian cochlear amplifier.
Collapse
Affiliation(s)
- Alexander Gow
- Center for Molecular Medicine and Genetics, Carman and Ann Adams Department of Pediatrics, Wayne State University, Detroit, Michigan 48201, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
225
|
Frolenkov GI, Belyantseva IA, Friedman TB, Griffith AJ. Genetic insights into the morphogenesis of inner ear hair cells. Nat Rev Genet 2004; 5:489-98. [PMID: 15211351 DOI: 10.1038/nrg1377] [Citation(s) in RCA: 162] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
MESH Headings
- Animals
- Chickens
- Cloning, Molecular
- Cricetinae
- Disease Models, Animal
- Ear, Inner/anatomy & histology
- Ear, Inner/physiology
- Gene Expression Regulation, Developmental
- Hair Cells, Auditory/anatomy & histology
- Hair Cells, Auditory/physiology
- Hearing/genetics
- Hearing Loss/genetics
- Humans
- Mechanotransduction, Cellular
- Mice
- Microscopy, Electron, Scanning
- Microvilli
- Models, Anatomic
- Tissue Adhesions
Collapse
Affiliation(s)
- Gregory I Frolenkov
- Section on Gene Structure and Function, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Rockville, Maryland 20850, USA
| | | | | | | |
Collapse
|