201
|
Vidal-Vanaclocha F. Architectural and Functional Aspects of the Liver with Implications for Cancer Metastasis. LIVER METASTASIS: BIOLOGY AND CLINICAL MANAGEMENT 2011. [DOI: 10.1007/978-94-007-0292-9_2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
202
|
|
203
|
|
204
|
Li YH, Chen MHC, Gong HY, Hu SY, Li YW, Lin GH, Lin CC, Liu W, Wu JL. Progranulin A-mediated MET signaling is essential for liver morphogenesis in zebrafish. J Biol Chem 2010; 285:41001-9. [PMID: 20961855 DOI: 10.1074/jbc.m110.138743] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The mechanism that regulates embryonic liver morphogenesis remains elusive. Progranulin (PGRN) is postulated to play a critical role in regulating pathological liver growth. Nevertheless, the exact regulatory mechanism of PGRN in relation to its functional role in embryonic liver development remains to be elucidated. In our study, the knockdown of progranulin A (GrnA), an orthologue of mammalian PGRN, using antisense morpholinos resulted in impaired liver morphogenesis in zebrafish (Danio rerio). The vital role of GrnA in hepatic outgrowth and not in liver bud formation was further confirmed using whole-mount in situ hybridization markers. In addition, a GrnA deficiency was also found to be associated with the deregulation of MET-related genes in the neonatal liver using a microarray analysis. In contrast, the decrease in liver size that was observed in grnA morphants was avoided when ectopic MET expression was produced by co-injecting met mRNA and grnA morpholinos. This phenomenon suggests that GrnA might play a role in liver growth regulation via MET signaling. Furthermore, our study has shown that GrnA positively modulates hepatic MET expression both in vivo and in vitro. Therefore, our data have indicated that GrnA plays a vital role in embryonic liver morphogenesis in zebrafish. As a result, a novel link between PGRN and MET signaling is proposed.
Collapse
Affiliation(s)
- Yen-Hsing Li
- Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, National Chung Hsing University and Academia Sinica, Taipei 115, Taiwan
| | | | | | | | | | | | | | | | | |
Collapse
|
205
|
Sangan CB, Tosh D. Hepatic progenitor cells. Cell Tissue Res 2010; 342:131-7. [PMID: 20957497 DOI: 10.1007/s00441-010-1055-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2010] [Accepted: 09/09/2010] [Indexed: 12/11/2022]
Abstract
Liver diseases are associated with a marked reduction in the viable mass of hepatocytes. The most severe cases of liver disease (liver failure) are treated by orthotopic liver transplantation. One alternative to whole organ transplantation for patients with hepatic failure (and hereditary liver disease) is hepatocyte transplantation. However, there is a serious limitation to the treatment of liver diseases either by whole organ or hepatocyte transplantation, and that is the shortage of organ donors. Therefore, to overcome the problem of organ shortage, additional sources of hepatocytes must be found. Alternative sources of cells for transplantation have been proposed including embryonic stem cells, immortalised liver cells and differentiated cells. One other source of cells for transplantation found in the adult liver is the progeny of stem cells. These cells are termed hepatic progenitor cells (HPCs). The therapeutic potential of HPCs lies in their ability to proliferate and differentiate into hepatocytes and cholangiocytes. However, using HPCs as a cell therapy cannot be exploited fully until the mechanisms governing hepatocyte differentiation are elucidated. Here, we discuss the fundamental cellular and molecular elements required for HPC differentiation to hepatocytes.
Collapse
Affiliation(s)
- Caroline Beth Sangan
- Centre of Regenerative Medicine, Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath, BA2 7AY, UK
| | | |
Collapse
|
206
|
Ghosh R, Karmohapatra SK, Bhattacharya G, Kumar Sinha A. The glucose-induced synthesis of insulin in liver. Endocrine 2010; 38:294-302. [PMID: 20972731 DOI: 10.1007/s12020-010-9388-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2010] [Accepted: 08/20/2010] [Indexed: 01/13/2023]
Abstract
Pancreatic β cells, stimulated by glucose, are known to synthesize and secrete insulin. As liver diseases are reported to cause diabetes mellitus, studies were conducted to determine the possibility of glucose-induced insulin synthesis in the liver cells. The glucose-induced insulin synthesis was determined by in vitro translation of mRNA from the hepatocytes. The cDNA from mRNA was prepared and sequence analysis was performed. Incubation of hepatocytes from the liver of adult mice (n=10) with glucose (0.02 M) resulted in the insulin synthesis [0.03 (mean)±0.006 (S.D.) μunits/mg/h] compared to the pancreatic β cells [0.04±0.004 μunits/mg/h]. Immunohistochemical study also demonstrated the glucose-induced synthesis of insulin in liver cells. Incubation of the mice hepatocytes with glucose resulted in the synthesis of insulin mRNA. The purified mRNA which was used to prepare cDNA resulted in the formation of proinsulin I and proinsulin II genes corresponding to 182 and 188 base pairs, respectively. Sequence analysis of the cDNA indicated that proinsulin I as well as proinsulin II gene could be involved in the synthesis of insulin by hepatocytes. These results suggested that insulin synthesis in both hepatic and pancreatic cells could be involved in the control of diabetes mellitus.
Collapse
Affiliation(s)
- Rajeshwary Ghosh
- Sinha Institute of Medical Science and Technology, 288, Kendua Main Road, Garia, Calcutta, 700 084, India
| | | | | | | |
Collapse
|
207
|
Preexisting immunity and low expression in primates highlight translational challenges for liver-directed AAV8-mediated gene therapy. Mol Ther 2010; 18:1983-94. [PMID: 20736932 DOI: 10.1038/mt.2010.175] [Citation(s) in RCA: 113] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Liver-directed gene therapy with adeno-associated virus (AAV) vectors effectively treats mouse models of lysosomal storage diseases (LSDs). We asked whether these results were likely to translate to patients. To understand to what extent preexisting anti-AAV8 antibodies could impede AAV8-mediated liver transduction in primates, commonly preexposed to AAV, we quantified the effects of preexisting antibodies on liver transduction and subsequent transgene expression in mouse and nonhuman primate (NHP) models. Using the highest viral dose previously reported in a clinical trial, passive transfer of NHP sera containing relatively low anti-AAV8 titers into mice blocked liver transduction, which could be partially overcome by increasing vector dose tenfold. Based on this and a survey of anti-AAV8 titers in 112 humans, we predict that high-dose systemic gene therapy would successfully transduce liver in >50% of human patients. However, although high-dose AAV8 administration to mice and monkeys with equivalent anti-AAV8 titers led to comparable liver vector copy numbers, the resulting transgene expression in primates was ~1.5-logs lower than mice. This suggests vector fate differs in these species and that strategies focused solely on overcoming preexisting vector-specific antibodies may be insufficient to achieve clinically meaningful expression levels of LSD genes using a liver-directed gene therapy approach in patients.
Collapse
|
208
|
Van Dorland HA, Bruckmaier RM. Regional mRNA expression of key gluconeogenic enzymes in the liver of dairy cows. J Anim Physiol Anim Nutr (Berl) 2010; 94:505-8. [PMID: 19906140 DOI: 10.1111/j.1439-0396.2009.00935.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Liver tissue was collected from eight random dairy cows at a slaughterhouse to test if gene expression of pyruvate carboxylase (PC), mitochondrial phosphoenolpyruvate carboxykinase (PEPCKm) and cytosolic phosphoenolpyruvate carboxykinase (PEPCKc) is different at different locations in the liver. Obtained liver samples were analysed for mRNA expression levels of PC, PEPCKc and PEPCKm and subjected to the MIXED procedure of SAS to test for the sampled locations with cow liver as repeated subject. Additionally, the general linear model procedure (GLM) for analysis of variance was applied to test for significant differences for mRNA abundance of PEPCKm, PEPCKc and bPC between the livers. In conclusion, this study demonstrated that mRNA abundance of PC, PEPCKc and PEPCKm is not different between locations in the liver but may differ between individual cows.
Collapse
Affiliation(s)
- H A Van Dorland
- Veterinary Physiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland.
| | | |
Collapse
|
209
|
Abstract
The endothelium is vital to the proper functioning in the heart, in particular due to its production of nitric oxide (NO) which regulates vascular tone. Damage to the endothelium contributes to the development of atherosclerosis, and hence to possible myocardial infarction and subsequent heart failure. Like most cells, endothelial cells contain mitochondria, despite their having relatively little dependence on oxidative phosphorylation for ATP production. However, endothelial mitochondria are centrally involved in maintaining the fine regulatory balance between mitochondrial calcium concentration, reactive oxygen species (ROS) production, and NO. This raises the question of whether damage to endothelial mitochondria would have repercussions in terms of the development of heart disease. In fact, increasingly nuanced techniques enabling restricted transgenic expression of antioxidant proteins in mice has demonstrated that mitochondrial ROS do contribute to endothelial damage. New pharmaceutical approaches designed to target protective molecules such as ROS scavengers to the mitochondria promise to be effective in preventing heart disease. As well as protecting cardiomyocytes, these drugs may have the added benefit of preventing damage to the endothelial mitochondria. However, much remains to be done in understanding the contribution that mitochondria make to endothelial function.
Collapse
Affiliation(s)
- Sean Michael Davidson
- Department of Medicine, The Hatter Cardiovascular Institute, University College London Hospital, London WC1E 6HX, UK.
| |
Collapse
|
210
|
Takubo K, Aida J, Izumiyama-Shimomura N, Ishikawa N, Sawabe M, Kurabayashi R, Shiraishi H, Arai T, Nakamura KI. Changes of telomere length with aging. Geriatr Gerontol Int 2010; 10 Suppl 1:S197-206. [PMID: 20590834 DOI: 10.1111/j.1447-0594.2010.00605.x] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
211
|
Santos M, Marcos R, Santos N, Malhão F, Monteiro RAF, Rocha E. An unbiased stereological study on subpopulations of rat liver macrophages and on their numerical relation with the hepatocytes and stellate cells. J Anat 2010; 214:744-51. [PMID: 19438768 DOI: 10.1111/j.1469-7580.2009.01055.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Studies on liver macrophages have elucidated their key roles in immunological, fibrotic and regenerative responses, and shown that macrophages are not a homogeneous population. In the rat, two sets of liver macrophages coexist, identified by ED1 and ED2 antibodies. Those sets have different quantitative responses in liver injuries and may have different tasks throughout the injury and recovery phases. Nevertheless, the total number (N), number per gram (N g(-1)) and proportion of those macrophages in relation to other liver cells has never been quantified using design-based stereology. Thus, we combined immunocytochemistry with those tools to produce an unbiased estimate of the N of ED1(+) and of ED2(+) cells. A smooth fractionator sampling scheme was applied to the liver of five male Wistar rats (3 months old), to obtain systematic uniform random sections (30 microm thick); these were immunostained with the monoclonal antibodies: ED1, a pan-macrophagic marker; and ED2, which identifies the completely differentiated macrophages, i.e. Kupffer cells. The N of ED1(+) cells was 340 x 10(6), estimated with a coefficient of error (CE) of 0.04, and that of ED2(+) cells was 283 x 10(6), with a CE of 0.05. These figures correspond to 10.7% and 8.9%, respectively, of the total liver cells. The new data constitute reference values for correlative inferences. Also, the methodological strategy, by its accuracy and precision, is valuable for future investigations on the liver cell composition in various models of disease, and especially for studying the more subtle variations that occur during the injury and recovery phases.
Collapse
Affiliation(s)
- Marta Santos
- Laboratory of Histology and Embryology, Institute of Biomedical Sciences Abel Salazar - ICBAS, University of Porto - UPorto, Porto, Portugal
| | | | | | | | | | | |
Collapse
|
212
|
Abstract
Embryonic development of the liver has been studied intensely, yielding insights that impact diverse areas of developmental and cell biology. Understanding the fundamental mechanisms that control hepatogenesis has also laid the basis for the rational differentiation of stem cells into cells that display many hepatic functions. Here, we review the basic molecular mechanisms that control the formation of the liver as an organ.
Collapse
|
213
|
Jacobs F, Wisse E, De Geest B. The role of liver sinusoidal cells in hepatocyte-directed gene transfer. THE AMERICAN JOURNAL OF PATHOLOGY 2009; 176:14-21. [PMID: 19948827 DOI: 10.2353/ajpath.2010.090136] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Hepatocytes are a key target for gene therapy of inborn errors of metabolism as well as of acquired diseases such as liver cancer and hepatitis. Gene transfer efficiency into hepatocytes is significantly determined by histological and functional aspects of liver sinusoidal cells. On the one hand, uptake of vectors by Kupffer cells and liver sinusoidal endothelial cells may limit hepatocyte transduction. On the other hand, the presence of fenestrae in liver sinusoidal endothelial cells provides direct access to the space of Disse and allows vectors to bind to receptors on the microvillous surface of hepatocytes. Nevertheless, the diameter of fenestrae may restrict the passage of vectors according to their size. On the basis of lege artis measurements of the diameter of fenestrae in different species, we show that the diameter of fenestrae affects the distribution of transgene DNA between sinusoidal and parenchymal liver cells after adenoviral transfer. The small diameter of fenestrae in humans may underlie low efficiency of adenoviral transfer into hepatocytes in men. The disappearance of the unique morphological features of liver sinusoidal endothelial cells in pathological conditions like liver cirrhosis and liver cancer may further affect gene transfer efficiency. Preclinical gene transfer studies should consider species differences in the structure and function of liver sinusoidal cells as important determinants of gene transfer efficiency into hepatocytes.
Collapse
Affiliation(s)
- Frank Jacobs
- Center for Molecular and Vascular Biology, Department of Molecular and Cellular Medicine, University of Leuven, Campus Gasthuisberg, 3000 Leuven, Belgium
| | | | | |
Collapse
|
214
|
Development and validation of a comprehensive new hepatobiliary software. Part II: Segmental liver function. Nucl Med Commun 2009; 30:945-55. [PMID: 19855312 DOI: 10.1097/mnm.0b013e32832ed3ea] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE This study was undertaken to develop comprehensive new hepatobiliary software to quantify segmental and lobar liver function and to obtain FDA approval. METHODS Hepatobiliary software written on JAVA platform and loaded on to a PC accepts 99mTc-HIDA dicom image data transferred from a gamma camera. Liver boundary was determined by threshold-based auto edge detection and liver height at right midclavicular (RMCL) line. Geometric mean area of the physiologic right lobe, physiologic left lobe and total liver area were measured. Segmental liver function was determined using the 5th minute frame as the default (100%). RESULTS In 24 control participants, mean (+/-SD) liver height at RMCL was 14.7+/-0.12 cm. Geometric mean area of the physiologic right lobe was 116+/-3 cm2, left lobe 96+/-4 cm2, and total liver area 212+/-3 cm. Right upper lobe (segments 7 and 8) contributed 31+/-0.7%, right lower lobe (segments 5 and 6) 34+/-0.6%, left medial (segments 4A and 4B) 24+/-1%, left lateral (segments 2 and 3) 10+/-2%, and caudate lobe (segment 1) 1+/-0.02% of total liver function. In 23 patients, contrast three-dimensional computerized tomographic volume of the right lobe was 1194+/-419 ml, left lobe 434+/-221 ml, and total liver volume 1628+/-490 ml. Right lobe area was 120+/-30 cm2, left lobe (plus caudate) 88+/-29 cm2 with total liver area of 208+/-51 cm. Right upper lobe (segments 7 and 8) contributed 33+/-10%, right lower lobe (segments 5 and 6) 34+/-7%, left medial (segments 4A and 4B) 23+/-6%, left lateral (segments 2 and 3) 9+/-3%, and caudate lobe (segment 1) 1+/-0.4% of total liver function. There was good correlation of RMCL height, and area of right lobe and total liver with computerized tomographic liver volume. Correlation of percentage volume with percentage function was excellent. CONCLUSION New FDA approved software provides quantitative assessment of segmental, lobar, and total liver size and function from a planar 99mTc-HIDA cholescintigraphy and may enable universal standardization in nuclear hepatology. Quantification may aid surgeons in the determination of the amount of tissue resection during liver surgery.
Collapse
|
215
|
Human telomerase activity, telomerase and telomeric template expression in hepatic stem cells and in livers from fetal and postnatal donors. Eur J Gastroenterol Hepatol 2009; 21:1191-8. [PMID: 19240645 PMCID: PMC2743773 DOI: 10.1097/meg.0b013e32832973fc] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
BACKGROUND Although telomerase activity has been analyzed in various normal and malignant tissues, including liver, it is still unknown to what extent telomerase can be associated with specific maturational lineage stages. METHODS We assessed human telomerase activity, protein and gene expression for the telomerase reverse transcriptase, as well as expression of the telomeric template RNA hTER in hepatic stem cells and in various developmental stages of the liver from fetal to adult. In addition, the effect of growth factors on telomerase activity was analyzed in hepatic stem cells in vitro. RESULTS Telomerase was found to be highly active in fetal liver cells and was significantly higher than in hepatic stem cells, correlating with gene and protein expression levels. Activity in postnatal livers from all donor ages varied considerably and did not correlate with age or gene expression levels. The hter expression could be detected throughout the development. A short stimulation by growth factors of cultured hepatic stem cells did not increase telomerase activity. CONCLUSION Telomerase is considerably active in fetal liver and variably in postnatal livers. Although telomerase protein is present at varying levels in liver cells of all donor ages, gene expression is solely associated with fetal liver cells.
Collapse
|
216
|
Poirier A, Funk C, Scherrmann JM, Lavé T. Mechanistic Modeling of Hepatic Transport from Cells to Whole Body: Application to Napsagatran and Fexofenadine. Mol Pharm 2009; 6:1716-33. [DOI: 10.1021/mp8002495] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Agnès Poirier
- Drug Safety, Non-Clinical Development, F. Hoffmann-La Roche Ltd., Basel, Switzerland, and Faculté de Pharmacie, Université Paris Descartes, INSERM U705, Paris, France
| | - Christoph Funk
- Drug Safety, Non-Clinical Development, F. Hoffmann-La Roche Ltd., Basel, Switzerland, and Faculté de Pharmacie, Université Paris Descartes, INSERM U705, Paris, France
| | - Jean-Michel Scherrmann
- Drug Safety, Non-Clinical Development, F. Hoffmann-La Roche Ltd., Basel, Switzerland, and Faculté de Pharmacie, Université Paris Descartes, INSERM U705, Paris, France
| | - Thierry Lavé
- Drug Safety, Non-Clinical Development, F. Hoffmann-La Roche Ltd., Basel, Switzerland, and Faculté de Pharmacie, Université Paris Descartes, INSERM U705, Paris, France
| |
Collapse
|
217
|
Schurich A, Böttcher JP, Burgdorf S, Penzler P, Hegenbarth S, Kern M, Dolf A, Endl E, Schultze J, Wiertz E, Stabenow D, Kurts C, Knolle P. Distinct kinetics and dynamics of cross-presentation in liver sinusoidal endothelial cells compared to dendritic cells. Hepatology 2009; 50:909-19. [PMID: 19610048 DOI: 10.1002/hep.23075] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
UNLABELLED Cross-presentation is an important function of immune competent cells, such as dendritic cells (DCs), macrophages, and an organ-resident liver cell population, i.e., liver sinusoidal endothelial cells (LSECs). Here, we characterize in direct comparison to DCs the distinct dynamics and kinetics of cross-presentation employed by LSECs, which promote tolerance induction in CD8 T cells. We found that LSECs were as competent in cross-presenting circulating soluble antigen ex vivo as DCs at a per-cell basis. However, antigen uptake in vivo was 100-fold more pronounced in LSECs, indicating distinct mechanisms of cross-presentation. In contrast to mannose-receptor-mediated antigen uptake and routing into stable endosomes dedicated to cross-presentation in DCs, we observed distinct antigen-uptake and endosomal routing with high antigen turnover in LSECs that resulted in short-lived cross-presentation. Receptor-mediated endocytosis did not always lead to cross-presentation, because immune-complexed antigen taken up by the Fc-receptor was not cross-presented by LSECs, indicating that induction of CD8 T cell tolerance by LSECs is impaired in the presence of preexisting immunity. CONCLUSION These results provide a mechanistic explanation how organ-resident LSECs accommodate continuous scavenger function with the capacity to cross-present circulating antigens using distinct kinetics and dynamics of antigen-uptake, routing and cross-presentation compared to DCs.
Collapse
Affiliation(s)
- Anna Schurich
- Institute of Molecular Medicine and Experimental Immunology, University Hospital Bonn, Bonn, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
218
|
Liver development in zebrafish (Danio rerio). J Genet Genomics 2009; 36:325-34. [PMID: 19539242 DOI: 10.1016/s1673-8527(08)60121-6] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2009] [Revised: 04/17/2009] [Accepted: 04/17/2009] [Indexed: 12/17/2022]
Abstract
Liver is one of the largest internal organs in the body and its importance for metabolism, detoxification and homeostasis has been well established. In this review, we summarized recent progresses in studying liver initiation and development during embryogenesis using zebrafish as a model system. We mainly focused on topics related to the specification of hepatoblasts from endoderm, the formation and growth of liver bud, the differentiation of hepatocytes and bile duct cells from hepatoblasts, and finally the role of mesodermal signals in controlling liver development in zebrafish.
Collapse
|
219
|
Liver sinusoidal endothelial cells are a site of murine cytomegalovirus latency and reactivation. J Virol 2009; 83:8869-84. [PMID: 19535440 DOI: 10.1128/jvi.00870-09] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Latent cytomegalovirus (CMV) is frequently transmitted by organ transplantation, and its reactivation under conditions of immunosuppressive prophylaxis against graft rejection by host-versus-graft disease bears a risk of graft failure due to viral pathogenesis. CMV is the most common cause of infection following liver transplantation. Although hematopoietic cells of the myeloid lineage are a recognized source of latent CMV, the cellular sites of latency in the liver are not comprehensively typed. Here we have used the BALB/c mouse model of murine CMV infection to identify latently infected hepatic cell types. We performed sex-mismatched bone marrow transplantation with male donors and female recipients to generate latently infected sex chromosome chimeras, allowing us to distinguish between Y-chromosome (gene sry or tdy)-positive donor-derived hematopoietic descendants and Y-chromosome-negative cells of recipients' tissues. The viral genome was found to localize primarily to sry-negative CD11b(-) CD11c(-) CD31(+) CD146(+) cells lacking major histocompatibility complex class II antigen (MHC-II) but expressing murine L-SIGN. This cell surface phenotype is typical of liver sinusoidal endothelial cells (LSECs). Notably, sry-positive CD146(+) cells were distinguished by the expression of MHC-II and did not harbor latent viral DNA. In this model, the frequency of latently infected cells was found to be 1 to 2 per 10(4) LSECs, with an average copy number of 9 (range, 4 to 17) viral genomes. Ex vivo-isolated, latently infected LSECs expressed the viral genes m123/ie1 and M122/ie3 but not M112-M113/e1, M55/gB, or M86/MCP. Importantly, in an LSEC transfer model, infectious virus reactivated from recipients' tissue explants with an incidence of one reactivation per 1,000 viral-genome-carrying LSECs. These findings identified LSECs as the main cellular site of murine CMV latency and reactivation in the liver.
Collapse
|
220
|
Brunner AL, Johnson DS, Kim SW, Valouev A, Reddy TE, Neff NF, Anton E, Medina C, Nguyen L, Chiao E, Oyolu CB, Schroth GP, Absher DM, Baker JC, Myers RM. Distinct DNA methylation patterns characterize differentiated human embryonic stem cells and developing human fetal liver. Genome Res 2009; 19:1044-56. [PMID: 19273619 DOI: 10.1101/gr.088773.108] [Citation(s) in RCA: 214] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
To investigate the role of DNA methylation during human development, we developed Methyl-seq, a method that assays DNA methylation at more than 90,000 regions throughout the genome. Performing Methyl-seq on human embryonic stem cells (hESCs), their derivatives, and human tissues allowed us to identify several trends during hESC and in vivo liver differentiation. First, differentiation results in DNA methylation changes at a minimal number of assayed regions, both in vitro and in vivo (2%-11%). Second, in vitro hESC differentiation is characterized by both de novo methylation and demethylation, whereas in vivo fetal liver development is characterized predominantly by demethylation. Third, hESC differentiation is uniquely characterized by methylation changes specifically at H3K27me3-occupied regions, bivalent domains, and low density CpG promoters (LCPs), suggesting that these regions are more likely to be involved in transcriptional regulation during hESC differentiation. Although both H3K27me3-occupied domains and LCPs are also regions of high variability in DNA methylation state during human liver development, these regions become highly unmethylated, which is a distinct trend from that observed in hESCs. Taken together, our results indicate that hESC differentiation has a unique DNA methylation signature that may not be indicative of in vivo differentiation.
Collapse
Affiliation(s)
- Alayne L Brunner
- Department of Genetics, Stanford University School of Medicine, Stanford, California 94305, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
221
|
Cellular organization of normal mouse liver: a histological, quantitative immunocytochemical, and fine structural analysis. Histochem Cell Biol 2009; 131:713-26. [PMID: 19255771 PMCID: PMC2761764 DOI: 10.1007/s00418-009-0577-1] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/08/2009] [Indexed: 02/07/2023]
Abstract
The cellular organization of normal mouse liver was studied using light and electron microscopy and quantitative immunocytochemical techniques. The general histological organization of the mouse liver is similar to livers of other mammalian species, with a lobular organization based on the distributions of portal areas and central venules. The parenchymal hepatocytes were detected with immunocytochemical techniques to recognize albumin or biotin containing cells. The macrophage Kupffer cells were identified with F4-80 immunocytochemistry, Ito stellate cells were identified with GFAP immunocytochemistry, and endothelial cells were labeled with the CD-34 antibody. Kupffer cells were labeled with intravascularly administered fluorescently labeled latex microspheres of both large (0.5 mum) and small (0.03 mum) diameters, while endothelial cells were labeled only with small diameter microspheres. Neither hepatocytes nor Ito stellate cells were labeled by intravascularly administered latex microspheres. The principal fine structural features of hepatocytes and non-parenchymal cells of mouse liver are similar to those reported for rat. Counts of immunocytochemically labeled cells with stained nuclei indicated that hepatocytes constituted approximately 52% of all labeled cells, Kupffer cells about 18%, Ito cells about 8%, and endothelial cells about 22% of all labeled cells. Approximately, 35% of the hepatocytes contained two nuclei; none of the Kupffer or Ito cells were double nucleated. The presence of canaliculi and a bile duct system appear similar to that reported for other species. The cellular organization of the mouse liver is quite similar to that of other mammalian species, confirming that the mouse presents a useful animal model for studies of liver structure and function.
Collapse
|
222
|
|
223
|
Li X, Jin Q, Cao J, Xie C, Cao R, Liu Z, Xiong J, Li J, Yang X, Chen P, Liang S. Evaluation of two cell surface modification methods for proteomic analysis of plasma membrane from isolated mouse hepatocytes. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2009; 1794:32-41. [DOI: 10.1016/j.bbapap.2008.07.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2008] [Revised: 07/09/2008] [Accepted: 07/09/2008] [Indexed: 01/13/2023]
|
224
|
Mienkina MP, Friedrich CS, Hensel K, Gerhardt NC, Hofmann MR, Schmitz G. Evaluation of Ferucarbotran (Resovist®) as a photoacoustic contrast agent / Evaluation von Ferucarbotran (Resovist®) als photoakustisches Kontrastmittel. ACTA ACUST UNITED AC 2009; 54:83-8. [DOI: 10.1515/bmt.2009.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
225
|
Lee JS, Kim JH. [The role of activated hepatic stellate cells in liver fibrosis, portal hypertension and cancer angiogenesis]. THE KOREAN JOURNAL OF HEPATOLOGY 2008; 13:309-19. [PMID: 17898548 DOI: 10.3350/kjhep.2007.13.3.309] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Although hepatic stellate cells, which are liver specific pericytes, have been recognized within the vasculature of the sinusoid for more than one hundred years, the biology and function of these cells is unclear. Recent studies have highlighted the key role of stellate cells in a number of fundamental processes that include wound healing/fibrosis, vasoregulation, and vascular remodeling/angiogenesis. In the liver, these processes are particularly important in the development of cirrhosis, portal hypertension and cancer. This article highlights the recent advances in our understanding of the biology of hepatic stellate cells and discusses some of the recently-ascribed functions that are relevant to liver fibrosis, portal hypertension and cancer angiogenesis.
Collapse
Affiliation(s)
- June Sung Lee
- Department of Internal Medicine, Ilsan Paik Hospital, Inje University College of Medicine, Goyang, Korea.
| | | |
Collapse
|
226
|
Li X, Xie C, Cao J, He Q, Cao R, Lin Y, Jin Q, Chen P, Wang X, Liang S. An in Vivo Membrane Density Perturbation Strategy for Identification of Liver Sinusoidal Surface Proteome Accessible from the Vasculature. J Proteome Res 2008; 8:123-32. [DOI: 10.1021/pr8006683] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Xuanwen Li
- Key Laboratory of Protein Chemistry and Developmental Biology of Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha, 410081, P.R. China
| | - Chunliang Xie
- Key Laboratory of Protein Chemistry and Developmental Biology of Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha, 410081, P.R. China
| | - Jia Cao
- Key Laboratory of Protein Chemistry and Developmental Biology of Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha, 410081, P.R. China
| | - Quanyuan He
- Key Laboratory of Protein Chemistry and Developmental Biology of Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha, 410081, P.R. China
| | - Rui Cao
- Key Laboratory of Protein Chemistry and Developmental Biology of Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha, 410081, P.R. China
| | - Yong Lin
- Key Laboratory of Protein Chemistry and Developmental Biology of Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha, 410081, P.R. China
| | - Qihui Jin
- Key Laboratory of Protein Chemistry and Developmental Biology of Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha, 410081, P.R. China
| | - Ping Chen
- Key Laboratory of Protein Chemistry and Developmental Biology of Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha, 410081, P.R. China
| | - Xianchun Wang
- Key Laboratory of Protein Chemistry and Developmental Biology of Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha, 410081, P.R. China
| | - Songping Liang
- Key Laboratory of Protein Chemistry and Developmental Biology of Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha, 410081, P.R. China
| |
Collapse
|
227
|
Robertson RT, Baratta JL, Haynes SM, Longmuir KJ. Liposomes incorporating a Plasmodium amino acid sequence target heparan sulfate binding sites in liver. J Pharm Sci 2008; 97:3257-73. [PMID: 17932963 DOI: 10.1002/jps.21211] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Previous studies demonstrated that intravenously administered liposomes, incorporating a peptide from the Plasmodium circumsporozoite protein, accumulate rapidly and selectively in mouse liver. The present investigation was designed to determine the molecular components in liver responsible for liposome targeting. Studies of liver tissue slices demonstrated that immunoreactivity for heparan sulfate proteoglycan (HSPG), but not other tested proteoglycans, was distributed along sinusoidal borders of liver; this immunoreactivity appeared associated with nonparenchymal cells of the sinusoids and with the basolateral portion of hepatocytes. Peptide-containing liposomes bound to liver tissue in a pattern similar to the distribution of heparan sulfate immunoreactivity, either after intravenous injection of liposomes in vivo or after incubation of liposomes with liver slices in vitro. Control liposomes, without the peptide, displayed very light binding without a pattern. Pretreatment of liver slices with heparinase, but not chondroitinase or hyaluronidase, eliminated peptide-containing liposome binding, but did not affect binding of control liposomes. Coincubation of peptide-containing liposomes with heparin, but not with other glycosaminoglycans, markedly inhibited liposome binding to liver slices. N-desulfated and O-desulfated heparins individually were less effective inhibitors of liposome binding than was heparin. These results indicate that liposomes containing a peptide from Plasmodium target liver tissue by binding to HSPGs in the extracellular matrix.
Collapse
Affiliation(s)
- Richard T Robertson
- Department of Anatomy & Neurobiology, 113 Irvine Hall, School of Medicine, University of California, Irvine, California 92697-1280, USA.
| | | | | | | |
Collapse
|
228
|
Hardman RC, Kullman SW, Hinton DE. Non invasive in vivo investigation of hepatobiliary structure and function in STII medaka (Oryzias latipes): methodology and applications. COMPARATIVE HEPATOLOGY 2008; 7:7. [PMID: 18838008 PMCID: PMC2586619 DOI: 10.1186/1476-5926-7-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2007] [Accepted: 10/06/2008] [Indexed: 01/13/2023]
Abstract
Background A novel transparent stock of medaka (Oryzias latipes; STII), recessive for all pigments found in chromatophores, permits transcutaneous imaging of internal organs and tissues in living individuals. Findings presented describe the development of methodologies for non invasive in vivo investigation in STII medaka, and the successful application of these methodologies to in vivo study of hepatobiliary structure, function, and xenobiotic response, in both 2 and 3 dimensions. Results Using brightfield, and widefield and confocal fluorescence microscopy, coupled with the in vivo application of fluorescent probes, structural and functional features of the hepatobiliary system, and xenobiotic induced toxicity, were imaged at the cellular level, with high resolution (< 1 μm), in living individuals. The findings presented demonstrate; (1) phenotypic response to xenobiotic exposure can be investigated/imaged in vivo with high resolution (< 1 μm), (2) hepatobiliary transport of solutes from blood to bile can be qualitatively and quantitatively studied/imaged in vivo, (3) hepatobiliary architecture in this lower vertebrate liver can be studied in 3 dimensions, and (4) non invasive in vivo imaging/description of hepatobiliary development in this model can be investigated. Conclusion The non-invasive in vivo methodologies described are a unique means by which to investigate biological structure, function and xenobiotic response with high resolution in STII medaka. In vivo methodologies also provide the future opportunity to integrate molecular mechanisms (e.g., genomic, proteomic) of disease and toxicity with phenotypic changes at the cellular and system levels of biological organization. While our focus has been the hepatobiliary system, other organ systems are equally amenable to in vivo study, and we consider the potential for discovery, within the context of in vivo investigation in STII medaka, as significant.
Collapse
Affiliation(s)
- Ron C Hardman
- Duke University, Environmental Sciences and Policy Division, Nicholas School of the Environment and Earth Sciences, LSRC A333, Durham, NC, USA.
| | | | | |
Collapse
|
229
|
Li X, Cao J, Jin Q, Xie C, He Q, Cao R, Xiong J, Chen P, Wang X, Liang S. A proteomic study reveals the diversified distribution of plasma membrane-associated proteins in rat hepatocytes. J Cell Biochem 2008; 104:965-84. [PMID: 18247341 DOI: 10.1002/jcb.21680] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
To investigate the heterogeneous protein composition of highly polarized hepatocyte plasma membrane (PM), three PM-associated subfractions were obtained from freshly isolated rat hepatocytes using density gradient centrifugation. The origins of the three subfractions were determined by morphological analysis and western blotting. The proteins were subjected to either one-dimensional (1-D) SDS-PAGE or two-dimensional (2-D) benzyldimethyl-n-hexadecylammonium chloride (BAC)/SDS-PAGE before nano-Liquid Chromatography-Electrospray Ionization--tandem mass spectrometry analysis (LC-ESI-MS/MS). A total of 613 non-redundant proteins were identified, among which 371 (60.5%) proteins were classified as PM or membrane-associated proteins according to GO annotations and the literatures and 32.4% had transmembrane domains. PM proteins from microsomal portion possessed the highest percentage of transmembrane domain, about 46.5% of them containing at least one transmembrane domain. In addition to proteins known to be located at polarized liver PM regions, such as asialoglycoprotein receptor 2, desmoplakin and bile salt export pump, several proteins which had the potential to become novel subfraction-specific proteins were also identified, such as annexin a6, pannexin and radixin. Our analysis also evaluated the application of 1-D SDS-PAGE and 2-D 16-BAC/SDS-PAGE on the separation of integral membrane proteins.
Collapse
Affiliation(s)
- Xuanwen Li
- Key Laboratory of Protein Chemistry and Developmental Biology of Education Committee, College of Life Sciences, Hunan Normal University, Changsha 410081, P.R. China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
230
|
Pamp K, Kerkweg U, Korth HG, Homann F, Rauen U, Sustmann R, de Groot H, Petrat F. Enzymatic reduction of labile iron by organelles of the rat liver. Superior role of an NADH-dependent activity in the outer mitochondrial membrane. Biochimie 2008; 90:1591-601. [PMID: 18627785 DOI: 10.1016/j.biochi.2008.06.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2008] [Accepted: 06/17/2008] [Indexed: 01/13/2023]
Abstract
The enzymatic system mainly responsible for the reduction of labile iron ions in mammalian cells is still unknown. Using isolated organelles of the rat liver, i.e. mitochondria, microsomes, nuclei and the cytosol, we here demonstrate that Fe(III), added as Fe(III)-ATP complex, is predominantly reduced by an NADH-dependent enzyme system associated with mitochondria (65% of the overall enzymatic Fe(III) reduction capacity within liver cells). Microsomes showed a significantly smaller Fe(III) reduction capacity, whereas the cytosol and nuclei hardly reduced Fe(III). Studying the mitochondrial iron reduction, this NADH-dependent process was not mediated by superoxide, ascorbic acid, or NADH itself, excluding low-molecular-weight reductants. No evidence was found for the involvement of complex I and III of the respiratory chain. Submitochondrial preparations revealed the highest specific activity reducing Fe(III) in the outer membrane fraction. In conclusion, an NADH-dependent mitochondrial enzyme system, most likely the NADH-cytochrome c reductase system, located at the outer membrane, should decisively contribute to the enzymatic reduction of labile iron within liver cells, especially under pathological conditions.
Collapse
Affiliation(s)
- K Pamp
- Institut für Physiologische Chemie, Universitätsklinikum, Essen, Germany
| | | | | | | | | | | | | | | |
Collapse
|
231
|
Koschorreck M, Gilles ED. Mathematical modeling and analysis of insulin clearance in vivo. BMC SYSTEMS BIOLOGY 2008; 2:43. [PMID: 18477391 PMCID: PMC2430945 DOI: 10.1186/1752-0509-2-43] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2007] [Accepted: 05/13/2008] [Indexed: 01/13/2023]
Abstract
BACKGROUND Analyzing the dynamics of insulin concentration in the blood is necessary for a comprehensive understanding of the effects of insulin in vivo. Insulin removal from the blood has been addressed in many studies. The results are highly variable with respect to insulin clearance and the relative contributions of hepatic and renal insulin degradation. RESULTS We present a dynamic mathematical model of insulin concentration in the blood and of insulin receptor activation in hepatocytes. The model describes renal and hepatic insulin degradation, pancreatic insulin secretion and nonspecific insulin binding in the liver. Hepatic insulin receptor activation by insulin binding, receptor internalization and autophosphorylation is explicitly included in the model. We present a detailed mathematical analysis of insulin degradation and insulin clearance. Stationary model analysis shows that degradation rates, relative contributions of the different tissues to total insulin degradation and insulin clearance highly depend on the insulin concentration. CONCLUSION This study provides a detailed dynamic model of insulin concentration in the blood and of insulin receptor activation in hepatocytes. Experimental data sets from literature are used for the model validation. We show that essential dynamic and stationary characteristics of insulin degradation are nonlinear and depend on the actual insulin concentration.
Collapse
Affiliation(s)
- Markus Koschorreck
- Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstr, 1, 39106 Magdeburg, Germany.
| | | |
Collapse
|
232
|
Tuma PL, Hubbard AL. Isolation of rat hepatocyte plasma membrane sheets and plasma membrane domains. ACTA ACUST UNITED AC 2008; Chapter 3:Unit 3.2. [PMID: 18228354 DOI: 10.1002/0471143030.cb0302s02] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
This unit describes a method for isolation of plasma membrane sheets from rat liver. It also includes protocols for preparation of plasma membrane domains isolated from plasma membrane sheets and indirect immunofluorescence localization of marker proteins associated with plasma membrane sheets. The unit has been updated with assays for the marker enzymes alkaline phosphodiesterase I, 5' nucleotidase, and K+-stimulated.
Collapse
Affiliation(s)
- P L Tuma
- Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | |
Collapse
|
233
|
Abstract
In metazoans macrophage cells use phagocytosis, the process of engulfing large particles, to control the spread of pathogens in the body, to clear dead or dying cells, and to aid in tissue remodelling, while the same process is also used by unicellular eukaryotes to ingest food. Phagocytosing cells essentially swallow the particles, trapping them in vacuoles called phagosomes that go through a series of maturation steps, culminating in the destruction of the internalized cargo. Because of their central role in innate immunity and their relatively simple structure (one membrane bilayer surrounding a single particle), phagosomes have been a popular subject for organelle proteomics studies. Qualitative proteomic technologies are now very sensitive so hundreds of different proteins have been identified in phagosomes from several species, revealing new properties of these intriguing compartments. More recently, quantitative proteomic approaches have also been applied, shedding new light on the dynamics and composition of maturing phagosomes. In this review we summarize the studies that have applied proteomic technologies to phagosomes and how they have changed our understanding of phagosome biology.
Collapse
Affiliation(s)
- Lindsay D Rogers
- Cell Biology Proteomics group, Centre for High-throughput Biology and Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada V6T 1Z4
| | | |
Collapse
|
234
|
Abstract
OBJECTIVE The liver is the primary site of hematopoiesis during fetal development; it has been shown that thrombopoietin (TPO) produced by the liver during fetal development is a major regulator of megakaryocytopoiesis. As maximum liver growth and hematopoiesis occur simultaneously, we hypothesized that TPO may act as a growth factor for hepatic progenitors. Therefore, the influence of TPO on the proliferation of fetal hepatic progenitors in vitro compared with that of adult hepatocytes was analyzed. The expression of the TPO receptor, c-mpl, was investigated in fetal and adult liver. METHODS Cell proliferation was measured by bromodeoxyuridine incorporation and total cell counts. TPO and c-mpl gene expression was investigated by reverse transcription polymerase chain reaction. The cell surface expression of c-mpl was analyzed in fetal and adult human liver by immunohistochemistry. RESULTS Hepatic progenitors of fetal and adult liver but not hepatocytes expressed the TPO receptor, c-mpl, on the cell surface. Fetal hepatic progenitors expressed mRNA for TPO and its receptor. TPO stimulated cell proliferation and increased cell numbers of cultured rat fetal hepatic progenitors but not adult hepatocytes. CONCLUSION We conclude that TPO acts in addition to its known role in megakaryocytopoiesis as a growth factor for hepatic progenitors but not hepatocytes in vitro; thus, TPO represents a growth factor for hepatic progenitors during fetal liver development.
Collapse
|
235
|
Monnier J, Piquet-Pellorce C, Feige JJ, Musso O, Clément B, Turlin B, Théret N, Samson M. Prokineticin 2/Bv8 is expressed in Kupffer cells in liver and is down regulated in human hepatocellular carcinoma. World J Gastroenterol 2008; 14:1182-91. [PMID: 18300343 PMCID: PMC2690665 DOI: 10.3748/wjg.14.1182] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To study the implication of prokineticin 1 (PK1/EG-VEGF) and prokineticin 2 (PK2/Bv8) in hepatocellular carcinoma angiogenesis.
METHODS: The gene induction of PK1/EG-VEGF and PK2/Bv8 was investigated in 10 normal, 28 fibrotic and 28 tumoral livers by using real time PCR. Their expression was compared to the expression of VEGF (an angiogenesis marker), vWF (an endothelial cell marker) and to CD68 (a monocyte/macrophage marker). Furthermore, the mRNA levels of PK1/EG-VEGF, PK2/Bv8, prokineticin receptor 1 and 2 were evaluated by real time PCR in isolated liver cell populations. Finally, PK2/Bv8 protein was detected in normal liver paraffin sections and in isolated liver cells by immunohistochemistry and immunocytochemistry.
RESULTS: PK2/Bv8 mRNA but not PK1/EG-VEGF was expressed in all types of normal liver samples examined. In the context of liver tumor development, we reported that PK2/Bv8 correlates only with CD68 and showed a significant decrease in expression as the pathology evolves towards cancer. Whereas, VEGF and vWF mRNA were significantly upregulated in both fibrosis and HCC, as expected. In addition, out of all isolated liver cells examined, only Kupffer cells (liver resident macrophages) express significant levels of PK2/Bv8 and its receptors, prokineticin receptor 1 and 2.
CONCLUSION: In normal liver PK2/Bv8 and its receptors were specifically expressed by Kupffer cells. PK2/Bv8 expression decreased as the liver evolves towards cancer and did not correlate with HCC angiogenesis.
Collapse
|
236
|
Wirz W, Antoine M, Tag CG, Gressner AM, Korff T, Hellerbrand C, Kiefer P. Hepatic stellate cells display a functional vascular smooth muscle cell phenotype in a three-dimensional co-culture model with endothelial cells. Differentiation 2008; 76:784-94. [PMID: 18177423 DOI: 10.1111/j.1432-0436.2007.00260.x] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Hepatic stellate cells (HSCs) are pericytes of liver sinusoidal endothelial cells (LSECs) and activation of HSC into a myofibroblast-like phenotype (called transdifferentiation) is involved in several hepatic disease processes including neovascularization during liver metastasis, chronic and acute liver injury. While early smooth muscle cell (SMC) differentiation markers including SM alpha-actin and SM22alpha are expressed in a variety of non-SMC, expression of late-stage markers is far more restricted. Here, we found that in addition to early SMC markers, activated rat HSC express a large panel of characteristic late vascular SMC markers including SM myosin heavy chain, h1-calponin and h-caldesmon. Furthermore, myocardin, which is present exclusively in SMCs and cardiomyocytes and controls the transcription of a subset of early and late SMC markers, is highly expressed in activated HSC. We further studied activated HSC in a functional three-dimensional spheroidal co-culture system together with endothelial cells (EC). Co-culture spheroids of EC and SMC differentiate spontaneously and organize into a core of SMC and a surface layer of EC representing an inside-outside model of the physiological assembly of blood vessels. Replacing SMC by in vitro activated HSC resulted in a similar organized spheroid with differentiated, von-Willebrand factor producing, surface lining quiescent human umbilical vein endothelial cell and a core of HSC. In an in vitro angiogenesis assay, activated HSC induced quiescence in vascular EC-the hallmark of vascular SMC function. Co-spheroids of LSEC and activated HSC formed capillary-like sprouts in gel angiogenesis assays expressing the vascular EC marker VE-cadherin. Our findings indicate that activated HSC are capable to adapt a functional SMC phenotype and to induce formation of tubular sprouts by LSEC and vascular endothelial cells. Since tumors and tumor metastasis induce HSC activation, HSC may take part in tumor-induced neoangiogenesis by adapting SMC-like functions.
Collapse
Affiliation(s)
- W Wirz
- Institute of Clinical Chemistry and Pathobiochemistry, RWTH Aachen, D-52073 Germany
| | | | | | | | | | | | | |
Collapse
|
237
|
Mccuskey RS. The Hepatic Microvascular System in Health and Its Response to Toxicants. Anat Rec (Hoboken) 2008; 291:661-71. [DOI: 10.1002/ar.20663] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
238
|
The dynamic phagosomal proteome and the contribution of the endoplasmic reticulum. Proc Natl Acad Sci U S A 2007; 104:18520-5. [PMID: 18006660 DOI: 10.1073/pnas.0705801104] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Macrophages use phagocytosis to control the spread of pathogens in the body, to clear apoptotic cells, and to aid in tissue remodeling. The phagosomal membrane is traditionally thought to originate from the plasmalemma and then go through a series of maturation steps involving sequential fusion with endosomal compartments, leading to the formation of a phagolysosome. A recent model suggests that the endoplasmic reticulum (ER) is involved in the maturation as well. Here we use stable isotope labeling and multiple quantitative proteomic approaches to follow the dynamic composition of the maturing phagosome in RAW 264.7 macrophage cells to a greater depth and higher temporal resolution than was previously possible. Analysis of the results suggests that the traditional model of a linear sequence of fusion events with different compartments is more complex or variable than previously thought. By concomitantly measuring the degree to which each component is enriched on phagosomes, our data argue that the amount of ER involved in phagocytosis is much less than predicted by the model of ER-mediated phagocytosis.
Collapse
|
239
|
Shen H, Fan J, Burczynski F, Minuk GY, Cattini P, Gong Y. Increased Smad1 expression and transcriptional activity enhances trans-differentiation of hepatic stellate cells. J Cell Physiol 2007; 212:764-70. [PMID: 17525996 DOI: 10.1002/jcp.21074] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Smad1 is a receptor-activated intracellular signaling protein, which mediates signal transduction of bone morphogenetic proteins. Current study investigated the expression and transcriptional activity of Smad1 during hepatic stellate cell (HSC) activation. Rat HSCs were isolated from rats at 1, 2, 3 and 4 days after gavaged with carbon tetrachloride (CCl(4)) or corn oil. RT-PCR, Western blot, gel-shift assay and luciferase assay were employed to examine Smad1 expression and transcriptional activity, respectively. CCl(4)-cirrhotic liver fat-storing cells-8B (CFSC-8B) cells were infected with recombinant adenoviruses of Smad1 and/or Smad1 shRNA. Both mRNA and protein levels of Smad1 were significantly increased at 48 h after gavage of CCl(4). Gel shift assays demonstrated a significant increase in nuclear Smad1 in day 9 HSCs. Transfection of HSCs with Smad1 responsible luciferase indicated an increase in Smad1 transcriptional activity in day 6 HSCs (1.563 +/- 0.229 in day 6 versus 0.785 +/- 0.192 in day 3). When CFSC-8B cells were infected with adenoviruses with Smad1 or Smad1 short hairpin RNA (shRNA), there was an increase or decrease in Smad1 mRNA and protein, respectively. Smooth muscle alpha-actin expression was increased or decreased according to induction or reduction of Smad1. In conclusion, there were significantly increases in Smad1 expression and transcriptional activity during in vivo activation of hepatic stellate cells.
Collapse
Affiliation(s)
- Hong Shen
- Medical Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | | | | | | | | | | |
Collapse
|
240
|
Hardman RC, Volz DC, Kullman SW, Hinton DE. An in vivo look at vertebrate liver architecture: three-dimensional reconstructions from medaka (Oryzias latipes). Anat Rec (Hoboken) 2007; 290:770-82. [PMID: 17516461 DOI: 10.1002/ar.20524] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Understanding three-dimensional (3D) hepatobiliary architecture is fundamental to elucidating structure/function relationships relevant to hepatobiliary metabolism, transport, and toxicity. To date, factual information on vertebrate liver architecture in 3 dimensions has remained limited. Applying noninvasive in vivo imaging to a living small fish animal model we elucidated, and present here, the 3D architecture of this lower vertebrate liver. Our investigations show that hepatobiliary architecture in medaka is based on a polyhedral (hexagonal) structural motif, that the intrahepatic biliary system is an interconnected network of canaliculi and bile-preductules, and that parenchymal architecture in this lower vertebrate is more related to that of the mammalian liver than previously believed. The in vivo findings presented advance our comparative 3D understanding of vertebrate liver structure/function, help clarify previous discrepancies among vertebrate liver conceptual models, and pose interesting questions regarding the "functional unit" of the vertebrate liver.
Collapse
Affiliation(s)
- Ron C Hardman
- Duke University, Nicholas School of the Environment and Earth Sciences, Durham, North Carolina 27708, USA
| | | | | | | |
Collapse
|
241
|
Nedredal GI, Elvevold K, Ytrebø LM, Fuskevåg OM, Pettersen I, Bertheussen K, Langbakk B, Smedsrød B, Revhaug A. Significant contribution of liver nonparenchymal cells to metabolism of ammonia and lactate and cocultivation augments the functions of a bioartificial liver. Am J Physiol Gastrointest Liver Physiol 2007; 293:G75-83. [PMID: 17363468 DOI: 10.1152/ajpgi.00245.2006] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
A bioartificial liver (BAL) will bridge patients with acute liver failure (ALF) to either spontaneous regeneration or liver transplantation. The nitrogen metabolism is important in ALF, and the metabolism of nonparenchymal liver cells (NPCs) is poorly understood. The scope of this study was to investigate whether cocultivation of hepatocytes with NPCs would augment the functions of a BAL (HN-BAL) compared with a BAL equipped with only hepatocytes (H-BAL). In addition, NPCs were similarly cultivated alone. The cells were cultivated for 8 days in simulated microgravity with serum-free growth medium. With NPCs, initial ammonia and lactate production were fivefold and over twofold higher compared with later time periods despite sufficient oxygen supply. Initial lactate production and glutamine consumption were threefold higher in HN-BAL than in H-BAL. With NPCs, initial glutamine consumption was two- to threefold higher compared with later time periods, whereas initial ornithine production and arginine consumption were over four- and eightfold higher compared with later time periods. In NPCs, the conversion of glutamine to glutamate and ammonia can be explained by the presence of glutaminase, as revealed by PCR analysis. Drug metabolism and clearance of aggregated gamma globulin, probes administered to test functions of hepatocytes and NPCs, respectively, were higher in HN-BAL than in H-BAL. In conclusion, NPCs produce ammonia by hydrolysis of amino acids and may contribute to the pathogenesis of ALF. High amounts of lactate are produced by NPCs under nonhypoxic conditions. Cocultivation augments differentiated functions such as drug metabolism and clearance of aggregated gamma-globulin.
Collapse
Affiliation(s)
- Geir I Nedredal
- Department of Digestive Surgery, University Hospital of Northern Norway, 9038 Tromsø, Norway.
| | | | | | | | | | | | | | | | | |
Collapse
|
242
|
Chen Y, Yang Y, Miller ML, Shen D, Shertzer HG, Stringer KF, Wang B, Schneider SN, Nebert DW, Dalton TP. Hepatocyte-specific Gclc deletion leads to rapid onset of steatosis with mitochondrial injury and liver failure. Hepatology 2007; 45:1118-28. [PMID: 17464988 DOI: 10.1002/hep.21635] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
UNLABELLED Oxidative stress is considered to be a critical mediator in liver injury of various etiologies. Depletion of glutathione (GSH), the major antioxidant in liver, has been associated with numerous liver diseases. To explore the specific role of hepatic GSH in vivo, we targeted Gclc, a gene essential for GSH synthesis, so that it was flanked by loxP sites and used the albumin-cyclization recombination (Alb-Cre) transgene to disrupt the Gclc gene specifically in hepatocytes. Deletion within the Gclc gene neared completion by postnatal day (PND)14, and loss of GCLC protein was complete by PND21. Cellular GSH was progressively depleted between PND14 and PND28-although loss of mitochondrial GSH was less severe. Nevertheless, ultrastructural examination of liver revealed dramatic changes in mitochondrial morphology; these alterations were accompanied by striking decreases in mitochondrial function in vitro, cellular ATP, and a marked increase in lipid peroxidation. Plasma liver biochemistry tests from these mice were consistent with progressive severe parenchymal damage. Starting at PND21, livers from hepatocyte-specific Gclc knockout [Gclc(h/h)] mice showed histological features of hepatic steatosis; this included inflammation and hepatocyte death, which progressed in severity such that mice died at approximately 1 month of age due to complications from liver failure. CONCLUSION GSH is essential for hepatic function and loss of hepatocyte GSH synthesis leads to steatosis with mitochondrial injury and hepatic failure.
Collapse
Affiliation(s)
- Ying Chen
- Department of Environmental Health, University of Cincinnati Medical Center, Cincinnati, OH 45267-0056, and Center for Immunology and Inflammatory Disease, Massachusetts General Hospital, Boston, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
243
|
Vikstedt R, Ye D, Metso J, Hildebrand RB, Van Berkel TJC, Ehnholm C, Jauhiainen M, Van Eck M. Macrophage Phospholipid Transfer Protein Contributes Significantly to Total Plasma Phospholipid Transfer Activity and Its Deficiency Leads to Diminished Atherosclerotic Lesion Development. Arterioscler Thromb Vasc Biol 2007; 27:578-86. [PMID: 17170377 DOI: 10.1161/01.atv.0000254815.49414.be] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Objective—
Systemic phospholipid transfer protein (PLTP) deficiency in mice is associated with a decreased susceptibility to atherosclerosis, whereas overexpression of human PLTP in mice increases atherosclerotic lesion development. PLTP is also expressed by macrophage-derived foam cells in human atherosclerotic lesions, but the exact role of macrophage PLTP in atherosclerosis is unknown.
Methods and Results—
To clarify the role of macrophage PLTP in atherogenesis, PLTP was selectively disrupted in hematopoietic cells, including macrophages, by transplantation of bone marrow from PLTP knockout (PLTP
−/−
) mice into irradiated low-density lipoprotein receptor knockout mice. Selective deficiency of macrophage PLTP (PLTP
−M/−M
) resulted in a 29% (
P
<0.01 for difference in lesion area) reduction in aortic root lesion area as compared with mice possessing functional macrophage PLTP (384±36*10
3
μm
2
in the PLTP
−M/−M
group (n=10), as compared with 539±35*10
3
μm
2
in the PLTP
+M/+M
group (n=14)) after 9 weeks of Western-type diet feeding. The decreased lesion size in the PLTP
−M/−M
group coincided with significantly lower serum total cholesterol, free cholesterol, and triglyceride levels in these mice. Furthermore, plasma PLTP activity in the PLTP
−M/−M
group was 2-fold (
P
<0.001) lower than that in the PLTP
+M/+M
group.
Conclusion—
Macrophage PLTP is a significant contributor to plasma PLTP activity and deficiency of PLTP in macrophages leads to lowered atherosclerotic lesion development in low-density lipoprotein receptor knockout mice on Western-type diet.
Collapse
Affiliation(s)
- Riikka Vikstedt
- National Public Health Institute, Department of Molecular Medicine, Biomedicum, Helsinki, Finland
| | | | | | | | | | | | | | | |
Collapse
|
244
|
Yoshizato K. Growth potential of adult hepatocytes in mammals: Highly replicative small hepatocytes with liver progenitor‐like traits. Dev Growth Differ 2007; 49:171-84. [PMID: 17335438 DOI: 10.1111/j.1440-169x.2007.00918.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The liver is one of the few organs that is capable of completely regenerating itself without using a stem cell population. When damaged, growth factors and cytokines are released, stimulating terminally differentiated adult hepatocytes and making them re-enter the cell cycle. We have been developing a series of studies on the growth potential of rat and human hepatocytes to identify a population of hepatocytes that is responsible for the regeneration of the injured liver. For this purpose, we established an appropriate culture method for hepatocytes by which growth and differentiation capacities are practically examined under various experimental conditions. This in vitro assay system allows us to identify small hepatocytes that are prominently replicative compared to large hepatocytes. Non-parenchymal cells play critical roles in the proliferation of small hepatocytes. These hepatocytes are present in both rat and human liver and are located in portal regions there. Phenotypic features were examined at morphological and gene/protein levels in detail, which showed the phenotypic plasticity in vitro. Mammalian liver includes a population of small hepatocytes in normal adults with a minute occupancy rate. We speculate that small hepatocytes play a role in regenerating the injured liver and in compensating for apoptotic hepatocytes in the physiological turnover of hepatocytes.
Collapse
Affiliation(s)
- Katsutoshi Yoshizato
- Developmental Biology Laboratory and Hiroshima University 21st Century COE Program for Advanced Radiation Casualty Medicine, Department of Biological Science, Graduate School of Science, Hiroshima University, Japan.
| |
Collapse
|
245
|
Kornmann B, Schaad O, Bujard H, Takahashi JS, Schibler U. System-driven and oscillator-dependent circadian transcription in mice with a conditionally active liver clock. PLoS Biol 2007; 5:e34. [PMID: 17298173 PMCID: PMC1783671 DOI: 10.1371/journal.pbio.0050034] [Citation(s) in RCA: 504] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2006] [Accepted: 12/01/2006] [Indexed: 02/08/2023] Open
Abstract
The mammalian circadian timing system consists of a master pacemaker in neurons of the suprachiasmatic nucleus (SCN) and clocks of a similar molecular makeup in most peripheral body cells. Peripheral oscillators are self-sustained and cell autonomous, but they have to be synchronized by the SCN to ensure phase coherence within the organism. In principle, the rhythmic expression of genes in peripheral organs could thus be driven not only by local oscillators, but also by circadian systemic signals. To discriminate between these mechanisms, we engineered a mouse strain with a conditionally active liver clock, in which REV-ERBalpha represses the transcription of the essential core clock gene Bmal1 in a doxycycline-dependent manner. We examined circadian liver gene expression genome-wide in mice in which hepatocyte oscillators were either running or arrested, and found that the rhythmic transcription of most genes depended on functional hepatocyte clocks. However, we discovered 31 genes, including the core clock gene mPer2, whose expression oscillated robustly irrespective of whether the liver clock was running or not. By contrast, in liver explants cultured in vitro, circadian cycles of mPer2::luciferase bioluminescence could only be observed when hepatocyte oscillators were operational. Hence, the circadian cycles observed in the liver of intact animals without functional hepatocyte oscillators were likely generated by systemic signals. The finding that rhythmic mPer2 expression can be driven by both systemic cues and local oscillators suggests a plausible mechanism for the phase entrainment of subsidiary clocks in peripheral organs.
Collapse
Affiliation(s)
- Benoît Kornmann
- Department of Molecular Biology, University of Geneva, Geneva, Switzerland
| | - Olivier Schaad
- Department of Biochemistry, University of Geneva, Geneva, Switzerland
| | - Hermann Bujard
- Zentrum für Molekulare Biologie, Universität Heidelberg, Heidelberg, Germany
| | - Joseph S Takahashi
- Howard Hughes Medical Institute, Department of Neurobiology and Physiology, Northwestern University, Evanston, Illinois, United States of America
| | - Ueli Schibler
- Department of Molecular Biology, University of Geneva, Geneva, Switzerland
| |
Collapse
|
246
|
Billack B. Macrophage activation: role of toll-like receptors, nitric oxide, and nuclear factor kappa B. AMERICAN JOURNAL OF PHARMACEUTICAL EDUCATION 2006; 70:102. [PMID: 17149431 PMCID: PMC1637021 DOI: 10.5688/aj7005102] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2006] [Accepted: 04/28/2006] [Indexed: 05/02/2023]
Abstract
Macrophages play an important role in host-defense and inflammation. In response to an immune challenge, macrophages become activated and produce proinflammatory mediators that contribute to nonspecific immunity. The mediators released by activated macrophages include: superoxide anion; reactive nitrogen intermediates, such as nitric oxide and peroxynitrite; bioactive lipids; and cytokines. Although essential to the immune response, overproduction of certain macrophage-derived mediators during an immune challenge or inflammatory response can result in tissue injury and cellular death. The present report is focused on understanding some of the molecular mechanisms used by macrophages to produce reactive nitrogen intermediates in response to immunostimulatory agents such as heat shock protein 60 and bacterial lipopolysaccharide. The role of Toll-like receptors and transcription factors such as nuclear factor kappa B (NFkappaB) in the innate immune response is also described. A basic understanding of the underlying molecular mechanisms responsible for macrophage activation should serve as a foundation for novel drug development aimed at modulating macrophage activity.
Collapse
Affiliation(s)
- Blase Billack
- College of Pharmacy and Allied Health Professions, St. John's University, 8000 Utopia Parkway, Queens, NY 11439, USA.
| |
Collapse
|
247
|
Ping C, Xiaoling D, Jin Z, Jiahong D, Jiming D, Lin Z. Hepatic Sinusoidal Endothelial Cells Promote Hepatocyte Proliferation Early after Partial Hepatectomy in Rats. Arch Med Res 2006; 37:576-83. [PMID: 16740426 DOI: 10.1016/j.arcmed.2005.12.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2005] [Accepted: 12/15/2005] [Indexed: 01/11/2023]
Abstract
BACKGROUND We undertook this study in rats to investigate the role of hepatic sinusoidal endothelial cells (SECs) in hepatocyte proliferation early after partial hepatectomy and the regulatory mechanisms involved. METHODS The animal model of 70% hepatectomy was made. Hepatic SECs and hepatocytes were isolated and cultured according to the method of Braet et al. with some modifications. Levels of nitric oxide (NO), interleukin-6 (IL-6), and hepatic growth factor (HGF) in the supernatants of hepatic SEC cultures were measured, and the expression of HGF mRNA by hepatic SECs was analyzed. The relationship between the supernatants of hepatic SEC cultures and hepatocyte proliferation was probed. (3)H-thymidine incorporation and the proliferating cell nuclear antigen (PCNA) labeling index of hepatocytes were used as signs of hepatocyte proliferation. RESULTS Levels of NO, IL-6, and HGF in the supernatants of hepatic SECs cultures were increased markedly 6 and 24 h after hepatectomy and then were decreased gradually. The expression of HGF mRNA by cultured SECs was increased markedly 6 and 24 h after hepatectomy, with a peak 6 h after hepatectomy. The PCNA labeling index and (3)H-thymidine incorporation of hepatocytes started to increase 6 h after hepatectomy, with a peak at 24 h. Hepatic SECs were isolated from rats 24 h after partial hepatectomy and cultured for 24 h, and the culture supernatants were obtained. The supernatants not only significantly enhanced the PCNA labeling index and (3)H-thymidine incorporation of proliferating hepatocytes isolated from rats after partial hepatectomy but also obviously increased the DNA synthesis of quiescent hepatocytes from the control rats. The extent of hepatocyte proliferation was closely related to the amount of the SEC culture supernatants added in both rats after partial hepatectomy and control rats. CONCLUSIONS These results suggest that cytokines (such as IL-6, HGF and NO) secreted by SECs play important roles in liver regeneration early after partial hepatectomy. We speculate that activated hepatic SECs secrete some substances that induce or trigger liver regeneration after partial hepatectomy.
Collapse
Affiliation(s)
- Chen Ping
- Institute of Hepatobiliary Surgery, Southwest Hospital, The Third Military Medical University, Chongqing, China.
| | | | | | | | | | | |
Collapse
|
248
|
Cheng W, Guo L, Zhang Z, Soo HM, Wen C, Wu W, Peng J. HNF factors form a network to regulate liver-enriched genes in zebrafish. Dev Biol 2006; 294:482-96. [PMID: 16631158 DOI: 10.1016/j.ydbio.2006.03.018] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2005] [Revised: 02/23/2006] [Accepted: 03/15/2006] [Indexed: 12/20/2022]
Abstract
Defects in some of liver-enriched genes in mammals will cause liver- and/or blood-related diseases. However, due to the fact that embryogenesis happens intrauterinally in the mammals, the function of these liver-enriched genes during liver organogenesis is poorly studied. We report here the identification of 129 genuine liver-enriched genes in adult zebrafish and show that, through in situ hybridization, 69 of these genes are also enriched in the embryonic liver. External embryogenesis coupled with the well-established morpholino-mediated gene knock-down technique in zebrafish offers us a unique opportunity to study if this group of genes plays any role during liver organogenesis in the future. As an example, preliminary study using morpholino-mediated gene knock-down method revealed that a novel liver-enriched gene leg1 is crucial for the liver expansion growth. We also report the analysis of promoter regions of 51 liver-enriched genes by searching putative binding sites for Hnf1, Hnf3, Hnf4 and Hnf6, four key transcription factors enriched in the liver. We found that promoter regions of majority of liver-enriched genes contain putative binding sites for more than one HNF factors, suggesting that most of liver-enriched genes are likely co-regulated by different combination of HNF factors. This observation supports the hypothesis that these four liver-enriched transcription factors form a network in controlling the expression of liver-specific or -enriched genes in the liver.
Collapse
Affiliation(s)
- Wei Cheng
- Functional Genomics Lab, Institute of Molecular and Cell Biology, 61 Biopolis Drive, Protesos, 138673, Singapore
| | | | | | | | | | | | | |
Collapse
|
249
|
Ping C, Lin Z, Jiming D, Jin Z, Ying L, Shigang D, Hongtao Y, Yongwei H, Jiahong D. The phosphoinositide 3-kinase/Akt-signal pathway mediates proliferation and secretory function of hepatic sinusoidal endothelial cells in rats after partial hepatectomy. Biochem Biophys Res Commun 2006; 342:887-93. [PMID: 16596723 DOI: 10.1016/j.bbrc.2006.02.034] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
OBJECTIVE To investigate the role of AKT signaling pathway in hepatic sinusoidal endothelial cells (SECs) early after partial hepatectomy in rats and the regulatory mechanisms involved. METHODS The animal model of 70% hepatectomy was made. Hepatic SECs were isolated and cultured according to Braet et al.'s method with some modifications. The cultured hepatic SECs were divided into two groups: 70% partial hepatectomy groups and LY294002 group (LY). We observed the expressions of AKT and NF-kappaB in cultured hepatic SECs by Western blot, measured the levels of NO, NOs, IL-6, and HGF in the supernatants of hepatic SEC cultures and [3H]thymidine incorporation, and analyzed cell cycle of cultured hepatic SECs by flow cytometer. The relationship of the Akt pathway with secretions and proliferation of hepatic SECs after partial hepatectomy was probed. RESULTS The levels of Akt protein expression increased significantly after partial hepatectomy in OG group and with a peak at 24 h post operation. Meanwhile, there was a markedly increase in phosphorylated Akt protein during 2-72 h after operation. But the expression and activity of Akt protein did not change significantly after partial hepatectomy in the LY group. So, partial hepatectomy can marked induce Akt expression and result in rapid and marked phosphorylation of Akt from 2 to 72 h thereafter. The changes of NF-kappaB expression in cultured hepatic SECs were similar to those of Akt expression after operation. The concentrations of HGF and IL-6 in the supernatants of cultured hepatic SECs were relatively low in the LY group, and were markedly increased after partial hepatectomy, with a peak at 24 h in the OG group. There were significant differences between the OG and LY groups at 6 and 24 h (P < 0.05). Both NO and NOS secretion was increased in the OG group compared to the LY group within 24 h after partial hepatectomy. But the secretion of NO and NOS was increased more markedly in the LY group than that in the OG beyond 24 h. These findings suggest that the secretion of the cytokines by hepatic SECs is mediated by Akt signaling. Akt signaling pathway in relationship with proliferation of hepatic SECs and suppression of apoptosis. In OG group, the hepatic SECs in S and G2/M obviously increased. The proliferative index of hepatic SECs in OG group had significant differences with that in LY group at 6, 24, and 72 h, P < 0.05. Meanwhile, the cells of apoptosis in OG group were very low, and the cells in LY group gradually increased. CONCLUSIONS These results suggest that AKT signaling pathway plays a crucial role in mediating proliferating and secreted signals in hepatic SECs. AKT has been suggested to play a pivotal role in early liver regeneration involved in the induction of secreted cytokines and proliferation of hepatic SECs.
Collapse
Affiliation(s)
- Chen Ping
- Institute of hepatobiliary Surgery, Southwest Hospital, The Third Military Medical University, Chongqing, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
250
|
Longmuir KJ, Robertson RT, Haynes SM, Baratta JL, Waring AJ. Effective targeting of liposomes to liver and hepatocytes in vivo by incorporation of a Plasmodium amino acid sequence. Pharm Res 2006; 23:759-69. [PMID: 16550476 DOI: 10.1007/s11095-006-9609-x] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2005] [Accepted: 11/28/2005] [Indexed: 01/13/2023]
Abstract
PURPOSE Several species of the protozoan Plasmodium effectively target mammalian liver during the initial phase of host invasion. The purpose of this study was to demonstrate that a Plasmodium targeting amino acid sequence can be engineered into therapeutic nanoparticle delivery systems. METHODS A 19-amino peptide from the circumsporozoite protein of Plasmodium berghei was prepared containing the conserved region I as well as a consensus heparan sulfate proteoglycan binding sequence. This peptide was attached to the distal end of a lipid-polyethylene glycol bioconjugate. The bioconjugate was incorporated into phosphatidylcholine liposomes containing fluorescently labeled lipids to follow blood clearance and organ distribution in vivo. RESULTS When administered intravenously into mice, the peptide-containing liposomes were rapidly cleared from the circulation and were recovered almost entirely in the liver. Fluorescence and electron microscopy demonstrated that the liposomes were accumulated both by nonparenchymal cells and hepatocytes, with the majority of the liposomal material associated with hepatocytes. Accumulation of liposomes in the liver was several hundredfold higher compared to heart, lung, and kidney, and more than 10-fold higher compared to spleen. In liver slice experiments, liposome binding was specific to sites sensitive to heparinase. CONCLUSIONS Incorporation of amino acid sequences that recognize glycosaminoglycans is an effective strategy for the development of targeted drug delivery systems.
Collapse
Affiliation(s)
- Kenneth J Longmuir
- Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, California 92697, USA.
| | | | | | | | | |
Collapse
|