201
|
Di Giacomo R, Uribe-San-Martin R, Mai R, Francione S, Nobili L, Sartori I, Gozzo F, Pelliccia V, Onofrj M, Lo Russo G, de Curtis M, Tassi L. Stereo-EEG ictal/interictal patterns and underlying pathologies. Seizure 2019; 72:54-60. [DOI: 10.1016/j.seizure.2019.10.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 09/24/2019] [Accepted: 10/01/2019] [Indexed: 11/24/2022] Open
|
202
|
Li J, Grinenko O, Mosher JC, Gonzalez-Martinez J, Leahy RM, Chauvel P. Learning to define an electrical biomarker of the epileptogenic zone. Hum Brain Mapp 2019; 41:429-441. [PMID: 31609058 PMCID: PMC7268034 DOI: 10.1002/hbm.24813] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 09/17/2019] [Accepted: 09/19/2019] [Indexed: 01/07/2023] Open
Abstract
The role of fast activity as a potential biomarker in localization of the epileptogenic zone (EZ) remains controversial due to recently reported unsatisfactory performance. We recently identified a “fingerprint” of the EZ as a time‐frequency pattern that is defined by a combination of preictal spike(s), fast oscillatory activity, and concurrent suppression of lower frequencies. Here we examine the generalizability of the fingerprint in application to an independent series of patients (11 seizure‐free and 13 non‐seizure‐free after surgery) and show that the fingerprint can also be identified in seizures with lower frequency (such as beta) oscillatory activity. In the seizure‐free group, only 5 of 47 identified EZ contacts were outside the resection. In contrast, in the non‐seizure‐free group, 104 of 142 identified EZ contacts were outside the resection. We integrated the fingerprint prediction with the subject's MR images, thus providing individualized anatomical estimates of the EZ. We show that these fingerprint‐based estimates in seizure‐free patients are almost always inside the resection. On the other hand, for a large fraction of the nonseizure‐free patients the estimated EZ was not well localized and was partially or completely outside the resection, which may explain surgical failure in such cases. We also show that when mapping fast activity alone onto MR images, the EZ was often over‐estimated, indicating a reduced discriminative ability for fast activity relative to the full fingerprint for localization of the EZ.
Collapse
Affiliation(s)
- Jian Li
- Signal and Image Processing Institute, University of Southern California, Los Angeles, California
| | - Olesya Grinenko
- Epilepsy Center, Cleveland Clinic Neurological Institute, Cleveland, Ohio
| | - John C Mosher
- Department of Neurology, University of Texas Health Science Center at Houston, Houston, Texas
| | | | - Richard M Leahy
- Signal and Image Processing Institute, University of Southern California, Los Angeles, California
| | - Patrick Chauvel
- Epilepsy Center, Cleveland Clinic Neurological Institute, Cleveland, Ohio
| |
Collapse
|
203
|
Peng SJ, Chou CC, Yu HY, Chen C, Yen DJ, Kwan SY, Hsu SPC, Lin CF, Chen HH, Lee CC. Ictal networks of temporal lobe epilepsy: views from high-frequency oscillations in stereoelectroencephalography. J Neurosurg 2019; 131:1086-1194. [PMID: 30544358 DOI: 10.3171/2018.6.jns172844] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 06/27/2018] [Indexed: 11/06/2022]
Abstract
OBJECTIVE In this study, the authors investigated high-frequency oscillation (HFO) networks during seizures in order to determine how HFOs spread from the focal cerebral cortex and become synchronized across various areas of the brain. METHODS All data were obtained from stereoelectroencephalography (SEEG) signals in patients with drug-resistant temporal lobe epilepsy (TLE). The authors calculated intercontact cross-coefficients between all pairs of contacts to construct HFO networks in 20 seizures that occurred in 5 patients. They then calculated HFO network topology metrics (i.e., network density and component size) after normalizing seizure duration data by dividing each seizure into 10 intervals of equal length (labeled I1-I10). RESULTS From the perspective of the dynamic topologies of cortical and subcortical HFO networks, the authors observed a significant increase in network density during intervals I5-I10. A significant increase was also observed in overall energy during intervals I3-I8. The results of subnetwork analysis revealed that the number of components continuously decreased following the onset of seizures, and those results were statistically significant during intervals I3-I10. Furthermore, the majority of nodes were connected to a single dominant component during the propagation of seizures, and the percentage of nodes within the largest component grew significantly until seizure termination. CONCLUSIONS The consistent topological changes that the authors observed suggest that TLE is affected by common epileptogenic patterns. Indeed, the findings help to elucidate the epileptogenic network that characterizes TLE, which may be of interest to researchers and physicians working to improve treatment modalities for epilepsy, including resection, cortical stimulation, and neuromodulation treatments that are responsive to network topologies.
Collapse
Affiliation(s)
- Syu-Jyun Peng
- 1Biomedical Electronics Translational Research Center and
- 2Institute of Electronics, National Chiao-Tung University, Hsinchu
| | - Chien-Chen Chou
- Departments of3Neurology and
- 5School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Hsiang-Yu Yu
- Departments of3Neurology and
- 5School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Chien Chen
- Departments of3Neurology and
- 5School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Der-Jen Yen
- Departments of3Neurology and
- 5School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Shang-Yeong Kwan
- Departments of3Neurology and
- 5School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Sanford P C Hsu
- 4Neurosurgery, Neurological Institute, Taipei Veterans General Hospital; and
- 5School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Chun-Fu Lin
- 4Neurosurgery, Neurological Institute, Taipei Veterans General Hospital; and
- 5School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Hsin-Hung Chen
- 4Neurosurgery, Neurological Institute, Taipei Veterans General Hospital; and
- 5School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Cheng-Chia Lee
- 4Neurosurgery, Neurological Institute, Taipei Veterans General Hospital; and
- 5School of Medicine, National Yang-Ming University, Taipei, Taiwan
| |
Collapse
|
204
|
Cuello Oderiz C, von Ellenrieder N, Dubeau F, Eisenberg A, Gotman J, Hall J, Hincapié AS, Hoffmann D, Job AS, Khoo HM, Minotti L, Olivier A, Kahane P, Frauscher B. Association of Cortical Stimulation-Induced Seizure With Surgical Outcome in Patients With Focal Drug-Resistant Epilepsy. JAMA Neurol 2019; 76:1070-1078. [PMID: 31180505 DOI: 10.1001/jamaneurol.2019.1464] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Importance Cortical stimulation is used during presurgical epilepsy evaluation for functional mapping and for defining the cortical area responsible for seizure generation. Despite wide use of cortical stimulation, the association between cortical stimulation-induced seizures and surgical outcome remains unknown. Objective To assess whether removal of the seizure-onset zone resulting from cortical stimulation is associated with a good surgical outcome. Design, Setting, and Participants This cohort study used data from 2 tertiary epilepsy centers: Montreal Neurological Institute in Montreal, Quebec, Canada, and Grenoble-Alpes University Hospital in Grenoble, France. Participants included consecutive patients (n = 103) with focal drug-resistant epilepsy who underwent stereoelectroencephalography between January 1, 2007, and January 1, 2017. Participant selection criteria were cortical stimulation during implantation, subsequent open surgical procedure with a follow-up of 1 or more years, and complete neuroimaging data sets for superimposition between intracranial electrodes and the resection. Main Outcomes and Measures Cortical stimulation-induced typical electroclinical seizures, the volume of the surgical resection, and the percentage of resected electrode contacts inducing a seizure or encompassing the cortical stimulation-informed and spontaneous seizure-onset zones were identified. These measures were correlated with good (Engel class I) and poor (Engel classes II-IV) surgical outcomes. Electroclinical characteristics associated with cortical stimulation-induced seizures were analyzed. Results In total, 103 patients were included, of whom 54 (52.4%) were female, and the mean (SD) age was 31 (11) years. Fifty-nine patients (57.3%) had cortical stimulation-induced seizures. The percentage of patients with cortical stimulation-induced electroclinical seizures was higher in the good outcome group than in the poor outcome group (31 of 44 [70.5%] vs 28 of 59 [47.5%]; P = .02). The percentage of the resected contacts encompassing the cortical stimulation-informed seizure-onset zone correlated with surgical outcome (median [range] percentage in good vs poor outcome: 63.2% [0%-100%] vs 33.3% [0%-84.6%]; Spearman ρ = 0.38; P = .003). A similar result was observed for spontaneous seizures (median [range] percentage in good vs poor outcome: 57.1% [0%-100%] vs 32.7% [0%-100%]; Spearman ρ = 0.32; P = .002). Longer elapsed time since the most recent seizure was associated with a higher likelihood of inducing seizures (>24 hours: 64.7% vs <24 hours: 27.3%; P = .04). Conclusions and Relevance Seizure induction by cortical stimulation appears to identify the epileptic generator as reliably as spontaneous seizures do; this finding might lead to a more time-efficient intracranial presurgical investigation of focal epilepsy as the need to record spontaneous seizures is reduced.
Collapse
Affiliation(s)
- Carolina Cuello Oderiz
- Montreal Neurological Institute and Hospital, McGill University, Montréal, Quebec, Canada
| | | | - François Dubeau
- Montreal Neurological Institute and Hospital, McGill University, Montréal, Quebec, Canada
| | - Ariella Eisenberg
- Montreal Neurological Institute and Hospital, McGill University, Montréal, Quebec, Canada
| | - Jean Gotman
- Montreal Neurological Institute and Hospital, McGill University, Montréal, Quebec, Canada
| | - Jeffery Hall
- Montreal Neurological Institute and Hospital, McGill University, Montréal, Quebec, Canada
| | - Ana-Sofía Hincapié
- Montreal Neurological Institute and Hospital, McGill University, Montréal, Quebec, Canada
| | - Dominique Hoffmann
- Department of Neurology, Grenoble-Alpes University Hospital, Grenoble-Alpes University, Grenoble, France
| | - Anne-Sophie Job
- Department of Neurology, Grenoble-Alpes University Hospital, Grenoble-Alpes University, Grenoble, France
| | - Hui Ming Khoo
- Montreal Neurological Institute and Hospital, McGill University, Montréal, Quebec, Canada.,Department of Neurosurgery, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Lorella Minotti
- Department of Neurology, Grenoble-Alpes University Hospital, Grenoble-Alpes University, Grenoble, France
| | - André Olivier
- Montreal Neurological Institute and Hospital, McGill University, Montréal, Quebec, Canada
| | - Phillippe Kahane
- Department of Neurology, Grenoble-Alpes University Hospital, Grenoble-Alpes University, Grenoble, France
| | - Birgit Frauscher
- Montreal Neurological Institute and Hospital, McGill University, Montréal, Quebec, Canada
| |
Collapse
|
205
|
Marchi A, Pennaroli D, Lagarde S, McGonigal A, Bonini F, Carron R, Lépine A, Villeneuve N, Trebuchon A, Pizzo F, Scavarda D, Bartolomei F. Epileptogenicity and surgical outcome in post stroke drug resistant epilepsy in children and adults. Epilepsy Res 2019; 155:106155. [DOI: 10.1016/j.eplepsyres.2019.106155] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Revised: 06/04/2019] [Accepted: 06/11/2019] [Indexed: 10/26/2022]
|
206
|
Focal cortical dysplasia II-related seizures originate from the bottom of the dysplastic sulcus: A stereoelectroencephalography study. Clin Neurophysiol 2019; 130:1596-1603. [DOI: 10.1016/j.clinph.2019.05.029] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 04/22/2019] [Accepted: 05/19/2019] [Indexed: 12/29/2022]
|
207
|
Pizarro D, Ilyas A, Chaitanya G, Toth E, Irannejad A, Romeo A, Riley KO, Iasemidis L, Pati S. Spectral organization of focal seizures within the thalamotemporal network. Ann Clin Transl Neurol 2019; 6:1836-1848. [PMID: 31468745 PMCID: PMC6764631 DOI: 10.1002/acn3.50880] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 08/02/2019] [Accepted: 08/06/2019] [Indexed: 01/08/2023] Open
Abstract
Objective To investigate dynamic changes in neural activity between the anterior nucleus of the thalamus (ANT) and the seizure onset zone (SOZ) in patients with drug‐resistant temporal lobe epilepsy (TLE) based on anatomic location, seizure subtype, and state of vigilance (SOV). Methods Eleven patients undergoing stereoelectroencephalography for seizure localization were recruited prospectively for local field potential (LFP) recording directly from the ANT. The SOZ was identified using line length and epileptogenicity index. Changes in power spectral density (PSD) were compared between the two anatomic sites as seizures (N = 53) transitioned from interictal baseline to the posttermination stage. Results At baseline, the thalamic LFPs were significantly lower and distinct from the SOZ with the presence of higher power in the fast ripple band (P < 0.001). Temporal changes in ictal power of neural activity within ANT mimic those of the SOZ, are increased significantly at seizure onset (P < 0.05), and are distinct for seizures that impaired awareness or that secondarily generalized (P < 0.05). The onset of seizure was preceded by a decrease in the mean power spectral density (PSD) in ANT and SOZ (P < 0.05). Neural activity correlated with different states of vigilance at seizure onset within the ANT but not in the SOZ (P = 0.005). Interpretation The ANT can be recruited at the onset of mesial temporal lobe seizures, and the recruitment pattern differs with seizure subtypes. Furthermore, changes in neural dynamics precede seizure onset and are widespread to involve temporo‐thalamic regions, thereby providing an opportunity to intervene early with closed‐loop DBS.
Collapse
Affiliation(s)
- Diana Pizarro
- Department of Neurology, University of Alabama at Birmingham, Birmingham, Alabama.,Epilepsy and Cognitive Neurophysiology Laboratory, University of Alabama at Birmingham, Birmingham, Alabama
| | - Adeel Ilyas
- Epilepsy and Cognitive Neurophysiology Laboratory, University of Alabama at Birmingham, Birmingham, Alabama.,Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, Alabama
| | - Ganne Chaitanya
- Department of Neurology, University of Alabama at Birmingham, Birmingham, Alabama.,Epilepsy and Cognitive Neurophysiology Laboratory, University of Alabama at Birmingham, Birmingham, Alabama
| | - Emilia Toth
- Department of Neurology, University of Alabama at Birmingham, Birmingham, Alabama.,Epilepsy and Cognitive Neurophysiology Laboratory, University of Alabama at Birmingham, Birmingham, Alabama
| | - Auriana Irannejad
- Department of Neurology, University of Alabama at Birmingham, Birmingham, Alabama.,Epilepsy and Cognitive Neurophysiology Laboratory, University of Alabama at Birmingham, Birmingham, Alabama
| | - Andrew Romeo
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, Alabama
| | - Kristen O Riley
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, Alabama
| | - Leonidas Iasemidis
- Center for Biomedical Engineering and Rehabilitation Science, Louisiana Tech University, Ruston, Louisiana
| | - Sandipan Pati
- Department of Neurology, University of Alabama at Birmingham, Birmingham, Alabama.,Epilepsy and Cognitive Neurophysiology Laboratory, University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
208
|
Woolfe M, Prime D, Gillinder L, Rowlands D, O'keefe S, Dionisio S. Automatic detection of the epileptogenic zone: An application of the fingerprint of epilepsy. J Neurosci Methods 2019; 325:108347. [PMID: 31330159 DOI: 10.1016/j.jneumeth.2019.108347] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 07/04/2019] [Accepted: 07/04/2019] [Indexed: 11/16/2022]
Abstract
BACKGROUND The successful delineation of the epileptogenic zone in epilepsy monitoring is crucial for achieving seizure freedom after epilepsy surgery. NEW METHOD We aim to improve epileptogenic zone localization by utilizing a computer-assisted tool for the automated grading of the seizure activity recorded in various locations for 20 patients undergoing stereo electroencephalography. Their epileptic seizures were processed to extract two potential biomarkers. The concentration of these biomarkers from within each patient's implantation were then graded to identify their epileptogenic zone and were compared to the clinical assessment. RESULTS Our technique was capable of ranking the clinically defined epileptogenic zone with high accuracy, above 95%, with a true to false positive ratio of 1:1.52, and was effective with both temporal and extra-temporal onset epilepsies. COMPARISON WITH EXISTING METHOD We compared our method to two other groups performing localization using similar biomarkers. Our classification metrics, sensitivity and precision together were comparable to both groups and our overall accuracy from a larger population was also higher then both. CONCLUSIONS Our method is highly accurate, automated and non-parametric providing clinicians another tool that can be used to help identify the epileptogenic zone in patients undergoing the stereo electroencephalography procedure for epilepsy monitoring.
Collapse
Affiliation(s)
- Matthew Woolfe
- Advanced Epilepsy Unit, Mater Adult Hospital Brisbane, Queensland, 4101, Australia; School of Engineering and Built Environment, Griffith University, Queensland, 4111, Australia.
| | - David Prime
- Advanced Epilepsy Unit, Mater Adult Hospital Brisbane, Queensland, 4101, Australia; School of Engineering and Built Environment, Griffith University, Queensland, 4111, Australia
| | - Lisa Gillinder
- Advanced Epilepsy Unit, Mater Adult Hospital Brisbane, Queensland, 4101, Australia
| | - David Rowlands
- School of Engineering and Built Environment, Griffith University, Queensland, 4111, Australia
| | - Steven O'keefe
- School of Engineering and Built Environment, Griffith University, Queensland, 4111, Australia
| | - Sasha Dionisio
- Advanced Epilepsy Unit, Mater Adult Hospital Brisbane, Queensland, 4101, Australia
| |
Collapse
|
209
|
Liu YO, Zhou WJ, Hong B, Zhao T, Wang YF. Surgical outcomes in patients with epilepsy after viral encephalitis: contribution of SEEG study. BMC Neurol 2019; 19:165. [PMID: 31315594 PMCID: PMC6636038 DOI: 10.1186/s12883-019-1396-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 07/08/2019] [Indexed: 11/16/2022] Open
Abstract
Background Nowadays, few surgery analysis has been reported in cases of epilepsy after viral encephalitis(VE). Herein, this study was to evaluate the efficacy of surgery and capability of stereoelectroencephalography (SEEG) in the definition of the epileptogenic zone (EZ) after VE, and also to explore the relationship between the SEEG features and the surgical outcomes. Methods We retrospectively analyzed 10 surgically treated patients that identified to suffer from epilepsy secondary to VE using SEEG, and investigated the SEEG features associated with surgical outcomes in these patients. Besides visual analysis, we used the epileptogenicity index (EI), a semi-quantitative and supplementary tool to evaluate the validity of SEEG in the context of VE. Results Among the 10 operated patients, 3 of them became completely seizure-free. The patients who got totally seizure free or significant improvement, the seizure onset was located either in the antero-mesial temporal structures or focal gyrus; patients who got worthwhile improvement or no improvement, the seizure started from multiple brain lobes. The number of electrodes classified as epileptogenic visually involved were closely correlated with EI positive onses.Anatomic areas defined and shown as EZ on MRI by visual assessment were also defined as epileptogenic by the EI in these cases. Conclusion Apart from exploring the surgical outcome related to epilepsy after VE, we also bring insight into the relationship between the SEEG features and surgical outcome with the application of the supplementary methods.
Collapse
Affiliation(s)
- Yi-Ou Liu
- Department of Epilepsy Center, Division of Neurology, Tsinghua University Yuquan Hospital, Beijing, China
| | - Wen-Jing Zhou
- Department of Epilepsy Center, Division of Neurology, Tsinghua University Yuquan Hospital, Beijing, China.
| | - Bo Hong
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, China
| | - Tong Zhao
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, China
| | - Yue-Feng Wang
- Department of Pathology, Tsinghua University Yuquan Hospital, Beijing, China
| |
Collapse
|
210
|
Lagarde S, Roehri N, Lambert I, Trebuchon A, McGonigal A, Carron R, Scavarda D, Milh M, Pizzo F, Colombet B, Giusiano B, Medina Villalon S, Guye M, Bénar CG, Bartolomei F. Interictal stereotactic-EEG functional connectivity in refractory focal epilepsies. Brain 2019; 141:2966-2980. [PMID: 30107499 DOI: 10.1093/brain/awy214] [Citation(s) in RCA: 120] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 06/25/2018] [Indexed: 12/28/2022] Open
Abstract
Drug-refractory focal epilepsies are network diseases associated with functional connectivity alterations both during ictal and interictal periods. A large majority of studies on the interictal/resting state have focused on functional MRI-based functional connectivity. Few studies have used electrophysiology, despite its high temporal capacities. In particular, stereotactic-EEG is highly suitable to study functional connectivity because it permits direct intracranial electrophysiological recordings with relative large-scale sampling. Most previous studies in stereotactic-EEG have been directed towards temporal lobe epilepsy, which does not represent the whole spectrum of drug-refractory epilepsies. The present study aims at filling this gap, investigating interictal functional connectivity alterations behind cortical epileptic organization and its association with post-surgical prognosis. To this purpose, we studied a large cohort of 59 patients with malformation of cortical development explored by stereotactic-EEG with a wide spatial sampling (76 distinct brain areas were recorded, median of 13.2 per patient). We computed functional connectivity using non-linear correlation. We focused on three zones defined by stereotactic-EEG ictal activity: the epileptogenic zone, the propagation zone and the non-involved zone. First, we compared within-zone and between-zones functional connectivity. Second, we analysed the directionality of functional connectivity between these zones. Third, we measured the associations between functional connectivity measures and clinical variables, especially post-surgical prognosis. Our study confirms that functional connectivity differs according to the zone under investigation. We found: (i) a gradual decrease of the within-zone functional connectivity with higher values for epileptogenic zone and propagation zone, and lower for non-involved zones; (ii) preferential coupling between structures of the epileptogenic zone; (iii) preferential coupling between epileptogenic zone and propagation zone; and (iv) poorer post-surgical outcome in patients with higher functional connectivity of non-involved zone (within- non-involved zone, between non-involved zone and propagation zone functional connectivity). Our work suggests that, even during the interictal state, functional connectivity is reinforced within epileptic cortices (epileptogenic zone and propagation zone) with a gradual organization. Moreover, larger functional connectivity alterations, suggesting more diffuse disease, are associated with poorer post-surgical prognosis. This is consistent with computational studies suggesting that connectivity is crucial in order to model the spatiotemporal dynamics of seizures.10.1093/brain/awy214_video1awy214media15833456182001.
Collapse
Affiliation(s)
- Stanislas Lagarde
- APHM, Timone Hospital, Clinical Neurophysiology, Marseille, France.,Aix Marseille Univ, INSERM, INS, Inst Neurosci Syst, Marseille, France
| | - Nicolas Roehri
- Aix Marseille Univ, INSERM, INS, Inst Neurosci Syst, Marseille, France
| | - Isabelle Lambert
- APHM, Timone Hospital, Clinical Neurophysiology, Marseille, France.,Aix Marseille Univ, INSERM, INS, Inst Neurosci Syst, Marseille, France
| | - Agnès Trebuchon
- APHM, Timone Hospital, Clinical Neurophysiology, Marseille, France.,Aix Marseille Univ, INSERM, INS, Inst Neurosci Syst, Marseille, France
| | - Aileen McGonigal
- APHM, Timone Hospital, Clinical Neurophysiology, Marseille, France.,Aix Marseille Univ, INSERM, INS, Inst Neurosci Syst, Marseille, France
| | - Romain Carron
- Aix Marseille Univ, INSERM, INS, Inst Neurosci Syst, Marseille, France.,APHM, Timone Hospital, Stereotactic and Functional Neurosurgery, Marseille, France
| | - Didier Scavarda
- APHM, Timone Hospital, Paediatric Neurosurgery, Marseille, France
| | - Mathieu Milh
- APHM, Timone Hospital, Paediatric Neurology, Marseille, France
| | - Francesca Pizzo
- Aix Marseille Univ, INSERM, INS, Inst Neurosci Syst, Marseille, France
| | - Bruno Colombet
- Aix Marseille Univ, INSERM, INS, Inst Neurosci Syst, Marseille, France
| | - Bernard Giusiano
- Aix Marseille Univ, INSERM, INS, Inst Neurosci Syst, Marseille, France
| | - Samuel Medina Villalon
- APHM, Timone Hospital, Clinical Neurophysiology, Marseille, France.,Aix Marseille Univ, INSERM, INS, Inst Neurosci Syst, Marseille, France
| | - Maxime Guye
- APHM, Timone Hospital, Clinical Neurophysiology, Marseille, France.,Aix Marseille Univ, CNRS, CRMBM, Marseille, France.,APHM, Timone Hospital, CEMEREM, Marseille, France
| | - Christian-G Bénar
- Aix Marseille Univ, INSERM, INS, Inst Neurosci Syst, Marseille, France
| | - Fabrice Bartolomei
- APHM, Timone Hospital, Clinical Neurophysiology, Marseille, France.,Aix Marseille Univ, INSERM, INS, Inst Neurosci Syst, Marseille, France
| |
Collapse
|
211
|
Wang X, Hu W, McGonigal A, Zhang C, Sang L, Zhao B, Sun T, Wang F, Zhang JG, Shao X, Zhang K. Electroclinical features of insulo-opercular epilepsy: an SEEG and PET study. Ann Clin Transl Neurol 2019; 6:1165-1177. [PMID: 31353858 PMCID: PMC6649538 DOI: 10.1002/acn3.789] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Revised: 04/15/2019] [Accepted: 04/17/2019] [Indexed: 12/20/2022] Open
Abstract
Objective To report clinical experience with presurgical evaluation in patients with insulo‐opercular epilepsy. Quantitative analysis on PET imaging and stereoelectroencephalography (SEEG) signals was used to summarize their electroclinical features. Methods Twenty‐two patients with focal epilepsy arising from the insular and/or opercular cortex according to SEEG were retrospectively analyzed. Presurgical noninvasive data were analyzed in detail. Interictal PET data of patients were then statistically compared with those of healthy controls to identify the interictal hypometabolic network. The epileptogenicity index (EI) of ictal SEEG signal was computed to identify areas of spread at the beginning of seizure onset. Results Focal tonic seizures of the face and/or neck (16/22, 73%) were the most prevalent early objective signs. Epileptic discharges in the interictal and ictal scalp‐EEG mostly showed an ipsilateral perisylvian distribution. Statistical analysis of interictal PET showed significant hypometabolism in the insular lobe, central operculum, supplementary motor area, middle cingulate cortex, bilateral caudate nuclei, and putamen. According to the EI analysis, insulo‐opercular epilepsy could be classified as insulo‐opercular epilepsy (50%), opercular epilepsy (41%), and insular cortex epilepsy (9%). Significance Clinical diagnosis of insulo‐opercular epilepsy is challenging because of its complex seizure semiology and nonlocalizing discharges on scalp‐EEG. A common hypometabolic network involving the insulo‐opercular cortex, mesial frontal cortex and subcortical nuclei may be involved in the organization of the insulo‐opercular epilepsy network. Furthermore, quantified SEEG analysis suggested that pure insular epilepsy is rare, and the close connection between insular and opercular cortex necessitates SEEG implantation to define the epileptogenic zone.
Collapse
Affiliation(s)
- Xiu Wang
- Department of Neurosurgery, Beijing Tian Tan Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Neurostimulation, Beijing, China
| | - Wenhan Hu
- Beijing Key Laboratory of Neurostimulation, Beijing, China.,Stereotactic and Functional Neurosurgery Laboratory, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Aileen McGonigal
- INSERM, UMR 1106, Institut de Neurosciences des Systèmes, Marseille, France.,Faculty of Medicine, Aix-Marseille University, Marseille, France.,Clinical Neurophysiology Department, Timone Hospital, Assistance Publique des Hôpitaux de Marseille, Marseille, France
| | - Chao Zhang
- Department of Neurosurgery, Beijing Tian Tan Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Neurostimulation, Beijing, China
| | - Lin Sang
- Epilepsy Center, Medical Alliance of Beijing Tian Tan Hospital, Peking University First Hospital Fengtai Hospital, Beijing, China
| | - Baotian Zhao
- Department of Neurosurgery, Beijing Tian Tan Hospital, Capital Medical University, Beijing, China
| | - Tao Sun
- Department of Neurosurgery, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Feng Wang
- Department of Neurosurgery, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Jian-Guo Zhang
- Department of Neurosurgery, Beijing Tian Tan Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Neurostimulation, Beijing, China.,Stereotactic and Functional Neurosurgery Laboratory, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Xiaoqiu Shao
- Department of Neurology, Beijing Tian Tan Hospital, Capital Medical University, Beijing, China
| | - Kai Zhang
- Department of Neurosurgery, Beijing Tian Tan Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Neurostimulation, Beijing, China
| |
Collapse
|
212
|
Wang Y, Wang X, Mo JJ, Sang L, Zhao BT, Zhang C, Hu WH, Zhang JG, Shao XQ, Zhang K. Symptomatogenic zone and network of oroalimentary automatisms in mesial temporal lobe epilepsy. Epilepsia 2019; 60:1150-1159. [PMID: 31095733 DOI: 10.1111/epi.15457] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 04/19/2019] [Accepted: 04/19/2019] [Indexed: 01/05/2023]
Abstract
OBJECTIVE Oroalimentary automatisms (OAAs) are common clinical manifestations of medial temporal lobe epilepsy. Nevertheless, the location of the symptomatogenic zone of OAAs remains unclear. The generation mechanism of OAAs also has not been clarified. We attempt to explain these problems by analyzing interictal [18 F]-fluorodeoxyglucose positron emission tomography (18 FDG-PET) imaging and ictal stereo-electroencephalography (SEEG) recordings in patients with medial temporal lobe epilepsy. METHODS Fifty-seven patients with mesial temporal lobe epilepsy were analyzed retrospectively. All underwent anterior temporal lobectomy (ATL) and were seizure-free. The patients were divided into OAA (+) and OAA (-) groups according to the occurrence of consistent stereotyped OAAs. The interictal PET data were compared with those of 18 healthy controls and were then compared between groups using statistical parametric mapping (SPM). Functional connectivity using linear regression analysis was performed between the target brain regions. To clarify the network of OAAs, ictal epileptogenicity index (EI) values, and the nonlinear correlation method h2 were performed with SEEG on patients. RESULTS Compared to OAAs (-), the rolandic operculum was the only area with significant differences. Hippocampus and rolandic operculum showed significant correlations in the OAA (+) group (y = 0.758x+0.470, R2 = 0.456, P = 0.000). No correlation was found in the OAA (-) group (P = 0.486). The EI values of the OAA (+) group (median 0.20) were significantly higher (P < 0.0001) than those of the OAA (-) group (median 0). The h2 in the OAA (+) group (h2 = 0.23 ± 0.13) showed stronger functional connectivity (t = 6.166, P < 0.0001) than that of the OAA (-) group (h2 = 0.08 ± 0.05). SIGNIFICANCE The rolandic operculum is most likely to be the symptomatogenic zone of OAAs. In medial temporal lobe epilepsy, unilateral functional connection from the hippocampus to the rolandic operculum during seizure onset is the basis for the generation of OAAs.
Collapse
Affiliation(s)
- Yao Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xiu Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Neurostimulation, Beijing, China
| | - Jia-Jie Mo
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Lin Sang
- Epilepsy Center, Peking University First Hospital Fengtai Hospital, Beijing, China
| | - Bao-Tian Zhao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Chao Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Neurostimulation, Beijing, China
| | - Wen-Han Hu
- Beijing Key Laboratory of Neurostimulation, Beijing, China.,Stereotactic and Functional Neurosurgery Laboratory, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Jian-Guo Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Neurostimulation, Beijing, China.,Stereotactic and Functional Neurosurgery Laboratory, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Xiao-Qiu Shao
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Kai Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Neurostimulation, Beijing, China
| |
Collapse
|
213
|
Dümpelmann M. Early seizure detection for closed loop direct neurostimulation devices in epilepsy. J Neural Eng 2019; 16:041001. [DOI: 10.1088/1741-2552/ab094a] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
214
|
Lagarde S, Scholly J, Popa I, Valenti-Hirsch MP, Trebuchon A, McGonigal A, Milh M, Staack AM, Lannes B, Lhermitte B, Proust F, Benmekhbi M, Scavarda D, Carron R, Figarella-Branger D, Hirsch E, Bartolomei F. Can histologically normal epileptogenic zone share common electrophysiological phenotypes with focal cortical dysplasia? SEEG-based study in MRI-negative epileptic patients. J Neurol 2019; 266:1907-1918. [DOI: 10.1007/s00415-019-09339-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 04/21/2019] [Accepted: 04/23/2019] [Indexed: 11/30/2022]
|
215
|
Řehulka P, Cimbálník J, Pail M, Chrastina J, Hermanová M, Brázdil M. Hippocampal high frequency oscillations in unilateral and bilateral mesial temporal lobe epilepsy. Clin Neurophysiol 2019; 130:1151-1159. [PMID: 31100580 DOI: 10.1016/j.clinph.2019.03.026] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 02/18/2019] [Accepted: 03/13/2019] [Indexed: 01/12/2023]
Abstract
OBJECTIVE The main aim of this study was to investigate the potential differences in terms of interictal high frequency oscillations (HFOs) between both hippocampi in unilateral (U-MTLE) and bilateral mesial temporal lobe epilepsy (B-MTLE). METHODS Sixteen patients with MTLE underwent bilateral hippocampal depth electrode implantation as part of epilepsy surgery evaluation. Interictal HFOs were detected automatically. The analyses entail comparisons of the rates and spatial distributions of ripples and fast ripples (FR) in hippocampi and amygdalae, with respect to the eventual finding of hippocampal sclerosis (HS). RESULTS In U-MTLE, higher ripple and FR rates were found in the hippocampi ipsilateral to the seizure onset than in the contralateral hippocampi. Non-epileptic hippocampi in U-MTLE were distinguished by significantly lower ripple rate than in the remaining analyzed hippocampi. There were not differences between the hippocampi in B-MTLE. In the hippocampi with proven HS, higher FR rates were observed in the ventral than in the dorsal parts. CONCLUSIONS Non-epileptic hippocampi in U-MTLE demonstrated significantly lower ripple rates than those epileptic in U-MTLE and B-MTLE. SIGNIFICANCE Low interictal HFO occurrence might be considered as a marker of the non-epileptic hippocampi in MTLE.
Collapse
Affiliation(s)
- Pavel Řehulka
- Brno Epilepsy Center, Department of Neurology, St. Anne's University Hospital and Faculty of Medicine, Masaryk University, Brno, Czech Republic.
| | - Jan Cimbálník
- International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic
| | - Martin Pail
- Brno Epilepsy Center, Department of Neurology, St. Anne's University Hospital and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Jan Chrastina
- Brno Epilepsy Center, Department of Neurosurgery, St. Anne's University Hospital and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Markéta Hermanová
- Brno Epilepsy Center, First Department of Pathology, St. Anne's University Hospital and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Milan Brázdil
- Brno Epilepsy Center, Department of Neurology, St. Anne's University Hospital and Faculty of Medicine, Masaryk University, Brno, Czech Republic; Behavioral and Social Neuroscience Research Group, CEITEC - Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| |
Collapse
|
216
|
Despouy E, Curot J, Denuelle M, Deudon M, Sol JC, Lotterie JA, Reddy L, Nowak LG, Pariente J, Thorpe SJ, Valton L, Barbeau EJ. Neuronal spiking activity highlights a gradient of epileptogenicity in human tuberous sclerosis lesions. Clin Neurophysiol 2019; 130:537-547. [DOI: 10.1016/j.clinph.2018.12.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 12/12/2018] [Accepted: 12/25/2018] [Indexed: 11/26/2022]
|
217
|
Alkawadri R. Brain-Computer Interface (BCI) Applications in Mapping of Epileptic Brain Networks Based on Intracranial-EEG: An Update. Front Neurosci 2019; 13:191. [PMID: 30971871 PMCID: PMC6446441 DOI: 10.3389/fnins.2019.00191] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 02/18/2019] [Indexed: 01/20/2023] Open
Abstract
The main applications of the Brain-Computer Interface (BCI) have been in the domain of rehabilitation, control of prosthetics, and in neuro-feedback. Only a few clinical applications presently exist for the management of drug-resistant epilepsy. Epilepsy surgery can be a life-changing procedure in the subset of millions of patients who are medically intractable. Recording of seizures and localization of the Seizure Onset Zone (SOZ) in the subgroup of "surgical" patients, who require intracranial-EEG (icEEG) evaluations, remain to date the best available surrogate marker of the epileptogenic tissue. icEEG presents certain risks and challenges making it a frontier that will benefit from optimization. Despite the presentation of several novel biomarkers for the localization of epileptic brain regions (HFOs-spikes vs. Spikes for instance), integration of most in practices is not at the prime time as it requires a degree of knowledge about signal and computation. The clinical care remains inspired by the original practices of recording the seizures and expert visual analysis of rhythms at onset. It is becoming increasingly evident, however, that there is more to infer from the large amount of EEG data sampled at rates in the order of less than 1 ms and collected over several days of invasive EEG recordings than commonly done in practice. This opens the door for interesting areas at the intersection of neuroscience, computation, engineering and clinical care. Brain-Computer interface (BCI) has the potential of enabling the processing of a large amount of data in a short period of time and providing insights that are not possible otherwise by human expert readers. Our practices suggest that implementation of BCI and Real-Time processing of EEG data is possible and suitable for most standard clinical applications, in fact, often the performance is comparable to a highly qualified human readers with the advantage of producing the results in real-time reliably and tirelessly. This is of utmost importance in specific environments such as in the operating room (OR) among other applications. In this review, we will present the readers with potential targets for BCI in caring for patients with surgical epilepsy.
Collapse
Affiliation(s)
- Rafeed Alkawadri
- Human Brain Mapping Laboratory, Department of Neurology, University of Pittsburgh, Pittsburgh, PA, United States
- Yale Human Brain Mapping Program, Yale University, New Haven, CT, United States
- The Department of Neurology, School of Medicine, Yale University, New Haven, CT, United States
| |
Collapse
|
218
|
Grinenko O, Li J, Mosher JC, Wang IZ, Bulacio JC, Gonzalez-Martinez J, Nair D, Najm I, Leahy RM, Chauvel P. A fingerprint of the epileptogenic zone in human epilepsies. Brain 2019; 141:117-131. [PMID: 29253102 PMCID: PMC5837527 DOI: 10.1093/brain/awx306] [Citation(s) in RCA: 121] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 09/27/2017] [Indexed: 11/14/2022] Open
Abstract
Defining a bio-electrical marker for the brain area responsible for initiating a seizure remains an unsolved problem. Fast gamma activity has been identified as the most specific marker for seizure onset, but conflicting results have been reported. In this study, we describe an alternative marker, based on an objective description of interictal to ictal transition, with the aim of identifying a time-frequency pattern or ‘fingerprint’ that can differentiate the epileptogenic zone from areas of propagation. Seventeen patients who underwent stereoelectroencephalography were included in the study. Each had seizure onset characterized by sustained gamma activity and were seizure-free after tailored resection or laser ablation. We postulated that the epileptogenic zone was always located inside the resection region based on seizure freedom following surgery. To characterize the ictal frequency pattern, we applied the Morlet wavelet transform to data from each pair of adjacent intracerebral electrode contacts. Based on a visual assessment of the time-frequency plots, we hypothesized that a specific time-frequency pattern in the epileptogenic zone should include a combination of (i) sharp transients or spikes; preceding (ii) multiband fast activity concurrent; with (iii) suppression of lower frequencies. To test this hypothesis, we developed software that automatically extracted each of these features from the time-frequency data. We then used a support vector machine to classify each contact-pair as being within epileptogenic zone or not, based on these features. Our machine learning system identified this pattern in 15 of 17 patients. The total number of identified contacts across all patients was 64, with 58 localized inside the resected area. Subsequent quantitative analysis showed strong correlation between maximum frequency of fast activity and suppression inside the resection but not outside. We did not observe significant discrimination power using only the maximum frequency or the timing of fast activity to differentiate contacts either between resected and non-resected regions or between contacts identified as epileptogenic versus non-epileptogenic. Instead of identifying a single frequency or a single timing trait, we observed the more complex pattern described above that distinguishes the epileptogenic zone. This pattern encompasses interictal to ictal transition and may extend until seizure end. Its time-frequency characteristics can be explained in light of recent models emphasizing the role of fast inhibitory interneurons acting on pyramidal cells as a prominent mechanism in seizure triggering. The pattern clearly differentiates the epileptogenic zone from areas of propagation and, as such, represents an epileptogenic zone ‘fingerprint’.
Collapse
Affiliation(s)
- Olesya Grinenko
- Epilepsy Center, Cleveland Clinic Neurological Institute, Cleveland OH, USA
| | - Jian Li
- Signal and Image Processing Institute, University of Southern California, Los Angeles CA, USA
| | - John C Mosher
- Epilepsy Center, Cleveland Clinic Neurological Institute, Cleveland OH, USA
| | - Irene Z Wang
- Epilepsy Center, Cleveland Clinic Neurological Institute, Cleveland OH, USA
| | - Juan C Bulacio
- Epilepsy Center, Cleveland Clinic Neurological Institute, Cleveland OH, USA
| | | | - Dileep Nair
- Epilepsy Center, Cleveland Clinic Neurological Institute, Cleveland OH, USA
| | - Imad Najm
- Epilepsy Center, Cleveland Clinic Neurological Institute, Cleveland OH, USA
| | - Richard M Leahy
- Signal and Image Processing Institute, University of Southern California, Los Angeles CA, USA
| | - Patrick Chauvel
- Epilepsy Center, Cleveland Clinic Neurological Institute, Cleveland OH, USA
| |
Collapse
|
219
|
Steinhoff BJ, Staack AM. Is there a place for surgical treatment of nonpharmacoresistant epilepsy? Epilepsy Behav 2019; 91:4-8. [PMID: 29960857 DOI: 10.1016/j.yebeh.2018.05.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 05/12/2018] [Accepted: 05/12/2018] [Indexed: 12/11/2022]
Abstract
Epilepsy surgery has been shown to be the best possible treatment in well-defined and difficult-to-treat epilepsy syndromes, such as mesial temporal lobe epilepsy with unilateral hippocampal sclerosis, even early in the course of the disease if pharmacoresistance is proven. This review addresses the question if epilepsy surgery may be justified today even in nonpharmacoresistant cases. There are two possible groups of patients: first, there are epilepsy syndromes with a benign spontaneous course or with a potentially good treatment prognosis under appropriate antiepileptic drug (AED) treatment. Second, there are epilepsies with potentially worse AED treatment prognosis in which appropriate AED treatment has not yet been applied because of the short course of the disease, tolerability problems that prevented usually effective dosing, or adherence issues. In group one, the good spontaneous prognosis or the usually satisfying course under AED treatment in line with the commonly generalized underlying epileptogenesis does not suggest that epilepsy surgery is a realistic alternative, not even in cases with distinct focal clinical and/or electroencephalography (EEG) patterns like in Rolandic epilepsy with centrotemporal spikes. In the second group, the recent International League Against Epilepsy (ILAE) definition should allow assessment of individual pharmacoresistance early after the onset of the disease in order to avoid any delay. Concerns about a potential disease-specific or drug-specific cognitive decline that could be avoided in early surgery are speculative, a matter of controversial discussion, and certainly not relevant, if pharmacoresistance is consequently addressed in time according to the ILAE recommendations. One should also not forget that even in typically pharmacoresistant epilepsy syndromes that are suitable for surgical procedures, satisfying courses do exist that would not require early or any epilepsy surgery. Therefore, in almost any instance, epilepsy surgery as initial treatment or immediately after a first AED is still not recommended although, especially in cases with nonadherence to AEDs, it may be occasionally considered in order to outweigh the risks of ongoing seizures and epilepsy if surgery is not performed.
Collapse
|
220
|
Scholly J, Pizzo F, Timofeev A, Valenti-Hirsch MP, Ollivier I, Proust F, Roehri N, Bénar CG, Hirsch E, Bartolomei F. High-frequency oscillations and spikes running down after SEEG-guided thermocoagulations in the epileptogenic network of periventricular nodular heterotopia. Epilepsy Res 2019; 150:27-31. [DOI: 10.1016/j.eplepsyres.2018.12.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Revised: 11/27/2018] [Accepted: 12/14/2018] [Indexed: 11/28/2022]
|
221
|
Roehri N, Pizzo F, Lagarde S, Lambert I, Nica A, McGonigal A, Giusiano B, Bartolomei F, Bénar CG. High-frequency oscillations are not better biomarkers of epileptogenic tissues than spikes. Ann Neurol 2019; 83:84-97. [PMID: 29244226 DOI: 10.1002/ana.25124] [Citation(s) in RCA: 120] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 12/14/2017] [Accepted: 12/14/2017] [Indexed: 01/07/2023]
Abstract
OBJECTIVE High-frequency oscillations (HFOs) in intracerebral EEG (stereoelectroencephalography; SEEG) are considered as better biomarkers of epileptogenic tissues than spikes. How this can be applied at the patient level remains poorly understood. We investigated how well HFOs and spikes can predict epileptogenic regions with a large spatial sampling at the patient level. METHODS We analyzed non-REM sleep SEEG recordings sampled at 2,048Hz of 30 patients. Ripples (Rs; 80-250Hz), fast ripples (FRs; 250-500Hz), and spikes were automatically detected. Rates of these markers and several combinations-spikes co-occurring with HFOs or FRs and cross-rate (Spk⊗HFO)-were compared to a quantified measure of the seizure onset zone (SOZ) by performing a receiver operating characteristic analysis for each patient individually. We used a Wilcoxon signed-rank test corrected for false-discovery rate to assess whether a marker was better than the others for predicting the SOZ. RESULTS A total of 2,930 channels was analyzed (median of 100 channels per patient). The HFOs or any of its variants were not statistically better than spikes. Only one feature, the cross-rate, was better than all the other markers. Moreover, fast ripples, even though very specific, were not delineating all epileptogenic tissues. INTERPRETATION At the patient level, the performance of HFOs is weakened by the presence of strong physiological HFO generators. Fast ripples are not sensitive enough to be the unique biomarker of epileptogenicity. Nevertheless, combining HFOs and spikes using our proposed measure-the cross-rate-is a better strategy than using only one marker. Ann Neurol 2018;83:84-97.
Collapse
Affiliation(s)
- Nicolas Roehri
- Aix Marseille Univ, Inserm, INS, Institut de Neurosciences des Systèmes, Marseille, France
| | - Francesca Pizzo
- Aix Marseille Univ, Inserm, INS, Institut de Neurosciences des Systèmes, Marseille, France
| | - Stanislas Lagarde
- Aix Marseille Univ, Inserm, INS, Institut de Neurosciences des Systèmes, Marseille, France.,APHM, Timone Hospital, Clinical Neurophysiology, Marseille, France
| | - Isabelle Lambert
- Aix Marseille Univ, Inserm, INS, Institut de Neurosciences des Systèmes, Marseille, France.,APHM, Timone Hospital, Clinical Neurophysiology, Marseille, France
| | - Anca Nica
- CHU Rennes, Neurology, Rennes, France
| | - Aileen McGonigal
- Aix Marseille Univ, Inserm, INS, Institut de Neurosciences des Systèmes, Marseille, France.,APHM, Timone Hospital, Clinical Neurophysiology, Marseille, France
| | - Bernard Giusiano
- Aix Marseille Univ, Inserm, INS, Institut de Neurosciences des Systèmes, Marseille, France.,APHM, Public Health Department, Marseille, France
| | - Fabrice Bartolomei
- Aix Marseille Univ, Inserm, INS, Institut de Neurosciences des Systèmes, Marseille, France.,APHM, Timone Hospital, Clinical Neurophysiology, Marseille, France
| | - Christian-George Bénar
- Aix Marseille Univ, Inserm, INS, Institut de Neurosciences des Systèmes, Marseille, France
| |
Collapse
|
222
|
Studer F, Laghouati E, Jarre G, David O, Pouyatos B, Depaulis A. Sensory coding is impaired in rat absence epilepsy. J Physiol 2019; 597:951-966. [PMID: 30548850 DOI: 10.1113/jp277297] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 12/12/2018] [Indexed: 01/16/2023] Open
Abstract
KEY POINTS Absence epilepsy is characterized by the occurrence of spike-and-wave discharges concomitant with an alteration of consciousness and is associated with cognitive comorbidities. In a genetic model of absence epilepsy in the rat, the genetic absence epilepsy rat from Strasbourg (GAERS), spike-and-wave discharges are shown to be initiated in the barrel field primary somatosensory cortex that codes whisker-related information, therefore playing an essential role in the interactions of rodents with their environment. Sensory-information processing is impaired in the epileptic barrel field primary somatosensory cortex of GAERS, with a delayed sensory-evoked potential and a duplicated neuronal response to whisker stimulation in in vivo extracellular recordings. Yet, GAERS present no defaults of performance in a texture discrimination task, suggesting the existence of a compensatory mechanism within the epileptic neuronal network. The results of the present study indicate that physiological primary functions are processed differently in an epileptic cortical network. ABSTRACT Several neurodevelopmental pathologies are associated with disorganized cortical circuits that may alter primary functions such as sensory processes. In the present study, we investigated whether the function of a cortical area is altered in the seizure onset zone of absence epilepsy, a prototypical form of childhood genetic epilepsy associated with cognitive impairments. We first combined in vivo multichannel electrophysiological recordings and histology to precisely localize the seizure onset zone in the genetic absence epilepsy rat from Strasbourg (GAERS). We then investigated the functionality of this epileptic zone using extracellular silicon probe recordings of sensory-evoked local field potentials and multi-unit activity, as well as a behavioural test of texture discrimination. We show that seizures in this model are initiated in the barrel field part of the primary somatosensory cortex and are associated with high-frequency oscillations. In this cortex, we found an increased density of parvalbumin-expressing interneurons in layer 5 in GAERS compared to non-epileptic Wistar rats. Its functional investigation revealed that sensory abilities of GAERS are not affected in a texture-discrimination task, whereas the intracortical processing of sensory-evoked information is delayed and duplicated. Altogether, these results suggest that absence seizures are associated with an increase of parvalbumin-inhibitory neurons, which may promote the functional relationship between epileptic oscillations and high-frequency activities. Our findings suggest that cortical circuits operate differently in the epileptic onset zone and may adapt to maintain their ability to process highly specialized information.
Collapse
Affiliation(s)
- Florian Studer
- University Grenoble Alpes, Grenoble Institut des Neurosciences, GIN, Grenoble, France.,Inserm, U1216, Grenoble, France
| | - Emel Laghouati
- University Grenoble Alpes, Grenoble Institut des Neurosciences, GIN, Grenoble, France.,Inserm, U1216, Grenoble, France
| | - Guillaume Jarre
- University Grenoble Alpes, Grenoble Institut des Neurosciences, GIN, Grenoble, France.,Inserm, U1216, Grenoble, France
| | - Olivier David
- University Grenoble Alpes, Grenoble Institut des Neurosciences, GIN, Grenoble, France.,Inserm, U1216, Grenoble, France
| | - Benoît Pouyatos
- University Grenoble Alpes, Grenoble Institut des Neurosciences, GIN, Grenoble, France.,Inserm, U1216, Grenoble, France.,Present address: INRS, F-54519, Vandoeuvre Les Nancy, France
| | - Antoine Depaulis
- University Grenoble Alpes, Grenoble Institut des Neurosciences, GIN, Grenoble, France.,Inserm, U1216, Grenoble, France
| |
Collapse
|
223
|
Chauvel P, Gonzalez-Martinez J, Bulacio J. Presurgical intracranial investigations in epilepsy surgery. HANDBOOK OF CLINICAL NEUROLOGY 2019; 161:45-71. [PMID: 31307620 DOI: 10.1016/b978-0-444-64142-7.00040-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Identification and localization of the "epileptogenic process" in the brain of patients with drug-resistant epilepsy for surgical cure is the goal of presurgical investigations. Intracranial recordings are required when conflicting data between seizure clinical semiology and EEG prevent precise localization within one hemisphere or lateralization, when a visible lesion on MRI seems unrelated to the electroclinical data, or in MRI-negative cases. Two methods are currently used. The objective of the subdural grid electrocorticography with or without depth electrodes (SDG/DE) is the best possible identification of the area of onset of spontaneous seizures and localization of the eloquent cortex. The objective of stereoelectroencephalography (SEEG) is to define the epileptogenic zone (configured as a network) and its relation to an unmasked lesion. Two-dimensional (SDG) and three-dimensional (SEEG) brain sampling dictate different strategies for noninvasive presurgical phase I goals as well as for data analysis. SEEG must resolve several potential localization hypotheses in a manner that cannot be achieved with SDG. SDG operates through brain surface coverage, unlike SEEG, which samples networks. SDG estimates the extent of cortical resection through a lobar or sublobar localization of ictal onset and constraints from functional mapping. SEEG defines a tailored resection according to the results of anatomo-electro-clinical correlations in stereotaxic space that will guide the ablation of the epileptogenic zone. SEEG is currently expanding faster than SDG. The prerequisites (especially in the preimplantation hypothetical strategy) and technical tools (especially stimulation and functional mapping) in the two methods are very different. This chapter presents a comparative review of the rationale, indications, electrode implantation strategies, interpretation, and surgical decision making of these two approaches of presurgical evaluation for epilepsy surgery.
Collapse
Affiliation(s)
- Patrick Chauvel
- Epilepsy Center, Neurological Institute, Cleveland Clinic, Cleveland, OH, United States.
| | | | - Juan Bulacio
- Epilepsy Center, Neurological Institute, Cleveland Clinic, Cleveland, OH, United States
| |
Collapse
|
224
|
Kuchenbuch M, Benquet P, Kaminska A, Roubertie A, Carme E, de Saint Martin A, Hirsch E, Dubois F, Laroche C, Barcia G, Chemaly N, Milh M, Villeneuve N, Sauleau P, Modolo J, Wendling F, Nabbout R. Quantitative analysis and EEG markers of KCNT1 epilepsy of infancy with migrating focal seizures. Epilepsia 2018; 60:20-32. [DOI: 10.1111/epi.14605] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 10/23/2018] [Accepted: 10/23/2018] [Indexed: 12/18/2022]
Affiliation(s)
- Mathieu Kuchenbuch
- CHU Rennes (Department of Pediatric and Clinical Neurophysiology); INSERM; LTSI - UMR 1099; University of Rennes; Rennes France
- INSERM Unit U1129 Infantile Epilepsies and Brain Plasticity; University Paris Descartes, Sorbonne Paris Cité; Paris France
| | - Pascal Benquet
- INSERM; LTSI - UMR 1099; University of Rennes; Rennes France
| | - Anna Kaminska
- INSERM Unit U1129 Infantile Epilepsies and Brain Plasticity; University Paris Descartes, Sorbonne Paris Cité; Paris France
- Reference Center for Rare Epilepsies; Department of Pediatric Neurophysiology; Imagine Institute; Necker-Enfants Malades Hospital; APHP; Paris France
| | - Agathe Roubertie
- Department of Pediatric Neurology; Montpellier University; Montpellier France
| | - Emilie Carme
- Department of Pediatric Neurology; Montpellier University; Montpellier France
| | - Anne de Saint Martin
- Department of Pediatric Neurology; Strasbourg University Hospital; Strasbourg France
| | - Edouard Hirsch
- Department of Pediatric Neurology; Strasbourg University Hospital; Strasbourg France
| | - Fanny Dubois
- Department of Pediatric Neurology; CHU Grenoble Alpes; Grenoble France
| | - Cécile Laroche
- Department of Clinical Genetics; Imagine Institute; Necker Enfants Malades Hospital; Paris France
| | - Giulia Barcia
- INSERM Unit U1129 Infantile Epilepsies and Brain Plasticity; University Paris Descartes, Sorbonne Paris Cité; Paris France
- CHU de Rennes (Department of Neurophysiology); “Behavior and Basal Ganglia” Research Unit, EA4712; University of Rennes; Rennes France
| | - Nicole Chemaly
- INSERM Unit U1129 Infantile Epilepsies and Brain Plasticity; University Paris Descartes, Sorbonne Paris Cité; Paris France
- Reference Center for Rare Epilepsies; Department of Pediatric Neurology; Imagine Institute; Necker-Enfants Malades Hospital; APHP; Paris France
| | - Matthieu Milh
- Pediatric Neurology Department; AP-HM; Timone Children Hospital; Marseille France
| | - Nathalie Villeneuve
- Pediatric Neurology Department; AP-HM; Timone Children Hospital; Marseille France
| | - Paul Sauleau
- CHU de Rennes (Department of Neurophysiology); “Behavior and Basal Ganglia” Research Unit, EA4712; University of Rennes; Rennes France
| | - Julien Modolo
- INSERM; LTSI - UMR 1099; University of Rennes; Rennes France
| | | | - Rima Nabbout
- INSERM Unit U1129 Infantile Epilepsies and Brain Plasticity; University Paris Descartes, Sorbonne Paris Cité; Paris France
- Reference Center for Rare Epilepsies; Department of Pediatric Neurology; Imagine Institute; Necker-Enfants Malades Hospital; APHP; Paris France
| |
Collapse
|
225
|
Scavarda D, Cavalcante T, Trébuchon A, Lépine A, Villeneuve N, Girard N, McGonigal A, Milh M, Bartolomei F. Tailored suprainsular partial hemispherotomy: a new functional disconnection technique for stroke-induced refractory epilepsy. J Neurosurg Pediatr 2018; 22:601-609. [PMID: 30141751 DOI: 10.3171/2018.5.peds17709] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 05/22/2018] [Indexed: 01/05/2023]
Abstract
OBJECTIVEHemispherotomy is currently the most frequently performed surgical option for refractory epilepsy associated with large perinatal or childhood ischemic events. Such an approach may lead to good seizure control, but it has inherent functional consequences linked to the disconnection of functional cortices. The authors report on 6 consecutive patients who presented with severe epilepsy associated with hemiplegia due to stroke and who benefitted from a new, stereoelectroencephalography-guided partial disconnection technique.METHODSThe authors developed a new disconnection technique termed "tailored suprainsular partial hemispherotomy" (TSIPH). Disconnection always included premotor and motor cortex with variable anterior and posterior extent.RESULTSAt a mean follow-up of 28 months, there were no deaths and no patient had hydrocephalus. Motor degradation was observed in all patients in the 2 weeks after surgery, but all patients completely recovered. The 6 patients were seizure free (Engel class IA) at the last follow-up. No neuropsychological aggravation was observed.CONCLUSIONSTSIPH appears to be a conservative alternative to classic hemispherotomy, leading to favorable outcome in this series.
Collapse
Affiliation(s)
| | | | - Agnès Trébuchon
- 2Institut de Neurosciences des Systèmes, Aix Marseille Université; and
- 3Neurophysiologie Clinique
| | - Anne Lépine
- 4Neurologie Pédiatrique, and
- 5Hôpital Henri Gastaut, Marseille, France
| | | | | | - Aileen McGonigal
- 2Institut de Neurosciences des Systèmes, Aix Marseille Université; and
- 3Neurophysiologie Clinique
| | | | - Fabrice Bartolomei
- 2Institut de Neurosciences des Systèmes, Aix Marseille Université; and
- 3Neurophysiologie Clinique
| |
Collapse
|
226
|
Gnatkovsky V, Pelliccia V, de Curtis M, Tassi L. Two main focal seizure patterns revealed by intracerebral electroencephalographic biomarker analysis. Epilepsia 2018; 60:96-106. [DOI: 10.1111/epi.14610] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 10/08/2018] [Accepted: 10/29/2018] [Indexed: 02/06/2023]
Affiliation(s)
- Vadym Gnatkovsky
- Epilepsy Unit; Institute of Cure, Recovery, and Scientific Research (IRCCS) Foundation Carlo Besta Neurological Institute; Milan Italy
| | | | - Marco de Curtis
- Epilepsy Unit; Institute of Cure, Recovery, and Scientific Research (IRCCS) Foundation Carlo Besta Neurological Institute; Milan Italy
| | - Laura Tassi
- Claudio Munari Epilepsy Surgery Center; Niguarda Hospital; Milan Italy
| |
Collapse
|
227
|
Lagarde S, Buzori S, Trebuchon A, Carron R, Scavarda D, Milh M, McGonigal A, Bartolomei F. The repertoire of seizure onset patterns in human focal epilepsies: Determinants and prognostic values. Epilepsia 2018; 60:85-95. [DOI: 10.1111/epi.14604] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 10/22/2018] [Accepted: 10/22/2018] [Indexed: 12/26/2022]
Affiliation(s)
- Stanislas Lagarde
- Epileptology Department; National Institute of Health and Medical Research; Institute of System Neuroscience; Timone Hospital; Public Assistance Hospitals of Marseille; Aix-Marseille University; Marseille France
| | - Sinziana Buzori
- Epileptology Department; National Institute of Health and Medical Research; Institute of System Neuroscience; Timone Hospital; Public Assistance Hospitals of Marseille; Aix-Marseille University; Marseille France
| | - Agnès Trebuchon
- Epileptology Department; National Institute of Health and Medical Research; Institute of System Neuroscience; Timone Hospital; Public Assistance Hospitals of Marseille; Aix-Marseille University; Marseille France
| | - Romain Carron
- Functional and Stereotactic Neurosurgery; National Institute of Health and Medical Research; Institute of System Neuroscience; Timone Hospital; Public Assistance Hospitals of Marseille; Aix-Marseille University; Marseille France
| | - Didier Scavarda
- Pediatric Neurosurgery; Timone Hospital; Public Assistance Hospitals of Marseille; Marseille France
| | - Mathieu Milh
- Pediatric Neurology; Timone Hospital; Public Assistance Hospitals of Marseille; Marseille France
| | - Aileen McGonigal
- Epileptology Department; National Institute of Health and Medical Research; Institute of System Neuroscience; Timone Hospital; Public Assistance Hospitals of Marseille; Aix-Marseille University; Marseille France
| | - Fabrice Bartolomei
- Epileptology Department; National Institute of Health and Medical Research; Institute of System Neuroscience; Timone Hospital; Public Assistance Hospitals of Marseille; Aix-Marseille University; Marseille France
| |
Collapse
|
228
|
Fu X, Wang Y, Ge M, Wang D, Gao R, Wang L, Guo J, Liu H. Negative effects of interictal spikes on theta rhythm in human temporal lobe epilepsy. Epilepsy Behav 2018; 87:207-212. [PMID: 30115601 PMCID: PMC6544467 DOI: 10.1016/j.yebeh.2018.07.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2017] [Revised: 03/19/2018] [Accepted: 07/20/2018] [Indexed: 10/28/2022]
Abstract
Interictal spike is a biomarker of epilepsy that can occur frequently between seizures. Its potential effects on brain oscillations, especially on theta rhythm (4-8 Hz) that is related to a variety of cognitive processes, remain controversial. Using local field potentials recorded from patients with temporal lobe epilepsy (TLE), we investigated here the impact of spikes on theta rhythm immediately after spikes and during the prolonged periods (lasting 4-36 s) between adjacent spikes. Local field potentials (LFPs) were recorded in different epileptogenic areas including the anterior hippocampus (aH) and the entorhinal cortex (EC) as well as in the extended propagation pathway. We found that interictal spikes had a significant inhibitory effect on theta rhythm. Power of theta rhythm was reduced immediately after spikes, and the inhibitory effect on theta rhythm might sustain during the prolonged between-spike periods. The inhibitory effect was more severe when the epileptogenic areas involved both the aH and EC compared to that involved only a single structure. These observations suggest that interictal spikes have a significant negative impact on theta rhythm and may thus play a role in theta-related cognition changes in patients with TLE.
Collapse
Affiliation(s)
- Xiaoxuan Fu
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, School of Electrical Engineering, Hebei University of Technology, 369#, Tianjin 300130, China
| | - Youhua Wang
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, School of Electrical Engineering, Hebei University of Technology, 369#, Tianjin 300130, China
| | - Manling Ge
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, School of Electrical Engineering, Hebei University of Technology, 369#, Tianjin 300130, China.
| | - Danhong Wang
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Rongguang Gao
- Department of Nuclear Medicine, Fuzhou General Hospital, No. 156, Second West Ring Road, Fuzhou 350025, China
| | - Long Wang
- Liaoyuan Hospital of Traditional Chinese Medicine, Liaoyuan 136200, China
| | - Jundan Guo
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, School of Electrical Engineering, Hebei University of Technology, 369#, Tianjin 300130, China
| | - Hesheng Liu
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA; Institute for Research and Medical Consultations, Imam Abdulahman Bin Faisal University, Dammam, Saudi Arabia.
| |
Collapse
|
229
|
Manzouri F, Heller S, Dümpelmann M, Woias P, Schulze-Bonhage A. A Comparison of Machine Learning Classifiers for Energy-Efficient Implementation of Seizure Detection. Front Syst Neurosci 2018; 12:43. [PMID: 30294263 PMCID: PMC6158331 DOI: 10.3389/fnsys.2018.00043] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Accepted: 08/27/2018] [Indexed: 11/29/2022] Open
Abstract
The closed-loop application of electrical stimulation via chronically implanted electrodes is a novel approach to stop seizures in patients with focal-onset epilepsy. To this end, an energy efficient seizure detector that can be implemented in an implantable device is of crucial importance. In this study, we first evaluated the performance of two machine learning algorithms (Random Forest classifier and support vector machine (SVM)) by using selected time and frequency domain features with a limited need of computational resources. Performance of the algorithms was further compared to a detection strategy implemented in an existing closed loop neurostimulation device for the treatment of epilepsy. The results show a superior performance of the Random Forest classifier compared to the SVM classifier and the reference approach. Next, we implemented the feature extraction and classification process of the Random Forest classifier on a microcontroller to evaluate the energy efficiency of this seizure detector. In conclusion, the feature set in combination with Random Forest classifier is an energy efficient hardware implementation that shows an improvement of detection sensitivity and specificity compared to the presently available closed-loop intervention in epilepsy while preserving a low detection delay.
Collapse
Affiliation(s)
- Farrokh Manzouri
- Epilepsy Center, Faculty of Medicine, University of Freiburg Medical Center, Freiburg, Germany.,BrainLinks-BrainTools Cluster of Excellence, University of Freiburg, Freiburg, Germany
| | - Simon Heller
- BrainLinks-BrainTools Cluster of Excellence, University of Freiburg, Freiburg, Germany.,Department of Microsystems Engineering, Faculty of Engineering, University of Freiburg, Freiburg, Germany
| | - Matthias Dümpelmann
- Epilepsy Center, Faculty of Medicine, University of Freiburg Medical Center, Freiburg, Germany.,BrainLinks-BrainTools Cluster of Excellence, University of Freiburg, Freiburg, Germany
| | - Peter Woias
- BrainLinks-BrainTools Cluster of Excellence, University of Freiburg, Freiburg, Germany.,Department of Microsystems Engineering, Faculty of Engineering, University of Freiburg, Freiburg, Germany
| | - Andreas Schulze-Bonhage
- Epilepsy Center, Faculty of Medicine, University of Freiburg Medical Center, Freiburg, Germany.,BrainLinks-BrainTools Cluster of Excellence, University of Freiburg, Freiburg, Germany
| |
Collapse
|
230
|
Wang Y, Ombao H, Chung MK. Topological Data Analysis of Single-Trial Electroencephalographic Signals. Ann Appl Stat 2018; 12:1506-1534. [PMID: 30220953 PMCID: PMC6135261 DOI: 10.1214/17-aoas1119] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Epilepsy is a neurological disorder that can negatively affect the visual, audial and motor functions of the human brain. Statistical analysis of neurophysiological recordings, such as electroencephalogram (EEG), facilitates the understanding and diagnosis of epileptic seizures. Standard statistical methods, however, do not account for topological features embedded in EEG signals. In the current study, we propose a persistent homology (PH) procedure to analyze single-trial EEG signals. The procedure denoises signals with a weighted Fourier series (WFS), and tests for topological difference between the denoised signals with a permutation test based on their PH features persistence landscapes (PL). Simulation studies show that the test effectively identifies topological difference and invariance between two signals. In an application to a single-trial multichannel seizure EEG dataset, our proposed PH procedure was able to identify the left temporal region to consistently show topological invariance, suggesting that the PH features of the Fourier decomposition during seizure is similar to the process before seizure. This finding is important because it could not be identified from a mere visual inspection of the EEG data and was in fact missed by earlier analyses of the same dataset.
Collapse
Affiliation(s)
- Yuan Wang
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI 53705, U.S.A
| | - Hernando Ombao
- Department of Statistics, University of California-Irvine, Irvine, CA 92697, U.S.A
| | - Moo K Chung
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI 53705, U.S.A
| |
Collapse
|
231
|
Sumsky SL, Santaniello S. Decision Support System for Seizure Onset Zone Localization Based on Channel Ranking and High-Frequency EEG Activity. IEEE J Biomed Health Inform 2018; 23:1535-1545. [PMID: 30176615 DOI: 10.1109/jbhi.2018.2867875] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Interictal high-frequency oscillations (HFO) are a promising biomarker that can help define the seizure onset zone (SOZ) and predict the surgical outcome after the epilepsy surgery. The utility of HFO in planning the surgery, though, is unclear. Reasons include the variability of the HFO across patients and brain regions and the influence of the sleep-wake cycle, which causes large fluctuations in the ratio between the HFO observed in SOZ and non-SOZ regions. To cope with these limitations, a rank-based solution is proposed to identify the SOZ by using the HFO in multichannel intracranial EEG. A time-varying index of the epileptic susceptibility of the different brain areas is derived from the HFO rate and a support vector machine is applied on this index to identify the SOZ. The solution is trained and tested on separate groups of patients to avoid the use of patient-specific information and provides optimal SOZ prediction using as little as 30 min of recordings per channel (window). Tested on 14 patients with various combinations of seizure type, epilepsy etiology, and SOZ arrangement (172.7 ± 90.1 h/channel per patient and 75.6 ± 23.5 channels/patient, mean ± S.D.), our solution identified the SOZ with 0.92 ± 0.03 accuracy and 0.91 ± 0.03 area under the ROC curve (mean ± S.D.) across patients. For each patient, the window onset time was varied over 72 continuous hours and the prediction of the SOZ remained insensitive to the onset time, thus showing potential for surgery planning.
Collapse
|
232
|
Motoi H, Miyakoshi M, Abel TJ, Jeong JW, Nakai Y, Sugiura A, Luat AF, Agarwal R, Sood S, Asano E. Phase-amplitude coupling between interictal high-frequency activity and slow waves in epilepsy surgery. Epilepsia 2018; 59:1954-1965. [PMID: 30146766 DOI: 10.1111/epi.14544] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 06/19/2018] [Accepted: 07/26/2018] [Indexed: 01/09/2023]
Abstract
OBJECTIVE We hypothesized that the modulation index (MI), a summary measure of the strength of phase-amplitude coupling between high-frequency activity (>150 Hz) and the phase of slow waves (3-4 Hz), would serve as a useful interictal biomarker for epilepsy presurgical evaluation. METHODS We investigated 123 patients who underwent focal cortical resection following extraoperative electrocorticography recording and had at least 1 year of postoperative follow-up. We examined whether consideration of MI would improve the prediction of postoperative seizure outcome. MI was measured at each intracranial electrode site during interictal slow-wave sleep. We compared the accuracy of prediction of patients achieving International League Against Epilepsy class 1 outcome between the full multivariate logistic regression model incorporating MI in addition to conventional clinical, seizure onset zone (SOZ), and neuroimaging variables, and the reduced logistic regression model incorporating all variables other than MI. RESULTS Ninety patients had class 1 outcome at the time of most recent follow-up (mean follow-up = 5.7 years). The full model had a noteworthy outcome predictive ability, as reflected by regression model fit R2 of 0.409 and area under the curve (AUC) of receiver operating characteristic plot of 0.838. Incomplete resection of SOZ (P < 0.001), larger number of antiepileptic drugs at the time of surgery (P = 0.007), and larger MI in nonresected tissues relative to that in resected tissue (P = 0.020) were independently associated with a reduced probability of class 1 outcome. The reduced model had a lower predictive ability as reflected by R2 of 0.266 and AUC of 0.767. Anatomical variability in MI existed among nonepileptic electrode sites, defined as those unaffected by magnetic resonance imaging lesion, SOZ, or interictal spike discharges. With MI adjusted for anatomical variability, the full model yielded the outcome predictive ability of R2 of 0.422, AUC of 0.844, and sensitivity/specificity of 0.86/0.76. SIGNIFICANCE MI during interictal recording may provide useful information for the prediction of postoperative seizure outcome.
Collapse
Affiliation(s)
- Hirotaka Motoi
- Department of Pediatrics, Children's Hospital of Michigan, Wayne State University, Detroit Medical Center, Detroit, Michigan
| | - Makoto Miyakoshi
- Swartz Center for Computational Neuroscience, Institute for Neural Computation, University of California San Diego, La Jolla, California
| | - Taylor J Abel
- Division of Neurosurgery, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Jeong-Won Jeong
- Department of Pediatrics, Children's Hospital of Michigan, Wayne State University, Detroit Medical Center, Detroit, Michigan.,Department of Neurology, Children's Hospital of Michigan, Wayne State University, Detroit Medical Center, Detroit, Michigan
| | - Yasuo Nakai
- Department of Pediatrics, Children's Hospital of Michigan, Wayne State University, Detroit Medical Center, Detroit, Michigan
| | - Ayaka Sugiura
- Department of Pediatrics, Children's Hospital of Michigan, Wayne State University, Detroit Medical Center, Detroit, Michigan
| | - Aimee F Luat
- Department of Pediatrics, Children's Hospital of Michigan, Wayne State University, Detroit Medical Center, Detroit, Michigan.,Department of Neurology, Children's Hospital of Michigan, Wayne State University, Detroit Medical Center, Detroit, Michigan
| | - Rajkumar Agarwal
- Department of Pediatrics, Children's Hospital of Michigan, Wayne State University, Detroit Medical Center, Detroit, Michigan.,Department of Neurology, Children's Hospital of Michigan, Wayne State University, Detroit Medical Center, Detroit, Michigan
| | - Sandeep Sood
- Department of Neurosurgery, Children's Hospital of Michigan, Wayne State University, Detroit Medical Center, Detroit, Michigan
| | - Eishi Asano
- Department of Pediatrics, Children's Hospital of Michigan, Wayne State University, Detroit Medical Center, Detroit, Michigan.,Department of Neurology, Children's Hospital of Michigan, Wayne State University, Detroit Medical Center, Detroit, Michigan
| |
Collapse
|
233
|
Naftulin JS, Ahmed OJ, Piantoni G, Eichenlaub JB, Martinet LE, Kramer MA, Cash SS. Ictal and preictal power changes outside of the seizure focus correlate with seizure generalization. Epilepsia 2018; 59:1398-1409. [PMID: 29897628 DOI: 10.1111/epi.14449] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/17/2018] [Indexed: 11/30/2022]
Abstract
OBJECTIVE The treatment of focal epilepsies is largely predicated on the concept that there is a "focus" from which the seizure emanates. Yet, the physiological context that determines if and how ictal activity starts and propagates remains poorly understood. To delineate these phenomena more completely, we studied activity outside the seizure-onset zone prior to and during seizure initiation. METHODS Stereotactic depth electrodes were implanted in 17 patients with longstanding pharmacoresistant epilepsy for lateralization and localization of the seizure-onset zone. Only seizures with focal onset in mesial temporal structures were used for analysis. Spectral analyses were used to quantify changes in delta, theta, alpha, beta, gamma, and high gamma frequency power, in regions inside and outside the area of seizure onset during both preictal and seizure initiation periods. RESULTS In the 78 seizures examined, an average of 9.26% of the electrode contacts outside of the seizure focus demonstrated changes in power at seizure onset. Of interest, seizures that were secondarily generalized, on average, showed power changes in a greater number of extrafocus electrode contacts at seizure onset (16.7%) compared to seizures that remained focal (3.8%). The majority of these extrafocus changes occupied the delta and theta bands in electrodes placed in the ipsilateral, lateral temporal lobe. Preictally, we observed extrafocal high-frequency power decrements, which also correlated with seizure spread. SIGNIFICANCE This widespread activity at and prior to the seizure-onset time further extends the notion of the ictogenic focus and its relationship to seizure spread. Further understanding of these extrafocus, periictal changes might help identify the neuronal dynamics underlying the initiation of seizures and how therapies can be devised to control seizure activity.
Collapse
Affiliation(s)
- Jason S Naftulin
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| | - Omar J Ahmed
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| | - Giovanni Piantoni
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA
| | - Jean-Baptiste Eichenlaub
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA
| | | | - Mark A Kramer
- Department of Mathematics and Statistics, Boston University, Boston, MA, USA
| | - Sydney S Cash
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA
| |
Collapse
|
234
|
Medina Villalon S, Paz R, Roehri N, Lagarde S, Pizzo F, Colombet B, Bartolomei F, Carron R, Bénar CG. EpiTools, A software suite for presurgical brain mapping in epilepsy: Intracerebral EEG. J Neurosci Methods 2018; 303:7-15. [DOI: 10.1016/j.jneumeth.2018.03.018] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 03/05/2018] [Accepted: 03/28/2018] [Indexed: 11/16/2022]
|
235
|
Müller M, Schindler K, Goodfellow M, Pollo C, Rummel C, Steimer A. Evaluating resective surgery targets in epilepsy patients: A comparison of quantitative EEG methods. J Neurosci Methods 2018; 305:54-66. [PMID: 29753683 PMCID: PMC6172189 DOI: 10.1016/j.jneumeth.2018.04.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 03/15/2018] [Accepted: 04/29/2018] [Indexed: 01/11/2023]
Abstract
BACKGROUND Quantitative analysis of intracranial EEG is a promising tool to assist clinicians in the planning of resective brain surgery in patients suffering from pharmacoresistant epilepsies. Quantifying the accuracy of such tools, however, is nontrivial as a ground truth to verify predictions about hypothetical resections is missing. NEW METHOD As one possibility to address this, we use customized hypotheses tests to examine the agreement of the methods on a common set of patients. One method uses machine learning techniques to enable the predictive modeling of EEG time series. The other estimates nonlinear interrelation between EEG channels. Both methods were independently shown to distinguish patients with excellent post-surgical outcome (Engel class I) from those without improvement (Engel class IV) when assessing the electrodes associated with the tissue that was actually resected during brain surgery. Using the AND and OR conjunction of both methods we evaluate the performance gain that can be expected when combining them. RESULTS Both methods' assessments correlate strongly positively with the similarity between a hypothetical resection and the corresponding actual resection in class I patients. Moreover, the Spearman rank correlation between the methods' patient rankings is significantly positive. COMPARISON WITH EXISTING METHOD(S) To our best knowledge, this is the first study comparing surgery target assessments from fundamentally differing techniques. CONCLUSIONS Although conceptually completely independent, there is a relation between the predictions obtained from both methods. Their broad consensus supports their application in clinical practice to provide physicians additional information in the process of presurgical evaluation.
Collapse
Affiliation(s)
- Michael Müller
- Department of Neurology, Inselspital, Bern University Hospital, University Bern, Bern, Switzerland; Support Center for Advanced Neuroimaging (SCAN), University Institute for Diagnostic and Interventional Neuroradiology, Inselspital, Bern, Switzerland.
| | - Kaspar Schindler
- Department of Neurology, Inselspital, Bern University Hospital, University Bern, Bern, Switzerland
| | - Marc Goodfellow
- College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter, UK; Centre for Biomedical Modelling and Analysis, University of Exeter, Exeter, UK; EPSRC Centre for Predictive Modelling in Healthcare, University of Exeter, Exeter, UK
| | - Claudio Pollo
- Department of Neurosurgery, Inselspital, Bern University Hospital, University Bern, Bern, Switzerland
| | - Christian Rummel
- Support Center for Advanced Neuroimaging (SCAN), University Institute for Diagnostic and Interventional Neuroradiology, Inselspital, Bern, Switzerland
| | - Andreas Steimer
- Department of Neurology, Inselspital, Bern University Hospital, University Bern, Bern, Switzerland
| |
Collapse
|
236
|
Sheybani L, Birot G, Contestabile A, Seeck M, Kiss JZ, Schaller K, Michel CM, Quairiaux C. Electrophysiological Evidence for the Development of a Self-Sustained Large-Scale Epileptic Network in the Kainate Mouse Model of Temporal Lobe Epilepsy. J Neurosci 2018; 38:3776-3791. [PMID: 29555850 PMCID: PMC6705908 DOI: 10.1523/jneurosci.2193-17.2018] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 03/07/2018] [Accepted: 03/10/2018] [Indexed: 11/21/2022] Open
Abstract
Most research on focal epilepsy focuses on mechanisms of seizure generation in the primary epileptic focus (EF). However, neurological deficits that are not directly linked to seizure activity and that may persist after focus removal are frequent. The recruitment of remote brain regions of an epileptic network (EN) is recognized as a possible cause, but a profound lack of experimental evidence exists concerning their recruitment and the type of pathological activities they exhibit. We studied the development of epileptic activities at the large-scale in male mice of the kainate model of unilateral temporal lobe epilepsy using high-density surface EEG and multiple-site intracortical recordings. We show that, along with focal spikes and fast ripples that remain localized to the injected hippocampus (i.e., the EF), a subpopulation of spikes that propagate across the brain progressively emerges even before the expression of seizures. The spatiotemporal propagation of these generalized spikes (GSs) is highly stable within and across animals, defining a large-scale EN comprising both hippocampal regions and frontal cortices. Interestingly, GSs are often concomitant with muscular twitches. In addition, while fast ripples are, as expected, highly frequent in the EF, they also emerge in remote cortical regions and in particular in frontal regions where GSs propagate. Finally, we demonstrate that these remote interictal activities are dependent on the focus in the early phase of the disease but continue to be expressed after focus silencing at later stages. Our results provide evidence that neuronal networks outside the initial focus are progressively altered during epileptogenesis.SIGNIFICANCE STATEMENT It has long been held that the epileptic focus is responsible for triggering seizures and driving interictal activities. However, focal epilepsies are associated with heterogeneous symptoms, calling into question the concept of a strictly focal disease. Using the mouse model of hippocampal sclerosis, this work demonstrates that focal epilepsy leads to the development of pathological activities specific to the epileptic condition, notably fast ripples, that appear outside of the primary epileptic focus. Whereas these activities are dependent on the focus early in the disease, focus silencing fails to control them in the chronic stage. Thus, dynamical changes specific to the epileptic condition are built up outside of the epileptic focus along with disease progression, which provides supporting evidence for network alterations in focal epilepsy.
Collapse
Affiliation(s)
- Laurent Sheybani
- Functional Brain Mapping Laboratory, Department of Fundamental Neuroscience, Campus Biotech, University of Geneva, 1202 Geneva, Switzerland
- Neurology Clinic, Department of Clinical Neuroscience, University Hospital Geneva, 1206 Geneva, Switzerland
| | - Gwenaël Birot
- Neurology Clinic, Department of Clinical Neuroscience, University Hospital Geneva, 1206 Geneva, Switzerland
| | | | - Margitta Seeck
- Neurology Clinic, Department of Clinical Neuroscience, University Hospital Geneva, 1206 Geneva, Switzerland
| | - Jozsef Zoltan Kiss
- Department of Fundamental Neuroscience, Faculty of Medicine, 1206 Geneva, Switzerland
| | - Karl Schaller
- Neurosurgery Clinic, Department of Clinical Neuroscience, University Hospital Geneva, 1206 Geneva, Switzerland, and
| | - Christoph M Michel
- Functional Brain Mapping Laboratory, Department of Fundamental Neuroscience, Campus Biotech, University of Geneva, 1202 Geneva, Switzerland
- Neurology Clinic, Department of Clinical Neuroscience, University Hospital Geneva, 1206 Geneva, Switzerland
- Center for Biomedical Imaging, Lausanne and Geneva, 1015 Lausanne, Switzerland
| | - Charles Quairiaux
- Functional Brain Mapping Laboratory, Department of Fundamental Neuroscience, Campus Biotech, University of Geneva, 1202 Geneva, Switzerland,
- Department of Fundamental Neuroscience, Faculty of Medicine, 1206 Geneva, Switzerland
| |
Collapse
|
237
|
Vaugier L, Lagarde S, McGonigal A, Trébuchon A, Milh M, Lépine A, Scavarda D, Carron R, Bartolomei F. The role of stereoelectroencephalography (SEEG) in reevaluation of epilepsy surgery failures. Epilepsy Behav 2018. [PMID: 29526579 DOI: 10.1016/j.yebeh.2018.02.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Management of patients after initial epilepsy surgical failure is challenging. In this study, we report our experience in using the stereoelectroencephalography (SEEG) method in the reevaluation of patients after initial epilepsy surgical failure. We selected 28 patients examined through SEEG in our department for drug-resistant focal epilepsy following initial epilepsy surgical failure. For each patient, the residual seizure onset zone (rSOZ) as defined by SEEG was classified as either contiguous if the seizure onset zone (SOZ) was focal and close to the surgical cavity (same lobe) or noncontiguous in cases where the SOZ included site(s) distant from the surgical cavity. The rSOZ was defined according to visual analysis of SEEG traces completed by an estimation of the epileptogenicity index (EI). A second surgical procedure was performed in 12 patients (45%). A favorable outcome (Engel class I or II) was obtained in 9/12 patients (6 in Engel class I, 50%). The proportion of patients that had reoperation was higher in the contiguous group (80%) than in the noncontiguous group (22%) (p=0.02). A rSOZ localized in close relation to the initial surgical resection zone (contiguous group) was found in 10 patients (35%). Among them, 8 have since undergone reoperation, and a good outcome (Engel class I) was achieved in 5/8 (63%). A rSOZ involving a distant region from the first surgery was observed in 18 patients (65%) (noncontiguous group). Among them, only 4 have undergone reoperation, leading to a failure in 2 (Engel class III or IV) and a good outcome in 2 (IA). Ten patients had a first standard temporal lobectomy, and in 50% of these cases, the insula was involved in the rSOZ. Stereoelectroencephalography offers a unique way to evaluate the rSOZ at the individual level and thus guide further surgical decision-making. The best results are observed in patients having a focal rSOZ close to the site of the surgical resection in the first surgery.
Collapse
Affiliation(s)
- Lisa Vaugier
- APHM, Timone Hospital, Clinical Neurophysiology and Epileptology Department, Marseille, France
| | - Stanislas Lagarde
- APHM, Timone Hospital, Clinical Neurophysiology and Epileptology Department, Marseille, France; Aix Marseille Univ, Inserm, INS, Institut de Neurosciences des Systèmes, Marseille, France
| | - Aileen McGonigal
- APHM, Timone Hospital, Clinical Neurophysiology and Epileptology Department, Marseille, France; Aix Marseille Univ, Inserm, INS, Institut de Neurosciences des Systèmes, Marseille, France
| | - Agnès Trébuchon
- APHM, Timone Hospital, Clinical Neurophysiology and Epileptology Department, Marseille, France; Aix Marseille Univ, Inserm, INS, Institut de Neurosciences des Systèmes, Marseille, France
| | - Mathieu Milh
- APHM, Timone Hospital, Clinical Neurophysiology and Epileptology Department, Marseille, France; Aix Marseille Univ, Inserm, INS, Institut de Neurosciences des Systèmes, Marseille, France
| | - Anne Lépine
- APHM, Timone Hospital, Clinical Neurophysiology and Epileptology Department, Marseille, France; Aix Marseille Univ, Inserm, INS, Institut de Neurosciences des Systèmes, Marseille, France
| | - Didier Scavarda
- APHM, Timone Hospital, Clinical Neurophysiology and Epileptology Department, Marseille, France; Aix Marseille Univ, Inserm, INS, Institut de Neurosciences des Systèmes, Marseille, France; APHM, Timone Hospital, Paediatric Neurosurgery Department, Marseille, France
| | - Romain Carron
- APHM, Timone Hospital, Clinical Neurophysiology and Epileptology Department, Marseille, France; Aix Marseille Univ, Inserm, INS, Institut de Neurosciences des Systèmes, Marseille, France; APHM, Timone Hospital, Functional and Stereotactical Neurosurgery Department, Marseille, France
| | - Fabrice Bartolomei
- APHM, Timone Hospital, Clinical Neurophysiology and Epileptology Department, Marseille, France; Aix Marseille Univ, Inserm, INS, Institut de Neurosciences des Systèmes, Marseille, France.
| |
Collapse
|
238
|
Jmail N, Zaghdoud M, Hadriche A, Frikha T, Ben Amar C, Bénar C. Integration of stationary wavelet transform on a dynamic partial reconfiguration for recognition of pre-ictal gamma oscillations. Heliyon 2018; 4:e00530. [PMID: 29560450 PMCID: PMC5857637 DOI: 10.1016/j.heliyon.2018.e00530] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 12/06/2017] [Accepted: 01/29/2018] [Indexed: 11/16/2022] Open
Abstract
To define the neural networks responsible of an epileptic seizure, it is useful to perform advanced signal processing techniques. In this context, electrophysiological signals present three types of waves: oscillations, spikes, and a mixture of both. Recent studies show that spikes and oscillations should be separated properly in order to define the accurate neural connectivity during the pre-ictal, seizure and inter-ictal states. Retrieving oscillatory activity is a sensitive task due to the frequency overlap between oscillations and transient activities. Advanced filtering techniques have been proposed to ensure a good separation between oscillations and spikes. It would be interesting to apply them in real time for instantaneous monitoring, seizure warning or neurofeedback systems. This requires improving execution time. This constraint can be overcome using embedded systems that combine hardware and software in an optimized architecture. We propose here to implement a stationary wavelet transform (SWT) as an adaptive filtering technique retaining only pre-ictal gamma oscillations, as validated in previous work, on a partial dynamic configuration. Then, the same architecture is used with further modifications to integrate spatio temporal mapping for an early recognition of seizure build-up. Data that contains transient, pre-ictal gamma oscillations and a seizure was simulated. the method on real intracerebral signals was also tested. The SWT was integrated on an embedded architecture. This architecture permits a spatio temporal mapping to detect the accurate time and localization of seizure build-up, while reducing computation time by a factor of around 40. Embedded systems are a promising venue for real-time applications in clinical systems for epilepsy.
Collapse
Affiliation(s)
- N Jmail
- Miracl Laboratory, Sfax University, Sfax, Tunisia
| | - M Zaghdoud
- REGIM Laboratory, Sfax University, Sfax, Tunisia
| | - A Hadriche
- REGIM Laboratory, Sfax University, Sfax, Tunisia
| | - T Frikha
- CES Laboratory, Sfax University, Sfax, Tunisia
| | - C Ben Amar
- REGIM Laboratory, Sfax University, Sfax, Tunisia
| | - C Bénar
- Inserm, INS, Institut de Neurosciences des Systèmes, Aix Marseille University, Marseille, France
| |
Collapse
|
239
|
Yang C, Luan G, Wang Q, Liu Z, Zhai F, Wang Q. Localization of Epileptogenic Zone With the Correction of Pathological Networks. Front Neurol 2018; 9:143. [PMID: 29593641 PMCID: PMC5861205 DOI: 10.3389/fneur.2018.00143] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 02/27/2018] [Indexed: 12/11/2022] Open
Abstract
Patients with focal drug-resistant epilepsy are potential candidates for surgery. Stereo-electroencephalograph (SEEG) is often considered as the “gold standard” to identify the epileptogenic zone (EZ) that accounts for the onset and propagation of epileptiform discharges. However, visual analysis of SEEG still prevails in clinical practice. In addition, epilepsy is increasingly understood to be the result of network disorder, but the specific organization of the epileptic network is still unclear. Therefore, it is necessary to quantitatively localize the EZ and investigate the nature of epileptogenic networks. In this study, intracranial recordings from 10 patients were analyzed through adaptive directed transfer function, and the out-degree of effective network was selected as the principal indicator to localize the epileptogenic area. Furthermore, a coupled neuronal population model was used to qualitatively simulate electrical activity in the brain. By removing individual populations, virtual surgery adjusting the network organization could be performed. Results suggested that the accuracy and detection rate of the EZ localization were 82.86 and 85.29%, respectively. In addition, the same stage shared a relatively stable connectivity pattern, while the patterns changed with transition to different processes. Meanwhile, eight cases of simulations indicated that networks in the ictal stage were more likely to generate rhythmic spikes. This indicated the existence of epileptogenic networks, which could enhance local excitability and facilitate synchronization. The removal of the EZ could correct these pathological networks and reduce the amount of spikes by at least 75%. This might be one reason why accurate resection could reduce or even suppress seizures. This study provides novel insights into epilepsy and surgical treatments from the network perspective.
Collapse
Affiliation(s)
- Chuanzuo Yang
- Department of Dynamics and Control, Beihang University, Beijing, China
| | - Guoming Luan
- Beijing Key Laboratory of Epilepsy, Sanbo Brain Hospital, Capital Medical University, Beijing, China.,Department of Neurosurgery, Epilepsy Center, Sanbo Brain Hospital, Capital Medical University, Beijing, China.,Beijing Institute for Brain Disorders, Beijing, China
| | - Qian Wang
- Beijing Key Laboratory of Epilepsy, Sanbo Brain Hospital, Capital Medical University, Beijing, China.,Department of Neurosurgery, Epilepsy Center, Sanbo Brain Hospital, Capital Medical University, Beijing, China
| | - Zhao Liu
- Beijing Key Laboratory of Epilepsy, Sanbo Brain Hospital, Capital Medical University, Beijing, China.,Department of Neurosurgery, Epilepsy Center, Sanbo Brain Hospital, Capital Medical University, Beijing, China
| | - Feng Zhai
- Beijing Key Laboratory of Epilepsy, Sanbo Brain Hospital, Capital Medical University, Beijing, China.,Department of Neurosurgery, Epilepsy Center, Sanbo Brain Hospital, Capital Medical University, Beijing, China
| | - Qingyun Wang
- Department of Dynamics and Control, Beihang University, Beijing, China
| |
Collapse
|
240
|
Chassoux F, Navarro V, Catenoix H, Valton L, Vignal JP. Planning and management of SEEG. Neurophysiol Clin 2018; 48:25-37. [DOI: 10.1016/j.neucli.2017.11.007] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
|
241
|
Minotti L, Montavont A, Scholly J, Tyvaert L, Taussig D. Indications and limits of stereoelectroencephalography (SEEG). Neurophysiol Clin 2018; 48:15-24. [DOI: 10.1016/j.neucli.2017.11.006] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
242
|
Mohamed IS, Bouthillier A, Bérubé A, Cossette P, Finet P, Saint-Hilaire JM, Robert M, Nguyen DK. The clinical impact of integration of magnetoencephalography in the presurgical workup for refractory nonlesional epilepsy. Epilepsy Behav 2018; 79:34-41. [PMID: 29253675 DOI: 10.1016/j.yebeh.2017.10.036] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2017] [Revised: 10/11/2017] [Accepted: 10/27/2017] [Indexed: 11/28/2022]
Abstract
OBJECTIVE For patients with nonlesional refractory focal epilepsy (NLRFE), localization of the epileptogenic zone is more arduous, and intracranial electroencephalography (EEG) (icEEG) is frequently required. Planning for icEEG is dependent on combined data from multiple noninvasive modalities. We report the negative impact of lack of integration of magnetoencephalography (MEG) in the presurgical workup in NLRFE. METHODS Observational MEG case series involving 31 consecutive patients with NLRFE in an academic epilepsy center. For various reasons, MEG data were not analyzed in a timely manner to be included in the decision-making process. The presumed impact of MEG was assessed retrospectively. RESULTS Magnetoencephalography would have changed the initial management in 21/31 (68%) had MEG results been available by reducing the number of intracranial electrodes, modifying their position, allowing for direct surgery, canceling the intracranial study, or providing enough evidence to justify one. Good surgical outcome was achieved in 11 out of 17 patients who proceeded to epilepsy surgery. Nine out of eleven had MEG clusters corresponding to the resection area, and MEG findings would have allowed for direct surgery (avoiding icEEG) in 2/11. Six patients had poor outcome including three patients where MEG would have significantly changed the outcome by modifying the resection margin. Magnetoencephalography provided superior information in 3 patients where inadequate coverage precluded accurate mapping of the epileptogenic zone. CONCLUSION In this single center retrospective study, MEG would have changed patient management, icEEG planning, and surgical outcome in a significant percentage of patients with NLRFE and should be considered in the presurgical workup in those patients.
Collapse
Affiliation(s)
- Ismail S Mohamed
- IWK Health Center, Department of Pediatrics, Division of Neurology, Halifax, Canada; University of Alabama, Department of Pediatrics, Division of Neurology, Birmingham, AL, USA
| | - Alain Bouthillier
- Division of Neurosurgery, Notre-Dame Hospital (CHUM), University of Montreal, Canada
| | - Arline Bérubé
- Division of Neurology, Notre-Dame Hospital (CHUM), University of Montréal, Canada
| | - Patrick Cossette
- Division of Neurology, Notre-Dame Hospital (CHUM), University of Montréal, Canada
| | - Patrice Finet
- Division of Neurosurgery, Notre-Dame Hospital (CHUM), University of Montreal, Canada
| | | | - Manon Robert
- Neuropsychology and Cognition Research Center, Psychology Department, University of Montreal, Canada
| | - Dang Khoa Nguyen
- Division of Neurology, Notre-Dame Hospital (CHUM), University of Montréal, Canada.
| |
Collapse
|
243
|
|
244
|
Zhao X, Yang R, Wang K, Zhang Z, Wang J, Tan X, Zhang J, Mei Y, Chan Q, Xu J, Feng Q, Xu Y. Connectivity-based parcellation of the nucleus accumbens into core and shell portions for stereotactic target localization and alterations in each NAc subdivision in mTLE patients. Hum Brain Mapp 2017; 39:1232-1245. [PMID: 29266652 DOI: 10.1002/hbm.23912] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 11/18/2017] [Accepted: 11/30/2017] [Indexed: 01/01/2023] Open
Abstract
The nucleus accumbens (NAc), an important target of deep brain stimulation for some neuropsychiatric disorders, is thought to be involved in epileptogenesis, especially the shell portion. However, little is known about the exact parcellation within the NAc, and its structural abnormalities or connections alterations of each NAc subdivision in temporal lobe epilepsy (TLE) patients. Here, we used diffusion probabilistic tractography to subdivide the NAc into core and shell portions in individual TLE patients to guide stereotactic localization of NAc shell. The structural and connection abnormalities in each NAc subdivision in the groups were then estimated. We successfully segmented the NAc in 24 of 25 controls, 14 of 16 left TLE patients, and 14 of 18 right TLE patients. Both left and right TLE patients exhibited significantly decreased fractional anisotropy (FA) and increased radial diffusivity (RD) in the shell, while there was no significant alteration in the core. Moreover, relatively distinct structural connectivity of each NAc subdivision was demonstrated. More extensive connection abnormalities were detected in the NAc shell in TLE patients. Our results indicate that neuronal degeneration and damage caused by seizure mainly exists in NAc shell and provide anatomical evidence to support the role of NAc shell in epileptogenesis. Remarkably, those NAc shell tracts with increased connectivities in TLE patients were found decreased in FA, which indicates disruption of fiber integrity. This finding suggests the regeneration of aberrant connections, a compensatory and repair process ascribed to recurrent seizures that constitutes part of the characteristic changes in the epileptic network.
Collapse
Affiliation(s)
- Xixi Zhao
- Department of Medical Imaging Center, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Ru Yang
- School of Biomedical Engineering and Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, Guangzhou, 510515, China
| | - Kewan Wang
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | | | - Junling Wang
- Department of Medical Imaging Center, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Xiangliang Tan
- Department of Medical Imaging Center, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Jiajun Zhang
- Department of Medical Imaging Center, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Yingjie Mei
- Philips Healthcare, Guangzhou, Guangdong, 510055, China
| | | | - Jun Xu
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Qianjin Feng
- School of Biomedical Engineering and Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, Guangzhou, 510515, China
| | - Yikai Xu
- Department of Medical Imaging Center, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| |
Collapse
|
245
|
Parker CS, Clayden JD, Cardoso MJ, Rodionov R, Duncan JS, Scott C, Diehl B, Ourselin S. Structural and effective connectivity in focal epilepsy. NEUROIMAGE-CLINICAL 2017. [PMID: 29527498 PMCID: PMC5842760 DOI: 10.1016/j.nicl.2017.12.020] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Patients with medically-refractory focal epilepsy may be candidates for neurosurgery and some may require placement of intracranial EEG electrodes to localise seizure onset. Assessing cerebral responses to single pulse electrical stimulation (SPES) may give diagnostically useful data. SPES produces cortico-cortical evoked potentials (CCEPs), which infer effective brain connectivity. Diffusion-weighted images and tractography may be used to estimate structural brain connectivity. This combination provides the opportunity to observe seizure onset and its propagation throughout the brain, spreading contiguously along the cortex explored with electrodes, or non-contiguously. We analysed CCEPs and diffusion tractography in seven focal epilepsy patients and reconstructed the effective and structural brain networks. We aimed to assess the inter-modal similarity of the networks at a large scale across the cortex, the effective and structural connectivity of the ictal-onset zone, and investigate potential mechanisms of non-contiguous seizure spread. We found a significant overlap between structural and effective networks. Effective network CCEP amplitude, baseline variation, and outward connectivity was higher at ictal-onset zones, while structural connection strength within the ictal-onset zone tended to be higher. These findings support the concept of hyperexcitable cortex being associated with seizure generation. The high prevalence of structural and effective connections from the ictal-onset zone to sites of non-contiguous spread suggests that macroscopic structural and effective connections are plausible routes for non-contiguous seizure spread. Inter-modal network agreement was higher than by chance and correlation was low. High CCEP amplitude, baseline variation and outdegree at the ictal-onset zone. Streamline density tended to be higher within the ictal-onset zone. High ictal-onset zone connectivity to early and late seizure spread sites.
Collapse
Affiliation(s)
- Christopher S Parker
- Translational Imaging Group, Centre for Medical Image Computing, University College London, London, United Kingdom; Developmental Imaging and Biophysics Unit, UCL Great Ormond Street Institute of Child Health, London, United Kingdom.
| | - Jonathan D Clayden
- Developmental Imaging and Biophysics Unit, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | - M Jorge Cardoso
- Translational Imaging Group, Centre for Medical Image Computing, University College London, London, United Kingdom
| | - Roman Rodionov
- UCL Institute of Neurology, Department of Clinical and Experimental Epilepsy, Department of Clinical Neurophysiology, National Hospital for Neurology and Neurosurgery, London, United Kingdom
| | - John S Duncan
- UCL Institute of Neurology, Department of Clinical and Experimental Epilepsy, Department of Clinical Neurophysiology, National Hospital for Neurology and Neurosurgery, London, United Kingdom
| | - Catherine Scott
- UCL Institute of Neurology, Department of Clinical and Experimental Epilepsy, Department of Clinical Neurophysiology, National Hospital for Neurology and Neurosurgery, London, United Kingdom
| | - Beate Diehl
- UCL Institute of Neurology, Department of Clinical and Experimental Epilepsy, Department of Clinical Neurophysiology, National Hospital for Neurology and Neurosurgery, London, United Kingdom
| | - Sebastien Ourselin
- Translational Imaging Group, Centre for Medical Image Computing, University College London, London, United Kingdom
| |
Collapse
|
246
|
Tanaka H, Khoo HM, Dubeau F, Gotman J. Association between scalp and intracerebral electroencephalographic seizure-onset patterns: A study in different lesional pathological substrates. Epilepsia 2017; 59:420-430. [PMID: 29226305 DOI: 10.1111/epi.13979] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/19/2017] [Indexed: 11/29/2022]
Abstract
OBJECTIVE Our purpose was to determine the correlation between scalp electroencephalography (EEG) and intracerebral EEG (iEEG) seizure-onset patterns in patients with focal lesional epilepsy to determine whether scalp seizure-onset patterns can be specific to intracerebral seizure-onset patterns and to lesion type. METHODS We retrospectively analyzed 61 patients with focal epilepsy and a structural magnetic resonance imaging (MRI)-visible lesion, who first underwent extensive scalp recordings and then iEEG studies (stereo-EEG) for presurgical evaluation, and who showed an iEEG seizure onset in the lesional/perilesional area. Five seizure-onset patterns were recognized on scalp EEG, and 7 on iEEG, and in each patient, only the predominant scalp and iEEG seizure-onset patterns were compared. Because scalp and iEEG recordings were acquired at different times, we followed strict criteria based on semiology and topography to match scalp with intracerebral seizures. RESULTS Seventy-one pairs of seizure-onset patterns matched between scalp and iEEG were identified. Each scalp pattern did not correspond to a single intracerebral pattern, but there were significant associations: (1) paroxysmal fast activity (≥13 Hz) at scalp onset was associated with low-voltage fast activity at iEEG onset (P < .001), with malformations of cortical development (P < .001), and with superficial seizure-onset zone based on iEEG (P < .001); (2) rhythmic slow activity (<13 Hz) at scalp onset was associated with low-frequency high-amplitude periodic spikes at iEEG onset (P = .0014), with medial temporal atrophy/sclerosis (P < .001), and with deep seizure-onset zone (P < .001); and (3) repetitive epileptiform discharge at scalp onset was associated with a burst of high-amplitude polyspikes at iEEG onset (P = .0002). SIGNIFICANCE Our results disclosed that in focal epilepsy patients with seizures generated in an MRI-visible lesion, some scalp seizure-onset patterns are highly associated with a specific intracerebral pattern, with specific pathologies, and with the depth of seizure-onset zone. These findings allow the interpretation of scalp seizure-onset patterns to be significantly more informative.
Collapse
Affiliation(s)
- Hideaki Tanaka
- Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada.,Department of Neurosurgery, Fukuoka University Hospital, Fukuoka City, Japan
| | - Hui Ming Khoo
- Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada.,Department of Neurosurgery, Osaka University Graduate School of Medicine, Suita, Japan
| | - François Dubeau
- Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada
| | - Jean Gotman
- Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
247
|
Taraschenko O, Pedavally S, Samson KK, Puccioni MJ, Madhavan D. Anterior corpus callosotomy in patients with drug-resistant epilepsy: Invasive EEG findings and seizure outcomes. EPILEPSY & BEHAVIOR CASE REPORTS 2017; 9:12-18. [PMID: 29692963 PMCID: PMC5913038 DOI: 10.1016/j.ebcr.2017.12.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 11/17/2017] [Accepted: 12/01/2017] [Indexed: 11/29/2022]
Abstract
Corpus callosotomy (CC) is used in patients with drug-resistant seizures who are not candidates for excisional surgery and failed neurostimulation. We examined ictal scalp and intracranial electroencephalogram (iEEG) recordings in 16 patients being evaluated for anterior CC alone or CC in combination with focal resection, to determine the role of the iEEG in predicting postoperative seizure outcomes. In our cohort, CC improved generalized atonic seizures and focal seizures with impaired awareness but did not alter outcomes for generalized tonic–clonic or tonic seizures. Invasive EEG prior to CC did not refine the prediction of postsurgical seizure outcomes in patients with inconclusive scalp EEG. Patients with drug-resistant epilepsy achieved a significant reduction of generalized atonic and focal seizures with impaired awareness following corpus callosotomy. The age at epilepsy diagnosis or structural pathology identified on the imaging did not predict postoperative seizure status. The ictal findings on invasive EEG prior to corpus callosotomy improved lateralization of seizure onset but did not predict seizure outcomes.
Collapse
Affiliation(s)
- Olga Taraschenko
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, NE, United States
- Corresponding author at: Comprehensive Epilepsy Program, Department of Neurological Sciences, University of Nebraska Medical Center, 988435 Nebraska Medical Center, Omaha, NE 68198-8435, United States.
| | - Swetha Pedavally
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, NE, United States
| | - Kaeli K. Samson
- Department of Biostatistics, University of Nebraska Medical Center, Omaha, NE, United States
| | - Mark J. Puccioni
- Division of Neurosurgery, University of Nebraska Medical Center, Omaha, NE, United States
| | - Deepak Madhavan
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, NE, United States
| |
Collapse
|
248
|
Karunakaran S, Rollo MJ, Kim K, Johnson JA, Kalamangalam GP, Aazhang B, Tandon N. The interictal mesial temporal lobe epilepsy network. Epilepsia 2017; 59:244-258. [PMID: 29210066 DOI: 10.1111/epi.13959] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/26/2017] [Indexed: 11/30/2022]
Abstract
OBJECTIVE Identification of patient-specific epileptogenic networks is critical to designing successful treatment strategies. Multiple noninvasive methods have been used to characterize epileptogenic networks. However, these methods lack the spatiotemporal resolution to allow precise localization of epileptiform activity. We used intracranial recordings, at much higher spatiotemporal resolution, across a cohort of patients with mesial temporal lobe epilepsy (MTLE) to delineate features common to their epileptogenic networks. We used interictal rather than seizure data because interictal spikes occur more frequently, providing us greater power for analyzing variances in the network. METHODS Intracranial recordings from 10 medically refractory MTLE patients were analyzed. In each patient, hour-long recordings were selected for having frequent interictal discharges and no ictal events. For all possible pairs of electrodes, conditional probability of the occurrence of interictal spikes within a 150-millisecond bin was computed. These probabilities were used to construct a weighted graph between all electrodes, and the node degree was estimated. To assess the relationship of the highly connected regions in this network to the clinically identified seizure network, logistic regression was used to model the regions that were surgically resected using weighted node degree and number of spikes in each channel as factors. Lastly, the conditional spike probability was normalized and averaged across patients to visualize the MTLE network at group level. RESULTS We generated the first graph of connectivity across a cohort of MTLE patients using interictal activity. The most consistent connections were hippocampus to amygdala, anterior fusiform cortex to hippocampus, and parahippocampal gyrus projections to amygdala. Additionally, the weighted node degree and number of spikes modeled the brain regions identified as seizure networks by clinicians. SIGNIFICANCE Apart from identifying interictal measures that can model patient-specific epileptogenic networks, we also produce a group map of network connectivity from a cohort of MTLE patients.
Collapse
Affiliation(s)
- Suganya Karunakaran
- Department of Neurosurgery, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Matthew J Rollo
- Department of Neurosurgery, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Kamin Kim
- Department of Neurosurgery, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Jessica A Johnson
- Department of Neurosurgery, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Giridhar P Kalamangalam
- Department of Neurology, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Behnaam Aazhang
- Electrical and Computer Engineering, Rice University, Houston, TX, USA
| | - Nitin Tandon
- Department of Neurosurgery, University of Texas Health Science Center at Houston, Houston, TX, USA
| |
Collapse
|
249
|
Lambert I, Roehri N, Giusiano B, Carron R, Wendling F, Benar C, Bartolomei F. Brain regions and epileptogenicity influence epileptic interictal spike production and propagation during NREM sleep in comparison with wakefulness. Epilepsia 2017; 59:235-243. [PMID: 29205292 DOI: 10.1111/epi.13958] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/25/2017] [Indexed: 01/08/2023]
Abstract
OBJECTIVE Non-rapid eye movement (NREM) sleep is known to be a brain state associated with an activation of interictal epileptic activity. The goal of this work was to quantify topographic changes occurring during NREM sleep in comparison with wakefulness. METHOD We studied intracerebral recordings of 20 patients who underwent stereo-electroencephalography (SEEG) during presurgical evaluation for pharmacoresistant focal epilepsy. We measured the number of interictal spikes (IS) and quantified the co-occurrence of IS between brain regions during 1 hour of NREM sleep and 1 hour of wakefulness. Co-occurrence is a method to estimate IS networks based on a temporal concordance between IS of different brain regions. Each studied region was labeled as "seizure-onset zone" (SOZ), "propagation zone" (PZ), or "not involved region" (NIR). RESULTS During NREM sleep, the number of interictal spikes significantly increased in all regions (mean of 68%). This increase was higher in medial temporal regions than in other regions, whether involved in the SOZ. Spike co-occurrence increased significantly in all regions during NREM sleep in comparison with wakefulness but was greater in neocortical regions. Spike co-occurrence in medial temporal regions was not higher than in other regions, suggesting that the increase of the number of spikes in this region was in great part a local effect. SIGNIFICANCE This study demonstrated that medial temporal regions show a greater propensity to spike production or propagation during NREM sleep compared to other brain regions, even when the medial temporal lobe is not involved in the SOZ.
Collapse
Affiliation(s)
- Isabelle Lambert
- Inserm, INS, Institute of Neurosciences of Systems, Aix Marseille Univ, Marseille, France.,Clinical Neurophysiology, Timone Hospital, APHM, Marseille, France
| | - Nicolas Roehri
- Inserm, INS, Institute of Neurosciences of Systems, Aix Marseille Univ, Marseille, France
| | - Bernard Giusiano
- Inserm, INS, Institute of Neurosciences of Systems, Aix Marseille Univ, Marseille, France
| | - Romain Carron
- Functional and Stereotactic Neurosurgery, Timone Hospital, APHM, Marseille, France
| | | | - Christian Benar
- Inserm, INS, Institute of Neurosciences of Systems, Aix Marseille Univ, Marseille, France
| | - Fabrice Bartolomei
- Inserm, INS, Institute of Neurosciences of Systems, Aix Marseille Univ, Marseille, France.,Clinical Neurophysiology, Timone Hospital, APHM, Marseille, France
| |
Collapse
|
250
|
Heers M, Helias M, Hedrich T, Dümpelmann M, Schulze-Bonhage A, Ball T. Spectral bandwidth of interictal fast epileptic activity characterizes the seizure onset zone. NEUROIMAGE-CLINICAL 2017. [PMID: 29527491 PMCID: PMC5842664 DOI: 10.1016/j.nicl.2017.11.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The foremost aim of presurgical epilepsy evaluation is the delineation of the seizure onset zone (SOZ). There is increasing evidence that fast epileptic activity (FEA, 14–250 Hz) occurring interictally, i.e. between seizures, is predominantly localized within the SOZ. Currently it is unknown, which frequency band of FEA performs best in identifying the SOZ, although prior studies suggest highest concordance of spectral changes with the SOZ for high frequency changes. We suspected that FEA reflects dampened oscillations in local cortical excitatory-inhibitory neural networks, and that interictal FEA in the SOZ is a consequence of reduced oscillatory damping. We therefore predict a narrowing of the spectral bandwidth alongside increased amplitudes of spectral peaks during interictal FEA events. To test this hypothesis, we evaluated spectral changes during interictal FEA in invasive EEG (iEEG) recordings of 13 patients with focal epilepsy. In relative spectra of beta and gamma band changes (14–250 Hz) during FEA, we found that spectral peaks within the SOZ indeed were significantly more narrow-banded and their power changes were significantly higher than outside the SOZ. In contrast, the peak frequency did not differ within and outside the SOZ. Our results show that bandwidth and power changes of spectral modulations during FEA both help localizing the SOZ. We propose the spectral bandwidth as new source of information for the evaluation of EEG data. Invasive EEG spectral bandwidth changes differ in and outside seizure onset zone. Peak frequency of invasive EEG spectral changes was not informative. Model of dampened oscillator explains the observed spectral bandwidth changes. Spectral bandwidth changes are a novel diagnostic feature.
Collapse
Affiliation(s)
- Marcel Heers
- Epilepsy Center, Department of Neurosurgery, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany; Translational Neurotechnology Lab, Department of Neurosurgery, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany; Cluster of Excellence BrainLinks-BrainTools, University of Freiburg, Germany.
| | - Moritz Helias
- Institute of Neuroscience and Medicine (INM-6) and Institute for Advanced Simulations (IAS-6), Jülich Research Centre and JARA, Jülich, Germany
| | - Tanguy Hedrich
- Multimodal Functional Imaging Lab, Biomedical Engineering Department, McGill University, Montreal, Québec, Canada
| | - Matthias Dümpelmann
- Epilepsy Center, Department of Neurosurgery, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany; Cluster of Excellence BrainLinks-BrainTools, University of Freiburg, Germany
| | - Andreas Schulze-Bonhage
- Epilepsy Center, Department of Neurosurgery, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany; Cluster of Excellence BrainLinks-BrainTools, University of Freiburg, Germany
| | - Tonio Ball
- Epilepsy Center, Department of Neurosurgery, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany; Translational Neurotechnology Lab, Department of Neurosurgery, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany; Cluster of Excellence BrainLinks-BrainTools, University of Freiburg, Germany
| |
Collapse
|