201
|
Motyl T, Bierła JB, Kozłowski M, Gajewska M, Gajkowska B, Koronkiewicz M. Identification, quantification and transcriptional profile of potential stem cells in bovine mammary gland. Livest Sci 2011. [DOI: 10.1016/j.livsci.2010.08.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
202
|
Eden JA. Why does oestrogen-only hormone therapy have such a small impact on breast cancer risk? A hypothesis. Gynecol Endocrinol 2011; 27:170-5. [PMID: 20500114 DOI: 10.3109/09513590.2010.488778] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
There seems to be irrefutable evidence that oestrogen is involved in the pathogenesis of breast cancer. The disease mostly affects women and the epidemiology of breast cancer relates to reproductive markers such as pregnancy, age at menarche and age of menopause. Most breast cancers elaborate oestrogen receptors (ER) and in such cases endocrine therapies such as tamoxifen and aromatase-inhibitors (AIs) are effective adjuvant treatments. However, high-quality randomised controlled trials (RCTs) (such as the WHI study) have shown that oestrogen-only hormone therapy (ET) does not increase breast cancer risk at all. This would seem to be a remarkable paradox. There appears to be at least two reasons for this apparent contradiction. First, it has been known for two decades that the breast itself produces oestrogens locally and the microenvironment around a breast cancer is more important that the impact of systemic-oestrogens. Second, breast cancer stem cells (breast CSC) have been identified and it seems likely that these long-lived, multipotential cells are responsible for the genesis of many breast cancers, as well as their malignant behaviour. Breast CSC usually do not contain sex-hormone receptors, but their offspring often elaborate ER and progesterone receptor (PR). Thus, it appears unlikely that oestrogen per se initiates breast cancer, but rather might stimulate an existing tumour.
Collapse
Affiliation(s)
- John A Eden
- Royal Hospital for Women, School of Women and Children's Health, Randwick, Australia.
| |
Collapse
|
203
|
Chanson L, Brownfield D, Garbe JC, Kuhn I, Stampfer MR, Bissell MJ, LaBarge MA. Self-organization is a dynamic and lineage-intrinsic property of mammary epithelial cells. Proc Natl Acad Sci U S A 2011; 108:3264-9. [PMID: 21300877 PMCID: PMC3044373 DOI: 10.1073/pnas.1019556108] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Loss of organization is a principle feature of cancers; therefore it is important to understand how normal adult multilineage tissues, such as bilayered secretory epithelia, establish and maintain their architectures. The self-organization process that drives heterogeneous mixtures of cells to form organized tissues is well studied in embryology and with mammalian cell lines that were abnormal or engineered. Here we used a micropatterning approach that confined cells to a cylindrical geometry combined with an algorithm to quantify changes of cellular distribution over time to measure the ability of different cell types to self-organize relative to each other. Using normal human mammary epithelial cells enriched into pools of the two principal lineages, luminal and myoepithelial cells, we demonstrated that bilayered organization in mammary epithelium was driven mainly by lineage-specific differential E-cadherin expression, but that P-cadherin contributed specifically to organization of the myoepithelial layer. Disruption of the actomyosin network or of adherens junction proteins resulted in either prevention of bilayer formation or loss of preformed bilayers, consistent with continual sampling of the local microenvironment by cadherins. Together these data show that self-organization is an innate and reversible property of communities of normal adult human mammary epithelial cells.
Collapse
Affiliation(s)
- Lea Chanson
- Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Douglas Brownfield
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720; and
- Department of Bioengineering, University of California, Berkeley, CA 94720
| | - James C. Garbe
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720; and
| | - Irene Kuhn
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720; and
| | - Martha R. Stampfer
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720; and
| | - Mina J. Bissell
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720; and
| | - Mark A. LaBarge
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720; and
| |
Collapse
|
204
|
Pagani IS, Terrinoni A, Marenghi L, Zucchi I, Chiaravalli AM, Serra V, Rovera F, Sirchia S, Dionigi G, Miozzo M, Mozzo M, Frattini A, Ferrari A, Capella C, Pasquali F, Lo Curto F, Curto FL, Albertini A, Melino G, Porta G. The mammary gland and the homeobox gene Otx1. Breast J 2011; 16 Suppl 1:S53-6. [PMID: 21050313 DOI: 10.1111/j.1524-4741.2010.01006.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The mammary gland, the unique organ that primarily form at puberty, is an ideal model to study the functions of homeobox (HB) genes in both development and tumorigenesis. HB genes comprise a large family of developmental regulators that have a critical role in cell growth and differentiation. In the normal mammary gland, homeobox genes are involved in ductal formation, epithelial branching, and lobulo-alveolar development by regulating epithelial proliferation and differentiation. The HB genes are controlled in a spatial and temporal manner in both stromal and epithelial cells. They are coordinately regulated by hormones and extracellular matrix, suggesting that many signaling pathways are involved in homeobox gene functions. When homeobox genes are misexpressed in animal models, different defects are displayed in mammary gland development. Aberrant expression of homeobox genes, overexpressed or downregulated, is found in primary carcinomas and in breast cancer. The Otx1 HB gene is a classic regulatory of nervous system development during embryogenesis. Postnatally Otx1 is transcribed in the anterior pituitary gland, where activates transcription of the pituitary hormones, and plays a role in hematopoiesis, enhancing pluripotent cells, and erythroid differentiation. Otx1 can still be detected in mature cells of the erythroid and megacaryocytic lineage. During cyclical development of mammary gland, the Otx1 gene is overexpressed in lactation, confirming a role of this transcription factor in cell differentiation. Recent studies report that Otx1 is overexpressed in breast cancer. Otx1 is expressed during embryogenesis, and it is expressed again during carcinogenesis, implying its possible function in differentiation of neoplastic cells.
Collapse
Affiliation(s)
- Ilaria S Pagani
- Department of Experimental and Clinical Biomedical Sciences, University of Insubria, Varese, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
205
|
Al-Ejeh F, Smart CE, Morrison BJ, Chenevix-Trench G, López JA, Lakhani SR, Brown MP, Khanna KK. Breast cancer stem cells: treatment resistance and therapeutic opportunities. Carcinogenesis 2011; 32:650-8. [PMID: 21310941 DOI: 10.1093/carcin/bgr028] [Citation(s) in RCA: 108] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The clinical and pathologic heterogeneity of human breast cancer has long been recognized. Now, molecular profiling has enriched our understanding of breast cancer heterogeneity and yielded new prognostic and predictive information. Despite recent therapeutic advances, including the HER2-specific agent, trastuzumab, locoregional and systemic disease recurrence remain an ever-present threat to the health and well being of breast cancer survivors. By definition, disease recurrence originates from residual treatment-resistant cells, which regenerate at least the initial breast cancer phenotype. The discovery of the normal breast stem cell has re-ignited interest in the identity and properties of breast cancer stem-like cells and the relationship of these cells to the repopulating ability of treatment-resistant cells. The cancer stem cell model of breast cancer development contrasts with the clonal evolution model, whereas the mixed model draws on features of both. Although the origin and identity of breast cancer stem-like cells is contentious, treatment-resistant cells survive and propagate only because aberrant and potentially druggable signaling pathways are recruited. As a means to increase the rates of breast cancer cure, several approaches to specific targeting of the treatment-resistant cell population exist and include methods for addressing the problem of radioresistance in particular.
Collapse
Affiliation(s)
- Fares Al-Ejeh
- Signal Transduction Lab, Queensland Institute of Medical Research, 300 Herston Road, Brisbane, Queensland 4006, Australia
| | | | | | | | | | | | | | | |
Collapse
|
206
|
Breast cancer, stem cells and sex hormones. Part 3: The impact of the menopause and hormone replacement. Maturitas 2011; 68:129-36. [DOI: 10.1016/j.maturitas.2010.11.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2010] [Revised: 11/08/2010] [Accepted: 11/08/2010] [Indexed: 01/16/2023]
|
207
|
Appraisal of progenitor markers in the context of molecular classification of breast cancers. Breast Cancer Res 2011; 13:102. [PMID: 21345245 PMCID: PMC3109558 DOI: 10.1186/bcr2792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Clinical management of breast cancer relies on case stratification, which increasingly employs molecular markers. The motivation behind delineating breast epithelial differentiation is to better target cancer cases through innate sensitivities bequeathed to the cancer from its normal progenitor state. A combination of histopathological and molecular classification of breast cancer cases suggests a role for progenitors in particular breast cancer cases. Although a remarkable fraction of the real tissue repertoire is maintained within a population of independent cell line cultures, some steps that are closer to the terminal differentiation state and that form a majority of primary human breast tissues are missing in the cell line cultures. This raises concerns about current breast cancer models.
Collapse
|
208
|
Bombonati A, Sgroi DC. The molecular pathology of breast cancer progression. J Pathol 2011; 223:307-17. [PMID: 21125683 PMCID: PMC3069504 DOI: 10.1002/path.2808] [Citation(s) in RCA: 224] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2010] [Revised: 10/08/2010] [Accepted: 10/09/2010] [Indexed: 12/21/2022]
Abstract
The current model of human breast cancer progression proposes a linear multi-step process which initiates as flat epithelial atypia (FEA), progresses to atypical ductal hyperplasia (ADH), evolves into DCIS and culminates in the potentially lethal stage of invasive ductal carcinoma. For several decades a major challenge to human breast cancer research has been the identification of the molecular alterations associated with the different stages of breast cancer progression. Until recently, progress in attaining this goal has been hampered by technical limitations associated with applying advanced molecular technologies to the microscopic preinvasive stages of breast tumorigenesis. Recent advances in comprehensive, high-throughput genetic, transcriptomic and epigenetic technologies in combination with advanced microdissection and ex vivo isolation techniques have provided for a more complete understanding of the complex molecular genetic and molecular biological inter-relationships of the different stages of human breast cancer evolution. Here we review the molecular biological data suggesting that breast cancer develops and evolves along two distinct molecular genetic pathways. We also briefly review gene expression and epigenetic data that support the view of the tumour microenvironment as an important co-conspirator rather than a passive bystander during human breast tumorigenesis.
Collapse
Affiliation(s)
- Alessandro Bombonati
- Department of Pathology, Harvard Medical School, Molecular Pathology Research Unit, Massachusetts General Hospital, Boston, MA, USA
| | | |
Collapse
|
209
|
Fan Y, Chong YS, Choolani MA, Cregan MD, Chan JKY. Unravelling the mystery of stem/progenitor cells in human breast milk. PLoS One 2010; 5:e14421. [PMID: 21203434 PMCID: PMC3010984 DOI: 10.1371/journal.pone.0014421] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2010] [Accepted: 11/11/2010] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Mammary stem cells have been extensively studied as a system to delineate the pathogenesis and treatment of breast cancer. However, research on mammary stem cells requires tissue biopsies which limit the quantity of samples available. We have previously identified putative mammary stem cells in human breast milk, and here, we further characterised the cellular component of human breast milk. METHODOLOGY/PRINCIPAL FINDINGS We identified markers associated with haemopoietic, mesenchymal and neuro-epithelial lineages in the cellular component of human breast milk. We found 2.6 ± 0.8% (mean ± SEM) and 0.7 ± 0.2% of the whole cell population (WCP) were found to be CD133+ and CD34+ respectively, 27.8 ± 9.1% of the WCP to be positive for Stro-1 through flow-cytometry. Expressions of neuro-ectodermal stem cell markers such as nestin and cytokeratin 5 were found through reverse-transcription polymerase chain reaction (RT-PCR), and in 4.17 ± 0.2% and 0.9 ± 0.2% of the WCP on flow-cytometry. We also established the presence of a side-population (SP) (1.8 ± 0.4% of WCP) as well as CD133+ cells (1.7 ± 0.5% of the WCP). Characterisation of the sorted SP and non-SP, CD133+ and CD133- cells carried out showed enrichment of CD326 (EPCAM) in the SP cells (50.6 ± 8.6 vs 18.1 ± 6.0, P-value = 0.02). However, culture in a wide range of in vitro conditions revealed the atypical behaviour of stem/progenitor cells in human breast milk; in that if they are present, they do not respond to established culture protocols of stem/progenitor cells. CONCLUSIONS/SIGNIFICANCE The identification of primitive cell types within human breast milk may provide a non-invasive source of relevant mammary cells for a wide-range of applications; even the possibility of banking one's own stem cell for every breastfeeding woman.
Collapse
Affiliation(s)
- Yiping Fan
- Experimental Fetal Medicine Group, Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University Health System, Singapore, Singapore
- * E-mail: (YF); (JKYC)
| | - Yap Seng Chong
- Experimental Fetal Medicine Group, Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University Health System, Singapore, Singapore
| | - Mahesh A. Choolani
- Experimental Fetal Medicine Group, Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University Health System, Singapore, Singapore
| | - Mark D. Cregan
- School of Biomedical, Biomolecular and Chemical Sciences, The University of Western Australia, Crawley, Perth, Australia
| | - Jerry K. Y. Chan
- Experimental Fetal Medicine Group, Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University Health System, Singapore, Singapore
- Department of Reproductive Medicine, KK Women's and Children's Hospital, Singapore, Singapore
- Cancer and Stem Cell Biology Program, Duke-NUS Graduate Medical School, Singapore, Singapore
- * E-mail: (YF); (JKYC)
| |
Collapse
|
210
|
Nardone A, Corvigno S, Brescia A, D'Andrea D, Limite G, Veneziani BM. Long-term cultures of stem/progenitor cells from lobular and ductal breast carcinomas under non-adherent conditions. Cytotechnology 2010; 63:67-80. [PMID: 21188518 DOI: 10.1007/s10616-010-9328-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2010] [Accepted: 12/06/2010] [Indexed: 01/16/2023] Open
Abstract
A small subpopulation of stem/progenitor cells can give rise to the diversity of differentiated cells that comprise the bulk of the tumor. Are proliferating cells, within the bulk of tumor, few cells with uncommon features? The cell biological approach provides a limitless model for studying the hierarchical organization of progenitor subpopulation and identifying potential therapeutic targets. Aim of the study was to expand patients' breast cancer cells for evaluating functional cell properties, and to characterize the protein expression profile of selected cells to be compared with that of primary tumors. Breast cancer cells from estrogen receptor (ERα) positive, HER2 negative lobular (LoBS cells) and ductal (DuBS cells) histotype were cultured under non-adherent conditions to form mammospheres. Sorting of the cells by their surface expression of CD24 and CD44 gave rise to subpopulations which were propagated, enriched and characterized for the expression of epithelial and stromal markers. We found that non-adherent culture conditions generate mammospheres of slowly proliferating cells; single cells, dissociated from mammospheres, grow in soft agar; long-term cultured LoBS and DuBS cells, CD44+/CD24low, express cytokeratin 5 (CK5), α-smooth muscle actin (α-sma) and vimentin, known as markers of basal/myoepithelial cells; and ERα (only DuBS cells), HER1 (EGF-Receptor), activated HER2, and cyclinD1 as markers of luminal epithelial cell. Isolates of cells from breast cancer patients may be a tool for a marker-driven testing of targeted therapies.
Collapse
Affiliation(s)
- Agostina Nardone
- Dipartimento di Biologia e Patologia Cellulare e Molecolare "L. Califano", Università di Napoli Federico II, via Pansini 5, 80131, Naples, Italy
| | | | | | | | | | | |
Collapse
|
211
|
Keller PJ, Lin AF, Arendt LM, Klebba I, Jones AD, Rudnick JA, DiMeo TA, Gilmore H, Jefferson DM, Graham RA, Naber SP, Schnitt S, Kuperwasser C. Mapping the cellular and molecular heterogeneity of normal and malignant breast tissues and cultured cell lines. Breast Cancer Res 2010; 12:R87. [PMID: 20964822 PMCID: PMC3096980 DOI: 10.1186/bcr2755] [Citation(s) in RCA: 148] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2010] [Accepted: 10/21/2010] [Indexed: 11/29/2022] Open
Abstract
Introduction Normal and neoplastic breast tissues are comprised of heterogeneous populations of epithelial cells exhibiting various degrees of maturation and differentiation. While cultured cell lines have been derived from both normal and malignant tissues, it remains unclear to what extent they retain similar levels of differentiation and heterogeneity as that found within breast tissues. Methods We used 12 reduction mammoplasty tissues, 15 primary breast cancer tissues, and 20 human breast epithelial cell lines (16 cancer lines, 4 normal lines) to perform flow cytometry for CD44, CD24, epithelial cell adhesion molecule (EpCAM), and CD49f expression, as well as immunohistochemistry, and in vivo tumor xenograft formation studies to extensively analyze the molecular and cellular characteristics of breast epithelial cell lineages. Results Human breast tissues contain four distinguishable epithelial differentiation states (two luminal phenotypes and two basal phenotypes) that differ on the basis of CD24, EpCAM and CD49f expression. Primary human breast cancer tissues also contain these four cellular states, but in altered proportions compared to normal tissues. In contrast, cultured cancer cell lines are enriched for rare basal and mesenchymal epithelial phenotypes, which are normally present in small numbers within human tissues. Similarly, cultured normal human mammary epithelial cell lines are enriched for rare basal and mesenchymal phenotypes that represent a minor fraction of cells within reduction mammoplasty tissues. Furthermore, although normal human mammary epithelial cell lines exhibit features of bi-potent progenitor cells they are unable to differentiate into mature luminal breast epithelial cells under standard culture conditions. Conclusions As a group breast cancer cell lines represent the heterogeneity of human breast tumors, but individually they exhibit increased lineage-restricted profiles that fall short of truly representing the intratumoral heterogeneity of individual breast tumors. Additionally, normal human mammary epithelial cell lines fail to retain much of the cellular diversity found in human breast tissues and are enriched for differentiation states that are a minority in breast tissues, although they do exhibit features of bi-potent basal progenitor cells. These findings suggest that collections of cell lines representing multiple cell types can be used to model the cellular heterogeneity of tissues.
Collapse
Affiliation(s)
- Patrica J Keller
- Department of Anatomy & Cellular Biology, Sackler School, Tufts University School of Medicine, Boston, MA 02111, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
212
|
Tissue proteomics of the human mammary gland: towards an abridged definition of the molecular phenotypes underlying epithelial normalcy. Mol Oncol 2010; 4:539-61. [PMID: 21036680 DOI: 10.1016/j.molonc.2010.09.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2010] [Revised: 09/29/2010] [Accepted: 09/30/2010] [Indexed: 01/23/2023] Open
Abstract
Our limited understanding of the biological impact of the whole spectrum of early breast lesions together with a lack of accurate molecular-based risk criteria for the diagnosis and assignment of prognostic significance to biopsy findings presents an important problem in the clinical management of patients harboring precancerous breast lesions. As a result, there is a need to identify biomarkers that can better determine the outcome of early breast lesions by identifying subpopulations of cells in breast premalignant disease that are at high-risk of progression to invasive disease. A first step towards achieving this goal will be to define the molecular phenotypes of the various cell types and precursors - generated by the stem cell hierarchy - that are present in normal and benign conditions of the breast. To date there have been very few systematic proteomic studies aimed at characterizing the phenotypes of the different cell subpopulations present in normal human mammary tissue, partly due to the formidable heterogeneity of mammary tissue, but also due to limitations of the current proteomic technologies. Work in our laboratories has attempted to address in a systematic fashion some of these limitations and here we present our efforts to search for biomarkers using normal fresh tissue from non-neoplastic breast samples. From the data generated by the 2D gel-based proteomic profiling we were able to compile a protein database of normal human breast epithelial tissue that was used to support the biomarker discovery program. We review and present new data on the putative cell-progenitor marker cytokeratin 15 (CK15), and describe a novel marker, dihydropyriminidase-related protein 3 (DRP3) that in combination with CK15 and other well known proteins were used to define molecular phenotypes of normal human breast epithelial cells and their progenitors in resting acini, lactating alveoli, and large collecting ducts of the nipple. Preliminary results are also presented concerning DRP3 positive usual ductal hyperplasias (UDHs) and on single cell layer columnar cells (CCCs). At least two bona fide biomarkers of undifferentiated ERα/PgR negative luminal cells emerged from these studies, CK15 and c-KIT, which in combination with transformation markers may lead to the establishment of a protein signature able to identify breast precancerous at risk of progressing to invasive disease.
Collapse
|
213
|
Abstract
The origins of the epithelial cells participating in the development, tissue homeostasis, and cancer of the human breast are poorly understood. However, emerging evidence suggests a role for adult tissue-specific stem cells in these processes. In a hierarchical manner, these generate the two main mammary cell lineages, producing an increasing number of cells with distinct properties. Understanding the biological characteristics of human breast stem cells and their progeny is crucial in attempts to compare the features of normal stem cells and cancer precursor cells and distinguish these from nonprecursor cells and cells from the bulk of a tumor. A historical overview of research on human breast stem cells in primary tissue and in culture reveals the progress that has been made in this area, whereas a focus on the cell-of-origin and reprogramming that occurs during neoplastic conversion provides insight into the enigmatic way in which human breast cancers are skewed toward the luminal epithelial lineage.
Collapse
Affiliation(s)
- Ole William Petersen
- Department of Cellular and Molecular Medicine, Faculty of Health Sciences, The Panum Building, University of Copenhagen, DK-2200 Copenhagen N, Denmark.
| | | |
Collapse
|
214
|
Huang THM, Esteller M. Chromatin remodeling in mammary gland differentiation and breast tumorigenesis. Cold Spring Harb Perspect Biol 2010; 2:a004515. [PMID: 20610549 DOI: 10.1101/cshperspect.a004515] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
DNA methylation and histone modifications have essential roles in remodeling chromatin structure of genes necessary for multi-lineage differentiation of mammary stem/progenitor cells. The role of this well-defined epigenetic programming is to heritably maintain transcriptional plasticity of these loci over multiple cell divisions in the differentiated progeny. Epigenetic events can be deregulated in progenitor cells chronically exposed to xenoestrogen or inflammatory microenvironment. In addition, epigenetically mediated silencing of genes associated with tumor suppression can take place, resulting in clonal proliferation of undifferentiated or semidifferentiated cells. Alternatively, microRNAs that negatively regulate the expression of their protein-coding targets may become epigenetically repressed, leading to oncogenic expression of these genes. Here we further discuss interactions between DNA methylation and histone modifications that have significant contributions to the differentiation of mammary stem/progenitor cells and to tumor initiation and progression.
Collapse
Affiliation(s)
- Tim H-M Huang
- Human Cancer Genetics Program, Department of Molecular Virology, Immunology, and Medical Genetics, The Ohio State University, Columbus, Ohio 43220, USA.
| | | |
Collapse
|
215
|
|
216
|
Yoshimura H, Michishita M, Ohkusu-Tsukada K, Takahashi K. Increased presence of stromal myofibroblasts and tenascin-C with malignant progression in canine mammary tumors. Vet Pathol 2010; 48:313-21. [PMID: 20571146 DOI: 10.1177/0300985810369901] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The aims of this study were to determine whether the appearance of stromal myofibroblasts and the expression of tenascin-C (Tn-C) correlate with the grade of malignancy in canine mammary tumors and to determine the main cellular source of Tn-C in these tumors. Single or double immunostaining using antibodies against α-smooth muscle actin (α-SMA) and Tn-C was performed on serial sections of normal canine mammary glands as well as those with lobular hyperplasia, simple adenoma, and simple carcinoma. Thirty-nine of 42 simple carcinomas (93%) exhibited stromal α-SMA-positive myofibroblasts and Tn-C expression. Only 6 of 11 cases of simple adenoma (55%) showed these changes, whereas no changes were observed in normal mammary gland tissue or cases of lobular hyperplasia. The distribution of stromal Tn-C correlated with the presence of myofibroblasts. However, Tn-C immunoreactivity was also occasionally observed in the basement membrane zone surrounding the myoepithelial layer in normal tissue, benign lesions, and tubulopapillary carcinomas. This pattern of staining was not related to the presence of myofibroblasts. The appearance of stromal myofibroblasts and expression of Tn-C were significantly correlated with higher histological grades of malignancy and vascular/lymphatic invasion in simple carcinomas. Stromal myofibroblasts appear to be a major cellular source of Tn-C and play an important role in the development of canine mammary tumors. The Tn-C expressed in the basement membrane zone of normal, hyperplastic, and neoplastic mammary tissue, which is likely produced by neighboring myoepithelial cells, may differ functionally from the Tn-C produced by myofibroblasts.
Collapse
Affiliation(s)
- H Yoshimura
- Department of Veterinary Pathology, Faculty of Veterinary Medicine, Nippon Veterinary and Life Science University, 1-7-1, Kyonan-cho, Musashino, Tokyo 180-8602, Japan
| | | | | | | |
Collapse
|
217
|
Rodríguez Salas N, González González E, Gamallo Amat C. Breast cancer stem cell hypothesis: clinical relevance (answering breast cancer clinical features). Clin Transl Oncol 2010; 12:395-400. [DOI: 10.1007/s12094-010-0526-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
218
|
Abstract
Normal stem cell niches typically are identified by their distinctive anatomical features and by association with tissue-specific stem cells. Identifying cancer stem cell (CSC) niches presents a special problem because there are few if any common anatomical features among tumors, and the physical phenotypes that reportedly describe the CSCs as entities may be subject to the host's microenvironment, sex, and tumor stage. Irrespective of a niche's location, the occupant's phenotype, or the precise molecular composition, all niches must do basically the same thing: maintain the activities in a stem cell that define it as such. Therefore, a potentially successful strategy, both for elaborating a molecular and cellular portrait of a CSC niche, and for therapeutically targeting them, is to identify components in the tumor microenvironment that are required for maintaining the functions of self-renewal, differentiation, and quiescence in the face of cytotoxic therapeutic regimens.
Collapse
Affiliation(s)
- Mark A LaBarge
- Life Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.
| |
Collapse
|
219
|
Podo F, Buydens LMC, Degani H, Hilhorst R, Klipp E, Gribbestad IS, Van Huffel S, van Laarhoven HWM, Luts J, Monleon D, Postma GJ, Schneiderhan-Marra N, Santoro F, Wouters H, Russnes HG, Sørlie T, Tagliabue E, Børresen-Dale AL. Triple-negative breast cancer: present challenges and new perspectives. Mol Oncol 2010; 4:209-29. [PMID: 20537966 PMCID: PMC5527939 DOI: 10.1016/j.molonc.2010.04.006] [Citation(s) in RCA: 229] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2010] [Accepted: 04/16/2010] [Indexed: 12/28/2022] Open
Abstract
Triple-negative breast cancers (TNBC), characterized by absence of estrogen receptor (ER), progesterone receptor (PR) and lack of overexpression of human epidermal growth factor receptor 2 (HER2), are typically associated with poor prognosis, due to aggressive tumor phenotype(s), only partial response to chemotherapy and present lack of clinically established targeted therapies. Advances in the design of individualized strategies for treatment of TNBC patients require further elucidation, by combined 'omics' approaches, of the molecular mechanisms underlying TNBC phenotypic heterogeneity, and the still poorly understood association of TNBC with BRCA1 mutations. An overview is here presented on TNBC profiling in terms of expression signatures, within the functional genomic breast tumor classification, and ongoing efforts toward identification of new therapy targets and bioimaging markers. Due to the complexity of aberrant molecular patterns involved in expression, pathological progression and biological/clinical heterogeneity, the search for novel TNBC biomarkers and therapy targets requires collection of multi-dimensional data sets, use of robust multivariate data analysis techniques and development of innovative systems biology approaches.
Collapse
Affiliation(s)
- Franca Podo
- Department of Cell Biology and Neurosciences, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
220
|
Taylor MA, Parvani JG, Schiemann WP. The pathophysiology of epithelial-mesenchymal transition induced by transforming growth factor-beta in normal and malignant mammary epithelial cells. J Mammary Gland Biol Neoplasia 2010; 15:169-90. [PMID: 20467795 PMCID: PMC3721368 DOI: 10.1007/s10911-010-9181-1] [Citation(s) in RCA: 183] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2010] [Accepted: 04/22/2010] [Indexed: 12/14/2022] Open
Abstract
Epithelial-mesenchymal transition (EMT) is an essential process that drives polarized, immotile mammary epithelial cells (MECs) to acquire apolar, highly migratory fibroblastoid-like features. EMT is an indispensable process that is associated with normal tissue development and organogenesis, as well as with tissue remodeling and wound healing. In stark contrast, inappropriate reactivation of EMT readily contributes to the development of a variety of human pathologies, particularly those associated with tissue fibrosis and cancer cell invasion and metastasis, including that by breast cancer cells. Although metastasis is unequivocally the most lethal aspect of breast cancer and the most prominent feature associated with disease recurrence, the molecular mechanisms whereby EMT mediates the initiation and resolution of breast cancer metastasis remains poorly understood. Transforming growth factor-beta (TGF-beta) is a multifunctional cytokine that is intimately involved in regulating numerous physiological processes, including cellular differentiation, homeostasis, and EMT. In addition, TGF-beta also functions as a powerful tumor suppressor in MECs, whose neoplastic development ultimately converts TGF-beta into an oncogenic cytokine in aggressive late-stage mammary tumors. Recent findings have implicated the process of EMT in mediating the functional conversion of TGF-beta during breast cancer progression, suggesting that the chemotherapeutic targeting of EMT induced by TGF-beta may offer new inroads in ameliorating metastatic disease in breast cancer patients. Here we review the molecular, cellular, and microenvironmental factors that contribute to the pathophysiological activities of TGF-beta during its regulation of EMT in normal and malignant MECs.
Collapse
Affiliation(s)
- Molly A Taylor
- Case Comprehensive Cancer Center, Case Western Reserve University, Wolstein Research Building, 2103 Cornell Road, Cleveland, OH 44106, USA
| | | | | |
Collapse
|
221
|
|
222
|
Bachelard-Cascales E, Chapellier M, Delay E, Pochon G, Voeltzel T, Puisieux A, Caron de Fromentel C, Maguer-Satta V. The CD10 Enzyme Is a Key Player to Identify and Regulate Human Mammary Stem Cells. Stem Cells 2010; 28:1081-8. [DOI: 10.1002/stem.435] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
223
|
|
224
|
Lim E, Wu D, Pal B, Bouras T, Asselin-Labat ML, Vaillant F, Yagita H, Lindeman GJ, Smyth GK, Visvader JE. Transcriptome analyses of mouse and human mammary cell subpopulations reveal multiple conserved genes and pathways. Breast Cancer Res 2010; 12:R21. [PMID: 20346151 PMCID: PMC2879567 DOI: 10.1186/bcr2560] [Citation(s) in RCA: 332] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2010] [Revised: 03/17/2010] [Accepted: 03/26/2010] [Indexed: 01/07/2023] Open
Abstract
Introduction Molecular characterization of the normal epithelial cell types that reside in the mammary gland is an important step toward understanding pathways that regulate self-renewal, lineage commitment, and differentiation along the hierarchy. Here we determined the gene expression signatures of four distinct subpopulations isolated from the mouse mammary gland. The epithelial cell signatures were used to interrogate mouse models of mammary tumorigenesis and to compare with their normal human counterpart subsets to identify conserved genes and networks. Methods RNA was prepared from freshly sorted mouse mammary cell subpopulations (mammary stem cell (MaSC)-enriched, committed luminal progenitor, mature luminal and stromal cell) and used for gene expression profiling analysis on the Illumina platform. Gene signatures were derived and compared with those previously reported for the analogous normal human mammary cell subpopulations. The mouse and human epithelial subset signatures were then subjected to Ingenuity Pathway Analysis (IPA) to identify conserved pathways. Results The four mouse mammary cell subpopulations exhibited distinct gene signatures. Comparison of these signatures with the molecular profiles of different mouse models of mammary tumorigenesis revealed that tumors arising in MMTV-Wnt-1 and p53-/- mice were enriched for MaSC-subset genes, whereas the gene profiles of MMTV-Neu and MMTV-PyMT tumors were most concordant with the luminal progenitor cell signature. Comparison of the mouse mammary epithelial cell signatures with their human counterparts revealed substantial conservation of genes, whereas IPA highlighted a number of conserved pathways in the three epithelial subsets. Conclusions The conservation of genes and pathways across species further validates the use of the mouse as a model to study mammary gland development and highlights pathways that are likely to govern cell-fate decisions and differentiation. It is noteworthy that many of the conserved genes in the MaSC population have been considered as epithelial-mesenchymal transition (EMT) signature genes. Therefore, the expression of these genes in tumor cells may reflect basal epithelial cell characteristics and not necessarily cells that have undergone an EMT. Comparative analyses of normal mouse epithelial subsets with murine tumor models have implicated distinct cell types in contributing to tumorigenesis in the different models.
Collapse
Affiliation(s)
- Elgene Lim
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
225
|
Wendt MK, Allington TM, Schiemann WP. Mechanisms of the epithelial-mesenchymal transition by TGF-beta. Future Oncol 2010; 5:1145-68. [PMID: 19852727 DOI: 10.2217/fon.09.90] [Citation(s) in RCA: 252] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The formation of epithelial cell barriers results from the defined spatiotemporal differentiation of stem cells into a specialized and polarized epithelium, a process termed mesenchymal-epithelial transition. The reverse process, epithelial-mesenchymal transition (EMT), is a metastable process that enables polarized epithelial cells to acquire a motile fibroblastoid phenotype. Physiological EMT also plays an essential role in promoting tissue healing, remodeling or repair in response to a variety of pathological insults. On the other hand, pathophysiological EMT is a critical step in mediating the acquisition of metastatic phenotypes by localized carcinomas. Although metastasis clearly is the most lethal aspect of cancer, our knowledge of the molecular events that govern its development, including those underlying EMT, remain relatively undefined. Transforming growth factor-beta (TGF-beta) is a multifunctional cytokine that oversees and directs all aspects of cell development, differentiation and homeostasis, as well as suppresses their uncontrolled proliferation and transformation. Quite dichotomously, tumorigenesis subverts the tumor suppressing function of TGF-beta, and in doing so, converts TGF-beta to a tumor promoter that stimulates pathophysiological EMT and metastasis. It therefore stands to reason that determining how TGF-beta induces EMT in developing neoplasms will enable science and medicine to produce novel pharmacological agents capable of preventing its ability to do so, thereby improving the clinical course of cancer patients. Here we review the cellular, molecular and microenvironmental mechanisms used by TGF-beta to mediate its stimulation of EMT in normal and malignant cells.
Collapse
Affiliation(s)
- Michael K Wendt
- Department of Pharmacology, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado 80045, USA
| | | | | |
Collapse
|
226
|
de Neergaard M, Kim J, Villadsen R, Fridriksdottir AJ, Rank F, Timmermans-Wielenga V, Langerød A, Børresen-Dale AL, Petersen OW, Rønnov-Jessen L. Epithelial-stromal interaction 1 (EPSTI1) substitutes for peritumoral fibroblasts in the tumor microenvironment. THE AMERICAN JOURNAL OF PATHOLOGY 2010; 176:1229-40. [PMID: 20133812 DOI: 10.2353/ajpath.2010.090648] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Tumor cells can activate stroma, yet the implication of this activation in terms of reciprocal induction of gene expression in tumor cells is poorly understood. Epithelial Stromal Interaction 1 (EPSTI1) is an interferon response gene originally isolated from heterotypic recombinant cultures of human breast cancer cells and activated breast myofibroblasts. Here we describe the first immunolocalization of EPSTI1 in normal and cancerous breast tissue, and we provide evidence for a role of this molecule in the regulation of tumor cell properties and epithelial-mesenchymal transition. In general, no EPSTI1 staining was observed in normal breast epithelial cells from reduction mammoplasties (n=25). However, in carcinomas, staining was positive in 22 of 40 biopsies and inversely correlated with the level of differentiation. To address the function of EPSTI1, we expressed EPSTI1 ectopically in one cell line and silenced endogenous EPSTI1 by RNA interference in another. Irrespective of the experimental approach, EPSTI1 expression led to an increase in tumorsphere formation-a property associated with breast stem/progenitor cells. Most remarkably, we show that EPSTI1, by conveying spread of tumor cells, can replace peritumoral activated fibroblasts in a tumor environment assay. These observations implicate EPSTI1 as a hitherto unappreciated regulator of tumor cell properties.
Collapse
Affiliation(s)
- Michala de Neergaard
- Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, and Department of Pathology, State University Hospital, Rigshospitalet, Copenhagen, Denmark
| | | | | | | | | | | | | | | | | | | |
Collapse
|
227
|
Pece S, Tosoni D, Confalonieri S, Mazzarol G, Vecchi M, Ronzoni S, Bernard L, Viale G, Pelicci PG, Di Fiore PP. Biological and molecular heterogeneity of breast cancers correlates with their cancer stem cell content. Cell 2010; 140:62-73. [PMID: 20074520 DOI: 10.1016/j.cell.2009.12.007] [Citation(s) in RCA: 701] [Impact Index Per Article: 50.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2008] [Revised: 02/18/2009] [Accepted: 11/24/2009] [Indexed: 12/13/2022]
Abstract
Pathways that govern stem cell (SC) function are often subverted in cancer. Here, we report the isolation to near purity of human normal mammary SCs (hNMSCs), from cultured mammospheres, on the basis of their ability to retain the lipophilic dye PKH26 as a consequence of their quiescent nature. PKH26-positive cells possess all the characteristics of hNMSCs. The transcriptional profile of PKH26-positive cells (hNMSC signature) was able to predict biological and molecular features of breast cancers. By using markers of the hNMSC signature, we prospectively isolated SCs from the normal gland and from breast tumors. Poorly differentiated (G3) cancers displayed higher content of prospectively isolated cancer SCs (CSCs) than did well-differentiated (G1) cancers. By comparing G3 and G1 tumors in xenotransplantation experiments, we directly demonstrated that G3s are enriched in CSCs. Our data support the notion that the heterogeneous phenotypical and molecular traits of human breast cancers are a function of their CSC content.
Collapse
Affiliation(s)
- Salvatore Pece
- IFOM, Fondazione Istituto FIRC di Oncologia Molecolare, Via Adamello 16, 20139 Milan, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
228
|
|
229
|
Jeselsohn R, Brown NE, Arendt L, Klebba I, Hu MG, Kuperwasser C, Hinds PW. Cyclin D1 kinase activity is required for the self-renewal of mammary stem and progenitor cells that are targets of MMTV-ErbB2 tumorigenesis. Cancer Cell 2010; 17:65-76. [PMID: 20129248 PMCID: PMC2818730 DOI: 10.1016/j.ccr.2009.11.024] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2008] [Revised: 06/25/2009] [Accepted: 11/30/2009] [Indexed: 11/25/2022]
Abstract
Transplantation studies have demonstrated the existence of mammary progenitor cells with the ability to self-renew and regenerate a functional mammary gland. Although these progenitors are the likely targets for oncogenic transformation, correlating progenitor populations with certain oncogenic stimuli has been difficult. Cyclin D1 is required for lobuloalveolar development during pregnancy and lactation as well as MMTV-ErbB2- but not MMTV-Wnt1-mediated tumorigenesis. Using a kinase-deficient cyclin D1 mouse, we identified two functional mammary progenitor cell populations, one of which is the target of MMTV-ErbB2. Moreover, cyclin D1 activity is required for the self-renewal and differentiation of mammary progenitors because its abrogation leads to a failure to maintain the mammary epithelial regenerative potential and also results in defects in luminal lineage differentiation.
Collapse
MESH Headings
- Animals
- Antigens, Viral, Tumor/genetics
- Antigens, Viral, Tumor/metabolism
- Cell Differentiation/physiology
- Cyclin D1/metabolism
- Female
- Flow Cytometry
- Fluorescent Antibody Technique
- Gene Expression Profiling
- Gene Knock-In Techniques
- Immunohistochemistry
- Mammary Glands, Animal/cytology
- Mammary Glands, Animal/metabolism
- Mammary Neoplasms, Experimental/genetics
- Mammary Neoplasms, Experimental/metabolism
- Mice
- Receptor, ErbB-2/genetics
- Receptor, ErbB-2/metabolism
- Stem Cells/cytology
- Stem Cells/enzymology
- Viral Core Proteins/genetics
- Viral Core Proteins/metabolism
Collapse
Affiliation(s)
- Rinath Jeselsohn
- Molecular Oncology Research Institute, Tufts Medical Center, Boston, MA 02111
| | - Nelson E. Brown
- Molecular Oncology Research Institute, Tufts Medical Center, Boston, MA 02111
| | - Lisa Arendt
- Molecular Oncology Research Institute, Tufts Medical Center, Boston, MA 02111
- Department of Anatomy and Cellular Biology, Tufts University School of Medicine, Boston, MA 02111
| | - Ina Klebba
- Molecular Oncology Research Institute, Tufts Medical Center, Boston, MA 02111
- Department of Anatomy and Cellular Biology, Tufts University School of Medicine, Boston, MA 02111
| | - Miaofen G. Hu
- Molecular Oncology Research Institute, Tufts Medical Center, Boston, MA 02111
| | - Charlotte Kuperwasser
- Molecular Oncology Research Institute, Tufts Medical Center, Boston, MA 02111
- Department of Anatomy and Cellular Biology, Tufts University School of Medicine, Boston, MA 02111
- To whom correspondence may be addressed: Philip W. Hinds, Ph.D., Molecular Oncology Research Institute, Tufts Medical Center, 800 Washington Street, Box 5609, Boston, MA 02111, Phone: (617) 636-7947, Fax: (617) 636-7813, , Charlotte Kuperwasser, Ph.D., Dept of Anatomy & Cell Biology, Tufts University School of Medicine, Molecular Oncology Research Institute, 800 Washington St, Box 5609, Boston, MA 02111, Phone: (617) 636-2364, Fax: (617) 636-6127,
| | - Philip W. Hinds
- Molecular Oncology Research Institute, Tufts Medical Center, Boston, MA 02111
- To whom correspondence may be addressed: Philip W. Hinds, Ph.D., Molecular Oncology Research Institute, Tufts Medical Center, 800 Washington Street, Box 5609, Boston, MA 02111, Phone: (617) 636-7947, Fax: (617) 636-7813, , Charlotte Kuperwasser, Ph.D., Dept of Anatomy & Cell Biology, Tufts University School of Medicine, Molecular Oncology Research Institute, 800 Washington St, Box 5609, Boston, MA 02111, Phone: (617) 636-2364, Fax: (617) 636-6127,
| |
Collapse
|
230
|
Bosch A, Eroles P, Zaragoza R, Viña JR, Lluch A. Triple-negative breast cancer: molecular features, pathogenesis, treatment and current lines of research. Cancer Treat Rev 2010; 36:206-15. [PMID: 20060649 DOI: 10.1016/j.ctrv.2009.12.002] [Citation(s) in RCA: 189] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2009] [Revised: 11/27/2009] [Accepted: 12/02/2009] [Indexed: 12/18/2022]
Abstract
Breast cancer is a heterogeneous disease with different morphologies, molecular profiles, clinical behaviour and response to therapy. The triple negative is a particular type of breast cancer defined by absence of oestrogen and progesterone receptor expression as well as absence of ERBB2 amplification. It is characterized by its biological aggressiveness, worse prognosis and lack of a therapeutic target in contrast with hormonal receptor positive and ERBB2+ breast cancers. Given these characteristics, triple-negative breast cancer is a challenge in today's clinical practice. A new breast cancer classification emerged recently in the scientific scene based in gene expression profiles. The new subgroups (luminal, ERBB2, normal breast and basal-like) have distinct gene expression patterns and phenotypical characteristics. Triple-negative breast cancer shares phenotypical features with basal-like breast cancer, which is in turn the most aggressive and with worse outcome. Since microarray gene-expression assays are only used in the research setting, clinicians use the triple-negative definition as a surrogate of basal-like breast cancer. The aim of this review, that focuses on triple-negative breast cancer, is to summarize the most relevant knowledge on this particular type of cancer in terms of molecular features, pathogenesis, clinical characteristics, current treatments and the new therapeutic options that include the use of platinum compounds, EGFR antagonists, antiangiogenics and PARP inhibitors. Advances in research are promising and new types of active drugs will become a reality in the near future, making possible a better outcome for this subgroup of breast cancer patients.
Collapse
Affiliation(s)
- Ana Bosch
- Fundación Investigación del Hospital Clínico Universitario, Av. Blasco Ibáñez 17, 46010 Valencia, Spain.
| | | | | | | | | |
Collapse
|
231
|
|
232
|
Visvader JE. Keeping abreast of the mammary epithelial hierarchy and breast tumorigenesis. Genes Dev 2009; 23:2563-77. [PMID: 19933147 DOI: 10.1101/gad.1849509] [Citation(s) in RCA: 402] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The epithelium of the mammary gland exists in a highly dynamic state, undergoing dramatic morphogenetic changes during puberty, pregnancy, lactation, and regression. The recent identification of stem and progenitor populations in mouse and human mammary tissue has provided evidence that the mammary epithelium is organized in a hierarchical manner. Characterization of these normal epithelial subtypes is an important step toward understanding which cells are predisposed to oncogenesis. This review summarizes progress in the field toward defining constituent cells and key molecular regulators of the mammary epithelial hierarchy. Potential relationships between normal epithelial populations and breast tumor subtypes are discussed, with implications for understanding the cellular etiology underpinning breast tumor heterogeneity.
Collapse
Affiliation(s)
- Jane E Visvader
- VBCRC (Victorian Breast Cancer Research Consortium) Laboratory, The Walter and Eliza Hall of Medical Research, Parkville, Victoria 3052, Australia.
| |
Collapse
|
233
|
Sun P, Yuan Y, Li A, Li B, Dai X. Cytokeratin expression during mouse embryonic and early postnatal mammary gland development. Histochem Cell Biol 2009; 133:213-21. [PMID: 19937336 PMCID: PMC2807942 DOI: 10.1007/s00418-009-0662-5] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/01/2009] [Indexed: 10/27/2022]
Abstract
Cytokeratins are intermediate filament proteins found in most epithelial cells including the mammary epithelium. Specific cytokeratin expression has been found to mark different epithelial cell lineages and also to associate with putative mammary stem/progenitor cells. However, a comparative analysis of the expression of cytokaratins during embryonic and postnatal mammary development is currently lacking. Moreover, it is not clear whether the different classes of putative mammary stem/progenitor cells exist during embryonic development. Here, we use double/triple-label immunofluorescence and immunohistochemistry to systematically compare the expression of cytokeratin 5 (K5), cytokeratin 6 (K6), cytokeratin 8 (K8), cytokeratin 14 (K14) and cytokeratin 19 (K19) in embryonic and early postnatal mouse mammary glands. We show that K6(+) and K8(+)/K14(+) putative mammary progenitor cells arise during embryogenesis with distinct temporal and spatial distributions. Moreover, we describe a transient disconnection of the expression of K5 and K14, two cytokeratins that are often co-expressed, during the first postnatal weeks of mammary development. Finally, we report that cytokeratin expression in cultured primary mammary epithelial cells mimics that during the early stages of postnatal mammary development. These studies demonstrate an embryonic origin of putative mammary stem/progenitor cells. Moreover, they provide additional insights into the use of specific cytokeratins as markers of mammary epithelial differentiation, or the use of their promoters to direct gene overexpression or ablation in genetic studies of mouse mammary development.
Collapse
Affiliation(s)
- Peng Sun
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, CA 92697-1700, USA
| | | | | | | | | |
Collapse
|
234
|
Abstract
Spermatogonial stem cells (SSCs; A(s) spermatogonia) and their direct descendants (A(pr) and A(al) spermatogonia) are preferentially located in those areas of the seminiferous tubules that border on the interstitial tissue. Fewer of these cells are present in tubule areas directly bordering on another tubule. Therefore, the SSC niche is related to the presence of interstitial tissue. The somatic cells within the seminiferous tubules, the Sertoli cells, are able to produce growth factors that stimulate self-renewal (GDNF, FGF2) and differentiation (activin A, BMP4, and SCF) of the SSCs. As Sertoli cells are everywhere on the basal membrane of the tubules, other factors coming from outside the tubules must determine, either directly or indirectly via Sertoli cells, whether in a particular area self-renewal of SSCs will be preferred or differentiation in the form of A(pr) formation. Self-renewal will be preferred in the stem cell niche and differentiation outside of the niche. Factors that could link the niche to the interstitial tissue are CSF1, produced by Leydig cells that stimulate stem cell proliferation and FSH, the concentration of which will be highest near blood vessels and that stimulates GDNF production by Sertoli cells.
Collapse
Affiliation(s)
- Dirk G de Rooij
- Center for Reproductive Medicine, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands.
| |
Collapse
|
235
|
Pommier SJ, Quan GG, Christante D, Muller P, Newell AEH, Olson SB, Diggs B, Muldoon L, Neuwelt E, Pommier RF. Characterizing the HER2/neu status and metastatic potential of breast cancer stem/progenitor cells. Ann Surg Oncol 2009; 17:613-23. [PMID: 19838757 DOI: 10.1245/s10434-009-0730-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2009] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Treatment resistance, long latency, and high recurrence rates suggest that breast cancers arise from defective breast stem cells. HYPOTHESIS Within cancers, subpopulations of cells will demonstrate differences in stem/progenitor potential, HER2/neu amplification, and gene expression. Related cells will be found in normal breast tissue. METHODS ER-/PR-/HER2/neu + breast cancer cells were flow-sorted into subpopulations: (A) CD49f(+) CD24(-), (B) CD49f(+)CD24(+), (C) CD49f CD24(-), and (D) CD49f(-)CD24(+). Gel matrix cell invasion, fluorescence in situ hybridization (FISH) HER2/neu amplification, and qRT-PCR gene expression were measured in all groups. Cells from sorted groups were implanted into rat brains. Resultant tumors were analyzed by immunohistochemistry (IHC) and FISH. Normal breast tissue was examined by IHC. RESULTS Tumor development varied among sorted groups (25-75%), but was highest in group A. Tumor cells were mostly CD49f(-)CD24(-), with variable fractions of other stem/progenitor cells. Tumors showed HER2/neu amplification, but fewer chromosome 17 per cell than inoculates. Group A tumors exhibited cells with normal chromosome 17 copy number and near normal HER2/neu amplification. Cell invasion was 61% higher in unsorted cells and 34-42% in sorted groups compared with controls. Sorted groups showed significantly different expression of development, proliferation, and invasion associated genes. In normal breast tissue, CD49f(+) cells were identified in CD14(+) CK19(-) basal epithelial layers of mammary glands; these were 95% CD24(+) and 60% CD44(+). CONCLUSIONS Breast cancer stem/progenitor cell populations differ in tumor-initiating potential but are not solely responsible for metastasis. Cancer stem/progenitor cells are less polyploid than cancer cells in general and may not be HER2/neu amplified. In normal breast tissue, breast stem/progenitor cell-like populations are present.
Collapse
Affiliation(s)
- SuEllen J Pommier
- Division of Surgical Oncology, Department of General Surgery, Oregon Health & Science University, Portland, OR, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
236
|
Garbe JC, Bhattacharya S, Merchant B, Bassett E, Swisshelm K, Feiler HS, Wyrobek AJ, Stampfer MR. Molecular distinctions between stasis and telomere attrition senescence barriers shown by long-term culture of normal human mammary epithelial cells. Cancer Res 2009; 69:7557-68. [PMID: 19773443 DOI: 10.1158/0008-5472.can-09-0270] [Citation(s) in RCA: 132] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Normal human epithelial cells in culture have generally shown a limited proliferative potential of approximately 10 to 40 population doublings before encountering a stress-associated senescence barrier (stasis) associated with elevated levels of cyclin-dependent kinase inhibitors p16 and/or p21. We now show that simple changes in medium composition can expand the proliferative potential of human mammary epithelial cells (HMEC) initiated as primary cultures to 50 to 60 population doublings followed by p16-positive, senescence-associated beta-galactosidase-positive stasis. We compared the properties of growing and senescent pre-stasis HMEC with growing and senescent post-selection HMEC, that is, cells grown in a serum-free medium that overcame stasis via silencing of p16 expression and that display senescence associated with telomere dysfunction. Cultured pre-stasis populations contained cells expressing markers associated with luminal and myoepithelial HMEC lineages in vivo in contrast to the basal-like phenotype of the post-selection HMEC. Gene transcript and protein expression, DNA damage-associated markers, mean telomere restriction fragment length, and genomic stability differed significantly between HMEC populations at the stasis versus telomere dysfunction senescence barriers. Senescent isogenic fibroblasts showed greater similarity to HMEC at stasis than at telomere dysfunction, although their gene transcript profile was distinct from HMEC at both senescence barriers. These studies support our model of the senescence barriers encountered by cultured HMEC in which the first barrier, stasis, is retinoblastoma-mediated and independent of telomere length, whereas a second barrier (agonescence or crisis) results from telomere attrition leading to telomere dysfunction. Additionally, the ability to maintain long-term growth of genomically stable multilineage pre-stasis HMEC populations can greatly enhance experimentation with normal HMEC.
Collapse
Affiliation(s)
- James C Garbe
- Life Sciences Divisions, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | | | | | | | | | | | | | | |
Collapse
|
237
|
Cancer stem cells in breast cancer and metastasis. Breast Cancer Res Treat 2009; 118:241-54. [DOI: 10.1007/s10549-009-0524-9] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2009] [Accepted: 08/22/2009] [Indexed: 12/21/2022]
|
238
|
Lim E, Vaillant F, Wu D, Forrest NC, Pal B, Hart AH, Asselin-Labat ML, Gyorki DE, Ward T, Partanen A, Feleppa F, Huschtscha LI, Thorne HJ, Fox SB, Yan M, French JD, Brown MA, Smyth GK, Visvader JE, Lindeman GJ. Aberrant luminal progenitors as the candidate target population for basal tumor development in BRCA1 mutation carriers. Nat Med 2009; 15:907-13. [PMID: 19648928 DOI: 10.1038/nm.2000] [Citation(s) in RCA: 1067] [Impact Index Per Article: 71.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2009] [Accepted: 06/11/2009] [Indexed: 12/18/2022]
Abstract
Basal-like breast cancers arising in women carrying mutations in the BRCA1 gene, encoding the tumor suppressor protein BRCA1, are thought to develop from the mammary stem cell. To explore early cellular changes that occur in BRCA1 mutation carriers, we have prospectively isolated distinct epithelial subpopulations from normal mammary tissue and preneoplastic specimens from individuals heterozygous for a BRCA1 mutation. We describe three epithelial subsets including basal stem/progenitor, luminal progenitor and mature luminal cells. Unexpectedly, we found that breast tissue from BRCA1 mutation carriers harbors an expanded luminal progenitor population that shows factor-independent growth in vitro. Moreover, gene expression profiling revealed that breast tissue heterozygous for a BRCA1 mutation and basal breast tumors were more similar to normal luminal progenitor cells than any other subset, including the stem cell-enriched population. The c-KIT tyrosine kinase receptor (encoded by KIT) emerged as a key marker of luminal progenitor cells and was more highly expressed in BRCA1-associated preneoplastic tissue and tumors. Our findings suggest that an aberrant luminal progenitor population is a target for transformation in BRCA1-associated basal tumors .
Collapse
Affiliation(s)
- Elgene Lim
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
239
|
The Par3/aPKC interaction is essential for end bud remodeling and progenitor differentiation during mammary gland morphogenesis. Genes Dev 2009; 23:1450-60. [PMID: 19528321 DOI: 10.1101/gad.1795909] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Mammalian polarity proteins have been studied predominantly in cell culture systems, and little is known about their functions in vivo. To address this issue, we used a shRNA lentiviral system to manipulate gene expression in mouse mammary stem/progenitor cells. Transplantation of Par3-depleted stem/progenitor cells into the mammary fat pad severely disrupted mammary development, and glands were characterized by ductal hyperplasia, luminal filling, and highly disorganized end bud structures that were unable to remodel into normal ductal structures. Unexpectedly, Par3-depleted mammary glands also had an expanded progenitor population. We identified a novel function for the atypical protein kinase C (aPKC)-binding domain of Par3 in restricting Par3 and aPKC to the apical region in mammary epithelia in vivo, and found that mammary morphogenesis is dependent on the ability of Par3 to directly bind aPKC. These results reveal a new function for Par3 in the regulation of progenitor differentiation and epithelial morphogenesis in vivo and demonstrate for the first time an essential requirement for the Par3-aPKC interaction.
Collapse
|
240
|
Abstract
Epithelial-mesenchymal transition (EMT) is a developmental process in which epithelial cells acquire the motile, migratory properties of mesenchymal cells. In a recent issue of Cell, Mani et al. (2008) show that induction of EMT stimulates cultured breast cells to adopt characteristics of stem cells.
Collapse
|
241
|
The controversial clinicobiological role of breast cancer stem cells. JOURNAL OF ONCOLOGY 2009; 2008:492643. [PMID: 19325911 PMCID: PMC2657953 DOI: 10.1155/2008/492643] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2008] [Revised: 12/05/2008] [Accepted: 12/23/2008] [Indexed: 01/05/2023]
Abstract
Breast cancer remains a leading cause of morbidity and mortality in women mainly because of the propensity of primary breast tumors to metastasize. Growing experimental evidence suggests that cancer stem cells (CSCs) may contribute to tumor progression and metastasis spread. However, despite the tremendous clinical potential of such cells and their possible therapeutic management, the real nature of CSCs remains to be elucidated. Starting from what is currently known about normal mammary stem/progenitor cells, to better define the cell that originates a tumor or is responsible for metastatic spread, this review will discuss experimental evidence of breast cancer stem cells and speculate about the clinical importance and implications of their evaluation.
Collapse
|
242
|
Hollier BG, Evans K, Mani SA. The epithelial-to-mesenchymal transition and cancer stem cells: a coalition against cancer therapies. J Mammary Gland Biol Neoplasia 2009; 14:29-43. [PMID: 19242781 DOI: 10.1007/s10911-009-9110-3] [Citation(s) in RCA: 270] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2008] [Accepted: 02/08/2009] [Indexed: 12/11/2022] Open
Abstract
During cancer progression, some cells within the primary tumor may reactivate a latent embryonic program known as epithelial-to-mesenchymal transition (EMT). Through EMT, transformed epithelial cells can acquire the mesenchymal traits that seem to facilitate metastasis. Indeed, there is accumulating evidence that EMT and mesenchymal-related gene expression are associated with aggressive breast cancer subtypes and poor clinical outcome in breast cancer patients. More recently, the EMT program was shown to endow normal and transformed mammary epithelial cells with stem cell properties, including the ability to self-renew and efficiently initiate tumors. This link between EMT and stem cells may have numerous implications in the progression of breast tumors. The EMT process may facilitate the generation of cancer cells with the mesenchymal traits needed for dissemination as well as the self-renewal properties needed for initiation of secondary tumors. Breast cancer stem cells are resistant to many conventional cancer therapies, which can promote tumor relapse. Therefore, the generation of cancer stem cells by EMT may promote the development of refractory and resistant breast tumors. The purpose of this review is to summarize the findings related to EMT and stem cells in cancer progression and therapy resistance.
Collapse
Affiliation(s)
- Brett G Hollier
- Department of Molecular Pathology, University of Texas M. D. Anderson Cancer Center, Houston, TX 77054, USA
| | | | | |
Collapse
|
243
|
Kasper M, Jaks V, Fiaschi M, Toftgård R. Hedgehog signalling in breast cancer. Carcinogenesis 2009; 30:903-11. [PMID: 19237605 DOI: 10.1093/carcin/bgp048] [Citation(s) in RCA: 112] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Breast cancer is the most common cause of cancer death among women worldwide. In order to improve the treatment of this disease, a more complete understanding of its biological basis is necessary. Since the Hedgehog (Hh) pathway was recently found to be required for growth and propagation of a number of different cancers, we discuss here the possible involvement of this pathway in the normal biology and development of cancer in the mammary gland. The use of mouse mammary cancer models has assisted the process of dissecting the mechanisms behind Hh-driven mammary tumour formation and growth. Based on recent studies, we conclude that the inhibition of Hh signalling in breast tumours may interfere with the maintenance of a putative cancer stem cell compartment and the abnormal stimulation of tumour stroma. Therefore, the components of the Hh signalling cascade may provide a set of drug targets, which could be implemented into novel combinatorial strategies for the treatment of breast cancer.
Collapse
Affiliation(s)
- Maria Kasper
- Department of Biosciences and Nutrition, Karolinska Institutet, Novum, Huddinge, Sweden
| | | | | | | |
Collapse
|
244
|
Abstract
Emerging evidence from a variety of tissue types, including the mammary gland, suggests that normal stem and progenitor cells are the likely targets for malignant transformation, and that these transformed cells can function as cancer stem cells that drive tumour growth. In order to develop therapies that target these cancer stem cells, it is essential to determine the molecular mechanisms that regulate the growth and differentiation of these cells and their normal counterparts. To this end, a number of quantitative robust clonal assays have been developed that can detect the presence of human and mouse mammary stem and progenitor cells. These assays, when used in conjunction with cell-sorting strategies, have permitted the prospective isolation and characterization of a variety of cell types, including stem cells. Evidence to date indicates that these stem cells exhibit properties of basal mammary cells, possess extensive self-renewal properties, and are capable of generating a large number of phenotypically-distinct progenitor cells, many of which display characteristics of luminal cells. This review article will focus on the assays used to detect mammary stem and progenitor cells, some of the properties of these cells and their progeny and how they relate to the cancer stem cells that drive breast tumour growth.
Collapse
Affiliation(s)
- J Stingl
- Cancer Research UK, Cambridge Research Institute, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK.
| |
Collapse
|
245
|
Abstract
While cultured embryonic stem (ES) cells can be harvested in abundance and appear to be the most versatile of cells for regenerative medicine, adult stem cells also hold promise, but the identity and subsequent isolation of these comparatively rare cells remains problematic in most tissues, perhaps with the notable exception of the bone marrow. The ability to continuously self-renew and produce the differentiated progeny of the tissue of their location are their defining properties. Identifying surface molecules (markers) that would aid in stem cell isolation is a major goal. Considerable overlap exists between different putative organ-specific stem cells in their repertoire of gene expression, often related to self-renewal, cell survival and cell adhesion. More robust tests of 'stemness' are now being employed, using lineage-specific genetic marking and tracking to show production of long-lived clones and multipotentiality in vivo. Moreover, the characterization of normal stem cells in specific tissues may provide a dividend for the treatment of cancer. The successful treatment of neoplastic disease may well require the specific targeting of neoplastic stem cells, cells that may well have many of the characteristics of their normal counterparts.
Collapse
Affiliation(s)
- M R Alison
- Centre for Diabetes and Metabolic Medicine, St. Bartholomew's and the London School of Medicine and Dentistry, London, UK.
| | | |
Collapse
|
246
|
MMTV-Wnt1 and -DeltaN89beta-catenin induce canonical signaling in distinct progenitors and differentially activate Hedgehog signaling within mammary tumors. PLoS One 2009; 4:e4537. [PMID: 19225568 PMCID: PMC2639708 DOI: 10.1371/journal.pone.0004537] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2008] [Accepted: 01/05/2009] [Indexed: 11/19/2022] Open
Abstract
Canonical Wnt/β-catenin signaling regulates stem/progenitor cells and, when perturbed, induces many human cancers. A significant proportion of human breast cancer is associated with loss of secreted Wnt antagonists and mice expressing MMTV-Wnt1 and MMTV-ΔN89β-catenin develop mammary adenocarcinomas. Many studies have assumed these mouse models of breast cancer to be equivalent. Here we show that MMTV-Wnt1 and MMTV-ΔN89β-catenin transgenes induce tumors with different phenotypes. Using axin2/conductin reporter genes we show that MMTV-Wnt1 and MMTV-ΔN89β-catenin activate canonical Wnt signaling within distinct cell-types. ΔN89β-catenin activated signaling within a luminal subpopulation scattered along ducts that exhibited a K18+ER−PR−CD24highCD49flow profile and progenitor properties. In contrast, MMTV-Wnt1 induced canonical signaling in K14+ basal cells with CD24/CD49f profiles characteristic of two distinct stem/progenitor cell-types. MMTV-Wnt1 produced additional profound effects on multiple cell-types that correlated with focal activation of the Hedgehog pathway. We document that large melanocytic nevi are a hitherto unreported hallmark of early hyperplastic Wnt1 glands. These nevi formed along the primary mammary ducts and were associated with Hedgehog pathway activity within a subset of melanocytes and surrounding stroma. Hh pathway activity also occurred within tumor-associated stromal and K14+/p63+ subpopulations in a manner correlated with Wnt1 tumor onset. These data show MMTV-Wnt1 and MMTV-ΔN89β-catenin induce canonical signaling in distinct progenitors and that Hedgehog pathway activation is linked to melanocytic nevi and mammary tumor onset arising from excess Wnt1 ligand. They further suggest that Hedgehog pathway activation maybe a critical component and useful indicator of breast tumors arising from unopposed Wnt1 ligand.
Collapse
|
247
|
Charafe-Jauffret E, Ginestier C, Iovino F, Wicinski J, Cervera N, Finetti P, Hur MH, Diebel ME, Monville F, Dutcher J, Brown M, Viens P, Xerri L, Bertucci F, Stassi G, Dontu G, Birnbaum D, Wicha MS. Breast cancer cell lines contain functional cancer stem cells with metastatic capacity and a distinct molecular signature. Cancer Res 2009; 69:1302-13. [PMID: 19190339 DOI: 10.1158/0008-5472.can-08-2741] [Citation(s) in RCA: 889] [Impact Index Per Article: 59.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Tumors may be initiated and maintained by a cellular subcomponent that displays stem cell properties. We have used the expression of aldehyde dehydrogenase as assessed by the ALDEFLUOR assay to isolate and characterize cancer stem cell (CSC) populations in 33 cell lines derived from normal and malignant mammary tissue. Twenty-three of the 33 cell lines contained an ALDEFLUOR-positive population that displayed stem cell properties in vitro and in NOD/SCID xenografts. Gene expression profiling identified a 413-gene CSC profile that included genes known to play a role in stem cell function, as well as genes such as CXCR1/IL-8RA not previously known to play such a role. Recombinant interleukin-8 (IL-8) increased mammosphere formation and the ALDEFLUOR-positive population in breast cancer cell lines. Finally, we show that ALDEFLUOR-positive cells are responsible for mediating metastasis. These studies confirm the hierarchical organization of immortalized cell lines, establish techniques that can facilitate the characterization of regulatory pathways of CSCs, and identify potential stem cell markers and therapeutic targets.
Collapse
Affiliation(s)
- Emmanuelle Charafe-Jauffret
- Centre de Recherche en Cancérologie de Marseille, Laboratoire d'Oncologie Moléculaire, UMR891 Inserm/Institut Paoli-Calmettes, Université de la Méditerranée, Marseille, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
248
|
Fernandez-Gonzalez R, Illa-Bochaca I, Welm BE, Fleisch MC, Werb Z, Ortiz-de-Solorzano C, Barcellos-Hoff MH. Mapping mammary gland architecture using multi-scale in situ analysis. Integr Biol (Camb) 2009; 1:80-9. [PMID: 20023794 PMCID: PMC2847439 DOI: 10.1039/b816933k] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
We have built a novel computational microscopy platform that integrates image acquisition, storage, processing and analysis to study cell populations in situ. This platform allows high-content studies where multiple features are measured and linked at multiple scales. We used this approach to study the cellular composition and architecture of the mouse mammary gland by quantitatively tracking the distribution and type, position, proliferative state, and hormone receptor status of epithelial cells that incorporated bromodeoxyuridine while undergoing DNA synthesis during puberty and retained this label in the adult gland as a function of tissue structure. Immunofluorescence was used to identify label-retaining cells, as well as epithelial cells expressing the proteins progesterone receptor and P63. Only 3.6% of luminal cells were label-retaining cells, the majority of which did not express the progesterone receptor. Multi-scale in situ analysis revealed that luminal label-retaining cells have a distinct nuclear morphology, are enriched 3.4-fold in large ducts, and are distributed asymmetrically across the tissue. We postulated that LRC enriched in the ventral mammary gland represent progenitor cells. Epithelial cells isolated from the ventral versus the dorsal portion of the gland were enriched for the putative stem cell markers CD24 and CD49f as measured by fluorescence activated cell sorting. Thus, quantitative analysis of the cellular composition of the mammary epithelium across spatial scales identified a previously unrecognized architecture in which the ventral-most, large ducts contain a reservoir of undifferentiated, putative stem cells.
Collapse
Affiliation(s)
- Rodrigo Fernandez-Gonzalez
- Department of Cancer Biology, Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Joint Graduate Group in Bioengineering, University of California, San Francisco/Berkeley, Berkeley, CA 94720, USA
| | - Irineu Illa-Bochaca
- Department of Cancer Biology, Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Bryan E. Welm
- Department of Anatomy and the Biomedical Sciences Program, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Markus C. Fleisch
- Department of Cancer Biology, Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Zena Werb
- Department of Anatomy and the Biomedical Sciences Program, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Carlos Ortiz-de-Solorzano
- Morphology and Imaging Group and Cancer Imaging Laboratory, Center for Applied Medical Research, University of Navarre, Pamplona, 31008 Navarre, Spain
| | - Mary Helen Barcellos-Hoff
- Department of Cancer Biology, Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| |
Collapse
|
249
|
LaBarge MA, Nelson CM, Villadsen R, Fridriksdottir A, Ruth JR, Stampfer MR, Petersen OW, Bissell MJ. Human mammary progenitor cell fate decisions are products of interactions with combinatorial microenvironments. Integr Biol (Camb) 2009; 1:70-9. [PMID: 20023793 PMCID: PMC2933184 DOI: 10.1039/b816472j] [Citation(s) in RCA: 135] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
In adult tissues, multi-potent progenitor cells are some of the most primitive members of the developmental hierarchies that maintain homeostasis. That progenitors and their more mature progeny share identical genomes, suggests that fate decisions are directed by interactions with extrinsic soluble factors, ECM, and other cells, as well as physical properties of the ECM. To understand regulation of fate decisions, therefore, would require a means of understanding carefully choreographed combinatorial interactions. Here we used microenvironment protein microarrays to functionally identify combinations of cell-extrinsic mammary gland proteins and ECM molecules that imposed specific cell fates on bipotent human mammary progenitor cells. Micropatterned cell culture surfaces were fabricated to distinguish between the instructive effects of cell-cell versus cell-ECM interactions, as well as constellations of signaling molecules; and these were used in conjunction with physiologically relevant 3 dimensional human breast cultures. Both immortalized and primary human breast progenitors were analyzed. We report on the functional ability of those proteins of the mammary gland that maintain quiescence, maintain the progenitor state, and guide progenitor differentiation towards myoepithelial and luminal lineages.
Collapse
Affiliation(s)
- Mark A. LaBarge
- Lawrence Berkeley National Laboratory, Division of Life Sciences, 1 Cyclotron Road, Berkeley, CA 94720, USA
| | - Celeste M. Nelson
- Lawrence Berkeley National Laboratory, Division of Life Sciences, 1 Cyclotron Road, Berkeley, CA 94720, USA
| | - Rene Villadsen
- The Panum Institute, Department of Medical Anatomy, Copenhagen, Denmark
| | | | - Jason R. Ruth
- Lawrence Berkeley National Laboratory, Division of Life Sciences, 1 Cyclotron Road, Berkeley, CA 94720, USA
| | - Martha R. Stampfer
- Lawrence Berkeley National Laboratory, Division of Life Sciences, 1 Cyclotron Road, Berkeley, CA 94720, USA
| | - Ole W. Petersen
- The Panum Institute, Department of Medical Anatomy, Copenhagen, Denmark
| | - Mina J. Bissell
- Lawrence Berkeley National Laboratory, Division of Life Sciences, 1 Cyclotron Road, Berkeley, CA 94720, USA
| |
Collapse
|
250
|
Voskoboynik A, Soen Y, Rinkevich Y, Rosner A, Ueno H, Reshef R, Ishizuka KJ, Palmeri KJ, Moiseeva E, Rinkevich B, Weissman IL. Identification of the endostyle as a stem cell niche in a colonial chordate. Cell Stem Cell 2008; 3:456-64. [PMID: 18940736 DOI: 10.1016/j.stem.2008.07.023] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2007] [Revised: 06/10/2008] [Accepted: 07/24/2008] [Indexed: 10/21/2022]
Abstract
Stem cell populations exist in "niches" that hold them and regulate their fate decisions. Identification and characterization of these niches is essential for understanding stem cell maintenance and tissue regeneration. Here we report on the identification of a novel stem cell niche in Botryllus schlosseri, a colonial urochordate with high stem cell-mediated developmental activities. Using in vivo cell labeling, engraftment, confocal microscopy, and time-lapse imaging, we have identified cells with stemness capabilities in the anterior ventral region of the Botryllus' endostyle. These cells proliferate and migrate to regenerating organs in developing buds and buds of chimeric partners but do not contribute to the germ line. When cells are transplanted from the endostyle region, they contribute to tissue development and induce long-term chimerism in allogeneic tissues. In contrast, cells from other Botryllus' regions do not show comparable stemness capabilities. Cumulatively, these results define the Botryllus' endostyle region as an adult somatic stem cell niche.
Collapse
Affiliation(s)
- Ayelet Voskoboynik
- Institute of Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|