201
|
Arpornmaeklong P, Sutthitrairong C, Jantaramanant P, Pripatnanont P. Allogenic human serum, a clinical grade serum supplement for promoting human periodontal ligament stem cell expansion. J Tissue Eng Regen Med 2017; 12:142-152. [PMID: 27957806 DOI: 10.1002/term.2379] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 11/14/2016] [Accepted: 12/06/2016] [Indexed: 12/24/2022]
Abstract
Exposing human periodontal ligament stem cells (hPDLSCs) to animal proteins during cell expansion would compromise quality and safety of the hPDLSCs for clinical applications. The current study aimed to evaluate the replacement of animal-based serum by human serum for the expansion of hPDLSCs. hPDLSCs were cultured in culture media supplemented with four types of serums: Group A: fetal bovine serum (FBS); Group B: allogeneic human male AB serum (HS); Group C: in-house autologous (Auto-HS); and Group D: in-house allogeneic human serums (Allo-HS). Exhibitions of mesenchymal stem cell characteristics of hPDLSCs were examined. Then, growth and osteogenic (OS) differentiation potential of hPDLSCs in FBS and HS at passages 5 and 15 were compared to investigate the effects of serum supplements on growth and expansion stability of the expanded hPDLSCs. After that, growth and OS differentiation of hPDLSCs in Auto- and Allo-HS were investigated. Flow cytometrical analyses, functional differentiations, cell growth kinetic, cytogenetic analysis, alkaline phosphatase and calcium content assays, and oil red O and von Kossa staining were performed. Results showed that at passage 5, HS promoted growth and OS differentiation of hPDLSCs and extensive cell expansion, decreased growth and differentiation potential of the expanded hPDLSCs, particularly in HS. Growth and OS differentiation of hPDLSCs in Auto-HS and Allo-HS were not different. In summary, allogeneic human serum could be a replacement to FBS for hPDLSC expansion. In vitro cell expansion of hPDLSCs should be minimal to ensure optimal cell quality. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Premjit Arpornmaeklong
- Faculty of Dentistry, Thammasat University, Pathum Thani, Thailand.,CranioMaxillofacial Hard Tissue Engineering Center, Faculty of Dentistry, Prince of Songkla University, Songkhla, Thailand
| | - Chotika Sutthitrairong
- CranioMaxillofacial Hard Tissue Engineering Center, Faculty of Dentistry, Prince of Songkla University, Songkhla, Thailand
| | - Piyathida Jantaramanant
- CranioMaxillofacial Hard Tissue Engineering Center, Faculty of Dentistry, Prince of Songkla University, Songkhla, Thailand
| | - Prisana Pripatnanont
- CranioMaxillofacial Hard Tissue Engineering Center, Faculty of Dentistry, Prince of Songkla University, Songkhla, Thailand
| |
Collapse
|
202
|
Mullen AC, Wrana JL. TGF-β Family Signaling in Embryonic and Somatic Stem-Cell Renewal and Differentiation. Cold Spring Harb Perspect Biol 2017; 9:cshperspect.a022186. [PMID: 28108485 DOI: 10.1101/cshperspect.a022186] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Soon after the discovery of transforming growth factor-β (TGF-β), seminal work in vertebrate and invertebrate models revealed the TGF-β family to be central regulators of tissue morphogenesis. Members of the TGF-β family direct some of the earliest cell-fate decisions in animal development, coordinate complex organogenesis, and contribute to tissue homeostasis in the adult. Here, we focus on the role of the TGF-β family in mammalian stem-cell biology and discuss its wide and varied activities both in the regulation of pluripotency and in cell-fate commitment.
Collapse
Affiliation(s)
- Alan C Mullen
- Gastrointestinal Unit, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114.,Harvard Stem Cell Institute, Cambridge, Massachusetts 02138
| | - Jeffrey L Wrana
- Lunenfeld-Tanenbam Research Institute, Mount Sinai Hospital and Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5G 1X5, Canada
| |
Collapse
|
203
|
Abstract
This review focuses on developments in the field of bioprinting for musculoskeletal tissue engineering, along with discussion on the various approaches for bone, cartilage and connective tissue fabrication. All approaches (cell-laden, cell-free and a combination of both) aim to obtain complex, living tissues able to develop and mature, using the same fundamental technology. To date, co-printing of cell-laden and cell-free materials has been revealed to be the most promising approach for musculoskeletal applications because materials with good bioactivity and good mechanical strength can be combined within the same constructs. Bioprinting for musculoskeletal applications is a developing field, and detailed discussion on the current challenges and future perspectives is also presented in this review.
Collapse
Affiliation(s)
- Alexander Popov
- Institute of Orthopaedics & Musculoskeletal Science, Division of Surgery & Interventional Science, University College London, Royal National Orthopaedic Hospital, Brockley Hill, Stanmore, Middlesex HA7 4LP, UK
| | - Sara Malferrari
- Institute of Orthopaedics & Musculoskeletal Science, Division of Surgery & Interventional Science, University College London, Royal National Orthopaedic Hospital, Brockley Hill, Stanmore, Middlesex HA7 4LP, UK
| | - Deepak M Kalaskar
- Institute of Orthopaedics & Musculoskeletal Science, Division of Surgery & Interventional Science, University College London, Royal National Orthopaedic Hospital, Brockley Hill, Stanmore, Middlesex HA7 4LP, UK
| |
Collapse
|
204
|
Li S, Maçon ALB, Jacquemin M, Stevens MM, Jones JR. Sol–gel derived lithium-releasing glass for cartilage regeneration. J Biomater Appl 2017. [DOI: 10.1177/0885328217706640] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Wnt-signalling cascade is one of the crucial pathways involved in the development and homeostasis of cartilage. Influencing this pathway can potentially contribute to improved cartilage repair or regeneration. One key molecular regulator of the Wnt pathway is the glycogen synthase kinase-3 enzyme, the inhibition of which allows initiation of the signalling pathway. This study aims to utilise a binary SiO2–Li2O sol–gel derived glass for controlled delivery of lithium, a known glycogen synthase kinase-3 antagonist. The effect of the dissolution products of the glass on chondrogenic differentiation in an in vitro 3D pellet culture model is reported. Dissolution products that contained 5 mM lithium and 3.5 mM silicon were capable of inducing chondrogenic differentiation and hyaline cartilaginous matrix formation without the presence of growth factors such as TGF-β3. The results suggest that sol–gel derived glass has the potential to be used as a delivery vehicle for therapeutic lithium ions in cartilage regeneration applications.
Collapse
Affiliation(s)
- Siwei Li
- Department of Materials, Imperial College London, London, UK
| | | | - Manon Jacquemin
- Department of Materials, Imperial College London, London, UK
| | - Molly M Stevens
- Department of Materials, Imperial College London, London, UK
- Department of Bioengineering, Imperial College London, London, UK
| | - Julian R Jones
- Department of Materials, Imperial College London, London, UK
| |
Collapse
|
205
|
Ayerst BI, Merry CLR, Day AJ. The Good the Bad and the Ugly of Glycosaminoglycans in Tissue Engineering Applications. Pharmaceuticals (Basel) 2017; 10:E54. [PMID: 28608822 PMCID: PMC5490411 DOI: 10.3390/ph10020054] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 06/05/2017] [Accepted: 06/05/2017] [Indexed: 12/14/2022] Open
Abstract
High sulfation, low cost, and the status of heparin as an already FDA- and EMA- approved product, mean that its inclusion in tissue engineering (TE) strategies is becoming increasingly popular. However, the use of heparin may represent a naïve approach. This is because tissue formation is a highly orchestrated process, involving the temporal expression of numerous growth factors and complex signaling networks. While heparin may enhance the retention and activity of certain growth factors under particular conditions, its binding 'promiscuity' means that it may also inhibit other factors that, for example, play an important role in tissue maintenance and repair. Within this review we focus on articular cartilage, highlighting the complexities and highly regulated processes that are involved in its formation, and the challenges that exist in trying to effectively engineer this tissue. Here we discuss the opportunities that glycosaminoglycans (GAGs) may provide in advancing this important area of regenerative medicine, placing emphasis on the need to move away from the common use of heparin, and instead focus research towards the utility of specific GAG preparations that are able to modulate the activity of growth factors in a more controlled and defined manner, with less off-target effects.
Collapse
Affiliation(s)
- Bethanie I Ayerst
- Wellcome Trust Centre for Cell-Matrix Research, Division of Cell-Matrix Biology & Regenerative Medicine, School of Biology, Faculty of Biology, Medicine & Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PL, UK.
| | - Catherine L R Merry
- Stem Cell Glycobiology Group, Wolfson Centre for Stem Cells, Tissue Engineering & Modelling (STEM), Centre for Biomolecular Sciences, University of Nottingham, University Park, Nottingham NG7 2RD, UK.
| | - Anthony J Day
- Wellcome Trust Centre for Cell-Matrix Research, Division of Cell-Matrix Biology & Regenerative Medicine, School of Biology, Faculty of Biology, Medicine & Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PL, UK.
| |
Collapse
|
206
|
Mc Donald CK, Moriarty P, Varzgalis M, Murphy C. The Top 50 Most Cited Articles in Cartilage Regeneration. Biores Open Access 2017; 6:58-62. [PMID: 28736688 PMCID: PMC5515090 DOI: 10.1089/biores.2017.0006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The aim of this study was to identify and analyze the top 50 most cited articles in cartilage regeneration. The impact of a scientific journal can be gauged by the total number of citations it has accrued. The top 50 most cited articles involving cartilage regeneration represent the most quoted level of evidence among this new subspecialty. This study aims to identify and analyze the 50 most cited articles in cartilage regeneration. The Web of Science™ citation indexing service was utilized to determine the most frequently cited articles published after 1956 containing “cartilage regeneration” in the “topic” or “title.” The 50 most cited articles were included. The number of citations, year of publication, country of article origin, article institution, journal of publication, publication format, and authorship were then calculated for each article. The span of citations ranged from 1287 to 203 citations, with a mean of 361.02 citations per article in question. The articles originated from 11 countries, with the United States contributing 34 articles, followed by Japan with 5 articles. The articles were distributed across 34 high-impact journals. Biomaterials was the journal with the highest number of publications (seven articles) followed by the Journal of Orthopaedic Research (three articles). Of the 50 articles, 2 were clinical observational studies, 47 concerned basic science, and 1 was review article. The most cited articles involving cartilage regeneration are detected in both experimental and clinical research fields. The high ratio of basic science to clinical articles reflects the infancy of this relatively new specialty and that further clinical research is required in this area.
Collapse
Affiliation(s)
- Ciaran K Mc Donald
- Department of Trauma and Orthopaedics, Galway University Hospital, Galway, Ireland
| | - Peter Moriarty
- Department of Trauma and Orthopaedics, Galway University Hospital, Galway, Ireland
| | - Manvydas Varzgalis
- Department of Breast & Endocrine Surgery, Galway University Hospital, Galway, Ireland
| | - Colin Murphy
- Department of Trauma and Orthopaedics, Galway University Hospital, Galway, Ireland
| |
Collapse
|
207
|
Dierickx P, Vermunt MW, Muraro MJ, Creyghton MP, Doevendans PA, van Oudenaarden A, Geijsen N, Van Laake LW. Circadian networks in human embryonic stem cell-derived cardiomyocytes. EMBO Rep 2017; 18:1199-1212. [PMID: 28536247 PMCID: PMC5494509 DOI: 10.15252/embr.201743897] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 03/29/2017] [Accepted: 04/10/2017] [Indexed: 11/09/2022] Open
Abstract
Cell-autonomous circadian oscillations strongly influence tissue physiology and pathophysiology of peripheral organs including the heart, in which the circadian clock is known to determine cardiac metabolism and the outcome of for instance ischemic stress. Human pluripotent stem cells represent a powerful tool to study developmental processes in vitro, but the extent to which human embryonic stem (ES) cell-derived cardiomyocytes establish circadian rhythmicity in the absence of a systemic context is unknown. Here we demonstrate that while undifferentiated human ES cells do not possess an intrinsic functional clock, oscillatory expression of known core clock genes emerges spontaneously during directed cardiac differentiation. We identify a set of clock-controlled output genes that contain an oscillatory network of stress-related transcripts. Furthermore, we demonstrate that this network results in a time-dependent functional response to doxorubicin, a frequently used anti-cancer drug with known cardiotoxic side effects. Taken together, our data provide a framework from which the effect of oscillatory gene expression on cardiomyocyte physiology can be modeled in vitro, and demonstrate the influence of a functional clock on experimental outcome.
Collapse
Affiliation(s)
- Pieterjan Dierickx
- Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, The Netherlands .,Division of Heart and Lungs, Department of Cardiology, University Medical Center Utrecht, Utrecht, The Netherlands.,Regenerative Medicine Center Utrecht, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Marit W Vermunt
- Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, The Netherlands
| | - Mauro J Muraro
- Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, The Netherlands
| | - Menno P Creyghton
- Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, The Netherlands
| | - Pieter A Doevendans
- Division of Heart and Lungs, Department of Cardiology, University Medical Center Utrecht, Utrecht, The Netherlands.,Netherlands Heart Institute, Utrecht, The Netherlands
| | | | - Niels Geijsen
- Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, The Netherlands
| | - Linda W Van Laake
- Division of Heart and Lungs, Department of Cardiology, University Medical Center Utrecht, Utrecht, The Netherlands .,Regenerative Medicine Center Utrecht, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
208
|
Lin YM, Lee J, Lim JFY, Choolani M, Chan JKY, Reuveny S, Oh SKW. Critical attributes of human early mesenchymal stromal cell-laden microcarrier constructs for improved chondrogenic differentiation. Stem Cell Res Ther 2017; 8:93. [PMID: 28482913 PMCID: PMC5421335 DOI: 10.1186/s13287-017-0538-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 02/17/2017] [Accepted: 03/15/2017] [Indexed: 01/08/2023] Open
Abstract
Background Microcarrier cultures which are useful for producing large cell numbers can act as scaffolds to create stem cell-laden microcarrier constructs for cartilage tissue engineering. However, the critical attributes required to achieve efficient chondrogenic differentiation for such constructs are unknown. Therefore, this study aims to elucidate these parameters and determine whether cell attachment to microcarriers throughout differentiation improves chondrogenic outcomes across multiple microcarrier types. Methods A screen was performed to evaluate whether 1) cell confluency, 2) cell numbers, 3) cell density, 4) centrifugation, or 5) agitation are crucial in driving effective chondrogenic differentiation of human early mesenchymal stromal cell (heMSC)-laden Cytodex 1 microcarrier (heMSC-Cytodex 1) constructs. Results Firstly, we found that seeding 10 × 103 cells at 70% cell confluency with 300 microcarriers per construct resulted in substantial increase in cell growth (76.8-fold increase in DNA) and chondrogenic protein generation (78.3- and 686-fold increase in GAG and Collagen II, respectively). Reducing cell density by adding empty microcarriers at seeding and indirectly compacting constructs by applying centrifugation at seeding or agitation throughout differentiation caused reduced cell growth and chondrogenic differentiation. Secondly, we showed that cell attachment to microcarriers throughout differentiation improves cell growth and chondrogenic outcomes since critically defined heMSC-Cytodex 1 constructs developed larger diameters (2.6-fold), and produced more DNA (13.8-fold), GAG (11.0-fold), and Collagen II (6.6-fold) than their equivalent cell-only counterparts. Thirdly, heMSC-Cytodex 1/3 constructs generated with cell-laden microcarriers from 1-day attachment in shake flask cultures were more efficient than those from 5-day expansion in spinner cultures in promoting cell growth and chondrogenic output per construct and per cell. Lastly, we demonstrate that these critically defined parameters can be applied across multiple microcarrier types, such as Cytodex 3, SphereCol and Cultispher-S, achieving similar trends in enhancing cell growth and chondrogenic differentiation. Conclusions This is the first study that has identified a set of critical attributes that enables efficient chondrogenic differentiation of heMSC-microcarrier constructs across multiple microcarrier types. It is also the first to demonstrate that cell attachment to microcarriers throughout differentiation improves cell growth and chondrogenic outcomes across different microcarrier types, including biodegradable gelatin-based microcarriers, making heMSC-microcarrier constructs applicable for use in allogeneic cartilage cell therapy. Electronic supplementary material The online version of this article (doi:10.1186/s13287-017-0538-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Youshan Melissa Lin
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), 20 Biopolis Way, #06-01 Centros, Singapore, 138668, Singapore.
| | - Jialing Lee
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), 20 Biopolis Way, #06-01 Centros, Singapore, 138668, Singapore
| | - Jessica Fang Yan Lim
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), 20 Biopolis Way, #06-01 Centros, Singapore, 138668, Singapore
| | - Mahesh Choolani
- Experimental Fetal Medicine Group, Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University Health System, 1E Kent Ridge Road, NUHS Tower Block Level 12, Singapore, 119228, Singapore
| | - Jerry Kok Yen Chan
- Experimental Fetal Medicine Group, Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University Health System, 1E Kent Ridge Road, NUHS Tower Block Level 12, Singapore, 119228, Singapore.,Department of Reproductive Medicine, KK Women's and Children's Hospital, 100 Bukit Timah Road, Singapore, 229899, Singapore.,Cancer and Stem Cell Biology Program, Duke-NUS Graduate Medical School, 8 College Road, Singapore, 169857, Singapore
| | - Shaul Reuveny
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), 20 Biopolis Way, #06-01 Centros, Singapore, 138668, Singapore
| | - Steve Kah Weng Oh
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), 20 Biopolis Way, #06-01 Centros, Singapore, 138668, Singapore.
| |
Collapse
|
209
|
Quang Le B, Van Blitterswijk C, De Boer J. An Approach to In Vitro Manufacturing of Hypertrophic Cartilage Matrix for Bone Repair. Bioengineering (Basel) 2017; 4:bioengineering4020035. [PMID: 28952514 PMCID: PMC5590482 DOI: 10.3390/bioengineering4020035] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 04/18/2017] [Accepted: 04/18/2017] [Indexed: 12/18/2022] Open
Abstract
Devitalized hypertrophic cartilage matrix (DCM) is an attractive concept for an off-the-shelf bone graft substitute. Upon implantation, DCM can trigger the natural endochondral ossification process, but only when the hypertrophic cartilage matrix has been reconstituted correctly. In vivo hypertrophic differentiation has been reported for multiple cell types but up-scaling and in vivo devitalization remain a big challenge. To this end, we developed a micro tissue-engineered cartilage (MiTEC) model using the chondrogenic cell line ATDC5. Micro-aggregates of ATDC5 cells (approximately 1000 cells per aggregate) were cultured on a 3% agarose mold consisting of 1585 microwells, each measuring 400 µm in diameter. Chondrogenic differentiation was strongly enhanced using media supplemented with combinations of growth factors e.g., insulin, transforming growth factor beta and dexamethasone. Next, mineralization was induced by supplying the culture medium with beta-glycerophosphate, and finally we boosted the secretion of proangiogenic growth factors using the hypoxia mimetic phenanthroline in the final stage of in vivo culture. Then, ATDC5 aggregates were devitalized by freeze/thawing or sodium dodecyl sulfate treatment before co-culturing with human mesenchymal stromal cells (hMSCs). We observed a strong effect on chondrogenic differentiation of hMSCs. Using this MiTEC model, we were able to not only upscale the production of cartilage to a clinically relevant amount but were also able to vary the cartilage matrix composition in different ways, making MiTEC an ideal model to develop DCM as a bone graft substitute.
Collapse
Affiliation(s)
- Bach Quang Le
- Department of Tissue Regeneration, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Postbus 217, 7500 AE Enschede, The Netherlands.
| | - Clemens Van Blitterswijk
- Department of Tissue Regeneration, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Postbus 217, 7500 AE Enschede, The Netherlands.
- Department of Complex Tissue Regeneration, MERLN Institute, University of Maastricht, P.O. Box 616, 6200 MD Maastricht, The Netherlands.
| | - Jan De Boer
- Department of Tissue Regeneration, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Postbus 217, 7500 AE Enschede, The Netherlands.
- Laboratory for Cell Biology-inspired Tissue Engineering, MERLN Institute, University of Maastricht, P.O. Box 616, 6200 MD Maastricht, The Netherlands.
| |
Collapse
|
210
|
He J, Guo J, Jiang B, Yao R, Wu Y, Wu F. Directing the osteoblastic and chondrocytic differentiations of mesenchymal stem cells: matrix vs. induction media. Regen Biomater 2017; 4:269-279. [PMID: 29026640 PMCID: PMC5633692 DOI: 10.1093/rb/rbx008] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 02/24/2017] [Accepted: 03/01/2017] [Indexed: 12/16/2022] Open
Abstract
While both induction culture media and matrix have been reported to regulate the stem cell fate, little is known about which factor plays a more decisive role in directing the MSC differentiation lineage as well as the underlying mechanisms. To this aim, we seeded MSCs on HA-collagen and HA-synthetic hydrogel matrixes, which had demonstrated highly different potentials toward osteoblastic and chondrocytic differentiation lineages, respectively, and cultured them with osteogenic, chondrogenic and normal culture media, respectively. A systematic comparison has been carried out on the effects of induction media and matrix on MSC adhesion, cytoskeleton organization, proliferation, and in particular differentiation into the osteoblastic and chondrocytic lineages. The results demonstrated that the matrix selection had a much more profound effect on directing the differentiation lineage than the induction media did. The strong modulation effect on the transcription activities might be the critical factor contributing to the above observations in our study, where canonical Wnt-β-Catenin signal pathway was directly involved in the matrix-driven osteoblastic differentiation. Such findings not only provide a critical insight on natural cellular events leading to the osteoblastic and chondrocytic differentiations, but also have important implications in biomaterial design for tissue engineering applications.
Collapse
Affiliation(s)
- Jing He
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, P.R. China
| | - Jianglong Guo
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, P.R. China
| | - Bo Jiang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, P.R. China
| | - Ruijuan Yao
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, P.R. China
| | - Yao Wu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, P.R. China
| | - Fang Wu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, P.R. China
| |
Collapse
|
211
|
Yao X, Huang H, Li Z, Liu X, Fan W, Wang X, Sun X, Zhu J, Zhou H, Wei H. Taurine Promotes the Cartilaginous Differentiation of Human Umbilical Cord-Derived Mesenchymal Stem Cells in Vitro. Neurochem Res 2017; 42:2344-2353. [PMID: 28397071 DOI: 10.1007/s11064-017-2252-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 02/16/2017] [Accepted: 03/29/2017] [Indexed: 01/07/2023]
Abstract
Taurine has been reported to influence osteogenic differentiation, but the role of taurine on cartilaginous differentiation using human umbilical cord-derived mesenchymal stem cells (hUC-MSCs) remains unclear. In this study, we investigated the effect of taurine (0, 1, 5 and 10 mM) on the proliferation and chondrogenesis of hUC-MSCs by analyzing cell proliferation, accumulation of glycosaminoglycans and expression of cartilage specific mRNA. The results show though taurine did not affected the proliferation of hUC-MSCs, 5 mM of taurine is sufficient to enhanced the accumulation of glycosaminoglycans and up-regulate cartilage specific mRNA expression, namely collagen type II, aggrecan and SOX9. Taurine also inhibits chondrocyte dedifferentiation by reducing expression of collagen type I mRNA. Taken together, our study reveals that taurine promotes and maintains the chondrogenesis of hUC-MSCs.
Collapse
Affiliation(s)
- Xiuhua Yao
- Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Diseases, Tianjin Neurosurgical Institute, Tianjin Huanhu Hospital, No. 6, JiZhao Road, Hexi district, Tianjin, 300350, People's Republic of China
| | - Huiling Huang
- Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Diseases, Tianjin Neurosurgical Institute, Tianjin Huanhu Hospital, No. 6, JiZhao Road, Hexi district, Tianjin, 300350, People's Republic of China.
| | - Zhou Li
- NewScen Coast Bio-Pharmaceutical Co., Ltd., 65 sixth Ave., TEDA, Tianjin, 300457, People's Republic of China
| | - Xiaohua Liu
- Arthro-Anda Tianjin Biologic Technology Co., Ltd., 2F Building No. 2, Tian Bao Industrial Park, Xi Qi Road, Tianjin Airport Industrial Park, Tianjin, 300308, People's Republic of China
| | - Weijia Fan
- Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Diseases, Tianjin Neurosurgical Institute, Tianjin Huanhu Hospital, No. 6, JiZhao Road, Hexi district, Tianjin, 300350, People's Republic of China
| | - Xinping Wang
- Departement of Neurology, Tianjin Huanhu Hospital, No. 6, JiZhao Road, Hexi district, Tianjin, 300350, People's Republic of China
| | - Xuelian Sun
- Arthro-Anda Tianjin Biologic Technology Co., Ltd., 2F Building No. 2, Tian Bao Industrial Park, Xi Qi Road, Tianjin Airport Industrial Park, Tianjin, 300308, People's Republic of China
| | - Jianmin Zhu
- Arthro-Anda Tianjin Biologic Technology Co., Ltd., 2F Building No. 2, Tian Bao Industrial Park, Xi Qi Road, Tianjin Airport Industrial Park, Tianjin, 300308, People's Republic of China
| | - Hongrui Zhou
- NewScen Coast Bio-Pharmaceutical Co., Ltd., 65 sixth Ave., TEDA, Tianjin, 300457, People's Republic of China
| | - Huaying Wei
- Arthro-Anda Tianjin Biologic Technology Co., Ltd., 2F Building No. 2, Tian Bao Industrial Park, Xi Qi Road, Tianjin Airport Industrial Park, Tianjin, 300308, People's Republic of China
| |
Collapse
|
212
|
Taking the endochondral route to craniomaxillofacial bone regeneration: A logical approach? J Craniomaxillofac Surg 2017; 45:1099-1106. [PMID: 28479032 DOI: 10.1016/j.jcms.2017.03.025] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 03/24/2017] [Accepted: 03/30/2017] [Indexed: 01/09/2023] Open
Abstract
The current golden standard for treatment of craniomaxillofacial critical size bone defects, autologous bone grafting, is associated with several disadvantages which have prompted an increased demand for alternatives. New solutions are emerging in the form of bone tissue engineering. This involves harvesting of multipotent mesenchymal stromal cells (MSCs), after which they can be differentiated towards the osteogenic lineage mimicking intramembranous bone formation. However, translating this approach from laboratory to clinic has met with limited success. Consequently, attention has shifted towards investigation of the alternative endochondral route of bone regeneration. At a first glance, this approach may not appear logical for maxillofacial bone regeneration as most bones in the face originate from intramembranous mechanisms. Therefore, the goal of this review is to discuss the sense and non-sense of exploring endochondral bone regeneration as a novel reconstructive option for craniomaxillofacial bone defects. The embryological origin of craniomaxillofacial bone structures and their repair mechanisms are introduced. Also, the potential of MSC-like cells, the neural crest-derived stem cells from craniomaxillofacial sources, are discussed with a focus on regeneration of bone defects. Further, the current status of endochondral bone regeneration from MSCs is highlighted. Together, these aspects contribute in answering whether endochondral bone regeneration can be a logical approach to restore craniomaxillofacial bone defects.
Collapse
|
213
|
Sato K, Mera H, Wakitani S, Takagi M. Effect of epigallocatechin-3-gallate on the increase in type II collagen accumulation in cartilage-like MSC sheets. Biosci Biotechnol Biochem 2017; 81:1241-1245. [PMID: 28485205 DOI: 10.1080/09168451.2017.1282809] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
With the aim to increase type II collagen content in the scaffold-free cartilage-like cell sheet using human bone marrow mesenchymal stem cells, we examined the effect of epigallocatechin-3-gallate (EGCG) addition to the chondrogenic medium for the cell sheet culture. The addition of EGCG (10 μM) increased the content of type II collagen 2-fold, while the addition did not markedly change the expression level of the genes encoding type II collagen and Sox 9. The reactive oxygen species level in the cells in cell sheets was thought to be too low to suppress the accumulation of type II collagen. On the other hand, the addition of EGCG markedly decreased both the matrix metalloproteinase-13 concentration in the supernatant of cell sheet culture and the type II collagen degradation activity in that supernatant. Taken together, EGCG may enhance the accumulation of type II collagen by suppressing type II collagen degradation.
Collapse
Affiliation(s)
- Keigo Sato
- a Division of Biotechnology and Macromolecular Chemistry , Graduate School of Engineering, Hokkaido University , Sapporo , Japan
| | - Hisashi Mera
- b School of Health and Sports Sciences , Mukogawa Women's University , Nishinomiya , Japan.,c Foundation for Biomedical Research and Innovation, International Medical Device Alliance , Kobe , Japan
| | - Shigeyuki Wakitani
- b School of Health and Sports Sciences , Mukogawa Women's University , Nishinomiya , Japan
| | - Mutsumi Takagi
- a Division of Biotechnology and Macromolecular Chemistry , Graduate School of Engineering, Hokkaido University , Sapporo , Japan
| |
Collapse
|
214
|
SMAD3 and SMAD4 have a more dominant role than SMAD2 in TGFβ-induced chondrogenic differentiation of bone marrow-derived mesenchymal stem cells. Sci Rep 2017; 7:43164. [PMID: 28240243 PMCID: PMC5327413 DOI: 10.1038/srep43164] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 01/19/2017] [Indexed: 12/22/2022] Open
Abstract
To improve cartilage formation by bone marrow-derived mesenchymal stem cells (BMSCs), the signaling mechanism governing chondrogenic differentiation requires better understanding. We previously showed that the transforming growth factor-β (TGFβ) receptor ALK5 is crucial for chondrogenesis induced by TGFβ. ALK5 phosphorylates SMAD2 and SMAD3 proteins, which then form complexes with SMAD4 to regulate gene transcription. By modulating the expression of SMAD2, SMAD3 and SMAD4 in human BMSCs, we investigated their role in TGFβ-induced chondrogenesis. Activation of TGFβ signaling, represented by SMAD2 phosphorylation, was decreased by SMAD2 knockdown and highly increased by SMAD2 overexpression. Moreover, TGFβ signaling via the alternative SMAD1/5/9 pathway was strongly decreased by SMAD4 knockdown. TGFβ-induced chondrogenesis of human BMSCs was strongly inhibited by SMAD4 knockdown and only mildly inhibited by SMAD2 knockdown. Remarkably, both knockdown and overexpression of SMAD3 blocked chondrogenic differentiation. Chondrogenesis appears to rely on a delicate balance in the amount of SMAD3 and SMAD4 as it was not enhanced by SMAD4 overexpression and was inhibited by SMAD3 overexpression. Furthermore, this study reveals that TGFβ-activated phosphorylation of SMAD2 and SMAD1/5/9 depends on the abundance of SMAD4. Overall, our findings suggest a more dominant role for SMAD3 and SMAD4 than SMAD2 in TGFβ-induced chondrogenesis of human BMSCs.
Collapse
|
215
|
Promising Therapeutic Strategies for Mesenchymal Stem Cell-Based Cardiovascular Regeneration: From Cell Priming to Tissue Engineering. Stem Cells Int 2017; 2017:3945403. [PMID: 28303152 PMCID: PMC5337882 DOI: 10.1155/2017/3945403] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 12/02/2016] [Accepted: 12/13/2016] [Indexed: 12/13/2022] Open
Abstract
The primary cause of death among chronic diseases worldwide is ischemic cardiovascular diseases, such as stroke and myocardial infarction. Recent evidence indicates that adult stem cell therapies involving cardiovascular regeneration represent promising strategies to treat cardiovascular diseases. Owing to their immunomodulatory properties and vascular repair capabilities, mesenchymal stem cells (MSCs) are strong candidate therapeutic stem cells for use in cardiovascular regeneration. However, major limitations must be overcome, including their very low survival rate in ischemic lesion. Various attempts have been made to improve the poor survival and longevity of engrafted MSCs. In order to develop novel therapeutic strategies, it is necessary to first identify stem cell modulators for intracellular signal triggering or niche activation. One promising therapeutic strategy is the priming of therapeutic MSCs with stem cell modulators before transplantation. Another is a tissue engineering-based therapeutic strategy involving a cell scaffold, a cell-protein-scaffold architecture made of biomaterials such as ECM or hydrogel, and cell patch- and 3D printing-based tissue engineering. This review focuses on the current clinical applications of MSCs for treating cardiovascular diseases and highlights several therapeutic strategies for promoting the therapeutic efficacy of MSCs in vitro or in vivo from cell priming to tissue engineering strategies, for use in cardiovascular regeneration.
Collapse
|
216
|
Bianchi VJ, Weber JF, Waldman SD, Backstein D, Kandel RA. Formation of Hyaline Cartilage Tissue by Passaged Human Osteoarthritic Chondrocytes. Tissue Eng Part A 2017; 23:156-165. [DOI: 10.1089/ten.tea.2016.0262] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Affiliation(s)
- Vanessa J. Bianchi
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
- Lunenfeld-Tanenbaum Research Institute, Mt. Sinai Hospital, Toronto, Ontario, Canada
| | - Joanna F. Weber
- Department of Mechanical and Materials Engineering, Queen's University, Kingston, Ontario, Canada
- Kennan Research Centre, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada
| | - Stephen D. Waldman
- Kennan Research Centre, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada
- Department of Chemical Engineering, Ryerson University, Toronto, Ontario, Canada
| | - David Backstein
- Division of Orthopaedics, Mt. Sinai Hospital, Toronto, Ontario, Canada
| | - Rita A. Kandel
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
- Lunenfeld-Tanenbaum Research Institute, Mt. Sinai Hospital, Toronto, Ontario, Canada
- Pathology and Laboratory Medicine, Mt. Sinai Hospital, Toronto, Ontario, Canada
| |
Collapse
|
217
|
Crecente-Campo J, Borrajo E, Vidal A, Garcia-Fuentes M. New scaffolds encapsulating TGF-β3/BMP-7 combinations driving strong chondrogenic differentiation. Eur J Pharm Biopharm 2017; 114:69-78. [PMID: 28087378 DOI: 10.1016/j.ejpb.2016.12.021] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 12/07/2016] [Accepted: 12/09/2016] [Indexed: 11/28/2022]
Abstract
The regeneration of articular cartilage remains an unresolved question despite the current access to a variety of tissue scaffolds activated with growth factors relevant to this application. Further advances might result from combining more than one of these factors; here, we propose a scaffold composition optimized for the dual delivery of BMP-7 and TGF-β3, two proteins with described chondrogenic activity. First, we tested in a mesenchymal stem cell micromass culture with TGF-β3 whether the exposure to microspheres loaded with BMP-7 would improve cartilage formation. Histology and qRT-PCR data confirmed that the sustained release of BMP-7 cooperates with TGF-β3 towards chondrogenic differentiation. Then, we optimized a scaffold prototype for tissue culture and dual encapsulation of BMP-7 and TGF-β3. The scaffolds were prepared from poly(lactic-co-glycolic acid), and BMP-7/TGF-β3 were loaded as nanocomplexes with heparin and Tetronic 1107. The scaffolds showed the sustained release of both proteins over four weeks, with minimal burst effect. We finally cultured human mesenchymal stem cells on these scaffolds, in the absence of exogenous chondrogenic factor supplementation. The cells cultured on the scaffolds loaded with BMP-7 and TGF-β3 showed clear signs of cartilage formation macroscopically and histologically. RT-PCR studies confirmed a clear upregulation of cartilage markers SOX9 and Aggrecan. In summary, scaffolds encapsulating BMP-7 and TGF-β3 can efficiently deliver a cooperative growth factor combination that drives efficient cartilage formation in human mesenchymal stem cell cultures. These results open attractive perspectives towards in vivo translation of this technology in cartilage regeneration experiments.
Collapse
Affiliation(s)
- Jose Crecente-Campo
- Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Universidade de Santiago de Compostela, Avda. Barcelona s/n, 15782 Santiago de Compostela, Spain
| | - Erea Borrajo
- Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Universidade de Santiago de Compostela, Avda. Barcelona s/n, 15782 Santiago de Compostela, Spain
| | - Anxo Vidal
- Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Universidade de Santiago de Compostela, Avda. Barcelona s/n, 15782 Santiago de Compostela, Spain
| | - Marcos Garcia-Fuentes
- Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Universidade de Santiago de Compostela, Avda. Barcelona s/n, 15782 Santiago de Compostela, Spain.
| |
Collapse
|
218
|
Yasa O, Uysal O, Ekiz MS, Guler MO, Tekinay AB. Presentation of functional groups on self-assembled supramolecular peptide nanofibers mimicking glycosaminoglycans for directed mesenchymal stem cell differentiation. J Mater Chem B 2017; 5:4890-4900. [DOI: 10.1039/c7tb00708f] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Organizational complexity and functional diversity of the extracellular matrix regulate cellular behaviors.
Collapse
Affiliation(s)
- Oncay Yasa
- Institute of Materials Science and Nanotechnology
- National Nanotechnology Research Center (UNAM)
- Bilkent University
- Ankara 06800
- Turkey
| | - Ozge Uysal
- Institute of Materials Science and Nanotechnology
- National Nanotechnology Research Center (UNAM)
- Bilkent University
- Ankara 06800
- Turkey
| | - Melis Sardan Ekiz
- Institute of Materials Science and Nanotechnology
- National Nanotechnology Research Center (UNAM)
- Bilkent University
- Ankara 06800
- Turkey
| | - Mustafa O. Guler
- Institute for Molecular Engineering
- University of Chicago
- Chicago
- USA
| | - Ayse B. Tekinay
- Institute of Materials Science and Nanotechnology
- National Nanotechnology Research Center (UNAM)
- Bilkent University
- Ankara 06800
- Turkey
| |
Collapse
|
219
|
Potencial regenerativo do tecido cartilaginoso por células‐tronco mesenquimais: atualização, limitações e desafios. Rev Bras Ortop 2017. [DOI: 10.1016/j.rbo.2016.02.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
|
220
|
Huynh NPT, Anderson BA, Guilak F, McAlinden A. Emerging roles for long noncoding RNAs in skeletal biology and disease. Connect Tissue Res 2017; 58:116-141. [PMID: 27254479 PMCID: PMC5301950 DOI: 10.1080/03008207.2016.1194406] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Normal skeletal development requires tight coordination of transcriptional networks, signaling pathways, and biomechanical cues, and many of these pathways are dysregulated in pathological conditions affecting cartilage and bone. Recently, a significant role has been identified for long noncoding RNAs (lncRNAs) in developing and maintaining cellular phenotypes, and improvements in sequencing technologies have led to the identification of thousands of lncRNAs across diverse cell types, including the cells within cartilage and bone. It is clear that lncRNAs play critical roles in regulating gene expression. For example, they can function as epigenetic regulators in the nucleus via chromatin modulation to control gene transcription, or in the cytoplasm, where they can function as scaffolds for protein-binding partners or modulate the activity of other coding and noncoding RNAs. In this review, we discuss the growing list of lncRNAs involved in normal development and/or homeostasis of the skeletal system, the potential mechanisms by which these lncRNAs might function, and recent improvements in the methodologies available to study lncRNA functions in vitro and in vivo. Finally, we address the likely utility of lncRNAs as biomarkers and therapeutic targets for diseases of the skeletal system, including osteoarthritis, osteoporosis, and in cancers of the skeletal system.
Collapse
Affiliation(s)
- Nguyen P. T. Huynh
- Department of Orthopaedic Surgery, Washington University School of Medicine, St Louis, MO, USA,Shriners Hospitals for Children – St. Louis, St. Louis, MO, USA,Department of Cell Biology, Duke University Medical Center, Durham, NC, USA
| | - Britta A. Anderson
- Department of Orthopaedic Surgery, Washington University School of Medicine, St Louis, MO, USA
| | - Farshid Guilak
- Department of Orthopaedic Surgery, Washington University School of Medicine, St Louis, MO, USA,Shriners Hospitals for Children – St. Louis, St. Louis, MO, USA,Department of Cell Biology, Duke University Medical Center, Durham, NC, USA,Department of Biomedical Engineering, Washington University School of Medicine, St. Louis, MO, USA,Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Audrey McAlinden
- Department of Orthopaedic Surgery, Washington University School of Medicine, St Louis, MO, USA,Department of Cell Biology & Physiology, Washington University School of Medicine, St. Louis, MO, USA,Department of Biomedical Engineering, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
221
|
McCorry MC, Bonassar LJ. Fiber development and matrix production in tissue-engineered menisci using bovine mesenchymal stem cells and fibrochondrocytes. Connect Tissue Res 2017; 58:329-341. [PMID: 27925474 PMCID: PMC5709035 DOI: 10.1080/03008207.2016.1267152] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Mesenchymal stem cells (MSCs) have been investigated with promising results for meniscus healing and tissue engineering. While MSCs are known to contribute to extracellular matrix (ECM) production, less is known about how MSCs produce and align large organized fibers for application to tissue engineering the meniscus. The goal of this study was to investigate the capability of MSCs to produce and organize ECM molecules compared to meniscal fibrochondrocytes (FCCs). Bovine FCCs and MSCs were encapsulated in an anatomically accurate collagen meniscus using monoculture and co-culture of each cell type. Each meniscus was mechanically anchored at the horns to mimic the physiological fixation by the meniscal entheses. Mechanical fixation generates a static mechanical boundary condition previously shown to induce formation of oriented fiber by FCCs. Samples were cultured for 4 weeks and then evaluated for biochemical composition and fiber development. MSCs increased the glycosaminoglycan (GAG) and collagen production in both co-culture and monoculture groups compared to FCC monoculture. Collagen organization was greatest in the FCC monoculture group. While MSCs had increased matrix production, they lacked the fiber organization capabilities of FCCs. This study suggests that GAG production and fiber formation are linked. Co-culture can be used as a means of balancing the synthetic properties of MSCs and the matrix remodeling capabilities of FCCs for tissue engineering applications.
Collapse
Affiliation(s)
| | - Lawrence J. Bonassar
- Meinig of Biomedical Engineering, Cornell University, Ithaca, NY,Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY,Address Correspondence to: Lawrence J. Bonassar, PhD., Professor, Department of Biomedical Engineering, 149 Weill Hall, Cornell University, Ithaca, NY 14853, (607) 255-9381,
| |
Collapse
|
222
|
Cruz IBMD, Severo AL, Azzolin VF, Garcia LFM, Kuhn A, Lech O. Regenerative potential of the cartilaginous tissue in mesenchymal stem cells: update, limitations, and challenges. Rev Bras Ortop 2017; 52:2-10. [PMID: 28194374 PMCID: PMC5290078 DOI: 10.1016/j.rboe.2016.11.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 02/15/2016] [Indexed: 12/26/2022] Open
Abstract
Advances in the studies with adult mesenchymal stem cells (MSCs) have turned tissue regenerative therapy into a promising tool in many areas of medicine. In orthopedics, one of the main challenges has been the regeneration of cartilage tissue, mainly in diarthroses. In the induction of the MSCs, in addition to cytodifferentiation, the microenvironmental context of the tissue to be regenerated and an appropriate spatial arrangement are extremely important factors. Furthermore, it is known that MSC differentiation is fundamentally determined by mechanisms such as cell proliferation (mitosis), biochemical-molecular interactions, movement, cell adhesion, and apoptosis. Although the use of MSCs for cartilage regeneration remains at a research level, there are important questions to be resolved in order to make this therapy efficient and safe. It is known, for instance, that the expansion of chondrocytes in cultivation, needed to increase the number of cells, could end up producing fibrocartilage instead of hyaline cartilage. However, the latest results are promising. In 2014, the first stage I/II clinical trial to evaluate the efficacy and safety of the intra-articular injection of MSCs in femorotibial cartilage regeneration was published, indicating a decrease in injured areas. One issue to be explored is how many modifications in the articulate inflammatory environment could induce differentiation of MSCs already allocated in that region. Such issue arose from studies that suggested that the suppression of the inflammation may increase the efficiency of tissue regeneration. Considering the complexity of the events related to the chondrogenesis and cartilage repair, it can be concluded that the road ahead is still long, and that further studies are needed.
Collapse
Affiliation(s)
- Ivana Beatrice Mânica da Cruz
- Universidade Federal de Santa Maria (UFSM), Centro de Ciências da Saúde, Santa Maria, RS, Brazil
- Universidade Federal de Santa Maria (UFSM), Laboratório de Biogenômica, Santa Maria, RS, Brazil
| | - Antônio Lourenço Severo
- Universidade Federal da Fronteira Sul (UFFS), Hospital São Vicente de Paulo, Instituto de Ortopedia e Traumatologia, Passo Fundo, RS, Brazil
| | - Verônica Farina Azzolin
- Universidade Federal de Santa Maria (UFSM), Laboratório de Biogenômica, Santa Maria, RS, Brazil
| | | | - André Kuhn
- Universidade Federal da Fronteira Sul (UFFS), Hospital São Vicente de Paulo, Instituto de Ortopedia e Traumatologia, Passo Fundo, RS, Brazil
| | - Osvandré Lech
- Universidade Federal da Fronteira Sul (UFFS), Hospital São Vicente de Paulo, Instituto de Ortopedia e Traumatologia, Passo Fundo, RS, Brazil
| |
Collapse
|
223
|
Kwon HJ, Lee GS, Chun H. Electrical stimulation drives chondrogenesis of mesenchymal stem cells in the absence of exogenous growth factors. Sci Rep 2016; 6:39302. [PMID: 28004813 PMCID: PMC5177962 DOI: 10.1038/srep39302] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 11/21/2016] [Indexed: 11/22/2022] Open
Abstract
Electrical stimulation (ES) is known to guide the development and regeneration of many tissues. However, although preclinical and clinical studies have demonstrated superior effects of ES on cartilage repair, the effects of ES on chondrogenesis remain elusive. Since mesenchyme stem cells (MSCs) have high therapeutic potential for cartilage regeneration, we investigated the actions of ES during chondrogenesis of MSCs. Herein, we demonstrate for the first time that ES enhances expression levels of chondrogenic markers, such as type II collagen, aggrecan, and Sox9, and decreases type I collagen levels, thereby inducing differentiation of MSCs into hyaline chondrogenic cells without the addition of exogenous growth factors. ES also induced MSC condensation and subsequent chondrogenesis by driving Ca2+/ATP oscillations, which are known to be essential for prechondrogenic condensation. In subsequent experiments, the effects of ES on ATP oscillations and chondrogenesis were dependent on extracellular ATP signaling via P2X4 receptors, and ES induced significant increases in TGF-β1 and BMP2 expression. However, the inhibition of TGF-β signaling blocked ES-driven condensation, whereas the inhibition of BMP signaling did not, indicating that TGF-β signaling but not BMP signaling mediates ES-driven condensation. These findings may contribute to the development of electrotherapeutic strategies for cartilage repair using MSCs.
Collapse
Affiliation(s)
- Hyuck Joon Kwon
- Department of Physical Therapy and Rehabilitation, College of Health Science, Eulji University, Gyeonggi, Republic of Korea
| | - Gyu Seok Lee
- Department of Microbiology and Molecular Biology, College of Bioscience and Biotechnology, Chungnam National University, Daejeon, Republic of Korea
| | - Honggu Chun
- Department of Bio-convergence Engineering, Korea University, Seoul, Republic of Korea
| |
Collapse
|
224
|
Hadden WJ, Choi YS. The extracellular microscape governs mesenchymal stem cell fate. J Biol Eng 2016; 10:16. [PMID: 27895704 PMCID: PMC5117578 DOI: 10.1186/s13036-016-0037-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 11/09/2016] [Indexed: 12/15/2022] Open
Abstract
Each cell forever interacts with its extracellular matrix (ECM); a stem cell relies on this interaction to guide differentiation. The stiffness, nanotopography, protein composition, stress and strain inherent to any given ECM influences stem cell lineage commitment. This interaction is dynamic, multidimensional and reciprocally evolving through time, and from this concerted exchange the macroscopic tissues that comprise living organisms are formed. Mesenchymal stem cells can give rise to bone, cartilage, tendon and muscle; thus attempts to manipulate their differentiation must heed the physical properties of incredibly complex native microenvironments to realize regenerative goals.
Collapse
Affiliation(s)
- William J Hadden
- University of Sydney Medical School & Kolling Institute of Medical Research, Sydney, NSW Australia
| | - Yu Suk Choi
- School of Anatomy, Physiology and Human Biology, University of Western Australia, Entrance 2, Hackett Dr, M309, Level 1, Crawley, WA 6009 Australia
| |
Collapse
|
225
|
Bioinspired seeding of biomaterials using three dimensional microtissues induces chondrogenic stem cell differentiation and cartilage formation under growth factor free conditions. Sci Rep 2016; 6:36011. [PMID: 27808102 PMCID: PMC5093556 DOI: 10.1038/srep36011] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 10/10/2016] [Indexed: 11/30/2022] Open
Abstract
Cell laden biomaterials are archetypically seeded with individual cells and steered into the desired behavior using exogenous stimuli to control growth and differentiation. In contrast, direct cell-cell contact is instructive and even essential for natural tissue formation. Namely, microaggregation and condensation of mesenchymal progenitor cells triggers chondrogenesis and thereby drives limb formation. Yet a biomimetic strategy translating this approach into a cell laden biomaterial-based therapy has remained largely unexplored. Here, we integrate the microenvironment of cellular condensation into biomaterials by encapsulating microaggregates of a hundred human periosteum-derived stem cells. This resulted in decreased stemness-related markers, up regulation of chondrogenic genes and improved in vivo cartilage tissue formation, as compared to single cell seeded biomaterials. Importantly, even in the absence of exogenous growth factors, the microaggregate laden hydrogels outperformed conventional single cell laden hydrogels containing supraphysiological levels of the chondrogenic growth factor TGFB. Overall, the bioinspired seeding strategy described herein represents an efficient and growth factor-free approach to efficiently steer cell fate and drive tissue formation for biomaterial-based tissue engineering strategies.
Collapse
|
226
|
Adeniran-Catlett AE, Beguin E, Bozal FK, Murthy SK. Suspension-based differentiation of adult mesenchymal stem cells toward chondrogenic lineage. Connect Tissue Res 2016; 57:466-475. [PMID: 26713781 DOI: 10.3109/03008207.2015.1083989] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Human mesenchymal stem cells (hMSCs) are derived from bone marrow and have the ability to differentiate into cartilage and other mesenchymal cell types found throughout the body. Traditionally, the differentiation of hMSCs toward chondrocytes occurs through a combination of pelleted static cell culture and chemical stimuli. As an alternative to these protocols, we developed an in vitro flow through microfluidic method to induce the differentiation of hMSCs into chondrocytes. Suspensions of unattached hMSCs were exposed to a constant shear flow over a period of 20 minutes, which promoted phenotypic and gene expression changes toward the chondrogenic lineage. These internal and external changes of chondrogenic differentiation were then observed over 3 weeks later in culture, as confirmed through fluorescent immunocytochemical staining and real-time quantitative reverse transcriptase polymerase chain reaction. The increased concentration of Type II collagen on the surface of shear stimulated hMSCs with the upregulation of MAPK1 and SOX9 demonstrated the capabilities of our approach to induce sustained differentiation. In conclusion, our shear stimulation method, in combination with chemical stimuli, illustrates enhanced differentiation of hMSCs toward the chondrogenic lineage.
Collapse
Affiliation(s)
| | - Estelle Beguin
- b Department of Chemical Engineering , Northeastern University , Boston , MA , USA
| | - Fazli K Bozal
- c Biochemistry Program , Northeastern University , Boston , MA , USA
| | - Shashi K Murthy
- b Department of Chemical Engineering , Northeastern University , Boston , MA , USA.,d Barnett Institute of Chemical & Biological Analysis, Northeastern University , Boston , MA , USA
| |
Collapse
|
227
|
Liu W, Dan X, Wang T, Lu WW, Pan H. A Bone–Implant Interaction Mouse Model for Evaluating Molecular Mechanism of Biomaterials/Bone Interaction. Tissue Eng Part C Methods 2016; 22:1018-1027. [DOI: 10.1089/ten.tec.2016.0250] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Affiliation(s)
- Wenlong Liu
- Research Center for Human Tissue and Organs Degeneration, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Department of Orthopedics and Traumatology, Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Xiuli Dan
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong
| | - Ting Wang
- Research Center for Human Tissue and Organs Degeneration, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Shenzhen Key Laboratory for Innovative Technology in Orthopedic Trauma, Department of Orthopedics and Traumatology, The University of Hong Kong-Shenzhen Hospital, University of Hong Kong, Shenzhen, China
| | - William W. Lu
- Department of Orthopedics and Traumatology, Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Haobo Pan
- Research Center for Human Tissue and Organs Degeneration, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| |
Collapse
|
228
|
Expression of BMP and Actin Membrane Bound Inhibitor Is Increased during Terminal Differentiation of MSCs. Stem Cells Int 2016; 2016:2685147. [PMID: 27843458 PMCID: PMC5097819 DOI: 10.1155/2016/2685147] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 09/27/2016] [Indexed: 11/22/2022] Open
Abstract
Chondrogenic differentiating mesenchymal stem cells (MSCs) are mimicking embryonal endochondral ossification and become hypertrophic. BMP (bone morphogenetic protein) and Activin Membrane Bound Inhibitor (BAMBI) is a pseudoreceptor that regulates the activity of transforming growth factor-β (TGF-β) and BMP signalling during chondrogenesis. Both TGF-β and BMP signalling are regulators of chondrogenic cell differentiation. Human bone marrow derived MSCs were chondrogenically predifferentiated in aggregate culture for 14 days. Thereafter, one group was subjected to hypertrophy enhancing media conditions while controls were kept in chondrogenic medium until day 28. Histological evaluation, gene expression by PCR, and Western blot analysis were carried out at days 1, 3, 7, 14, 17, 21, and 28. A subset of cultures was treated with the BMP inhibitor Noggin to test for BMP dependent expression of BAMBI. Hypertrophic differentiated pellets showed larger cells with increased collagen 10 and alkaline phosphatase staining. There was significantly increased expression of BAMBI on gene expression and protein level in hypertrophic cultures compared to the chondrogenic control and increased BMP4 gene expression. Immunohistochemistry showed intense staining of BAMBI in hypertrophic cells. BAMBI expression was dose-dependently downregulated by Noggin. The pseudoreceptor BAMBI is upregulated upon enhancement of hypertrophy in MSC chondrogenic differentiation by a BMP dependent mechanism.
Collapse
|
229
|
Curley CJ, Dolan EB, Cavanagh B, O'Sullivan J, Duffy GP, Murphy BP. An in vitro investigation to assess procedure parameters for injecting therapeutic hydrogels into the myocardium. J Biomed Mater Res B Appl Biomater 2016; 105:2618-2629. [PMID: 27764526 DOI: 10.1002/jbm.b.33802] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 08/22/2016] [Accepted: 10/02/2016] [Indexed: 12/12/2022]
Abstract
Localized delivery of stem cells is potentially a promising therapeutic strategy for regenerating damaged myocardium. Many studies focus on limiting the biologic component of cell loss, but few address the contribution of mechanical factors. This study investigates optimal parameters for retaining the largest volume of cell loaded hydrogels post intramyocardial injection, without compromising cell viability. In vitro, hydrogel was injected into porcine hearts using various needle designs. Hydrogel retention and distribution pattern was then determined. The two most promising needles were then investigated to understand the effect of needle geometry on stem cell viability. The needle to best impact cell viability was then used to investigate the effect of differing hydrogels on retention and distribution. Three-dimensional experimental modeling revealed needles with smaller diameter's to have greater poloxamer 407 hydrogel retention. No difference in retention existed among various needle designs of similar gauge, despite differences in bolus geometries. When hMSC's, embedded in fibrin hydrogel, were injected through helical and 26G bevel needles no difference in the percent of live cells was seen at 48 h. However, the helical group had almost half the metabolic activity of the 26G bevel group at both time points, and had a significant decline in the percent of live cells from 24 to 48 h. Varying gel type resulted in significantly more alginate being retained in the tissue in comparison to fibrin or poloxamer hydrogels. In conclusion, mechanical properties of injected hydrogels, and the diameter of the needle used, highly influences the volume of hydrogel retained. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 2618-2629, 2017.
Collapse
Affiliation(s)
- Clive J Curley
- Trinity Centre for Bioengineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland.,Department of Mechanical and Manufacturing Engineering, School of Engineering, Trinity College Dublin, Dublin 2, Ireland.,Advanced Materials and BioEngineering Research Centre (AMBER), TCD & RCSI, Dublin, Ireland
| | - Eimear B Dolan
- Trinity Centre for Bioengineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland.,Department of Mechanical and Manufacturing Engineering, School of Engineering, Trinity College Dublin, Dublin 2, Ireland.,Advanced Materials and BioEngineering Research Centre (AMBER), TCD & RCSI, Dublin, Ireland
| | - Brenton Cavanagh
- Cellular and Molecular Imaging Core, Royal College of Surgeons in Ireland, 123 St. Stephen's Green, Dublin 2, Ireland
| | - Janice O'Sullivan
- Advanced Materials and BioEngineering Research Centre (AMBER), TCD & RCSI, Dublin, Ireland.,Tissue Engineering Research Group, Department of Anatomy, Royal College of Surgeons in Ireland, 123 St. Stephen's Green, Dublin 2, Ireland
| | - Garry P Duffy
- Trinity Centre for Bioengineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland.,Advanced Materials and BioEngineering Research Centre (AMBER), TCD & RCSI, Dublin, Ireland.,Tissue Engineering Research Group, Department of Anatomy, Royal College of Surgeons in Ireland, 123 St. Stephen's Green, Dublin 2, Ireland
| | - Bruce P Murphy
- Trinity Centre for Bioengineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland.,Department of Mechanical and Manufacturing Engineering, School of Engineering, Trinity College Dublin, Dublin 2, Ireland.,Advanced Materials and BioEngineering Research Centre (AMBER), TCD & RCSI, Dublin, Ireland
| |
Collapse
|
230
|
Burnsed OA, Schwartz Z, Marchand KO, Hyzy SL, Olivares-Navarrete R, Boyan BD. Hydrogels derived from cartilage matrices promote induction of human mesenchymal stem cell chondrogenic differentiation. Acta Biomater 2016; 43:139-149. [PMID: 27449339 DOI: 10.1016/j.actbio.2016.07.034] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2016] [Revised: 07/17/2016] [Accepted: 07/19/2016] [Indexed: 12/01/2022]
Abstract
UNLABELLED Limited supplies of healthy autologous or allogeneic cartilage sources have inspired a growing interest in xenogeneic cartilage matrices as biological scaffolds for cartilage tissue engineering. The objectives of this study were to determine if shark and pig cartilage extracellular matrix (ECM) hydrogels can stimulate chondrocytic differentiation of mesenchymal stem cells (MSCs) without exogenous growth factors and to determine if the soluble factors retained by these ECM hydrogels are responsible. Human MSCs cultured on hydrogels from shark skull cartilage, pig articular cartilage, and pig auricular cartilage ECM had increased expression of chondrocyte markers and decreased secretion of angiogenic factors VEGF-A and FGF2 in comparison to MSCs cultured on tissue culture polystyrene (TCPS) at one week. MSCs grown on shark ECM gels had decreased type-1 collagen mRNA as compared to all other groups. Degradation products of the cartilage ECM gels and soluble factors released by the matrices increased chondrogenic and decreased angiogenic mRNA levels, indicating that the processed ECM retains biochemically active proteins that can stimulate chondrogenic differentiation. In conclusion, this work supports the use of cartilage matrix-derived hydrogels for chondrogenic differentiation of MSCs and cartilage tissue engineering. Longer-term studies and positive controls will be needed to support these results to definitively demonstrate stimulation of chondrocyte differentiation, and particularly to verify that calcification without endochondral ossification does not occur as it does in shark cartilage. STATEMENT OF SIGNIFICANCE The objectives of this study were to determine if shark and pig cartilage extracellular matrix (ECM) hydrogels can stimulate chondrocytic differentiation of mesenchymal stem cells (MSCs) without exogenous growth factors and to determine if the soluble factors retained by these ECM hydrogels are responsible for this induction. Sharks are an especially interesting model for cartilage regeneration because their entire skeleton is composed of cartilage and they do not undergo endochondral ossification. Culturing human MSCs on porcine and shark cartilage ECM gels directly, with ECM gel conditioned media, or degradation products increased mRNA levels of chondrogenic factors while decreasing angiogenic factors. These studies indicate that xenogeneic cartilage ECMs have potential as biodegradable scaffolds capable of stimulating chondrogenesis while preventing angiogenesis for regenerative medicine applications and that ECM species selection can yield differential effects.
Collapse
Affiliation(s)
- Olivia A Burnsed
- Wallace H. Coulter Department of Biomedical Engineering and Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
| | - Zvi Schwartz
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA, USA; Department of Periodontics, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Katherine O Marchand
- H. Milton Stewart School of Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Sharon L Hyzy
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA, USA
| | | | - Barbara D Boyan
- Wallace H. Coulter Department of Biomedical Engineering and Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA; Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA, USA.
| |
Collapse
|
231
|
Optimization of human mesenchymal stem cell isolation from synovial membrane: Implications for subsequent tissue engineering effectiveness. Regen Ther 2016; 5:79-85. [PMID: 31245505 PMCID: PMC6581834 DOI: 10.1016/j.reth.2016.09.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 08/19/2016] [Accepted: 09/08/2016] [Indexed: 02/06/2023] Open
Abstract
Synovium-derived mesenchymal stem cells (SDMSCs) are one of the most suitable sources for cartilage repair because of their chondrogenic and proliferative capacity. However, the isolation methods for SDMSCs have not been extensively characterized. Thus, our aim in this study was to optimize the processes of enzymatic isolation followed by culture expansion in order to increase the number of SDMSCs obtained from the original tissue. Human synovium obtained from 18 donors (1.5 g/donor) was divided into three aliquots. The samples were minced and subjected to collagenase digestion, followed by different procedures: Group 1, Tissue fragments were removed by filtering followed by removing floating tissue; Group 2, No filtering. Only floating fragments were removed; Group 3, No fragments were removed. Subsequently, each aliquot was sub-divided into two density subgroups with half. In Group 1, the cell-containing media was plated either at high (5000 cells/cm2) or low density (1000 cells/cm2). In Groups 2 and 3, the media containing cells and tissue was plated onto the same number of culture dishes as used in Group 1, either at high or low density. At every passage, the cells plated at high density were consistently re-plated at high and those plated at low density were likewise. The expanded cell yields at day 21 following cell isolation were calculated. These cell populations were then evaluated for their osteogenic, adipogenic, and chondrogenic differentiation capabilities. The final cell yields per 0.25 g tissue in Group 1 were similar at high and low density, while those in Groups 2 and 3 exhibited higher when cultured at low density. The cell yields at low density were 0.7 ± 1.2 × 107 in Group 1, 5.7 ± 1.1 × 107 in Group 2, 4.3 ± 1.2 × 107 in Group 3 (Group 1 vs Groups 2 and 3, p < 0.05). In addition, the cells obtained in each low density subgroup exhibited equivalent osteogenic, adipogenic, and chondrogenic differentiation. Thus, it was evident that filtering leads to a loss of cells and does not affect the differentiation capacities. In conclusion, exclusion of a filtering procedure could contribute to obtain higher number of SDMSCs from synovial membrane without losing differentiation capacities. The processes of enzymatic isolation of MSCs from synovium have been optimized. Exclusion of filtering the undigested synovial debris provides higher number of SDMSCs. Exclusion of filtering the undigested synovial debris provides higher number of MSCs.
Collapse
|
232
|
Freeman FE, Stevens HY, Owens P, Guldberg RE, McNamara LM. Osteogenic Differentiation of Mesenchymal Stem Cells by Mimicking the Cellular Niche of the Endochondral Template. Tissue Eng Part A 2016; 22:1176-1190. [PMID: 27604384 DOI: 10.1089/ten.tea.2015.0339] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
In vitro bone regeneration strategies that prime mesenchymal stem cells (MSCs) with chondrogenic factors, to mimic aspects of the endochondral ossification process, have been shown to promote mineralization and vascularization by MSCs both in vitro and when implanted in vivo. However, these approaches required the use of osteogenic supplements, namely dexamethasone, ascorbic acid, and β-glycerophosphate, none of which are endogenous mediators of bone formation in vivo. Rather MSCs, endothelial progenitor cells, and chondrocytes all reside in proximity within the cartilage template and might paracrineally regulate osteogenic differentiation. Thus, this study tests the hypothesis that an in vitro bone regeneration approach that mimics the cellular niche existing during endochondral ossification, through coculture of MSCs, endothelial cells, and chondrocytes, will obviate the need for extraneous osteogenic supplements and provide an alternative strategy to elicit osteogenic differentiation of MSCs and mineral production. The specific objectives of this study were to (1) mimic the cellular niche existing during endochondral ossification and (2) investigate whether osteogenic differentiation could be induced without the use of any external growth factors. To test the hypothesis, we evaluated the mineralization and vessel formation potential of (a) a novel methodology involving both chondrogenic priming and the coculture of human umbilical vein endothelial cells (HUVECs) and MSCs compared with (b) chondrogenic priming of MSCs alone, (c) addition of HUVECs to chondrogenically primed MSC aggregates, (d-f) the same experimental groups cultured in the presence of osteogenic supplements and (g) a noncoculture group cultured in the presence of osteogenic growth factors alone. Biochemical (DNA, alkaline phosphatase [ALP], calcium, CD31+, vascular endothelial growth factor [VEGF]), histological (alcian blue, alizarin red), and immunohistological (CD31+) analyses were conducted to investigate osteogenic differentiation and vascularization at various time points (1, 2, and 3 weeks). The coculture methodology enhanced both osteogenesis and vasculogenesis compared with osteogenic differentiation alone, whereas osteogenic supplements inhibited the osteogenesis and vascularization (ALP, calcium, and VEGF) induced through coculture alone. Taken together, these results suggest that chondrogenic and vascular priming can obviate the need for osteogenic supplements to induce osteogenesis of human MSCs in vitro, while allowing for the formation of rudimentary vessels.
Collapse
Affiliation(s)
- Fiona E Freeman
- 1 Biomedical Engineering, Centre for Biomechanics Research (BMEC), National University of Ireland Galway , Galway, Ireland
| | - Hazel Y Stevens
- 2 George W. Woodruff School of Mechanical Engineering, Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology , Atlanta, Georgia
| | - Peter Owens
- 3 Centre for Microscopy and Imaging, National University of Ireland , Galway, Galway, Ireland
| | - Robert E Guldberg
- 2 George W. Woodruff School of Mechanical Engineering, Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology , Atlanta, Georgia
| | - Laoise M McNamara
- 1 Biomedical Engineering, Centre for Biomechanics Research (BMEC), National University of Ireland Galway , Galway, Ireland
| |
Collapse
|
233
|
Chondrogenic commitment of human umbilical cord blood-derived mesenchymal stem cells in collagen matrices for cartilage engineering. Sci Rep 2016; 6:32786. [PMID: 27604951 PMCID: PMC5015060 DOI: 10.1038/srep32786] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 08/12/2016] [Indexed: 12/12/2022] Open
Abstract
Umbilical cord blood (UCB) is a promising alternative source of mesenchymal stem cells (MSCs), because UCB-MSCs are abundant and harvesting them is a painless non-invasive procedure. Potential clinical applications of UCB-MSCs have been identified, but their ability for chondrogenic differentiation has not yet been fully evaluated. The aim of our work was to characterize and determine the chondrogenic differentiation potential of human UCB-MSCs (hUCB-MSCs) for cartilage tissue engineering using an approach combining 3D culture in type I/III collagen sponges and chondrogenic factors. Our results showed that UCB-MSCs have a high proliferative capacity. These cells differentiated easily into an osteoblast lineage but not into an adipocyte lineage. Furthermore, BMP-2 and TGF-β1 potentiated chondrogenic differentiation, as revealed by a strong increase in mature chondrocyte-specific mRNA (COL2A1, COL2B, ACAN) and protein (type II collagen) markers. Although growth factors increased the transcription of hypertrophic chondrocyte markers such as COL10A1 and MMP13, the cells present in the neo-tissue maintained their phenotype and did not progress to terminal differentiation and mineralization of the extracellular matrix after subcutaneous implantation in nude mice. Our study demonstrates that our culture model has efficient chondrogenic differentiation, and that hUCB-MSCs can be a reliable source for cartilage tissue engineering.
Collapse
|
234
|
Wang YG, Qu XH, Yang Y, Han XG, Wang L, Qiao H, Fan QM, Tang TT, Dai KR. AMPK promotes osteogenesis and inhibits adipogenesis through AMPK-Gfi1-OPN axis. Cell Signal 2016; 28:1270-1282. [PMID: 27283242 DOI: 10.1016/j.cellsig.2016.06.004] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2016] [Revised: 05/27/2016] [Accepted: 06/05/2016] [Indexed: 12/16/2022]
Abstract
Several metabolic, genetic and oncogenic bone diseases share the common pathological phenotype of defective bone marrow stromal cell (BMSC) differentiation. Many reports in bone science in the past several years have suggested that the skeleton also has an endocrine role. The role of AMP-activated protein kinase (AMPK) as an energy metabolism sensor and how it regulates BMSC differentiation is largely unknown. In the current study, we used AMPK agonists to activate AMPK in MC3T3-E1 cells to investigate the functional roles of AMPK in osteogenesis. However, metformin and AICAR failed to activate AMPK consistently. Therefore, we established MC3T3-E1 and 3T3-L1 cell models of AMPK α subunit overexpression through lentivirus vector, in which AMPK was overactivated. AMPK hyperactivation stimulated MC3T3-E1 cell osteogenesis and inhibited 3T3-L1 cell adipogenesis. Osteopontin (OPN) mediated AMPK regulation of osteogenesis and adipogenesis. Furthermore, we provided evidence that the transcriptional repressor growth factor independence-1 (Gfi1) was downregulated and disassociated from the OPN promoter in response to AMPK activation, resulting in the upregulation of OPN. Overexpression of wild-type and dominant-negative Gfi1 modulated MC3T3-E1 osteogenesis and 3T3-L1 adipogenesis. Further evidence suggested that AMPK enhanced ectopic bone formation of MC3T3-E1 cells through the AMPK-Gfi1-OPN axis. In conclusion, AMPK was sufficient to stimulate osteogenesis of MC3T3-E1 cells and inhibit adipogenesis of 3T3-L1 cells through the AMPK-Gfi1-OPN axis. These findings helped elucidate the molecular mechanisms underlying AMPK regulation of osteogenesis and adipogenesis.
Collapse
Affiliation(s)
- Yu-Gang Wang
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, People's Republic of China
| | - Xin-Hua Qu
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, People's Republic of China
| | - Ying Yang
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, People's Republic of China
| | - Xiu-Guo Han
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, People's Republic of China
| | - Lei Wang
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, People's Republic of China
| | - Han Qiao
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, People's Republic of China
| | - Qi-Ming Fan
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, People's Republic of China.
| | - Ting-Ting Tang
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, People's Republic of China.
| | - Ke-Rong Dai
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, People's Republic of China; The Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai JiaoTong University School of Medicine (SJTUSM) & Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS), Shanghai 200025, China.
| |
Collapse
|
235
|
Adhesive peptides conjugated PAMAM dendrimer as a coating polymeric material enhancing cell responses. CHINESE CHEM LETT 2016. [DOI: 10.1016/j.cclet.2016.03.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
236
|
Berneel E, Philips C, Declercq H, Cornelissen R. Redifferentiation of High-Throughput Generated Fibrochondrocyte Micro-Aggregates: Impact of Low Oxygen Tension. Cells Tissues Organs 2016; 202:369-381. [DOI: 10.1159/000447509] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/09/2016] [Indexed: 11/19/2022] Open
Abstract
In meniscus tissue engineering strategies, enhancing the matrix quality of the neomeniscal tissue is important. When the differentiated phenotype of fibrochondrocytes is lost, the quality of the matrix becomes compromised. The objective of this study was to produce uniform fibrochondrocyte micro-aggregates with desirable phenotype and tissue homogeneity in large quantities using a simple and reproducible method. Furthermore, we investigated if hypoxia could enhance the matrix quality. Porcine fibrochondrocytes were expanded at 21% oxygen until passage 3 (P3) and a gene expression profile was determined. P3 fibrochondrocytes were cultivated in chondrogenic medium at 5 and 21% oxygen in high-throughput agarose chips containing 2,865 microwells 200 µm in diameter. Evaluation included live/dead staining, histological examination, immunohistochemistry, dimethylmethylene blue assay and real-time reverse transcriptase quantitative polymerase chain reaction of the micro-aggregates. Gene expression analysis showed a drastic decline in collagen II and high expression of collagen I during monolayer culture. After 4 days, uniform and stable micro-aggregates could be produced. The redifferentiation and matrix quality of the hypoxic cultured micro-aggregates were enhanced relative to the normoxic cultures. Sulfated glycosaminoglycan synthesis was significantly higher, and collagen II expression and the collagen II/collagen I ratio were significantly upregulated in the hypoxic cultures. High-throughput production of uniform microtissues holds promise for the generation of larger-scale tissue engineering constructs or optimization of redifferentiation mechanisms for clinical applications.
Collapse
|
237
|
Phull AR, Eo SH, Abbas Q, Ahmed M, Kim SJ. Applications of Chondrocyte-Based Cartilage Engineering: An Overview. BIOMED RESEARCH INTERNATIONAL 2016; 2016:1879837. [PMID: 27631002 PMCID: PMC5007317 DOI: 10.1155/2016/1879837] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2016] [Revised: 06/24/2016] [Accepted: 06/26/2016] [Indexed: 12/31/2022]
Abstract
Chondrocytes are the exclusive cells residing in cartilage and maintain the functionality of cartilage tissue. Series of biocomponents such as different growth factors, cytokines, and transcriptional factors regulate the mesenchymal stem cells (MSCs) differentiation to chondrocytes. The number of chondrocytes and dedifferentiation are the key limitations in subsequent clinical application of the chondrocytes. Different culture methods are being developed to overcome such issues. Using tissue engineering and cell based approaches, chondrocytes offer prominent therapeutic option specifically in orthopedics for cartilage repair and to treat ailments such as tracheal defects, facial reconstruction, and urinary incontinence. Matrix-assisted autologous chondrocyte transplantation/implantation is an improved version of traditional autologous chondrocyte transplantation (ACT) method. An increasing number of studies show the clinical significance of this technique for the chondral lesions treatment. Literature survey was carried out to address clinical and functional findings by using various ACT procedures. The current study was conducted to study the pharmacological significance and biomedical application of chondrocytes. Furthermore, it is inferred from the present study that long term follow-up studies are required to evaluate the potential of these methods and specific positive outcomes.
Collapse
Affiliation(s)
- Abdul-Rehman Phull
- Department of Biological Sciences, College of Natural Sciences, Kongju National University, Gongjudaehakro 56, Gongju 32588, Republic of Korea
| | - Seong-Hui Eo
- Department of Biological Sciences, College of Natural Sciences, Kongju National University, Gongjudaehakro 56, Gongju 32588, Republic of Korea
| | - Qamar Abbas
- Department of Biological Sciences, College of Natural Sciences, Kongju National University, Gongjudaehakro 56, Gongju 32588, Republic of Korea
| | - Madiha Ahmed
- Department of Pharmacy, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Song Ja Kim
- Department of Biological Sciences, College of Natural Sciences, Kongju National University, Gongjudaehakro 56, Gongju 32588, Republic of Korea
| |
Collapse
|
238
|
Chen Z, Wang Q, Asmani M, Li Y, Liu C, Li C, Lippmann JM, Wu Y, Zhao R. Lung Microtissue Array to Screen the Fibrogenic Potential of Carbon Nanotubes. Sci Rep 2016; 6:31304. [PMID: 27510174 PMCID: PMC4980669 DOI: 10.1038/srep31304] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 07/18/2016] [Indexed: 12/25/2022] Open
Abstract
Due to their excellent physical and chemical characteristics, multi-wall carbon nanotubes (MWCNT) have the potential to be used in structural composites, conductive materials, sensors, drug delivery and medical imaging. However, because of their small-size and light-weight, the applications of MWCNT also raise health concerns. In vivo animal studies have shown that MWCNT cause biomechanical and genetic alterations in the lung tissue which lead to lung fibrosis. To screen the fibrogenic risk factor of specific types of MWCNT, we developed a human lung microtissue array device that allows real-time and in-situ readout of the biomechanical properties of the engineered lung microtissue upon MWCNT insult. We showed that the higher the MWCNT concentration, the more severe cytotoxicity was observed. More importantly, short type MWCNT at low concentration of 50 ng/ml stimulated microtissue formation and contraction force generation, and caused substantial increase in the fibrogenic marker miR-21 expression, indicating the high fibrogenic potential of this specific carbon nanotube type and concentration. The presented microtissue array system provides a powerful tool for high-throughput examination of the therapeutic and toxicological effects of target compounds in realistic tissue environment.
Collapse
Affiliation(s)
- Zhaowei Chen
- State University of New York at Buffalo, Department of Biomedical Engineering, Buffalo, New York, 14260, USA
| | - Qixin Wang
- State University of New York at Buffalo, Department of Biomedical Engineering, Buffalo, New York, 14260, USA
| | - Mohammadnabi Asmani
- State University of New York at Buffalo, Department of Biomedical Engineering, Buffalo, New York, 14260, USA
| | - Yan Li
- State University of New York at Buffalo, Department of Biomedical Engineering, Buffalo, New York, 14260, USA
| | - Chang Liu
- State University of New York at Buffalo, Department of Biomedical Engineering, Buffalo, New York, 14260, USA
| | - Changning Li
- State University of New York at Buffalo, Department of Biomedical Engineering, Buffalo, New York, 14260, USA.,State University of New York at Buffalo, Department of Chemical and Biological Engineering, Buffalo, New York, 14260, USA
| | - Julian M Lippmann
- State University of New York at Buffalo, Department of Biomedical Engineering, Buffalo, New York, 14260, USA
| | - Yun Wu
- State University of New York at Buffalo, Department of Biomedical Engineering, Buffalo, New York, 14260, USA
| | - Ruogang Zhao
- State University of New York at Buffalo, Department of Biomedical Engineering, Buffalo, New York, 14260, USA
| |
Collapse
|
239
|
Disc-type hyaline cartilage reconstruction using 3D-cell sheet culture of human bone marrow stromal cells and human costal chondrocytes and maintenance of its shape and phenotype after transplantation. Tissue Eng Regen Med 2016; 13:352-363. [PMID: 30603417 DOI: 10.1007/s13770-016-9065-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 09/21/2015] [Accepted: 09/22/2016] [Indexed: 01/04/2023] Open
Abstract
In this study, we developed the disc-type bio-cartilage reconstruction strategies for transplantable hyaline cartilage for reconstructive surgery using 3D-cell sheet culture of human bone marrow stromal cells and human costal chondrocytes. We compared chondrogenesis efficiency between different chondrogenic-induction methods such as micromass culture, pellet culture, and 3D-cell sheet culture. Among them, the 3D-cell sheet culture resulted in the best chondrogenesis with the disc-type bio-cartilage (>12 mm diameter in size) in vitro, but sometimes spontaneous curling and contraction of 3D-cell sheet culture resulted in the formation of bead-type cartilage, which was prevented by type I collagen coating or by culturing on amniotic membrane. Previously, it was reported that tissue-engineered cartilage reconstructed in vitro does not maintain its cartilage phenotype after transplantation but tends to transform to other tissue type such as bone or connective tissue. However, the disc-type bio-cartilage of 3D-cell sheet culture maintained its hyaline cartilage phenotype even after exposure to the osteogenic-induction condition in vitro for 3 weeks or after the transplantation for 4 weeks in mouse subcutaneous. Collectively, the disc-type bio-cartilage with 12 mm diameter can be reproducibly reconstructed by the 3D-cell sheet culture, whose hyaline cartilage phenotype and shape can be maintained under the osteogenic-induction condition as well as after the transplantation. This disc-type bio-cartilage can be proposed for the application to reconstructive surgery and repair of disc-type cartilage such as mandibular cartilage and digits. Electronic Supplementary Material Supplementary material is available for this article at 10.1007/s13770-016-9065-6 and is accessible for authorized users.
Collapse
|
240
|
Parmar PA, Skaalure SC, Chow LW, St-Pierre JP, Stoichevska V, Peng YY, Werkmeister JA, Ramshaw JAM, Stevens MM. Temporally degradable collagen-mimetic hydrogels tuned to chondrogenesis of human mesenchymal stem cells. Biomaterials 2016; 99:56-71. [PMID: 27214650 PMCID: PMC4910873 DOI: 10.1016/j.biomaterials.2016.05.011] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 05/03/2016] [Accepted: 05/04/2016] [Indexed: 01/15/2023]
Abstract
Tissue engineering strategies for repairing and regenerating articular cartilage face critical challenges to recapitulate the dynamic and complex biochemical microenvironment of native tissues. One approach to mimic the biochemical complexity of articular cartilage is through the use of recombinant bacterial collagens as they provide a well-defined biological 'blank template' that can be modified to incorporate bioactive and biodegradable peptide sequences within a precisely defined three-dimensional system. We customized the backbone of a Streptococcal collagen-like 2 (Scl2) protein with heparin-binding, integrin-binding, and hyaluronic acid-binding peptide sequences previously shown to modulate chondrogenesis and then cross-linked the recombinant Scl2 protein with a combination of matrix metalloproteinase 7 (MMP7)- and aggrecanase (ADAMTS4)-cleavable peptides at varying ratios to form biodegradable hydrogels with degradation characteristics matching the temporal expression pattern of these enzymes in human mesenchymal stem cells (hMSCs) during chondrogenesis. hMSCs encapsulated within the hydrogels cross-linked with both degradable peptides exhibited enhanced chondrogenic characteristics as demonstrated by gene expression and extracellular matrix deposition compared to the hydrogels cross-linked with a single peptide. Additionally, these combined peptide hydrogels displayed increased MMP7 and ADAMTS4 activities and yet increased compression moduli after 6 weeks, suggesting a positive correlation between the degradation of the hydrogels and the accumulation of matrix by hMSCs undergoing chondrogenesis. Our results suggest that including dual degradation motifs designed to respond to enzymatic activity of hMSCs going through chondrogenic differentiation led to improvements in chondrogenesis. Our hydrogel system demonstrates a bimodal enzymatically degradable biological platform that can mimic native cellular processes in a temporal manner. As such, this novel collagen-mimetic protein, cross-linked via multiple enzymatically degradable peptides, provides a highly adaptable and well defined platform to recapitulate a high degree of biological complexity, which could be applicable to numerous tissue engineering and regenerative medicine applications.
Collapse
Affiliation(s)
- Paresh A Parmar
- Department of Materials, Imperial College London, Exhibition Road, London SW7 2AZ, United Kingdom; Department of Bioengineering, Imperial College London, Exhibition Road, London SW7 2AZ, United Kingdom; Institute of Biomedical Engineering, Imperial College London, Exhibition Road, London SW7 2AZ, United Kingdom; CSIRO Manufacturing, Bayview Avenue, Clayton, Victoria 3169, Australia
| | - Stacey C Skaalure
- Department of Materials, Imperial College London, Exhibition Road, London SW7 2AZ, United Kingdom; Department of Bioengineering, Imperial College London, Exhibition Road, London SW7 2AZ, United Kingdom; Institute of Biomedical Engineering, Imperial College London, Exhibition Road, London SW7 2AZ, United Kingdom
| | - Lesley W Chow
- Department of Materials, Imperial College London, Exhibition Road, London SW7 2AZ, United Kingdom; Department of Bioengineering, Imperial College London, Exhibition Road, London SW7 2AZ, United Kingdom; Institute of Biomedical Engineering, Imperial College London, Exhibition Road, London SW7 2AZ, United Kingdom
| | - Jean-Philippe St-Pierre
- Department of Materials, Imperial College London, Exhibition Road, London SW7 2AZ, United Kingdom; Department of Bioengineering, Imperial College London, Exhibition Road, London SW7 2AZ, United Kingdom; Institute of Biomedical Engineering, Imperial College London, Exhibition Road, London SW7 2AZ, United Kingdom
| | | | - Yong Y Peng
- CSIRO Manufacturing, Bayview Avenue, Clayton, Victoria 3169, Australia
| | | | - John A M Ramshaw
- CSIRO Manufacturing, Bayview Avenue, Clayton, Victoria 3169, Australia
| | - Molly M Stevens
- Department of Materials, Imperial College London, Exhibition Road, London SW7 2AZ, United Kingdom; Department of Bioengineering, Imperial College London, Exhibition Road, London SW7 2AZ, United Kingdom; Institute of Biomedical Engineering, Imperial College London, Exhibition Road, London SW7 2AZ, United Kingdom.
| |
Collapse
|
241
|
Tong JC, Yao SL. Novel Scaffold Containing Transforming Growth Factor-β1 DNA for Cartilage Tissue Engineering. J BIOACT COMPAT POL 2016. [DOI: 10.1177/0883911507076460] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The current progression in tissue engineering and local gene delivery systems has enhanced applications for cartilage tissue engineering. In this study, porous chitosan/collagen scaffolds were prepared through a freeze-drying process and loaded with plasmid encoding human transforming growth factor-β1 (TGFβ1). Human bone marrow stem cells were seeded in this scaffold, and gene transfection was traced by enhanced green fluorescent protein (EGFP). The expression of type II collagen and aggrecan was detected with reverse transcription-polymerase chain reaction, and cell proliferation was measured every day for six days using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazoliumbromide assay. The pore diameter of the gene-combined scaffolds was lower than that of the pure chitosan/collagen scaffold. The scaffold containing TGFβ1 plasmid exhibited the highest proliferation rate, and the expression of type II collagen and aggrecan was upregulated in the pEGFP-TGFβ1 scaffold. The potential for chitosan/collagen scaffold combined with pEGFP-TGFβ1 as a substrate candidate in cartilage tissue engineering has been investigated.
Collapse
Affiliation(s)
- Jian-Cheng Tong
- Department of Anesthesiology, Hubei Provincial Corps Hospital, Chinese People's Armed Police Forces, Hubei 430061, People's Republic of China,
| | - Shang-Long Yao
- Department of Anesthesiology,Union Hospital,Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China,
| |
Collapse
|
242
|
Zhou JY, Zhang Z, Qian GS. Mesenchymal stem cells to treat diabetic neuropathy: a long and strenuous way from bench to the clinic. Cell Death Discov 2016; 2:16055. [PMID: 27551543 PMCID: PMC4979500 DOI: 10.1038/cddiscovery.2016.55] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 05/23/2016] [Accepted: 06/11/2016] [Indexed: 01/01/2023] Open
Abstract
As one of the most common complications of diabetes, diabetic neuropathy often causes foot ulcers and even limb amputations. Inspite of continuous development in antidiabetic drugs, there is still no efficient therapy to cure diabetic neuropathy. Diabetic neuropathy shows declined vascularity in peripheral nerves and lack of angiogenic and neurotrophic factors. Mesenchymal stem cells (MSCs) have been indicated as a novel emerging regenerative therapy for diabetic neuropathy because of their multipotency. We will briefly review the pathogenesis of diabetic neuropathy, characteristic of MSCs, effects of MSC therapies for diabetic neuropathy and its related mechanisms. In order to treat diabetic neuropathy, neurotrophic or angiogenic factors in the form of protein or gene therapy are delivered to diabetic neuropathy, but therapeutic efficiencies are very modest if not ineffective. MSC treatment reverses manifestations of diabetic neuropathy. MSCs have an important role to repair tissue and to lower blood glucose level. MSCs even paracrinely secrete neurotrophic factors, angiogenic factors, cytokines, and immunomodulatory substances to ameliorate diabetic neuropathy. There are still several challenges in the clinical translation of MSC therapy, such as safety, optimal dose of administration, optimal mode of cell delivery, issues of MSC heterogeneity, clinically meaningful engraftment, autologous or allogeneic approach, challenges with cell manufacture, and further mechanisms.
Collapse
Affiliation(s)
- J Y Zhou
- National Drug Clinical Trial Institution, Xinqiao Hospital, Third Military Medical University , Chongqing 400037, China
| | - Z Zhang
- National Drug Clinical Trial Institution, Xinqiao Hospital, Third Military Medical University , Chongqing 400037, China
| | - G S Qian
- Institute of Respiratory Diseases, Xinqiao Hospital, Third Military Medical University , Chongqing, 400037, China
| |
Collapse
|
243
|
Nuschke A, Rodrigues M, Rivera J, Yates C, Whaley D, Stolz D, Griffith L, Wells A. Epidermal Growth Factor Tethered to β-Tricalcium Phosphate Bone Scaffolds via a High-Affinity Binding Peptide Enhances Survival of Human Mesenchymal Stem Cells/Multipotent Stromal Cells in an Immune-Competent Parafascial Implantation Assay in Mice. Stem Cells Transl Med 2016; 5:1580-1586. [PMID: 27400798 PMCID: PMC5070502 DOI: 10.5966/sctm.2015-0326] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 04/08/2016] [Indexed: 12/25/2022] Open
Abstract
: Mesenchymal stem cells/multipotent stromal cells (MSCs) are attractive candidates for cell therapies owing to their ability to differentiate into many lineages. However, these cells often fail to survive when implanted into a harsh wound environment, limiting efficacy in vivo. To improve MSC survival, we previously found that tethered epidermal growth factor (tEGF) molecules that restrict epidermal growth factor receptor (EGFR) signaling to the cell surface provide resistance to death signals. To adapt this system to wound healing, we tethered epidermal growth factor (EGF) to tricalcium phosphate (TCP) particle scaffolds, clinically used in bone healing. Human primary MSCs seeded on TCP and mixed into a collagen-based gel were injected in the perifascial space of immunocompetent mice with or without tEGF attached to the surface. We found that tethering EGF to the TCP scaffolds yielded approximately a fourfold increase in MSC survival compared with non-EGF scaffolds at 21 days, as well as significant improvements in survival in the short term at 2 and 7 days after implantation. Overall, our approach to sustaining EGFR signaling reduced MSC death in vivo and may be useful for future cell therapies where MSCs typically die on implantation. SIGNIFICANCE Stem cells are limited as tissue replacements owing to rapid death induced in the hostile wound environment. It has been found that restricting epidermal growth factor (EGF) receptor signaling to the membrane provides a survival advantage. This report elucidates a method to tether EGF to bone induction material to improve the survival of mesenchymal stem cells/multipotent stromal cells in vivo.
Collapse
Affiliation(s)
- Austin Nuschke
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Melanie Rodrigues
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Jaime Rivera
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Cecelia Yates
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Health Promotion and Development, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- VA Pittsburgh Health System, Pittsburgh, Pennsylvania, USA
| | - Diana Whaley
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Donna Stolz
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Linda Griffith
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Alan Wells
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- VA Pittsburgh Health System, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
244
|
Golpanian S, Wolf A, Hatzistergos KE, Hare JM. Rebuilding the Damaged Heart: Mesenchymal Stem Cells, Cell-Based Therapy, and Engineered Heart Tissue. Physiol Rev 2016; 96:1127-68. [PMID: 27335447 PMCID: PMC6345247 DOI: 10.1152/physrev.00019.2015] [Citation(s) in RCA: 250] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are broadly distributed cells that retain postnatal capacity for self-renewal and multilineage differentiation. MSCs evade immune detection, secrete an array of anti-inflammatory and anti-fibrotic mediators, and very importantly activate resident precursors. These properties form the basis for the strategy of clinical application of cell-based therapeutics for inflammatory and fibrotic conditions. In cardiovascular medicine, administration of autologous or allogeneic MSCs in patients with ischemic and nonischemic cardiomyopathy holds significant promise. Numerous preclinical studies of ischemic and nonischemic cardiomyopathy employing MSC-based therapy have demonstrated that the properties of reducing fibrosis, stimulating angiogenesis, and cardiomyogenesis have led to improvements in the structure and function of remodeled ventricles. Further attempts have been made to augment MSCs' effects through genetic modification and cell preconditioning. Progression of MSC therapy to early clinical trials has supported their role in improving cardiac structure and function, functional capacity, and patient quality of life. Emerging data have supported larger clinical trials that have been either completed or are currently underway. Mechanistically, MSC therapy is thought to benefit the heart by stimulating innate anti-fibrotic and regenerative responses. The mechanisms of action involve paracrine signaling, cell-cell interactions, and fusion with resident cells. Trans-differentiation of MSCs to bona fide cardiomyocytes and coronary vessels is also thought to occur, although at a nonphysiological level. Recently, MSC-based tissue engineering for cardiovascular disease has been examined with quite encouraging results. This review discusses MSCs from their basic biological characteristics to their role as a promising therapeutic strategy for clinical cardiovascular disease.
Collapse
Affiliation(s)
- Samuel Golpanian
- Interdisciplinary Stem Cell Institute, Department of Medicine, and Department of Surgery, University of Miami Miller School of Medicine, Miami, Florida
| | - Ariel Wolf
- Interdisciplinary Stem Cell Institute, Department of Medicine, and Department of Surgery, University of Miami Miller School of Medicine, Miami, Florida
| | - Konstantinos E Hatzistergos
- Interdisciplinary Stem Cell Institute, Department of Medicine, and Department of Surgery, University of Miami Miller School of Medicine, Miami, Florida
| | - Joshua M Hare
- Interdisciplinary Stem Cell Institute, Department of Medicine, and Department of Surgery, University of Miami Miller School of Medicine, Miami, Florida
| |
Collapse
|
245
|
Amirkhani MA, Mohseni R, Soleimani M, Shoae-Hassani A, Nilforoushzadeh MA. A rapid sonication based method for preparation of stromal vascular fraction and mesenchymal stem cells from fat tissue. ACTA ACUST UNITED AC 2016; 6:99-104. [PMID: 27525227 PMCID: PMC4981255 DOI: 10.15171/bi.2016.14] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2015] [Revised: 06/12/2016] [Accepted: 06/21/2016] [Indexed: 01/22/2023]
Abstract
![]()
Introduction: Much attention has been paid to the idea of cell therapy using stem cells from different sources of the body. Fat-derived stem cells that are called adipose derived stem cells (ADSCs) from stromal vascular fraction (SVF) are the subject of many studies in several cell therapy clinical trials. Despite production of some GMP-grade enzymes to isolate SVF for clinical trials, there are critical conditions like inconsistency in lot-to-lot enzyme activity, endotoxin residues, other protease activities and cleavage of some cell surface markers which significantly narrow the options. So we decided to develop a new method via sonication cavitation to homogenize fat tissue and disrupt partially adipose cells to obtain SVF and finally ADSCs at a minimum of time and expenses.
Methods: The fat tissue was chopped in a sterile condition by a blender mixer and then sonicated for 2 s before centrifugation. The next steps were performed as the regular methods of SVF harvesting, and then it was characterized using flow cytometry.
Results: Analysis of the surface markers of the cells revealed similar sets of surface antigens. The cells showed slightly high expression of CD34, CD73 and CD105. The differentiation capacity of these cells indicates that multipotent properties of the cells are not compromised after sonication. But we had the less osteogenic potential of cells when compared with the enzymatic method.
Conclusion: The current protocol based on the sonication-mediated cavitation is a rapid, safe and cost-effective method, which is proposed for isolation of SVF and of course ADSCs cultures in a large scale for the clinical trials or therapeutic purposes.
Collapse
Affiliation(s)
| | - Rashin Mohseni
- Applied Cell Sciences Department, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Masoud Soleimani
- Hematology Department, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Alireza Shoae-Hassani
- Applied Cell Sciences Department, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | |
Collapse
|
246
|
Hogrebe NJ, Gooch KJ. Direct influence of culture dimensionality on human mesenchymal stem cell differentiation at various matrix stiffnesses using a fibrous self‐assembling peptide hydrogel. J Biomed Mater Res A 2016; 104:2356-68. [DOI: 10.1002/jbm.a.35755] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 04/19/2016] [Indexed: 11/12/2022]
Affiliation(s)
| | - Keith J. Gooch
- Department of Biomedical EngineeringThe Ohio State UniversityColumbus Ohio
- The Ohio State University, Davis Heart Lung Research InstituteColumbus Ohio
| |
Collapse
|
247
|
|
248
|
Chen Z, Wei J, Zhu J, Liu W, Cui J, Li H, Chen F. Chm-1 gene-modified bone marrow mesenchymal stem cells maintain the chondrogenic phenotype of tissue-engineered cartilage. Stem Cell Res Ther 2016; 7:70. [PMID: 27150539 PMCID: PMC4858869 DOI: 10.1186/s13287-016-0328-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 02/01/2016] [Accepted: 04/18/2016] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Marrow mesenchymal stem cells (MSCs) can differentiate into specific phenotypes, including chondrocytes, and have been widely used for cartilage tissue engineering. However, cartilage grafts from MSCs exhibit phenotypic alternations after implantation, including matrix calcification and vascular ingrowth. METHODS We compared chondromodulin-1 (Chm-1) expression between chondrocytes and MSCs. We found that chondrocytes expressed a high level of Chm-1. We then adenovirally transduced MSCs with Chm-1 and applied modified cells to engineer cartilage in vivo. RESULTS A gross inspection and histological observation indicated that the chondrogenic phenotype of the tissue-engineered cartilage graft was well maintained, and the stable expression of Chm-1 was detected by immunohistological staining in the cartilage graft derived from the Chm-1 gene-modified MSCs. CONCLUSIONS Our findings defined an essential role for Chm-1 in maintaining chondrogenic phenotype and demonstrated that Chm-1 gene-modified MSCs may be used in cartilage tissue engineering.
Collapse
Affiliation(s)
- Zhuoyue Chen
- Laboratory of Tissue Engineering, Faculty of Life Science, Northwest University, 229 TaiBai North Road, Xi'an, Shaanxi Province, 710069, P.R. China.,Provincial Key Laboratory of Biotechnology of Shaanxi, Northwest University, 229 TaiBai North Road, Xi'an, Shaanxi Province, 710069, P.R. China
| | - Jing Wei
- Laboratory of Tissue Engineering, Faculty of Life Science, Northwest University, 229 TaiBai North Road, Xi'an, Shaanxi Province, 710069, P.R. China
| | - Jun Zhu
- Laboratory of Tissue Engineering, Faculty of Life Science, Northwest University, 229 TaiBai North Road, Xi'an, Shaanxi Province, 710069, P.R. China
| | - Wei Liu
- Laboratory of Tissue Engineering, Faculty of Life Science, Northwest University, 229 TaiBai North Road, Xi'an, Shaanxi Province, 710069, P.R. China
| | - Jihong Cui
- Laboratory of Tissue Engineering, Faculty of Life Science, Northwest University, 229 TaiBai North Road, Xi'an, Shaanxi Province, 710069, P.R. China.,Provincial Key Laboratory of Biotechnology of Shaanxi, Northwest University, 229 TaiBai North Road, Xi'an, Shaanxi Province, 710069, P.R. China
| | - Hongmin Li
- Laboratory of Tissue Engineering, Faculty of Life Science, Northwest University, 229 TaiBai North Road, Xi'an, Shaanxi Province, 710069, P.R. China.,Provincial Key Laboratory of Biotechnology of Shaanxi, Northwest University, 229 TaiBai North Road, Xi'an, Shaanxi Province, 710069, P.R. China
| | - Fulin Chen
- Laboratory of Tissue Engineering, Faculty of Life Science, Northwest University, 229 TaiBai North Road, Xi'an, Shaanxi Province, 710069, P.R. China. .,Provincial Key Laboratory of Biotechnology of Shaanxi, Northwest University, 229 TaiBai North Road, Xi'an, Shaanxi Province, 710069, P.R. China.
| |
Collapse
|
249
|
Oberbauer E, Steffenhagen C, Feichtinger G, Hildner F, Hacobian A, Danzer M, Gabriel C, Redl H, Wolbank S. A Luciferase-Based Quick Potency Assay to Predict Chondrogenic Differentiation. Tissue Eng Part C Methods 2016; 22:487-95. [DOI: 10.1089/ten.tec.2015.0435] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Eleni Oberbauer
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, AUVA Research Center, Linz/Vienna, Austria
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Carolin Steffenhagen
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, AUVA Research Center, Linz/Vienna, Austria
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Georg Feichtinger
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, AUVA Research Center, Linz/Vienna, Austria
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
- Biomaterials and Tissue Engineering Group, Department of Oral Biology, School of Dentistry, University of Leeds, Leeds, United Kingdom
| | - Florian Hildner
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, AUVA Research Center, Linz/Vienna, Austria
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Ara Hacobian
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, AUVA Research Center, Linz/Vienna, Austria
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Martin Danzer
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, AUVA Research Center, Linz/Vienna, Austria
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
- Red Cross Blood Transfusion Service of Upper Austria, Linz, Austria
| | - Christian Gabriel
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, AUVA Research Center, Linz/Vienna, Austria
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
- Red Cross Blood Transfusion Service of Upper Austria, Linz, Austria
| | - Heinz Redl
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, AUVA Research Center, Linz/Vienna, Austria
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Susanne Wolbank
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, AUVA Research Center, Linz/Vienna, Austria
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
| |
Collapse
|
250
|
Bone Marrow Stem Cells in Response to Intervertebral Disc-Like Matrix Acidity and Oxygen Concentration: Implications for Cell-based Regenerative Therapy. Spine (Phila Pa 1976) 2016; 41:743-50. [PMID: 26630431 DOI: 10.1097/brs.0000000000001314] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN In vitro culture of porcine bone marrow stem cells (BMSCs) in varying pH microenvironments in a three-dimensional hydrogel system. OBJECTIVE To characterize the response of BMSCs to varying pH environments (blood [pH 7.4], healthy intervertebral disc (IVD) (pH 7.1), mildly degenerated IVD (pH 6.8), and severely degenerated IVD (pH 6.5) in three-dimensional culture under normoxic (20%) and hypoxic (5%) conditions. SUMMARY OF BACKGROUND DATA The IVD is an avascular organ relying on diffusion of essential nutrients through the cartilaginous endplates (CEPs) thereby creating a challenging microenvironment. Within a degenerated IVD, oxygen and glucose concentrations decrease further (<5% oxygen, <5 mmol/L glucose) and matrix acidity (<pH 6.8) increases resulting in especially adverse conditions. This has major implications for injectable cell-based strategies as these adverse microenvironmental conditions might severely affect the survival and regenerative potential of transplanted cells. METHODS BMSCs were encapsulated in 1.5% alginate and ionically cross-linked in 102 mmol/L CaCl2 solution to form beads (diameter = 5 mm), which were cultured in different microenvironmental conditions (pH 6.5, 6.8, 7.1, and 7.4; oxygen: 5% and 20%). RESULTS This study demonstrated decreased DNA content, increased cell death and minimal sulphated-glycosaminoglycans (sGAG) and collagen accumulation at pH 6.5 with increased proliferation, sustained cell viability and increased sGAG and collagen accumulation in pH 6.8 or higher. These findings suggest that there is a threshold at pH 6.8, below which cells cannot survive and accumulate nucleus pulposus-like matrix components (sGAG and collagen). CONCLUSION Translation into a multimodal protocol requires the survival of stem cells and their ability to function normally amidst the harsh microenvironment. This study demonstrates the critical implication of degeneration stage and suggests stratified targeting to identify suitable candidates through measurement of the local pH thereby maximizing the efficacy for IVD cellular regenerative interventions. LEVEL OF EVIDENCE N/A.
Collapse
|