201
|
McCulloch KM, Mukherjee T, Begley TP, Ealick SE. Structure determination and characterization of the vitamin B6 degradative enzyme (E)-2-(acetamidomethylene)succinate hydrolase. Biochemistry 2010; 49:1226-35. [PMID: 20099871 DOI: 10.1021/bi901812p] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The gene identification and kinetic characterization of (E)-2-(acetamidomethylene)succinate (E-2AMS) hydrolase has recently been described. This enzyme catalyzes the final reaction in the degradation of vitamin B(6) and produces succinic semialdehyde, acetate, ammonia, and carbon dioxide from E-2AMS. The structure of E-2AMS hydrolase was determined to 2.3 A using SAD phasing. E-2AMS hydrolase is a member of the alpha/beta hydrolase superfamily and utilizes a serine/histidine/aspartic acid catalytic triad. Mutation of either the nucleophilic serine or the aspartate resulted in inactive enzyme. Mutation of an additional serine residue in the active site causes the enzyme to be unstable and is likely structurally important. The structure also provides insight into the mechanism of hydrolysis of E-2AMS and identifies several potential catalytically important residues.
Collapse
Affiliation(s)
- Kathryn M McCulloch
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, USA
| | | | | | | |
Collapse
|
202
|
Baymiev AK, Ptitsyn KG, Baimiev AK. Influence of the introduction of Caragana arborescens on the composition of its root-nodule bacteria. Microbiology (Reading) 2010. [DOI: 10.1134/s0026261710010157] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
203
|
Carvalho FM, Souza RC, Barcellos FG, Hungria M, Vasconcelos ATR. Genomic and evolutionary comparisons of diazotrophic and pathogenic bacteria of the order Rhizobiales. BMC Microbiol 2010; 10:37. [PMID: 20144182 PMCID: PMC2907836 DOI: 10.1186/1471-2180-10-37] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2009] [Accepted: 02/08/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Species belonging to the Rhizobiales are intriguing and extensively researched for including both bacteria with the ability to fix nitrogen when in symbiosis with leguminous plants and pathogenic bacteria to animals and plants. Similarities between the strategies adopted by pathogenic and symbiotic Rhizobiales have been described, as well as high variability related to events of horizontal gene transfer. Although it is well known that chromosomal rearrangements, mutations and horizontal gene transfer influence the dynamics of bacterial genomes, in Rhizobiales, the scenario that determine pathogenic or symbiotic lifestyle are not clear and there are very few studies of comparative genomic between these classes of prokaryotic microorganisms trying to delineate the evolutionary characterization of symbiosis and pathogenesis. RESULTS Non-symbiotic nitrogen-fixing bacteria and bacteria involved in bioremediation closer to symbionts and pathogens in study may assist in the origin and ancestry genes and the gene flow occurring in Rhizobiales. The genomic comparisons of 19 species of Rhizobiales, including nitrogen-fixing, bioremediators and pathogens resulted in 33 common clusters to biological nitrogen fixation and pathogenesis, 15 clusters exclusive to all nitrogen-fixing bacteria and bacteria involved in bioremediation, 13 clusters found in only some nitrogen-fixing and bioremediation bacteria, 01 cluster exclusive to some symbionts, and 01 cluster found only in some pathogens analyzed. In BBH performed to all strains studied, 77 common genes were obtained, 17 of which were related to biological nitrogen fixation and pathogenesis. Phylogenetic reconstructions for Fix, Nif, Nod, Vir, and Trb showed possible horizontal gene transfer events, grouping species of different phenotypes. CONCLUSIONS The presence of symbiotic and virulence genes in both pathogens and symbionts does not seem to be the only determinant factor for lifestyle evolution in these microorganisms, although they may act in common stages of host infection. The phylogenetic analysis for many distinct operons involved in these processes emphasizes the relevance of horizontal gene transfer events in the symbiotic and pathogenic similarity.
Collapse
Affiliation(s)
- Fabíola M Carvalho
- Laboratório Nacional de Computação Científica, Laboratório de Bioinformática, Av Getúlio Vargas 333, 25651-075 Petrópolis, Rio de Janeiro, Brazil
| | | | | | | | | |
Collapse
|
204
|
Glick BR. Using soil bacteria to facilitate phytoremediation. Biotechnol Adv 2010; 28:367-74. [PMID: 20149857 DOI: 10.1016/j.biotechadv.2010.02.001] [Citation(s) in RCA: 453] [Impact Index Per Article: 30.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2009] [Revised: 02/02/2010] [Accepted: 02/02/2010] [Indexed: 10/19/2022]
Abstract
In the past twenty years or so, researchers have endeavored to utilize plants to facilitate the removal of both organic and inorganic contaminants from the environment, especially from soil. These phytoremediation approaches have come a long way in a short time. However, the majority of this work has been done under more controlled laboratory conditions and not in the field. As an adjunct to various phytoremediation strategies and as part of an effort to make this technology more efficacious, a number of scientists have begun to explore the possibility of using various soil bacteria together with plants. These bacteria include biodegradative bacteria, plant growth-promoting bacteria and bacteria that facilitate phytoremediation by other means. An overview of bacterially assisted phytoremediation is provided here for both organic and metallic contaminants, with the intent of providing some insight into how these bacteria aid phytoremediation so that future field studies might be facilitated.
Collapse
Affiliation(s)
- Bernard R Glick
- Department of Biology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, Canada
| |
Collapse
|
205
|
Okazaki S, Okabe S, Higashi M, Shimoda Y, Sato S, Tabata S, Hashiguchi M, Akashi R, Göttfert M, Saeki K. Identification and functional analysis of type III effector proteins in Mesorhizobium loti. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2010; 23:223-34. [PMID: 20064065 DOI: 10.1094/mpmi-23-2-0223] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Mesorhizobium loti MAFF303099, a microsymbiont of the model legume Lotus japonicus, possesses a cluster of genes (tts) that encode a type III secretion system (T3SS). In the presence of heterologous nodD from Rhizobium leguminosarum and a flavonoid naringenin, we observed elevated expression of the tts genes and secretion of several proteins into the culture medium. Inoculation experiments with wild-type and T3SS mutant strains revealed that the presence of the T3SS affected nodulation at a species level within the Lotus genus either positively (L. corniculatus subsp. frondosus and L. filicaulis) or negatively (L. halophilus and two other species). By inoculating L. halophilus with mutants of various type III effector candidate genes, we identified open reading frame mlr6361 as a major determinant of the nodulation restriction observed for L. halophilus. The predicted gene product of mlr6361 is a protein of 3,056 amino acids containing 15 repetitions of a sequence motif of 40 to 45 residues and a shikimate kinase-like domain at its carboxyl terminus. Homologues with similar repeat sequences are present in the hypersensitive-response and pathogenicity regions of several plant pathogens, including strains of Pseudomonas syringae, Ralstonia solanacearum, and Xanthomonas species. These results suggest that L. halophilus recognizes Mlr6361 as potentially pathogen derived and subsequently halts the infection process.
Collapse
Affiliation(s)
- Shin Okazaki
- Department of Biological Sciences, Faculty of Science, Nara Women's University, Nara 630-8506, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
206
|
Wenzel M, Friedrich L, Göttfert M, Zehner S. The type III-secreted protein NopE1 affects symbiosis and exhibits a calcium-dependent autocleavage activity. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2010; 23:124-9. [PMID: 19958145 DOI: 10.1094/mpmi-23-1-0124] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The type III-secreted proteins NopE1 and NopE2 of Bradyrhizobium japonicum contain a repeated domain of unknown function (DUF1521), which is present in a few uncharacterized proteins. A nopE1/nopE2 double mutant strain exhibited higher nodulation efficiency on Vigna radiata KPS2 than the wild type or single nopE1 or nopE2 mutants. This indicates that both proteins are effectors that functionally overlap. To test translocation into the plant cell compartment during symbiosis, NopE1 and NopE2 were fused with adenylate cyclase (cya) as reporter. A fusion with the full-length proteins or N-terminal peptides resulted in increased cAMP levels in nodules, indicating translocation. Purified NopE1 exhibited self-cleavage in the presence of Ca(2+). Two identical cleavage sites (GD'PHVD) were identified inside the DUF1521 domains. The C-terminal cleavage site was analyzed by alanine scanning. Protein variants in which aspartate or proline next to the cleavage sites was substituted displayed no cleavage. A noncleavable protein was obtained by exchange of the aspartate residues preceding both cleavage sites. Complementation analysis with the noncleavable NopE1 variant did not restore wild-type phenotype on Vigna radiata KPS2, indicating a physiological role of NopE1 cleavage in effector function.
Collapse
Affiliation(s)
- Mandy Wenzel
- Institute of Genetics, Dresden University of Technology, Helmholtzstrasse 10, D-01062 Dresden, Germany
| | | | | | | |
Collapse
|
207
|
Abstract
The establishment of nitrogen-fixing symbiosis between a legume plant and its rhizobial symbiont requires that the bacterium adapt to changing conditions that occur with the host plant that both promotes and allows infection of the host root nodule cell, regulates and resists the host defense response, permits the exchange of metabolites, and contributes to the overall health of the host. This adaptive process involves changes to the bacterial cell surface and, therefore, structural modifications to the lipopolysaccharide (LPS). In this chapter, we describe the structures of the LPSs from symbiont members of the Rhizobiales, the genetics and mechanism of their biosynthesis, the modifications that occur during symbiosis, and their possible functions.
Collapse
|
208
|
P. Conforte V, Echeverria M, Sánchez C, A. Ugalde R, B. Menéndez A, C. Lepek V. Engineered ACC deaminase-expressing free-living cells of Mesorhizobium loti show increased nodulation efficiency and competitiveness on Lotus spp. J GEN APPL MICROBIOL 2010; 56:331-8. [DOI: 10.2323/jgam.56.331] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
209
|
Sasaki NV, Sato N. Elucidating genome structure evolution by analysis of isoapostatic gene clusters using statistics of variance of gene distances. Genome Biol Evol 2009; 2:1-12. [PMID: 20333218 PMCID: PMC2839351 DOI: 10.1093/gbe/evp051] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/15/2009] [Indexed: 11/14/2022] Open
Abstract
Identifying genomic regions that descended from a common ancestor is important
for understanding the function and evolution of genomes. In related genomes,
clusters of homologous gene pairs serve as evidence for candidate homologous
regions, which make up genomic core. Previous studies on the structural
organization of bacterial genomes revealed that basic backbone of genomic core
is interrupted by genomic islands. Here, we applied statistics using variance of
distances as a measure to classify conserved genes within a set of genomes
according to their “isoapostatic” relationship, which keeps
nearly identical distances of genes. The results of variance statistics analysis
of cyanobacterial genomes including Prochlorococcus,
Synechococcus, and Anabaena indicated that
the conserved genes are classified into several groups called “virtual
linkage groups (VLGs)” according to their positional conservation of
orthologs over the genomes analyzed. The VLGs were used to define mosaic domain
structure of the genomic core. The current model of mosaic genomic domains can
explain global evolution of the genomic core of cyanobacteria. It also
visualizes islands of lateral gene transfer. The stability and the robustness of
the variance statistics are discussed. This method will also be useful in
deciphering the structural organization of genomes in other groups of
bacteria.
Collapse
Affiliation(s)
- Naobumi V Sasaki
- Department of Life Sciences, Graduate School of Arts and Sciences, University of Tokyo, Tokyo, Japan.
| | | |
Collapse
|
210
|
Abstract
Rhizobia are agriculturally important bacteria that can form nitrogen-fixing nodules on the roots of leguminous plants. Agricultural application of rhizobial inoculants can play an important role in increasing leguminous crop yields. In temperate rhizobia, genes involved in nodulation and nitrogen fixation are usually located on one or more large plasmids (pSyms) or on symbiotic islands. In addition, other large plasmids of rhizobia carry genes that are beneficial for survival and competition of rhizobia in the rhizosphere. Conjugative transfer of these large plasmids thus plays an important role in the evolution of rhizobia. Therefore, understanding the mechanism of conjugative transfer of large rhizobial plasmids provides foundations for maintaining, monitoring, and predicting the behaviour of these plasmids during field release events. In this minireview, we summarize two types of known rhizobial conjugative plasmids, including quorum sensing regulated plasmids and RctA-repressed plasmids. We provide evidence for the existence of a third type of conjugative plasmid, including pRleVF39c in Rhizobium leguminosarum bv. viciae strain VF39SM, and we provide a comparison of the different types of conjugation genes found in members of the rhizobia that have had their genomes sequenced so far.
Collapse
Affiliation(s)
- Hao Ding
- Department of Biological Sciences, University of Calgary, AB, Canada
| | | |
Collapse
|
211
|
Orozco-Mosqueda MDC, Altamirano-Hernandez J, Farias-Rodriguez R, Valencia-Cantero E, Santoyo G. Homologous recombination and dynamics of rhizobial genomes. Res Microbiol 2009; 160:733-41. [DOI: 10.1016/j.resmic.2009.09.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2009] [Revised: 09/17/2009] [Accepted: 09/21/2009] [Indexed: 10/20/2022]
|
212
|
Ryan MP, Pembroke JT, Adley CC. Novel Tn4371-ICE like element in Ralstonia pickettii and genome mining for comparative elements. BMC Microbiol 2009; 9:242. [PMID: 19941653 PMCID: PMC2789088 DOI: 10.1186/1471-2180-9-242] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2009] [Accepted: 11/26/2009] [Indexed: 11/22/2022] Open
Abstract
Background Integrative Conjugative Elements (ICEs) are important factors in the plasticity of microbial genomes. An element related to the ICE Tn4371 was discovered during a bioinformatic search of the Ralstonia pickettii 12J genome. This element was analysed and further searches carried out for additional elements. A PCR method was designed to detect and characterise new elements of this type based on this scaffold and a culture collection of fifty-eight Ralstonia pickettii and Ralstonia insidiosa strains were analysed for the presence of the element. Results Comparative sequence analysis of bacterial genomes has revealed the presence of a number of uncharacterised Tn4371-like ICEs in the genomes of several β and γ- Proteobacteria. These elements vary in size, GC content, putative function and have a mosaic-like structure of plasmid- and phage-like sequences which is typical of Tn4371-like ICEs. These elements were found after a through search of the GenBank database. The elements, which are found in Ralstonia, Delftia, Acidovorax, Bordetella, Comamonas, Acidovorax, Congregibacter, Shewanella, Pseudomonas Stenotrophomonas, Thioalkalivibrio sp. HL-EbGR7, Polaromonas, Burkholderia and Diaphorobacter sp. share a common scaffold. A PCR method was designed (based on the Tn4371- like element detected in the Ralstonia pickettii 12J genome) to detect and characterise new elements of this type. Conclusion All elements found in this study possess a common scaffold of core genes but contain different accessory genes. A new uniform nomenclature is suggested for ICEs of the Tn4371 family. Two novel Tn4371-like ICE were discovered and characterised, using the novel PCR method described in two different isolates of Ralstonia pickettii from laboratory purified water.
Collapse
Affiliation(s)
- Michael P Ryan
- Microbiology Laboratory, Department of Chemical and Environmental Sciences, University of Limerick, Limerick, Ireland.
| | | | | |
Collapse
|
213
|
Kawaharada Y, Kiyota H, Eda S, Minamisawa K, Mitsui H. Identification of the Mesorhizobium loti gene responsible for glycerophosphorylation of periplasmic cyclic beta-1,2-glucans. FEMS Microbiol Lett 2009; 302:131-7. [PMID: 19951365 DOI: 10.1111/j.1574-6968.2009.01843.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Periplasmic cyclic beta-1,2-glucans play a crucial role in symbiosis as well as in hypo-osmotic adaptation for rhizobia. These glucans are modified in many species by anionic substituents such as glycerophosphoryl and succinyl ones, but their role remains to be examined. In this work, the cgmA homolog is shown to be responsible for glycerophosphorylation of cyclic beta-1,2-glucans in Mesorhizobium loti. The mutation in cgmA converted most anionic glucans into neutral ones, leaving a small amount of succinylated ones. An additional mutation in opgC, which encodes a succinyltransferase homolog, abolished the residual succinyl substituents in the cgmA-mutant background. The double mutant in cgmA and opgC did not show any significant phenotypic differences from the wild type during both vegetative growth and symbiosis. It is concluded that the anionic substituents make a minor contribution, if any, to the effectiveness of cyclic beta-1,2-glucans in M. loti.
Collapse
|
214
|
Wdowiak-Wróbel S, Małek W. Following phylogenetic tracks of Astragalus cicer microsymbionts. Antonie van Leeuwenhoek 2009; 97:21-34. [DOI: 10.1007/s10482-009-9384-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2009] [Accepted: 09/30/2009] [Indexed: 12/01/2022]
|
215
|
Moscatiello R, Alberghini S, Squartini A, Mariani P, Navazio L. Evidence for calcium-mediated perception of plant symbiotic signals in aequorin-expressing Mesorhizobium loti. BMC Microbiol 2009; 9:206. [PMID: 19775463 PMCID: PMC2759959 DOI: 10.1186/1471-2180-9-206] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2009] [Accepted: 09/23/2009] [Indexed: 11/22/2022] Open
Abstract
Background During the interaction between rhizobia and leguminous plants the two partners engage in a molecular conversation that leads to reciprocal recognition and ensures the beginning of a successful symbiotic integration. In host plants, intracellular Ca2+ changes are an integral part of the signalling mechanism. In rhizobia it is not yet known whether Ca2+ can act as a transducer of symbiotic signals. Results A plasmid encoding the bioluminescent Ca2+ probe aequorin was introduced into Mesorhizobium loti USDA 3147T strain to investigate whether a Ca2+ response is activated in rhizobia upon perception of plant root exudates. We find that M. loti cells respond to environmental and symbiotic cues through transient elevations in intracellular free Ca2+ concentration. Only root exudates from the homologous host Lotus japonicus induce Ca2+ signalling and downstream activation of nodulation genes. The extracellular Ca2+ chelator EGTA inhibits both transient intracellular Ca2+ increase and inducible nod gene expression, while not affecting the expression of other genes, either constitutively expressed or inducible. Conclusion These findings indicate a newly described early event in the molecular dialogue between plants and rhizobia and highlight the use of aequorin-expressing bacterial strains as a promising novel approach for research in legume symbiosis.
Collapse
Affiliation(s)
- Roberto Moscatiello
- Dipartimento di Biologia, Università di Padova, Via U, Bassi 58/B, 35131 Padova, Italy.
| | | | | | | | | |
Collapse
|
216
|
Masson-Boivin C, Giraud E, Perret X, Batut J. Establishing nitrogen-fixing symbiosis with legumes: how many rhizobium recipes? Trends Microbiol 2009; 17:458-66. [PMID: 19766492 DOI: 10.1016/j.tim.2009.07.004] [Citation(s) in RCA: 324] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2009] [Revised: 07/06/2009] [Accepted: 07/13/2009] [Indexed: 11/27/2022]
Abstract
Rhizobia are phylogenetically disparate alpha- and beta-proteobacteria that have achieved the environmentally essential function of fixing atmospheric nitrogen (N(2)) in symbiosis with legumes. All rhizobia elicit the formation of root - or occasionally stem - nodules, plant organs dedicated to the fixation and assimilation of nitrogen. Bacterial colonization of these nodules culminates in a remarkable case of sustained intracellular infection in plants. Rhizobial phylogenetic diversity raised the question of whether these soil bacteria shared a common core of symbiotic genes. In this article, we review the cumulative evidence from recent genomic and genetic analyses pointing toward an unexpected variety of mechanisms that lead to symbiosis with legumes.
Collapse
Affiliation(s)
- Catherine Masson-Boivin
- Laboratoire des Interactions Plantes Micro-organismes (LIPM), UMR CNRS-INRA 2594/441, BP 52627, 31326 Castanet Tolosan Cedex, France.
| | | | | | | |
Collapse
|
217
|
Laranjo M, Machado J, Young JPW, Oliveira S. High diversity of chickpea Mesorhizobium species isolated in a Portuguese agricultural region. FEMS Microbiol Ecol 2009; 48:101-7. [PMID: 19712435 DOI: 10.1016/j.femsec.2003.12.015] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Chickpea rhizobia isolated from Portuguese soils were assigned to the genus Mesorhizobium by 16S-rDNA sequencing. High species diversity was found within populations of an agricultural region in the south of Portugal. Besides the expected Mesorhizobium ciceri and M. mediterraneum, some isolates were close to M. loti or M. tianshanense and some formed a clade that may represent a new species. A new PCR-based approach, named direct amplified polymorphic DNA (DAPD) analysis, supported the 16S-based phylogeny. This suggests that this method could be used as a molecular tool to assess genetic relationships. Evaluation of genetic diversity by 16S-rDNA sequence, DAPD and protein profiles showed different levels of heterogeneity in natural populations.
Collapse
Affiliation(s)
- Marta Laranjo
- Departamento de Biologia, Universidade de Evora, Portugal
| | | | | | | |
Collapse
|
218
|
Abstract
To develop new shuttle vectors for Deinococcus species, the nucleotide sequence of the small cryptic plasmid pUE30 from Deinococcus radiopugnans ATCC19172 was determined. The 2467-bp plasmid possesses two open reading frames, one encoding 88 amino acid residues (Orf1) and the other encoding 501 amino acid residues (Orf2). The predicted amino acid sequence encoded by Orf1 exhibits similarity to the N-terminal regions of replication proteins encoded by repABC-type plasmids of a-proteobacteria. On the other hand, the predicted amino acid sequence encoded by Orf2 exhibits similarity to replication proteins encoded by plasmids of D. radiodurans SARK and Thermus species. Hybrid plasmids consisting of pUE30 and pKatCAT5, which replicates in E. coli with a chloramphenicol resistance determinant, were shown to autonomously replicate in D. grandis ATCC43672. Deletion analysis revealed that Orf2 was necessary for replication of the plasmids in D. grandis. On the other hand, a DNA fragment encompassing the Orf1-coding region was involved in the instability of the plasmid in D. grandis. An expression plasmid that possesses the D. radiodurans minimal groE promoter was constructed, and a firefly luciferase gene was successfully expressed in D. grandis. The D. grandis host-vector system developed in this study should prove useful in the bioremediation of radioactive waste and for the investigation of DNA repair mechanisms.
Collapse
|
219
|
Ramsay JP, Sullivan JT, Jambari N, Ortori CA, Heeb S, Williams P, Barrett DA, Lamont IL, Ronson CW. A LuxRI-family regulatory system controls excision and transfer of the Mesorhizobium loti strain R7A symbiosis island by activating expression of two conserved hypothetical genes. Mol Microbiol 2009; 73:1141-55. [PMID: 19682258 DOI: 10.1111/j.1365-2958.2009.06843.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The symbiosis island ICEMlSym(R7A) of Mesorhizobium loti R7A is an integrative and conjugative element (ICE) that carries genes required for a nitrogen-fixing symbiosis with Lotus species. ICEMlSym(R7A) encodes homologues (TraR, TraI1 and TraI2) of proteins that regulate plasmid transfer by quorum sensing in rhizobia and agrobacteria. Introduction of traR cloned on a plasmid induced excision of ICEMlSym(R7A) in all cells, a 1000-fold increase in the production of 3-oxo-C6-homoserine lactone (3-oxo-C6-HSL) and a 40-fold increase in conjugative transfer. These effects were dependent on traI1 but not traI2. Induction of expression from the traI1 and traI2 promoters required the presence of plasmid-borne traR and either traI1 or 100 pM 3-oxo-C6-HSL, suggesting that traR expression or TraR activity is repressed in wild-type cells by a mechanism that can be overcome by additional copies of traR. The traI2 gene formed an operon with hypothetical genes msi172 and msi171 that were essential for ICEMlSym(R7A) excision and transfer. Our data suggest that derepressed TraR in conjunction with TraI1-synthesized 3-oxo-C6-HSL regulates excision and transfer of ICEMlSym(R7A) through expression of msi172 and msi171. Homologues of msi172 and msi171 were present on putative ICEs in several alpha-proteobacteria, indicating a conserved role in ICE excision and transfer.
Collapse
Affiliation(s)
- Joshua P Ramsay
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | | | | | | | | | | | | | | | | |
Collapse
|
220
|
Mierzwa B, Wdowiak-Wróbel S, Małek W. Phenotypic, genomic and phylogenetic characteristics of rhizobia isolated from root nodules of Robinia pseudoacacia (black locust) growing in Poland and Japan. Arch Microbiol 2009; 191:697-710. [PMID: 19669127 DOI: 10.1007/s00203-009-0500-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2009] [Revised: 07/08/2009] [Accepted: 07/27/2009] [Indexed: 11/24/2022]
Abstract
Rhizobial strains, rescued from the root nodules of Robinia pseudoacacia growing in Japan and Poland, were characterized for the phenotypic properties, genomic diversity as well as phylogeny and compared with the reference strains representing different species and genera of nodule bacteria. They had a moderately slow growth rate, a low tolerance to antibiotics, a moderate resistance to NaCl and produced acid in yeast mannitol agar. Cluster analysis based on the phenotypic features divided all bacteria involved in this study into four phena, comprising: (1) Rhizobium sp. + Sinorhizobium sp., (2) Bradyrhizobium sp., (3) R. pseudoacacia microsymbionts + Mesorhizobium sp., and (4) Rhizobium galegae strains at similarity coefficient of 74%. R. pseudoacacia nodule isolates and Mesorhizobium species were placed on a single branch clearly distinct from other rhizobium genera lineages. Strains representing R. pseudoacacia microsymbionts shared 98-99% 16S rDNA sequence identity with Mesorhizobium species and in 16S rDNA phylogenetic tree all these bacteria formed common cluster. The rhizobia tested are genomically heterogeneous as indicated by the AFLP (Amplified Fragment Length Polymorphism) method. The bacteria studied exhibited high degree of specificity for nodulation. Nitrogenase structural genes in these strains were located on 771-961 kb megaplasmids.
Collapse
Affiliation(s)
- Bozena Mierzwa
- Department of Genetics and Microbiology, M. Curie-Skłodowska University, 20-033 Lublin, Poland
| | | | | |
Collapse
|
221
|
Cai H, Thompson R, Budinich MF, Broadbent JR, Steele JL. Genome sequence and comparative genome analysis of Lactobacillus casei: insights into their niche-associated evolution. Genome Biol Evol 2009; 1:239-57. [PMID: 20333194 PMCID: PMC2817414 DOI: 10.1093/gbe/evp019] [Citation(s) in RCA: 129] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/10/2009] [Indexed: 12/13/2022] Open
Abstract
Lactobacillus casei is remarkably adaptable to diverse habitats and widely used in the food industry. To reveal the genomic features that contribute to its broad ecological adaptability and examine the evolution of the species, the genome sequence of L. casei ATCC 334 is analyzed and compared with other sequenced lactobacilli. This analysis reveals that ATCC 334 contains a high number of coding sequences involved in carbohydrate utilization and transcriptional regulation, reflecting its requirement for dealing with diverse environmental conditions. A comparison of the genome sequences of ATCC 334 to L. casei BL23 reveals 12 and 19 genomic islands, respectively. For a broader assessment of the genetic variability within L. casei, gene content of 21 L. casei strains isolated from various habitats (cheeses, n = 7; plant materials, n = 8; and human sources, n = 6) was examined by comparative genome hybridization with an ATCC 334-based microarray. This analysis resulted in identification of 25 hypervariable regions. One of these regions contains an overrepresentation of genes involved in carbohydrate utilization and transcriptional regulation and was thus proposed as a lifestyle adaptation island. Differences in L. casei genome inventory reveal both gene gain and gene decay. Gene gain, via acquisition of genomic islands, likely confers a fitness benefit in specific habitats. Gene decay, that is, loss of unnecessary ancestral traits, is observed in the cheese isolates and likely results in enhanced fitness in the dairy niche. This study gives the first picture of the stable versus variable regions in L. casei and provides valuable insights into evolution, lifestyle adaptation, and metabolic diversity of L. casei.
Collapse
Affiliation(s)
- Hui Cai
- Department of Food Science, University of Wisconsin, USA
| | | | | | | | | |
Collapse
|
222
|
Ott T, Sullivan J, James EK, Flemetakis E, Günther C, Gibon Y, Ronson C, Udvardi M. Absence of symbiotic leghemoglobins alters bacteroid and plant cell differentiation during development of Lotus japonicus root nodules. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2009; 22:800-8. [PMID: 19522562 DOI: 10.1094/mpmi-22-7-0800] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
During development of legume root nodules, rhizobia and their host plant cells undergo profound differentiation, which is underpinned by massive changes in gene expression in both symbiotic partners. Oxygen concentrations in infected and surrounding uninfected cells drop precipitously during nodule development. To assess what effects this has on plant and bacterial cell differentiation and gene expression, we used a leghemoglobin-RNA-interference (LbRNAi) line of Lotus japonicus, which is devoid of leghemoglobins and has elevated levels of free-oxygen in its nodules. Bacteroids in LbRNAi nodules showed altered ultrastructure indicating changes in bacterial differentiation. Transcript analysis of 189 plant and 192 bacterial genes uncovered many genes in both the plant and bacteria that were differentially regulated during nodulation of LbRNAi plants compared with the wild type (containing Lb and able to fix nitrogen). These included fix and nif genes of the bacteria, which are involved in microaerobic respiration and nitrogen fixation, respectively, and plant genes involved in primary and secondary metabolism. Metabolite analysis revealed decreased levels of many amino acids in nodules of LbRNAi plants, consistent with the defect in symbiotic nitrogen fixation of this line.
Collapse
Affiliation(s)
- Thomas Ott
- Max-Planck-Institute of Molecular Plant Physiology, Golm, Germany
| | | | | | | | | | | | | | | |
Collapse
|
223
|
Karunakaran R, Ramachandran VK, Seaman JC, East AK, Mouhsine B, Mauchline TH, Prell J, Skeffington A, Poole PS. Transcriptomic analysis of Rhizobium leguminosarum biovar viciae in symbiosis with host plants Pisum sativum and Vicia cracca. J Bacteriol 2009; 191:4002-14. [PMID: 19376875 PMCID: PMC2698398 DOI: 10.1128/jb.00165-09] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2009] [Accepted: 04/03/2009] [Indexed: 01/20/2023] Open
Abstract
Rhizobium leguminosarum bv. viciae forms nitrogen-fixing nodules on several legumes, including pea (Pisum sativum) and vetch (Vicia cracca), and has been widely used as a model to study nodule biochemistry. To understand the complex biochemical and developmental changes undergone by R. leguminosarum bv. viciae during bacteroid development, microarray experiments were first performed with cultured bacteria grown on a variety of carbon substrates (glucose, pyruvate, succinate, inositol, acetate, and acetoacetate) and then compared to bacteroids. Bacteroid metabolism is essentially that of dicarboxylate-grown cells (i.e., induction of dicarboxylate transport, gluconeogenesis and alanine synthesis, and repression of sugar utilization). The decarboxylating arm of the tricarboxylic acid cycle is highly induced, as is gamma-aminobutyrate metabolism, particularly in bacteroids from early (7-day) nodules. To investigate bacteroid development, gene expression in bacteroids was analyzed at 7, 15, and 21 days postinoculation of peas. This revealed that bacterial rRNA isolated from pea, but not vetch, is extensively processed in mature bacteroids. In early development (7 days), there were large changes in the expression of regulators, exported and cell surface molecules, multidrug exporters, and heat and cold shock proteins. fix genes were induced early but continued to increase in mature bacteroids, while nif genes were induced strongly in older bacteroids. Mutation of 37 genes that were strongly upregulated in mature bacteroids revealed that none were essential for nitrogen fixation. However, screening of 3,072 mini-Tn5 mutants on peas revealed previously uncharacterized genes essential for nitrogen fixation. These encoded a potential magnesium transporter, an AAA domain protein, and proteins involved in cytochrome synthesis.
Collapse
Affiliation(s)
- R Karunakaran
- Department of Molecular Microbiology, John Innes Centre, Norwich, United Kingdom
| | | | | | | | | | | | | | | | | |
Collapse
|
224
|
Penyalver R, Oger PM, Su S, Alvarez B, Salcedo CI, López MM, Farrand SK. The S-adenosyl-L-homocysteine hydrolase gene ahcY of Agrobacterium radiobacter K84 is required for optimal growth, antibiotic production, and biocontrol of crown gall disease. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2009; 22:713-724. [PMID: 19445596 DOI: 10.1094/mpmi-22-6-0713] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Agrobacterium radiobacter K84 is a commercial agent used worldwide to control crown gall disease caused by pathogenic isolates of A. tumefaciens. More than 2,000 transposon insertion derivatives of strain K84 were screened by a standardized greenhouse bioassay to identify mutants defective in biocontrol. Three mutants affected in biocontrol properties were identified. All three mutants displayed normal levels of attachment to tomato seed and root colonization. One of these mutants, M19-164, exhibited partial biocontrol and did not produce detectable levels of agrocin 84. In this mutant, the transposon is located in the agn locus of pAgK84, which codes for agrocin 84 biosynthesis. The second mutant, M19-158, also exhibited partial biocontrol and produced reduced amounts of agrocin 84 as a result of a mutation in a chromosomal gene of unknown function. The third mutant, M9-22, failed to biocontrol, was impaired in both growth in minimal medium and siderophore production, and failed to produce detectable levels of agrocin 84. The chromosomal gene ahcY, which encodes S-adenosyl-l-homocysteine hydrolase, was disrupted in this mutant. Expression of a functional copy of ahcY in M9-22 restored all of the altered phenotypes. The fact that all identified biocontrol mutants exhibited a partial or total defect in production of agrocin 84 indicates that this antibiotic is required for optimum biocontrol. This study also identified two chromosomally encoded genes required for agrocin 84 production. That a mutation in ahcY abolishes biocontrol suggests that the intracellular ratio of S-adenosyl-l-methionine to S-adenosyl-l-homocysteine is an important factor for agrocin 84 biosynthesis. Finally, we demonstrate that the ahcY gene in strain K84 is also required for optimal growth as well as for antibiotic production and biocontrol of crown gall disease.
Collapse
Affiliation(s)
- Ramón Penyalver
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| | | | | | | | | | | | | |
Collapse
|
225
|
Mandrich L, Manco G. Evolution in the Amidohydrolase Superfamily: Substrate-Assisted Gain of Function in the E183K Mutant of a Phosphotriesterase-like Metal-Carboxylesterase. Biochemistry 2009; 48:5602-12. [DOI: 10.1021/bi801932x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Luigi Mandrich
- Institute of Protein Biochemistry, National Research Council, Via Pietro Castellino 111, 80131, Naples, Italy
| | - Giuseppe Manco
- Institute of Protein Biochemistry, National Research Council, Via Pietro Castellino 111, 80131, Naples, Italy
| |
Collapse
|
226
|
McCulloch KM, Mukherjee T, Begley TP, Ealick SE. Structure of the PLP degradative enzyme 2-methyl-3-hydroxypyridine-5-carboxylic acid oxygenase from Mesorhizobium loti MAFF303099 and its mechanistic implications. Biochemistry 2009; 48:4139-49. [PMID: 19317437 PMCID: PMC2708785 DOI: 10.1021/bi900149f] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A vitamin B(6) degradative pathway has recently been identified and characterized in Mesorhizobium loti MAFF303099. One of the enzymes on this pathway, 2-methyl-3-hydroxypyridine-5-carboxylic acid oxygenase (MHPCO), is a flavin-dependent enzyme and catalyzes the oxidative ring-opening of 2-methyl-3-hydroxypyridine-5-carboxylic acid to form E-2-(acetamino-methylene)succinate. The gene for this enzyme has been cloned, and the corresponding protein has been overexpressed in Escherichia coli and purified. The crystal structure of MHPCO has been solved to 2.1 A using SAD phasing with and without the substrate MHPC bound. These crystal structures provide insight into the reaction mechanism and suggest roles for active site residues in the catalysis of a novel oxidative ring-opening reaction.
Collapse
Affiliation(s)
- Kathryn M. McCulloch
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853
| | - Tathagata Mukherjee
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853
| | - Tadhg P. Begley
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853
| | - Steven E. Ealick
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853
| |
Collapse
|
227
|
Sánchez C, Iannino F, Deakin WJ, Ugalde RA, Lepek VC. Characterization of the Mesorhizobium loti MAFF303099 type-three protein secretion system. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2009; 22:519-28. [PMID: 19348570 DOI: 10.1094/mpmi-22-5-0519] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Type III secretion systems (T3SS) have been found in several species of rhizobia. Proteins (termed effectors) secreted by this system are involved in host-range determination and influence nodulation efficiency. Mesorhizobium loti MAFF303099 possesses a functional T3SS in its symbiotic island whose expression is induced by flavonoids. As in other rhizobia, conserved cis-elements (tts box) were found in the promoter regions of genes or operons encoding T3SS components. Using a bioinformatics approach, we searched for other tts-box-controlled genes, and confirmed this transcriptional regulation for some of them using lacZ fusions to the predicted promoter regions. Translational fusions to a reporter peptide were created to demonstrate T3SS-mediated secretion of two new MAFF303099 effectors. Finally, we showed that mutation of the M. loti MAFF303099 T3SS affects its competitiveness on Lotus glaber and investigated, at the molecular level, responses of the model legume L. japonicus to the T3SS.
Collapse
Affiliation(s)
- Cintia Sánchez
- Instituto de Investigaciones Biotecnológicas, INTECH, Universidad Nacional de General San Martín, CONICET, Buenos Aires, Argentina
| | | | | | | | | |
Collapse
|
228
|
Valenzuela-Encinas C, Neria-González I, Alcántara-Hernández RJ, Estrada-Alvarado I, Zavala-Díaz de la Serna FJ, Dendooven L, Marsch R. Changes in the bacterial populations of the highly alkaline saline soil of the former lake Texcoco (Mexico) following flooding. Extremophiles 2009; 13:609-21. [PMID: 19387766 DOI: 10.1007/s00792-009-0244-4] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2009] [Accepted: 03/30/2009] [Indexed: 10/20/2022]
Abstract
Flooding an extreme alkaline-saline soil decreased alkalinity and salinity, which will change the bacterial populations. Bacterial 16S rDNA libraries were generated of three soils with different electrolytic conductivity (EC), i.e. soil with EC 1.7 dS m(-1) and pH 7.80 (LOW soil), with EC 56 dS m(-1) and pH 10.11 (MEDIUM soil) and with EC 159 dS m(-1) and pH 10.02 (HIGH soil), using universal bacterial oligonucleotide primers, and 463 clone 16S rDNA sequences were analyzed phylogenetically. Library proportions and clone identification of the phyla Proteobacteria, Actinobacteria, Acidobacteria, Cyanobacteria, Bacteroidetes, Firmicutes and Cloroflexi showed that the bacterial communities were different. Species and genera of the Rhizobiales, Rhodobacterales and Xanthomonadales orders of the alpha- and gamma-subdivision of Proteobacteria were found at the three sites. Species and genera of the Rhodospirillales, Sphingobacteriales, Clostridiales, Oscillatoriales and Caldilineales were found only in the HIGH soil, Sphingomonadales, Burkholderiales and Pseudomonadales in the MEDIUM soil, Myxococcales in the LOW soil, and Actinomycetales in the MEDIUM and LOW soils. It was found that the largest diversity at the order and species level was found in the MEDIUM soil as bacteria of both the HIGH and LOW soils were found in it.
Collapse
|
229
|
Rhizobium sp. strain NGR234 possesses a remarkable number of secretion systems. Appl Environ Microbiol 2009; 75:4035-45. [PMID: 19376903 DOI: 10.1128/aem.00515-09] [Citation(s) in RCA: 115] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Rhizobium sp. strain NGR234 is a unique alphaproteobacterium (order Rhizobiales) that forms nitrogen-fixing nodules with more legumes than any other microsymbiont. We report here that the 3.93-Mbp chromosome (cNGR234) encodes most functions required for cellular growth. Few essential functions are encoded on the 2.43-Mbp megaplasmid (pNGR234b), and none are present on the second 0.54-Mbp symbiotic plasmid (pNGR234a). Among many striking features, the 6.9-Mbp genome encodes more different secretion systems than any other known rhizobia and probably most known bacteria. Altogether, 132 genes and proteins are linked to secretory processes. Secretion systems identified include general and export pathways, a twin arginine translocase secretion system, six type I transporter genes, one functional and one putative type III system, three type IV attachment systems, and two putative type IV conjugation pili. Type V and VI transporters were not identified, however. NGR234 also carries genes and regulatory networks linked to the metabolism of a wide range of aromatic and nonaromatic compounds. In this way, NGR234 can quickly adapt to changing environmental stimuli in soils, rhizospheres, and plants. Finally, NGR234 carries at least six loci linked to the quenching of quorum-sensing signals, as well as one gene (ngrI) that possibly encodes a novel type of autoinducer I molecule.
Collapse
|
230
|
Abstract
A significant proportion of bacteria express two or more chaperonin genes. Chaperonins are a group of molecular chaperones, defined by sequence similarity, required for the folding of some cellular proteins. Chaperonin monomers have a mass of c. 60 kDa, and are typically found as large protein complexes containing 14 subunits arranged in two rings. The mechanism of action of the Escherichia coli GroEL protein has been studied in great detail. It acts by binding to unfolded proteins and enabling them to fold in a protected environment where they do not interact with any other proteins. GroEL can assist the folding of many proteins of different sizes, sequences, and structures, and homologues from many different bacteria can functionally replace GroEL in E. coli. What then are the functions of multiple chaperonins? Do they provide a mechanism for cells to increase their general chaperoning ability, or have they become specialized to take on specific novel cellular roles? Here I will review the genetic, biochemical, and phylogenetic evidence that has a bearing on this question, and show that there is good evidence for at least some specificity of function in multiple chaperonin genes.
Collapse
Affiliation(s)
- Peter A Lund
- School of Biosciences, University of Birmingham, Birmingham, UK.
| |
Collapse
|
231
|
Bergmann D, Zehfus M, Zierer L, Smith B, Gabel M. Grass Rhizosheaths: Associated Bacterial Communities and Potential for Nitrogen Fixation. WEST N AM NATURALIST 2009. [DOI: 10.3398/064.069.0102] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
232
|
Mathesius U. Comparative proteomic studies of root–microbe interactions. J Proteomics 2009; 72:353-66. [DOI: 10.1016/j.jprot.2008.12.006] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2008] [Revised: 12/11/2008] [Accepted: 12/12/2008] [Indexed: 01/19/2023]
|
233
|
Prell J, Bourdès A, Karunakaran R, Lopez-Gomez M, Poole P. Pathway of gamma-aminobutyrate metabolism in Rhizobium leguminosarum 3841 and its role in symbiosis. J Bacteriol 2009; 191:2177-86. [PMID: 19181799 PMCID: PMC2655508 DOI: 10.1128/jb.01714-08] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2008] [Accepted: 01/23/2009] [Indexed: 11/20/2022] Open
Abstract
Pea plants incubated in 15N2 rapidly accumulated labeled gamma-aminobutyrate (GABA) in the plant cytosol and in bacteroids of Rhizobium leguminosarum bv. viciae 3841. Two pathways of GABA metabolism were identified in R. leguminosarum 3841. In the first, glutamate is formed by GABA aminotransferase (GabT), transferring the amino group from GABA to 2-oxoglutarate. In the second, alanine is formed by two omega-aminotransferases (OpaA and OpaB), transferring the amino group from GABA to pyruvate. While the gabT mutant and the gabT opaA double mutant grew on GABA as a nitrogen source, the final triple mutant did not. The semialdehyde released from GABA by transamination is oxidized by succinate semialdehyde dehydrogenase (GabD). Five of six potential GabD proteins in R. leguminosarum bv. viciae 3841 (GabD1, -D2, -D3, -D4, and -D5) were shown by expression analysis to have this activity. However, only mutations of GabD1, GabD2, and GabD4 were required to prevent utilization of GABA as the sole nitrogen source in culture. The specific enzyme activities of GabT, Opa, and GabD were highly elevated in bacteroids relative to cultured bacteria. This was due to elevated expression of gabT, opaA, gabD1, and gabD2 in nodules. Strains mutated in aminotransferase and succinate semialdehyde dehydrogenases (gabT, opaA, or opaB and gabD1, gabD2, or gabD4, respectively) that cannot use GABA in culture still fixed nitrogen on plants. While GABA catabolism alone is not essential for N2 fixation in bacteroids, it may have a role in energy generation and in bypassing the decarboxylating arm of the tricarboxylic acid cycle.
Collapse
Affiliation(s)
- Jurgen Prell
- Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Colney, United Kingdom
| | | | | | | | | |
Collapse
|
234
|
Duan J, Müller KM, Charles TC, Vesely S, Glick BR. 1-aminocyclopropane-1-carboxylate (ACC) deaminase genes in rhizobia from southern Saskatchewan. MICROBIAL ECOLOGY 2009; 57:423-36. [PMID: 18548183 DOI: 10.1007/s00248-008-9407-6] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2008] [Revised: 04/18/2008] [Accepted: 05/17/2008] [Indexed: 05/03/2023]
Abstract
A collection of 233 rhizobia strains from 30 different sites across Saskatchewan, Canada was assayed for 1-aminocyclopropane-1-carboxylate (ACC) deaminase activity, with 27 of the strains displaying activity. When all 27 strains were characterized based on 16S rRNA gene sequences, it was noted that 26 strains are close to Rhizobium leguminosarum and one strain is close to Rhizobium gallicum. Polymerase chain reaction (PCR) was used to rapidly isolate ACC deaminase structural genes from the above-mentioned 27 strains; 17 of them have 99% identities with the previously characterized ACC deaminase structural gene (acdS) from R. leguminosarum bv. viciae 128C53K, whereas the other ten strains are 84% identical (864-866/1,020 bp) compared to the acdS from strain 128C53K. Southern hybridization showed that each strain has only one ACC deaminase gene. Using inverse PCR, the region upstream of the ACC deaminase structural genes was characterized for all 27 strains, and 17 of these strains were shown to encode a leucine-responsive regulatory protein. The results are discussed in the context of a previously proposed model for the regulation of bacterial ACC deaminase in R. leguminosarum 128C53K.
Collapse
Affiliation(s)
- Jin Duan
- Department of Biology, University of Waterloo, Waterloo, ON, Canada.
| | | | | | | | | |
Collapse
|
235
|
Becker A, Barnett MJ, Capela D, Dondrup M, Kamp PB, Krol E, Linke B, Rüberg S, Runte K, Schroeder BK, Weidner S, Yurgel SN, Batut J, Long SR, Pühler A, Goesmann A. A portal for rhizobial genomes: RhizoGATE integrates a Sinorhizobium meliloti genome annotation update with postgenome data. J Biotechnol 2009; 140:45-50. [PMID: 19103235 PMCID: PMC2656595 DOI: 10.1016/j.jbiotec.2008.11.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2008] [Revised: 10/31/2008] [Accepted: 11/20/2008] [Indexed: 11/17/2022]
Abstract
Sinorhizobium meliloti is a symbiotic soil bacterium of the alphaproteobacterial subdivision. Like other rhizobia, S. meliloti induces nitrogen-fixing root nodules on leguminous plants. This is an ecologically and economically important interaction, because plants engaged in symbiosis with rhizobia can grow without exogenous nitrogen fertilizers. The S. meliloti-Medicago truncatula (barrel medic) association is an important symbiosis model. The S. meliloti genome was published in 2001, and the M. truncatula genome currently is being sequenced. Many new resources and data have been made available since the original S. meliloti genome annotation and an update was needed. In June 2008, we submitted our annotation update to the EMBL and NCBI databases. Here we describe this new annotation and a new web-based portal RhizoGATE. About 1000 annotation updates were made; these included assigning functions to 313 putative proteins, assigning EC numbers to 431 proteins, and identifying 86 new putative genes. RhizoGATE incorporates the new annotion with the S. meliloti GenDB project, a platform that allows annotation updates in real time. Locations of transposon insertions, plasmid integrations, and array probe sequences are available in the GenDB project. RhizoGATE employs the EMMA platform for management and analysis of transcriptome data and the IGetDB data warehouse to integrate a variety of heterogeneous external data sources.
Collapse
Affiliation(s)
- Anke Becker
- Genetics and Systems Biology, Faculty of Biology, University of Freiburg, Freiburg, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
236
|
Abstract
Rhizobia - a diverse group of soil bacteria - induce the formation of nitrogen-fixing nodules on the roots of legumes. Nodulation begins when the roots initiate a molecular dialogue with compatible rhizobia in the soil. Most rhizobia reply by secreting lipochitooligosaccharidic nodulation factors that enable entry into the legume. A molecular exchange continues, which, in compatible interactions, permits rhizobia to invade root cortical cells, differentiate into bacteroids and fix nitrogen. Rhizobia also use additional molecular signals, such as secreted proteins or surface polysaccharides. One group of proteins secreted by rhizobia have homologues in bacterial pathogens and may have been co-opted by rhizobia for symbiotic purposes.
Collapse
|
237
|
White JP, Prell J, Ramachandran VK, Poole PS. Characterization of a {gamma}-aminobutyric acid transport system of Rhizobium leguminosarum bv. viciae 3841. J Bacteriol 2009; 191:1547-55. [PMID: 19103927 PMCID: PMC2648222 DOI: 10.1128/jb.00926-08] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2008] [Accepted: 12/09/2008] [Indexed: 12/29/2022] Open
Abstract
Spontaneous mutants of Rhizobium leguminosarum bv. viciae 3841 were isolated that grow faster than the wild type on gamma-aminobutyric acid (GABA) as the sole carbon and nitrogen source. These strains (RU1736 and RU1816) have frameshift mutations (gtsR101 and gtsR102, respectively) in a GntR-type regulator (GtsR) that result in a high rate of constitutive GABA transport. Tn5 mutagenesis and quantitative reverse transcription-PCR showed that GstR regulates expression of a large operon (pRL100242 to pRL100252) on the Sym plasmid that is required for GABA uptake. An ABC transport system, GtsABCD (for GABA transport system) (pRL100248-51), of the spermidine/putrescine family is part of this operon. GtsA is a periplasmic binding protein, GtsB and GtsC are integral membrane proteins, and GtsD is an ATP-binding subunit. Expression of gtsABCD from a lacZ promoter confirmed that it alone is responsible for high rates of GABA transport, enabling rapid growth of strain 3841 on GABA. Gts transports open-chain compounds with four or five carbon atoms with carboxyl and amino groups at, or close to, opposite termini. However, aromatic compounds with similar spacing between carboxyl and amino groups are excellent inhibitors of GABA uptake so they may also be transported. In addition to the ABC transporter, the operon contains two putative mono-oxygenases, a putative hydrolase, a putative aldehyde dehydrogenase, and a succinate semialdehyde dehydrogenase. This suggests the operon may be involved in the transport and breakdown of a more complex precursor to GABA. Gts is not expressed in pea bacteroids, and gtsB mutants are unaltered in their symbiotic phenotype, suggesting that Bra is the only GABA transport system available for amino acid cycling.
Collapse
Affiliation(s)
- J P White
- University of Reading, United Kingdom
| | | | | | | |
Collapse
|
238
|
Characterization of a Mesorhizobium loti alpha-type carbonic anhydrase and its role in symbiotic nitrogen fixation. J Bacteriol 2009; 191:2593-600. [PMID: 19218391 DOI: 10.1128/jb.01456-08] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Carbonic anhydrase (CA) (EC 4.2.1.1) is a widespread enzyme catalyzing the reversible hydration of CO(2) to bicarbonate, a reaction that participates in many biochemical and physiological processes. Mesorhizobium loti, the microsymbiont of the model legume Lotus japonicus, possesses on the symbiosis island a gene (msi040) encoding an alpha-type CA homologue, annotated as CAA1. In the present work, the CAA1 open reading frame from M. loti strain R7A was cloned, expressed, and biochemically characterized, and it was proven to be an active alpha-CA. The biochemical and physiological roles of the CAA1 gene in free-living and symbiotic rhizobia were examined by using an M. loti R7A disruption mutant strain. Our analysis revealed that CAA1 is expressed in both nitrogen-fixing bacteroids and free-living bacteria during growth in batch cultures, where gene expression was induced by increased medium pH. L. japonicus plants inoculated with the CAA1 mutant strain showed no differences in top-plant traits and nutritional status but consistently formed a higher number of nodules exhibiting higher fresh weight, N content, nitrogenase activity, and delta(13)C abundance. Based on these results, we propose that although CAA1 is not essential for nodule development and symbiotic nitrogen fixation, it may participate in an auxiliary mechanism that buffers the bacteroid periplasm, creating an environment favorable for NH(3) protonation, thus facilitating its diffusion and transport to the plant. In addition, changes in the nodule delta(13)C abundance suggest the recycling of at least part of the HCO(3)(-) produced by CAA1.
Collapse
|
239
|
Role of potassium uptake systems in Sinorhizobium meliloti osmoadaptation and symbiotic performance. J Bacteriol 2009; 191:2133-43. [PMID: 19181803 DOI: 10.1128/jb.01567-08] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Stimulation of potassium uptake is the most rapid response to an osmotic upshock in bacteria. This cation accumulates by a number of different transport systems whose importance has not been previously addressed for rhizobia. In silico analyses reveal the presence of genes encoding four possible potassium uptake systems in the genome of Sinorhizobium meliloti 1021: Kup1, Kup2, Trk, and Kdp. The study of the relevance of these systems under a number of different growth conditions and in symbiosis showed that the integrity of Kup1 or Trk is essential for growth under laboratory conditions even in osmotically balanced media and the absence of both systems leads to a reduced infectivity and competitiveness of the bacteria in alfalfa roots. Trk is the main system involved in the accumulation of potassium after an osmotic upshift and the most important system for growth of S. meliloti under hyperosmotic conditions. The other three systems, especially Kup1, are also relevant during the osmotic adaptation of the cell, and the relative importance of the Kdp system increases at low potassium concentrations.
Collapse
|
240
|
Wu X, Flatt PM, Xu H, Mahmud T. Biosynthetic gene cluster of cetoniacytone A, an unusual aminocyclitol from the endosymbiotic Bacterium Actinomyces sp. Lu 9419. Chembiochem 2009; 10:304-14. [PMID: 19101977 PMCID: PMC3136446 DOI: 10.1002/cbic.200800527] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2008] [Indexed: 11/10/2022]
Abstract
A gene cluster responsible for the biosynthesis of the antitumor agent cetoniacytone A was identified in Actinomyces sp. strain Lu 9419, an endosymbiotic bacterium isolated from the intestines of the rose chafer beetle (Cetonia aurata). The nucleotide sequence analysis of the 46 kb DNA region revealed the presence of 31 complete ORFs, including genes predicted to encode a 2-epi-5-epi-valiolone synthase (CetA), a glyoxalase/bleomycin resistance protein (CetB), an acyltransferase (CetD), an FAD-dependent dehydrogenase (CetF2), two oxidoreductases (CetF1 and CetG), two aminotransferases (CetH and CetM), and a pyranose oxidase (CetL). CetA has previously been demonstrated to catalyze the cyclization of sedoheptulose 7-phosphate to the cyclic intermediate, 2-epi-5-epi-valiolone. In this report, the glyoxalase/bleomycin resistance protein homolog CetB was identified as a 2-epi-5-epi-valiolone epimerase (EVE), a new member of the vicinal oxygen chelate (VOC) superfamily. The 24 kDa recombinant histidine-tagged CetB was found to form a homodimer; each monomer contains two betaalphabetabetabeta scaffolds that form a metal binding site with two histidine and two glutamic acid residues. A BLAST search using the newly isolated cet biosynthetic genes revealed an analogous suite of genes in the genome of Frankia alni ACN14a, suggesting that this plant symbiotic nitrogen-fixing bacterium is capable of producing a secondary metabolite related to the cetoniacytones.
Collapse
Affiliation(s)
- Xiumei Wu
- Genetics Program, College of Agricultural Sciences, Oregon State University, Corvallis, OR 97331-2212 (USA)
| | - Patricia M. Flatt
- College of Pharmacy, Oregon State University, Corvallis, OR 97331-3507 (USA) Fax: 1-541-737-3999
| | - Hui Xu
- College of Pharmacy, Oregon State University, Corvallis, OR 97331-3507 (USA) Fax: 1-541-737-3999
| | - Taifo Mahmud
- Genetics Program, College of Agricultural Sciences, Oregon State University, Corvallis, OR 97331-2212 (USA)
- College of Pharmacy, Oregon State University, Corvallis, OR 97331-3507 (USA) Fax: 1-541-737-3999
| |
Collapse
|
241
|
Belimov AA, Dodd IC, Hontzeas N, Theobald JC, Safronova VI, Davies WJ. Rhizosphere bacteria containing 1-aminocyclopropane-1-carboxylate deaminase increase yield of plants grown in drying soil via both local and systemic hormone signalling. THE NEW PHYTOLOGIST 2009; 181:413-423. [PMID: 19121036 DOI: 10.1111/j.1469-8137.2008.02657.x] [Citation(s) in RCA: 181] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Decreased soil water availability can stimulate production of the plant hormone ethylene and inhibit plant growth. Strategies aimed at decreasing stress ethylene evolution might attenuate its negative effects. An environmentally benign (nonchemical) method of modifying crop ethylene relations - soil inoculation with a natural root-associated bacterium Variovorax paradoxus 5C-2 (containing the enzyme 1-aminocyclopropane-1-carboxylate (ACC) deaminase that degrades the ethylene precursor ACC), was assessed with pea (Pisum sativum) plants grown in drying soil. Inoculation with V. paradoxus 5C-2, but not with a transposome mutant with massively decreased ACC deaminase activity, improved growth, yield and water-use efficiency of droughted peas. Systemic effects of V. paradoxus 5C-2 included an amplified soil drying-induced increase of xylem abscisic acid (ABA) concentration, but an attenuated soil drying-induced increase of xylem ACC concentration. A local bacterial effect was increased nodulation by symbiotic nitrogen-fixing bacteria, which prevented a drought-induced decrease in nodulation and seed nitrogen content. Successfully deploying a single bacterial gene in the rhizosphere increased yield and nutritive value of plants grown in drying soil, via both local and systemic hormone signalling. Such bacteria may provide an easily realized, economic means of sustaining crop yields and using irrigation water more efficiently in dryland agriculture.
Collapse
Affiliation(s)
- Andrey A Belimov
- All-Russia Research Institute for Agricultural Microbiology, Podbelskogo Sh. 3, Pushkin-8, 196608, St. Petersburg, Russian Federation;The Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, UK;Department of Biology, University of Waterloo, Waterloo, Canada, ON N2L 3G1
| | - Ian C Dodd
- All-Russia Research Institute for Agricultural Microbiology, Podbelskogo Sh. 3, Pushkin-8, 196608, St. Petersburg, Russian Federation;The Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, UK;Department of Biology, University of Waterloo, Waterloo, Canada, ON N2L 3G1
| | - Nikos Hontzeas
- All-Russia Research Institute for Agricultural Microbiology, Podbelskogo Sh. 3, Pushkin-8, 196608, St. Petersburg, Russian Federation;The Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, UK;Department of Biology, University of Waterloo, Waterloo, Canada, ON N2L 3G1
| | - Julian C Theobald
- All-Russia Research Institute for Agricultural Microbiology, Podbelskogo Sh. 3, Pushkin-8, 196608, St. Petersburg, Russian Federation;The Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, UK;Department of Biology, University of Waterloo, Waterloo, Canada, ON N2L 3G1
| | - Vera I Safronova
- All-Russia Research Institute for Agricultural Microbiology, Podbelskogo Sh. 3, Pushkin-8, 196608, St. Petersburg, Russian Federation;The Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, UK;Department of Biology, University of Waterloo, Waterloo, Canada, ON N2L 3G1
| | - William J Davies
- All-Russia Research Institute for Agricultural Microbiology, Podbelskogo Sh. 3, Pushkin-8, 196608, St. Petersburg, Russian Federation;The Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, UK;Department of Biology, University of Waterloo, Waterloo, Canada, ON N2L 3G1
| |
Collapse
|
242
|
Turska-Szewczuk A, Lotocka B, Kutkowska J, Król J, Urbanik-Sypniewska T, Russa R. The incomplete substitution of lipopolysaccharide with O-chain prevents the establishment of effective symbiosis between Mesorhizobium loti NZP2213.1 and Lotus corniculatus. Microbiol Res 2009; 164:163-73. [PMID: 17321732 DOI: 10.1016/j.micres.2006.11.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2006] [Revised: 07/06/2006] [Accepted: 11/14/2006] [Indexed: 11/21/2022]
Abstract
Mesorhizobium loti NZP2213.1 mutant obtained after random Tn5 mutagenesis of M. loti NZP2213 was inefficient in nitrogen fixation on Lotus corniculatus. The transposon insertion was located within an ORF with a sequence similarity to a putative glycosyl transferase from Caulobacter crescentus. The results of sodium dodecyl sulfate-polyacrylamide gel electrophoresis indicated that the mutant produced LPS of the same O-chain length but only half of the entire smooth LPS, compared to that of the parental strain. A greater diversity of the anomeric region as determined by NMR spectroscopy, reflected structural differences in the mutant repeating units represented by 6-deoxytalose, 2-OAc-6-deoxytalose, and 2-OMe-6-deoxytalose. In contrast to the completely O-acetylated 6-deoxytalose in wild-type OPS only partial O-acetylation was found in the mutant. The decrease of the LPS species with O-chains seems to be correlated with 6-deoxytalose deficiency. Microscopic examination of the nodules induced by the mutant revealed disturbances in infection thread development and premature senescence of symbiosomes. The impairment of mutant-induced symbiosomes to sustain latter stages of symbiosis could be a consequence of the decreased ratio of the hydrophobic to the hydrophilic LPSs.
Collapse
Affiliation(s)
- Anna Turska-Szewczuk
- Department of General Microbiology, M. Curie-Skłodowska University, Akademicka, Lublin, Poland
| | | | | | | | | | | |
Collapse
|
243
|
|
244
|
Shimoda Y, Shimoda-Sasakura F, Kucho KI, Kanamori N, Nagata M, Suzuki A, Abe M, Higashi S, Uchiumi T. Overexpression of class 1 plant hemoglobin genes enhances symbiotic nitrogen fixation activity between Mesorhizobium loti and Lotus japonicus. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2009; 57:254-63. [PMID: 18801013 DOI: 10.1111/j.1365-313x.2008.03689.x] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Plant hemoglobins (Hbs) have been divided into three groups: class 1, class 2, and truncated Hbs. The various physiological functions of class 1 Hb include its role as a modulator of nitric oxide (NO) levels in plants. To gain more insight into the functions of class 1 Hbs, we investigated the physical properties of LjHb1 and AfHb1, class 1 Hbs of a model legume Lotus japonicus and an actinorhizal plant Alnus firma, respectively. Spectrophotometric analysis showed that the recombinant form of the LjHb1 and AfHb1 proteins reacted with NO. The localization of LjHb1 expression was correlated with the site of NO production. Overexpression of LjHb1 and AfHb1 by transformed hairy roots caused changes in symbiosis with rhizobia. The number of nodules formed on hairy roots overexpressing LjHb1 or AfHb1 increased compared with that on untransformed hairy roots. Furthermore, nitrogenase activity as acetylene-reduction activity (ARA) of LjHb1- or AfHb1-overexpressing nodules was higher than that of the vector control nodules. Microscopic observation with a NO-specific fluorescent dye suggested that the NO level in LjHb1- and AfHb1-overexpressing nodules was lower than that of control nodules. Exogenous application of a NO scavenger enhanced ARA in L. japonicus nodules, whereas a NO donor inhibited ARA. These results suggest that the basal level of NO in nodules inhibits nitrogen fixation, and overexpression of class 1 Hbs enhances symbiotic nitrogen fixation activity by removing NO as an inhibitor of nitrogenase.
Collapse
Affiliation(s)
- Yoshikazu Shimoda
- National Institute of Agrobiological Sciences, Tsukuba, Ibaraki 305-8602, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
245
|
Genetic diversity and host range of rhizobia nodulating Lotus tenuis in typical soils of the Salado River Basin (Argentina). Appl Environ Microbiol 2008; 75:1088-98. [PMID: 19074602 DOI: 10.1128/aem.02405-08] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A total of 103 root nodule isolates were used to estimate the diversity of bacteria nodulating Lotus tenuis in typical soils of the Salado River Basin. A high level of genetic diversity was revealed by repetitive extragenic palindromic PCR, and 77 isolates with unique genomic fingerprints were further differentiated into two clusters, clusters A and B, after 16S rRNA restriction fragment length polymorphism analysis. Cluster A strains appeared to be related to the genus Mesorhizobium, whereas cluster B was related to the genus Rhizobium. 16S rRNA sequence and phylogenetic analysis further supported the distribution of most of the symbiotic isolates in either Rhizobium or Mesorhizobium: the only exception was isolate BA135, whose 16S rRNA gene was closely related to the 16S rRNA gene of the genus Aminobacter. Most Mesorhizobium-like isolates were closely related to Mesorhizobium amorphae, Mesorhizobium mediterraneum, Mesorhizobium tianshanense, or the broad-host-range strain NZP2037, but surprisingly few isolates grouped with Mesorhizobium loti type strain NZP2213. Rhizobium-like strains were related to Rhizobium gallicum, Rhizobium etli, or Rhizobium tropici, for which Phaseolus vulgaris is a common host. However, no nodC or nifH genes could be amplified from the L. tenuis isolates, suggesting that they have rather divergent symbiosis genes. In contrast, nodC genes from the Mesorhizobium and Aminobacter strains were closely related to nodC genes from narrow-host-range M. loti strains. Likewise, nifH gene sequences were very highly conserved among the Argentinian isolates and reference Lotus rhizobia. The high levels of conservation of the nodC and nifH genes suggest that there was a common origin of the symbiosis genes in narrow-host-range Lotus symbionts, supporting the hypothesis that both intrageneric horizontal gene transfer and intergeneric horizontal gene transfer are important mechanisms for the spread of symbiotic capacity in the Salado River Basin.
Collapse
|
246
|
Sukkasem C, Xu S, Park S, Boonsawang P, Liu H. Effect of nitrate on the performance of single chamber air cathode microbial fuel cells. WATER RESEARCH 2008; 42:4743-4750. [PMID: 18822442 DOI: 10.1016/j.watres.2008.08.029] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2008] [Revised: 08/21/2008] [Accepted: 08/26/2008] [Indexed: 05/26/2023]
Abstract
The effect of nitrate on the performance of a single chamber air cathode MFC system and the denitrification activity in the system were investigated. The maximum voltage output was not affected by 8.0mM nitrate in the medium solution at higher external resistance (270-1000Omega), but affected at lower resistance (150Omega) possibly due to the low organic carbon availability. The Coulombic efficiency was greatly affected by the nitrate concentration possibly due to the competition between the electricity generation and denitrification processes. Over 84-90% of nitrate (0.8-8.0mM) was removed from the single chamber MFCs in less than 8h in the first batch. After 4-month operation, over 85% of nitrate (8.0mM) was removed in 1h after the MFC was continuously fed with a medium solution containing nitrate. Only a small amount of nitrite (<0.01mM) was detected during the denitrification process. The similar denitrification activity observed at different external resistances (1000 and 270Omega) and open circuit mode indicates that the denitrification was not significantly affected by the electricity generation process. No electricity was generated when the MFC fed with 8.0mM nitrate was moved to a glove box (no oxygen), indicating that the bacteria on the cathode did not involve in accepting electrons from the circuit to reduce the nitrate. Denaturing Gradient Gel Electrophoresis (DGGE) profiles demonstrate a similar bacterial community composition on the electrodes and in the solution but with different dominant species.
Collapse
Affiliation(s)
- Chontisa Sukkasem
- Department of Biological and Ecological Engineering, Oregon State University, Corvallis, OR 97331, USA
| | | | | | | | | |
Collapse
|
247
|
Hempel J, Zehner S, Göttfert M, Patschkowski T. Analysis of the secretome of the soybean symbiont Bradyrhizobium japonicum. J Biotechnol 2008; 140:51-8. [PMID: 19095018 DOI: 10.1016/j.jbiotec.2008.11.002] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2008] [Revised: 10/20/2008] [Accepted: 11/20/2008] [Indexed: 11/29/2022]
Abstract
Proteins from the supernatant of Bradyrhizobium japonicum were separated by two-dimensional gel electrophoresis and stained with Coomassie. This revealed more than 100 protein spots. Sixty-eight proteins were identified by mass spectrometry. Thirty-five are predicted to contain an N-terminal signal peptide characteristic for proteins transported by the general secretory pathway. Most of these appear to be substrate-binding proteins of the ABC transporter family. Ten proteins were categorized as unclassified conserved or hypothetical. None of the proteins has similarity to proteins transported by a type I secretion system or to autotransporters. Three of the proteins might be located in the outer membrane. The addition of genistein led to changes in the spot pattern of three flagellar proteins and resulted in the identification of the nodulation outer protein Pgl. Moreover, the application of shot-gun mass spectrometry resulted in the first-time identification of NopB, NopH and NopT, which were present only after genistein induction. Replacing genistein with daidzein or coumestrol reduced the amount of the type III-secreted protein GunA2.
Collapse
Affiliation(s)
- Jana Hempel
- Institut für Genetik, Technische Universität Dresden, Dresden, Germany
| | | | | | | |
Collapse
|
248
|
Szczyglowski K, Stougaard J. Lotus genome: pod of gold for legume research. TRENDS IN PLANT SCIENCE 2008; 13:515-517. [PMID: 18762442 DOI: 10.1016/j.tplants.2008.08.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2008] [Revised: 07/29/2008] [Accepted: 08/04/2008] [Indexed: 05/26/2023]
Abstract
Gregor Mendel's study of the common garden pea (Pisum sativum) provided the fundamentals for modern genetics and plant breeding and highlighted the utility and value of model organisms. One hundred and forty-three years later, insight into the genome structure of a model legume, Lotus japonicus, might provide the key to sustainable agriculture.
Collapse
Affiliation(s)
- Krzysztof Szczyglowski
- Agriculture and Agri-Food Canada, Southern Crop Protection and Food Research Centre, London, Ontario, N5V 4T3 Canada.
| | | |
Collapse
|
249
|
Nagata M, Murakami EI, Shimoda Y, Shimoda-Sasakura F, Kucho KI, Suzuki A, Abe M, Higashi S, Uchiumi T. Expression of a class 1 hemoglobin gene and production of nitric oxide in response to symbiotic and pathogenic bacteria in Lotus japonicus. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2008; 21:1175-83. [PMID: 18700822 DOI: 10.1094/mpmi-21-9-1175] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Symbiotic nitrogen fixation by the collaboration between leguminous plants and rhizobia is an important system in the global nitrogen cycle, and some molecular aspects during the early stage of host-symbiont recognition have been revealed. To understand the responses of a host plant against various bacteria, we examined expression of hemoglobin (Hb) genes and production of nitric oxide (NO) in Lotus japonicus after inoculation with rhizobia or plant pathogens. When the symbiotic rhizobium Mesorhizobium loti was inoculated, expression of LjHb1 and NO production were induced transiently in the roots at 4 h after inoculation. In contrast, inoculation with the nonsymbiotic rhizobia Sinorhizobium meliloti and Bradyrhizobium japonicum induced neither expression of LjHb1 nor NO production. When L. japonicus was inoculated with plant pathogens (Ralstonia solanacearum or Pseudomonas syringae), continuous NO production was observed in roots but induction of LjHb1 did not occur. These results suggest that modulation of NO levels and expression of class 1 Hb are involved in the establishment of the symbiosis.
Collapse
Affiliation(s)
- Maki Nagata
- Graduate School of Science and Technology, Kagoshima University, Kagoshima, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
250
|
Liu AC, Shih HW, Hsu T, Lai EM. A citrate-inducible gene, encoding a putative tricarboxylate transporter, is downregulated by the organic solvent DMSO in Agrobacterium tumefaciens. J Appl Microbiol 2008; 105:1372-83. [PMID: 18713283 DOI: 10.1111/j.1365-2672.2008.03874.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
AIMS To investigate the effects of the organic solvent dimethyl sulfoxide (DMSO) on the expression of a citrate-inducible gene, encoding a putative tricarboxylate transporter, in Agrobacterium tumefaciens. METHODS AND RESULTS By two-dimensional gel electrophoresis, we discovered a putative tricarboxylate transporter named ActC, whose expression was downregulated by DMSO. The expression of actC is also induced by tricarboxylates but not affected by other organic acids of the TCA cycle. Intriguingly, transcriptional activation of actC by citrate is compromised in the presence of DMSO. Furthermore, expression of actC is abolished by deletion of actDE, encoding a putative two-component regulatory system upstream of the actCBA gene cluster. CONCLUSIONS actC is a citrate-inducible gene that is repressed by DMSO and whose expression is likely regulated by a two-component system. SIGNIFICANCE AND IMPACT OF THE STUDY This study provides useful information as to a potential DMSO-regulatory system of A. tumefaciens or other soil bacteria when encountering DMSO in nature. In addition, DMSO-regulated genes should be taken into account for studies in which bacterial cultures were treated with compounds dissolved in DMSO.
Collapse
Affiliation(s)
- A-C Liu
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | | | | | | |
Collapse
|