201
|
Abstract
Serratia marcescens is a Gram-negative nosocomial pathogen causing various hospital-acquired infections. Here, we describe the complete genome sequence of S. marcescens myophage Moabite. The genome of Moabite is 273,933 bp long, with 337 predicted coding sequences and two tRNA genes, and it shares its highest amino acid identity with Serratia phage 2050HW. Serratia marcescens is a Gram-negative nosocomial pathogen causing various hospital-acquired infections. Here, we describe the complete genome sequence of S. marcescens myophage Moabite. The genome of Moabite is 273,933 bp long, with 337 predicted coding sequences and two tRNA genes, and it shares its highest amino acid identity with Serratia phage 2050HW.
Collapse
|
202
|
Complete Genome Sequence of Enterotoxigenic Escherichia coli Siphophage LL5. Microbiol Resour Announc 2019; 8:8/27/e00674-19. [PMID: 31270204 PMCID: PMC6606918 DOI: 10.1128/mra.00674-19] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Here, we describe the complete genome sequence of siphophage LL5. LL5 is a T1-like phage isolated against enterotoxigenic
Escherichia coli
, which causes traveler’s diarrhea. LL5 is included as a component phage in the commercial prebiotic product PreforPro.
Collapse
|
203
|
Marc A, Cater K, Kongari R, Hatoum-Aslan A, Young RF, Liu M. Complete Genome Sequence of Staphylococcus aureus Siphophage Lorac. Microbiol Resour Announc 2019; 8:e00586-19. [PMID: 31270202 PMCID: PMC6606916 DOI: 10.1128/mra.00586-19] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 05/30/2019] [Indexed: 11/20/2022] Open
Abstract
Staphylococcus aureus is a leading cause of a wide range of clinical infections. Here, we announce the complete genome sequence of S. aureus siphophage Lorac, a phiETA-like temperate phage that is similar at the nucleotide level to the previously described S. aureus prophage phiNM2.
Collapse
Affiliation(s)
- Antoine Marc
- Center for Phage Technology, Texas A&M University, College Station, Texas, USA
| | - Katie Cater
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, Alabama, USA
| | - Rohit Kongari
- Center for Phage Technology, Texas A&M University, College Station, Texas, USA
| | - Asma Hatoum-Aslan
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, Alabama, USA
| | - Ryland F Young
- Center for Phage Technology, Texas A&M University, College Station, Texas, USA
| | - Mei Liu
- Center for Phage Technology, Texas A&M University, College Station, Texas, USA
| |
Collapse
|
204
|
Complete Genome Sequence of Salmonella enterica Serovar Typhimurium Siphophage Skate. Microbiol Resour Announc 2019; 8:8/27/e00541-19. [PMID: 31270198 PMCID: PMC6606912 DOI: 10.1128/mra.00541-19] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Salmonella enterica serovar Typhimurium is a Gram-negative pathogen and a primary cause of foodborne illnesses worldwide. Here, we present the complete 47,393-bp genome sequence of the siphophage Skate, which was isolated against S. Typhimurium strain LT2. Salmonella enterica serovar Typhimurium is a Gram-negative pathogen and a primary cause of foodborne illnesses worldwide. Here, we present the complete 47,393-bp genome sequence of the siphophage Skate, which was isolated against S. Typhimurium strain LT2.
Collapse
|
205
|
Abstract
Serratia marcescens is an opportunistic human pathogen with multiple resistance mechanisms that infects hospitalized patients. Here, we report the full genome sequence of S. marcescens podophage Parlo. Parlo is most similar to Erwinia phage PEp14 and encodes a 3,764-residue protein assumed to be a homolog of DarB, an antirestriction protein.
Collapse
|
206
|
Youens-Clark K, Bomhoff M, Ponsero AJ, Wood-Charlson EM, Lynch J, Choi I, Hartman JH, Hurwitz BL. iMicrobe: Tools and data-dreaiven discovery platform for the microbiome sciences. Gigascience 2019; 8:giz083. [PMID: 31289831 PMCID: PMC6615980 DOI: 10.1093/gigascience/giz083] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 05/30/2019] [Accepted: 06/18/2019] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND Scientists have amassed a wealth of microbiome datasets, making it possible to study microbes in biotic and abiotic systems on a population or planetary scale; however, this potential has not been fully realized given that the tools, datasets, and computation are available in diverse repositories and locations. To address this challenge, we developed iMicrobe.us, a community-driven microbiome data marketplace and tool exchange for users to integrate their own data and tools with those from the broader community. FINDINGS The iMicrobe platform brings together analysis tools and microbiome datasets by leveraging National Science Foundation-supported cyberinfrastructure and computing resources from CyVerse, Agave, and XSEDE. The primary purpose of iMicrobe is to provide users with a freely available, web-based platform to (1) maintain and share project data, metadata, and analysis products, (2) search for related public datasets, and (3) use and publish bioinformatics tools that run on highly scalable computing resources. Analysis tools are implemented in containers that encapsulate complex software dependencies and run on freely available XSEDE resources via the Agave API, which can retrieve datasets from the CyVerse Data Store or any web-accessible location (e.g., FTP, HTTP). CONCLUSIONS iMicrobe promotes data integration, sharing, and community-driven tool development by making open source data and tools accessible to the research community in a web-based platform.
Collapse
Affiliation(s)
- Ken Youens-Clark
- Department of Biosystems Engineering, University of Arizona, 1177 E. 4th St, Shantz Building, Room 403, Tucson, AZ, USA 85721-0038
| | - Matt Bomhoff
- Department of Biosystems Engineering, University of Arizona, 1177 E. 4th St, Shantz Building, Room 403, Tucson, AZ, USA 85721-0038
| | - Alise J Ponsero
- Department of Biosystems Engineering, University of Arizona, 1177 E. 4th St, Shantz Building, Room 403, Tucson, AZ, USA 85721-0038
| | - Elisha M Wood-Charlson
- Environmental Genomics and Systems Biology Division, E.O. Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Joshua Lynch
- Department of Biosystems Engineering, University of Arizona, 1177 E. 4th St, Shantz Building, Room 403, Tucson, AZ, USA 85721-0038
| | - Illyoung Choi
- Department of Computer Science, University of Arizona, Tucson, AZ, USA
| | - John H Hartman
- Department of Computer Science, University of Arizona, Tucson, AZ, USA
| | - Bonnie L Hurwitz
- Department of Biosystems Engineering, University of Arizona, 1177 E. 4th St, Shantz Building, Room 403, Tucson, AZ, USA 85721-0038
- BIO5 Institute, University of Arizona, Tucson, AZ, USA
| |
Collapse
|
207
|
Freeman ME, Kenny SE, Lanier A, Cater K, Wilhite MC, Gamble P, O'Leary CJ, Hatoum-Aslan A, Young RF, Liu M. Complete Genome Sequences of Staphylococcus epidermidis Myophages Quidividi, Terranova, and Twillingate. Microbiol Resour Announc 2019; 8:e00598-19. [PMID: 31248994 PMCID: PMC6597688 DOI: 10.1128/mra.00598-19] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 05/28/2019] [Indexed: 11/21/2022] Open
Abstract
Staphylococcus epidermidis is an opportunistic pathogen that commonly colonizes human skin and mucous membranes. We report here the complete genome sequences of three S. epidermidis phages, Quidividi, Terranova, and Twillingate, which are members of the Twort-like group of large myophages infecting Gram-positive hosts.
Collapse
Affiliation(s)
- Miranda E Freeman
- Center for Phage Technology, Texas A&M University, College Station, Texas, USA
| | - Sarah E Kenny
- Center for Phage Technology, Texas A&M University, College Station, Texas, USA
| | - Amanda Lanier
- Center for Phage Technology, Texas A&M University, College Station, Texas, USA
| | - Katie Cater
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, Alabama, USA
| | - Mary C Wilhite
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, Alabama, USA
| | - Paige Gamble
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, Alabama, USA
| | - Chandler J O'Leary
- Center for Phage Technology, Texas A&M University, College Station, Texas, USA
| | - Asma Hatoum-Aslan
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, Alabama, USA
| | - Ryland F Young
- Center for Phage Technology, Texas A&M University, College Station, Texas, USA
| | - Mei Liu
- Center for Phage Technology, Texas A&M University, College Station, Texas, USA
| |
Collapse
|
208
|
Abstract
Serratia marcescens is a nosocomial pathogen that has evolved resistance to multiple antibiotics. Here, we present the genome sequence of myophage MTx that infects S. marcescens. MTx encodes 103 proteins, with 26 being assigned a predicted function or superfamily classification, and it has little similarity with other phages at the nucleotide level. Serratia marcescens is a nosocomial pathogen that has evolved resistance to multiple antibiotics. Here, we present the genome sequence of myophage MTx that infects S. marcescens. MTx encodes 103 proteins, with 26 being assigned a predicted function or superfamily classification, and it has little similarity with other phages at the nucleotide level.
Collapse
|
209
|
Complete Genome Sequence of Agrobacterium tumefaciens Myophage Milano. Microbiol Resour Announc 2019; 8:8/25/e00587-19. [PMID: 31221656 PMCID: PMC6588377 DOI: 10.1128/mra.00587-19] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Agrobacterium tumefaciens C58 is a tumor-causing pathogen targeting plants and is ubiquitously found in soil. Here, the complete genome sequence of Milano, a myophage infecting A. tumefaciens C58, is presented. Milano encodes 127 proteins, of which 45 can be assigned a predicted function, and it is most similar to the flagellotropic Agrobacterium phage 7-7-1. Agrobacterium tumefaciens C58 is a tumor-causing pathogen targeting plants and is ubiquitously found in soil. Here, the complete genome sequence of Milano, a myophage infecting A. tumefaciens C58, is presented. Milano encodes 127 proteins, of which 45 can be assigned a predicted function, and it is most similar to the flagellotropic Agrobacterium phage 7-7-1.
Collapse
|
210
|
Advances in cloning, structural and bioremediation aspects of nitrile hydratases. Mol Biol Rep 2019; 46:4661-4673. [DOI: 10.1007/s11033-019-04811-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Accepted: 04/10/2019] [Indexed: 01/09/2023]
|
211
|
Complete Genome Sequence of Escherichia coli Myophage Minorna. Microbiol Resour Announc 2019; 8:8/23/e00533-19. [PMID: 31171610 PMCID: PMC6554615 DOI: 10.1128/mra.00533-19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The Gram-negative bacterium Escherichia coli causes many diseases, and antibiotic resistance has become a problem for their treatment. Bacteriophages may present a viable treatment alternative. The Gram-negative bacterium Escherichia coli causes many diseases, and antibiotic resistance has become a problem for their treatment. Bacteriophages may present a viable treatment alternative. Here, the complete genome sequence of E. coli-infecting myophage Minorna is presented. Proteins needed for replication, morphogenesis, and lysis were identified in the Minorna coding sequence.
Collapse
|
212
|
Zimmerman AE, Bachy C, Ma X, Roux S, Jang HB, Sullivan MB, Waldbauer JR, Worden AZ. Closely related viruses of the marine picoeukaryotic alga Ostreococcus lucimarinus exhibit different ecological strategies. Environ Microbiol 2019; 21:2148-2170. [PMID: 30924271 PMCID: PMC6851583 DOI: 10.1111/1462-2920.14608] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 03/16/2019] [Accepted: 03/23/2019] [Indexed: 01/01/2023]
Abstract
In marine ecosystems, viruses are major disrupters of the direct flow of carbon and nutrients to higher trophic levels. Although the genetic diversity of several eukaryotic phytoplankton virus groups has been characterized, their infection dynamics are less understood, such that the physiological and ecological implications of their diversity remain unclear. We compared genomes and infection phenotypes of the two most closely related cultured phycodnaviruses infecting the widespread picoprasinophyte Ostreococcus lucimarinus under standard- (1.3 divisions per day) and limited-light (0.41 divisions per day) nutrient replete conditions. OlV7 infection caused early arrest of the host cell cycle, coinciding with a significantly higher proportion of infected cells than OlV1-amended treatments, regardless of host growth rate. OlV7 treatments showed a near-50-fold increase of progeny virions at the higher host growth rate, contrasting with OlV1's 16-fold increase. However, production of OlV7 virions was more sensitive than OlV1 production to reduced host growth rate, suggesting fitness trade-offs between infection efficiency and resilience to host physiology. Moreover, although organic matter released from OlV1- and OlV7-infected hosts had broadly similar chemical composition, some distinct molecular signatures were observed. Collectively, these results suggest that current views on viral relatedness through marker and core gene analyses underplay operational divergence and consequences for host ecology.
Collapse
Affiliation(s)
| | - Charles Bachy
- Monterey Bay Aquarium Research InstituteMoss LandingCAUSA
| | - Xiufeng Ma
- Department of the Geophysical SciencesUniversity of ChicagoChicagoILUSA
| | - Simon Roux
- Department of MicrobiologyEnvironmental and Geodetic Engineering, The Ohio State UniversityColumbusOHUSA
| | - Ho Bin Jang
- Department of MicrobiologyEnvironmental and Geodetic Engineering, The Ohio State UniversityColumbusOHUSA
- Department of CivilEnvironmental and Geodetic Engineering, The Ohio State UniversityColumbusOHUSA
| | - Matthew B. Sullivan
- Department of MicrobiologyEnvironmental and Geodetic Engineering, The Ohio State UniversityColumbusOHUSA
- Department of CivilEnvironmental and Geodetic Engineering, The Ohio State UniversityColumbusOHUSA
| | | | - Alexandra Z. Worden
- Monterey Bay Aquarium Research InstituteMoss LandingCAUSA
- Ocean EcoSystems Biology Unit, Marine Ecology DivisionGEOMAR Helmholtz Centre for Ocean Research KielKielDE
| |
Collapse
|
213
|
Badiea EA, Sayed AA, Maged M, Fouad WM, Said MM, Esmat AY. A novel thermostable and halophilic thioredoxin reductase from the Red Sea Atlantis II hot brine pool. PLoS One 2019; 14:e0217565. [PMID: 31150456 PMCID: PMC6544261 DOI: 10.1371/journal.pone.0217565] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 05/14/2019] [Indexed: 11/19/2022] Open
Abstract
The highly extreme conditions of the lower convective layer in the Atlantis II (ATII) Deep brine pool of the Red Sea make it an ideal environment for the search for novel enzymes that can function under extreme conditions. In the current study, we isolated a novel sequence of a thioredoxin reductase (TrxR) enzyme from the metagenomic dataset established from the microbial community that resides in the lower convective layer of Atlantis II. The gene was cloned, expressed and characterized for redox activity, halophilicity, and thermal stability. The isolated thioredoxin reductase (ATII-TrxR) was found to belong to the high-molecular-weight class of thioredoxin reductases. A search for conserved domains revealed the presence of an extra domain (Crp) in the enzyme sequence. Characterization studies of ATII-TrxR revealed that the enzyme was halophilic (maintained activity at 4 M NaCl), thermophilic (optimum temperature was 65°C) and thermostable (60% of its activity was retained at 70°C). Additionally, the enzyme utilized NADH in addition to NADPH as an electron donor. In conclusion, a novel thermostable and halophilic thioredoxin reductase has been isolated with a unique sequence that adapts to the harsh conditions of the brine pools making this protein a good candidate for biological research and industrial applications.
Collapse
Affiliation(s)
- Elham A. Badiea
- Department of Biochemistry, Faculty of Science, Ain Shams University, Cairo, Egypt
- Department of Biology, School of Sciences and Engineering, American University in Cairo, New Cairo, Egypt
| | - Ahmed A. Sayed
- Department of Biochemistry, Faculty of Science, Ain Shams University, Cairo, Egypt
- Children Cancer Hospital, Cairo, Egypt
| | - Mohamad Maged
- Faculty of Biotechnology, October University for Modern Sciences and Arts, 6th October City, Cairo, Egypt
| | - Walid M. Fouad
- Department of Biology, School of Sciences and Engineering, American University in Cairo, New Cairo, Egypt
| | - Mahmoud M. Said
- Department of Biochemistry, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Amr Y. Esmat
- Department of Biochemistry, Faculty of Science, Ain Shams University, Cairo, Egypt
- * E-mail:
| |
Collapse
|
214
|
Koutsandreas T, Ladoukakis E, Pilalis E, Zarafeta D, Kolisis FN, Skretas G, Chatziioannou AA. ANASTASIA: An Automated Metagenomic Analysis Pipeline for Novel Enzyme Discovery Exploiting Next Generation Sequencing Data. Front Genet 2019; 10:469. [PMID: 31178894 PMCID: PMC6543708 DOI: 10.3389/fgene.2019.00469] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 05/01/2019] [Indexed: 01/27/2023] Open
Abstract
Metagenomic analysis of environmental samples provides deep insight into the enzymatic mixture of the corresponding niches, capable of revealing peptide sequences with novel functional properties exploiting the high performance of next-generation sequencing (NGS) technologies. At the same time due to their ever increasing complexity, there is a compelling need for ever larger computational configurations to ensure proper bioinformatic analysis, and fine annotation. With the aiming to address the challenges of such an endeavor, we have developed a novel web-based application named ANASTASIA (automated nucleotide aminoacid sequences translational plAtform for systemic interpretation and analysis). ANASTASIA provides a rich environment of bioinformatic tools, either publicly available or novel, proprietary algorithms, integrated within numerous automated algorithmic workflows, and which enables versatile data processing tasks for (meta)genomic sequence datasets. ANASTASIA was initially developed in the framework of the European FP7 project HotZyme, whose aim was to perform exhaustive analysis of metagenomes derived from thermal springs around the globe and to discover new enzymes of industrial interest. ANASTASIA has evolved to become a stable and extensible environment for diversified, metagenomic, functional analyses for a range of applications overarching industrial biotechnology to biomedicine, within the frames of the ELIXIR-GR project. As a showcase, we report the successful in silico mining of a novel thermostable esterase termed “EstDZ4” from a metagenomic sample collected from a hot spring located in Krisuvik, Iceland.
Collapse
Affiliation(s)
- Theodoros Koutsandreas
- Institute of Chemical Biology, Medicinal Chemistry and Biotechnology, National Hellenic Research Foundation, Athens, Greece.,e-NIOS Applications PC, Athens, Greece
| | - Efthymios Ladoukakis
- Institute of Chemical Biology, Medicinal Chemistry and Biotechnology, National Hellenic Research Foundation, Athens, Greece.,Laboratory of Biotechnology, School of Chemical Engineering, National Technical University of Athens, Athens, Greece
| | - Eleftherios Pilalis
- Institute of Chemical Biology, Medicinal Chemistry and Biotechnology, National Hellenic Research Foundation, Athens, Greece.,e-NIOS Applications PC, Athens, Greece
| | - Dimitra Zarafeta
- Institute of Chemical Biology, Medicinal Chemistry and Biotechnology, National Hellenic Research Foundation, Athens, Greece
| | - Fragiskos N Kolisis
- Institute of Chemical Biology, Medicinal Chemistry and Biotechnology, National Hellenic Research Foundation, Athens, Greece.,Laboratory of Biotechnology, School of Chemical Engineering, National Technical University of Athens, Athens, Greece
| | - Georgios Skretas
- Institute of Chemical Biology, Medicinal Chemistry and Biotechnology, National Hellenic Research Foundation, Athens, Greece
| | - Aristotelis A Chatziioannou
- Institute of Chemical Biology, Medicinal Chemistry and Biotechnology, National Hellenic Research Foundation, Athens, Greece.,e-NIOS Applications PC, Athens, Greece
| |
Collapse
|
215
|
Abstract
Klebsiella pneumoniae infection is a serious concern in hospital settings due to the continuing emergence of multidrug-resistant strains. The study of K. pneumoniae phages may help the development of new treatment strategies. Klebsiella pneumoniae infection is a serious concern in hospital settings due to the continuing emergence of multidrug-resistant strains. The study of K. pneumoniae phages may help the development of new treatment strategies. Here, the complete genome sequence of K. pneumoniae phage Patroon, a T3/T7-like phage, is presented.
Collapse
|
216
|
Abstract
Serratia marcescens is an opportunistic human pathogen that is known to cause hospital-acquired respiratory and urinary tract infections. Here, we announce the complete genome sequence and the features of S. marcescens phage Serbin. Serratia marcescens is an opportunistic human pathogen that is known to cause hospital-acquired respiratory and urinary tract infections. Here, we announce the complete genome sequence and the features of S. marcescens phage Serbin.
Collapse
|
217
|
Complete Genome Sequence of Salmonella enterica Serovar Typhimurium Myophage Mutine. Microbiol Resour Announc 2019; 8:8/19/e00401-19. [PMID: 31072884 PMCID: PMC6509533 DOI: 10.1128/mra.00401-19] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mutine is a myophage of Salmonella enterica serovar Typhimurium. Here, we present the complete genome of Mutine (161,502 bp) and show that it is similar to that of phage Vi01.
Collapse
|
218
|
Abstract
Serratia marcescens is an opportunistic pathogen that typically infects the respiratory and urinary tract, with the majority of cases being hospital acquired. The study of S. marcescens phages may help control drug-resistant S. marcescens strains. Serratia marcescens is an opportunistic pathogen that typically infects the respiratory and urinary tract, with the majority of cases being hospital acquired. The study of S. marcescens phages may help control drug-resistant S. marcescens strains. In this study, we announce the complete genome sequence and the features of S. marcescens siphophage Scapp.
Collapse
|
219
|
Abstract
May is a newly isolated myophage that infects multidrug-resistant strains of Klebsiella pneumoniae, a pathogen that is associated with antibiotic-resistant infections in humans. The genome of May has been shown to be similar to that of phage Vi01. May is a newly isolated myophage that infects multidrug-resistant strains of Klebsiella pneumoniae, a pathogen that is associated with antibiotic-resistant infections in humans. The genome of May has been shown to be similar to that of phage Vi01.
Collapse
|
220
|
Complete Genome Sequence of Salmonella enterica Serovar Typhimurium Siphophage Siskin. Microbiol Resour Announc 2019; 8:8/18/e00188-19. [PMID: 31048394 PMCID: PMC6498227 DOI: 10.1128/mra.00188-19] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacteriophage Siskin is a member of the χ-like siphovirus phage cluster that infects Salmonella enterica serovar Typhimurium strain LT2. Here, we report the complete 58,476-bp sequence of the Siskin genome, provide confirmation of its genomic termini, and describe a potentially new class of holins and endolysins found in the lysis cassette.
Collapse
|
221
|
Complete Genome Sequence of Salmonella enterica Serovar Heidelberg Myophage Meda. Microbiol Resour Announc 2019; 8:8/17/e00253-19. [PMID: 31023796 PMCID: PMC6486253 DOI: 10.1128/mra.00253-19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Salmonella enterica serovar Heidelberg is a multidrug-resistant foodborne pathogen that originated from poultry and cattle. Bacteriophages isolated for this pathogen may be used as biocontrol agents in food products or animals for preventing Salmonella foodborne diseases. Here, we present the complete genome sequence of Salmonella Heidelberg phage Meda.
Collapse
|
222
|
Complete Genome Sequence of Salmonella enterica Serovar Enteritidis Myophage Mooltan. Microbiol Resour Announc 2019; 8:8/17/e00187-19. [PMID: 31023814 PMCID: PMC6486243 DOI: 10.1128/mra.00187-19] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Salmonella enterica serovar Enteritidis is a Gram-negative bacterium and one of the most common foodborne pathogens. Biocontrol using bacteriophage in food products or animals is one possible means by which pathogenic salmonellosis infection could be inhibited. Salmonella enterica serovar Enteritidis is a Gram-negative bacterium and one of the most common foodborne pathogens. Biocontrol using bacteriophage in food products or animals is one possible means by which pathogenic salmonellosis infection could be inhibited. Here, we report the complete genome sequence of the T4-like Salmonella Enteritidis myophage Mooltan.
Collapse
|
223
|
Newkirk HN, Lessor L, Gill JJ, Liu M. Complete Genome Sequence of Klebsiella pneumoniae Myophage Menlow. Microbiol Resour Announc 2019; 8:e00192-19. [PMID: 31023815 PMCID: PMC6486244 DOI: 10.1128/mra.00192-19] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 04/03/2019] [Indexed: 11/20/2022] Open
Abstract
Klebsiella pneumoniae is an opportunistic pathogen that has become an increasing problem in nosocomial infections. Studying phages that infect K. pneumoniae may lead to improvements in phage therapeutics for treating these infections. Here, the full genome sequence of Menlow, a Vi01-like phage, is introduced and described.
Collapse
Affiliation(s)
- Heather N Newkirk
- Center for Phage Technology, Texas A&M University, College Station, Texas, USA
| | - Lauren Lessor
- Center for Phage Technology, Texas A&M University, College Station, Texas, USA
| | - Jason J Gill
- Center for Phage Technology, Texas A&M University, College Station, Texas, USA
| | - Mei Liu
- Center for Phage Technology, Texas A&M University, College Station, Texas, USA
| |
Collapse
|
224
|
Warwick-Dugdale J, Solonenko N, Moore K, Chittick L, Gregory AC, Allen MJ, Sullivan MB, Temperton B. Long-read viral metagenomics captures abundant and microdiverse viral populations and their niche-defining genomic islands. PeerJ 2019; 7:e6800. [PMID: 31086738 PMCID: PMC6487183 DOI: 10.7717/peerj.6800] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 03/14/2019] [Indexed: 01/18/2023] Open
Abstract
Marine viruses impact global biogeochemical cycles via their influence on host community structure and function, yet our understanding of viral ecology is constrained by limitations in host culturing and a lack of reference genomes and 'universal' gene markers to facilitate community surveys. Short-read viral metagenomic studies have provided clues to viral function and first estimates of global viral gene abundance and distribution, but their assemblies are confounded by populations with high levels of strain evenness and nucleotide diversity (microdiversity), limiting assembly of some of the most abundant viruses on Earth. Such features also challenge assembly across genomic islands containing niche-defining genes that drive ecological speciation. These populations and features may be successfully captured by single-virus genomics and fosmid-based approaches, at least in abundant taxa, but at considerable cost and technical expertise. Here we established a low-cost, low-input, high throughput alternative sequencing and informatics workflow to improve viral metagenomic assemblies using short-read and long-read technology. The 'VirION' (Viral, long-read metagenomics via MinION sequencing) approach was first validated using mock communities where it was found to be as relatively quantitative as short-read methods and provided significant improvements in recovery of viral genomes. We then then applied VirION to the first metagenome from a natural viral community from the Western English Channel. In comparison to a short-read only approach, VirION: (i) increased number and completeness of assembled viral genomes; (ii) captured abundant, highly microdiverse virus populations, and (iii) captured more and longer genomic islands. Together, these findings suggest that VirION provides a high throughput and cost-effective alternative to fosmid and single-virus genomic approaches to more comprehensively explore viral communities in nature.
Collapse
Affiliation(s)
- Joanna Warwick-Dugdale
- Plymouth Marine Laboratory, Plymouth, Devon, United Kingdom
- School of Biosciences, University of Exeter, Exeter, Devon, United Kingdom
| | - Natalie Solonenko
- Department of Microbiology, Ohio State University, Columbus, OH, United States of America
| | - Karen Moore
- School of Biosciences, University of Exeter, Exeter, Devon, United Kingdom
| | - Lauren Chittick
- Department of Microbiology, Ohio State University, Columbus, OH, United States of America
| | - Ann C. Gregory
- Department of Microbiology, Ohio State University, Columbus, OH, United States of America
| | - Michael J. Allen
- Plymouth Marine Laboratory, Plymouth, Devon, United Kingdom
- School of Biosciences, University of Exeter, Exeter, Devon, United Kingdom
| | - Matthew B. Sullivan
- Department of Microbiology, Ohio State University, Columbus, OH, United States of America
- Civil, Environmental and Geodetic Engineering, Ohio State University, Columbus, OH, United States of America
| | - Ben Temperton
- School of Biosciences, University of Exeter, Exeter, Devon, United Kingdom
| |
Collapse
|
225
|
Complete Genome Sequence of Salmonella enterica Serovar Newport Myophage Melville. Microbiol Resour Announc 2019; 8:8/17/e00255-19. [PMID: 31023797 PMCID: PMC6486254 DOI: 10.1128/mra.00255-19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Multiple antimicrobial-resistant strains of Salmonella enterica serovar Newport have been recorded. Study on phages infecting S. Newport may provide new therapeutics or diagnostics for this pathogen. Multiple antimicrobial-resistant strains of Salmonella enterica serovar Newport have been recorded. Study on phages infecting S. Newport may provide new therapeutics or diagnostics for this pathogen. Here, we describe the complete genome sequence of the T4-like phage Melville that uses S. Newport as one of its hosts.
Collapse
|
226
|
Boeckman JX, Lessor L, Gill JJ, Liu M. Complete Genome Sequence of Klebsiella pneumoniae Myophage Mineola. Microbiol Resour Announc 2019; 8:e00257-19. [PMID: 31023798 PMCID: PMC6486255 DOI: 10.1128/mra.00257-19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 04/03/2019] [Indexed: 12/22/2022] Open
Abstract
Klebsiella pneumoniae is an important human pathogen due to the wide range of infections it can cause and its emerging drug resistance. Isolation and characterization of phage infecting K. pneumoniae could be important for future therapeutic applications. Here, we report the complete genome sequence of the T4-like Klebisella pneumoniae myophage Mineola.
Collapse
Affiliation(s)
- Justin X Boeckman
- Center for Phage Technology, Texas A&M University, College Station, Texas, USA
| | - Lauren Lessor
- Center for Phage Technology, Texas A&M University, College Station, Texas, USA
| | - Jason J Gill
- Center for Phage Technology, Texas A&M University, College Station, Texas, USA
| | - Mei Liu
- Center for Phage Technology, Texas A&M University, College Station, Texas, USA
| |
Collapse
|
227
|
Jin M, Guo X, Zhang R, Qu W, Gao B, Zeng R. Diversities and potential biogeochemical impacts of mangrove soil viruses. MICROBIOME 2019; 7:58. [PMID: 30975205 PMCID: PMC6460857 DOI: 10.1186/s40168-019-0675-9] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 03/28/2019] [Indexed: 05/19/2023]
Abstract
BACKGROUND Mangroves are ecologically and economically important forests of the tropics. As one of the most carbon-rich biomes, mangroves account for 11% of the total input of terrestrial carbon into oceans. Although viruses are considered to significantly influence local and global biogeochemical cycles, little information is available regarding the community structure, genetic diversity and ecological roles of viruses in mangrove ecosystems. METHODS Here, we utilised viral metagenomics sequencing and virome-specific bioinformatics tools to study viral communities in six mangrove soil samples collected from different mangrove habitats in Southern China. RESULTS Mangrove soil viruses were found to be largely uncharacterised. Phylogenetic analyses of the major viral groups demonstrated extensive diversity and previously unknown viral clades and suggested that global mangrove viral communities possibly comprise evolutionarily close genotypes. Comparative analysis of viral genotypes revealed that mangrove soil viromes are mainly affected by marine waters, with less influence coming from freshwaters. Notably, we identified abundant auxiliary carbohydrate-active enzyme (CAZyme) genes from mangrove viruses, most of which participate in biolysis of complex polysaccharides, which are abundant in mangrove soils and organism debris. Host prediction results showed that viral CAZyme genes are diverse and probably widespread in mangrove soil phages infecting diverse bacteria of different phyla. CONCLUSIONS Our results showed that mangrove viruses are diverse and probably directly manipulate carbon cycling by participating in biomass recycling of complex polysaccharides, providing the knowledge essential in revealing the ecological roles of viruses in mangrove ecosystems.
Collapse
Affiliation(s)
- Min Jin
- State Key Laboratory Breeding Base of Marine Genetic Resource, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
| | - Xun Guo
- State Key Laboratory Breeding Base of Marine Genetic Resource, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
| | - Rui Zhang
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Institute of Marine Microbes and Ecospheres, Xiamen University, Xiamen, China
| | - Wu Qu
- State Key Laboratory Breeding Base of Marine Genetic Resource, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Institute of Marine Microbes and Ecospheres, Xiamen University, Xiamen, China
| | - Boliang Gao
- State Key Laboratory Breeding Base of Marine Genetic Resource, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Institute of Marine Microbes and Ecospheres, Xiamen University, Xiamen, China
| | - Runying Zeng
- State Key Laboratory Breeding Base of Marine Genetic Resource, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
- Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, Xiamen, China
| |
Collapse
|
228
|
Distribution and characterization of N-acylhomoserine lactone (AHL)-degrading activity and AHL lactonase gene (qsdS) in Sphingopyxis. J Biosci Bioeng 2019; 127:411-417. [DOI: 10.1016/j.jbiosc.2018.10.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 09/27/2018] [Accepted: 10/07/2018] [Indexed: 11/18/2022]
|
229
|
Kim SJ, Kim JG, Lee SH, Park SJ, Gwak JH, Jung MY, Chung WH, Yang EJ, Park J, Jung J, Hahn Y, Cho JC, Madsen EL, Rodriguez-Valera F, Hyun JH, Rhee SK. Genomic and metatranscriptomic analyses of carbon remineralization in an Antarctic polynya. MICROBIOME 2019; 7:29. [PMID: 30786927 PMCID: PMC6383258 DOI: 10.1186/s40168-019-0643-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 02/01/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND Polynyas in the Southern Ocean are regions of intense primary production, mainly by Phaeocystis antarctica. Carbon fixed by phytoplankton in the water column is transferred to higher trophic levels, and finally, to the deep ocean. However, in the Amundsen Sea, most of this organic carbon does not reach the sediment but is degraded in the water column due to high bacterial heterotrophic activity. RESULTS We reconstructed 12 key bacterial genomes from different phases of bloom and analyzed the expression of genes involved in organic carbon remineralization. A high correlation of gene expression between the peak and decline phases was observed in an individual genome bin-based pairwise comparison of gene expression. Polaribacter belonging to Bacteroidetes was found to be dominant in the peak phase, and its transcriptional activity was high (48.9% of the total mRNA reads). Two dominant Polaribacter bins had the potential to utilize major polymers in P. antarctica, chrysolaminarin and xylan, with a distinct set of glycosyl hydrolases. In the decline phase, Gammaproteobacteria (Ant4D3, SUP05, and SAR92), with the potential to utilize low molecular weight-dissolved organic matter (LMW-DOM) including compatible solutes, was increased. The versatility of Gammaproteobacteria may contribute to their abundance in organic carbon-rich polynya waters, while the SAR11 clade was found to be predominant in the sea ice-covered oligotrophic ocean. SAR92 clade showed transcriptional activity for utilization of both polysaccharides and LMW-DOM; this may account for their abundance both in the peak and decline phases. Ant4D3 clade was dominant in all phases of the polynya bloom, implicating the crucial roles of this clade in LMW-DOM remineralization in the Antarctic polynyas. CONCLUSIONS Genomic reconstruction and in situ gene expression analyses revealed the unique metabolic potential of dominant bacteria of the Antarctic polynya at a finer taxonomic level. The information can be used to predict temporal community succession linked to the availability of substrates derived from the P. antarctica bloom. Global warming has resulted in compositional changes in phytoplankton from P. antarctica to diatoms, and thus, repeated parallel studies in various polynyas are required to predict global warming-related changes in carbon remineralization.
Collapse
Affiliation(s)
- So-Jeong Kim
- Geologic Environment Research Division, Korea Institute of Geoscience and Mineral Resources, Daejeon, 34132, Republic of Korea
| | - Jong-Geol Kim
- Department of Microbiology, Chungbuk National University, Cheongju, 28644, Republic of Korea
| | - Sang-Hoon Lee
- Division of Polar Ocean Environment, Korea Polar Research Institute, Incheon, 21990, Republic of Korea
| | - Soo-Je Park
- Department of Biology, Jeju National University, Jeju, 63243, Republic of Korea
| | - Joo-Han Gwak
- Department of Microbiology, Chungbuk National University, Cheongju, 28644, Republic of Korea
| | - Man-Young Jung
- Department of Microbial Ecology, University of Vienna, 1090, Vienna, Austria
| | - Won-Hyung Chung
- Research Group of Gut Microbiome, Korea Food Research Institute, Sungnam, 13539, Republic of Korea
| | - Eun-Jin Yang
- Division of Polar Ocean Environment, Korea Polar Research Institute, Incheon, 21990, Republic of Korea
| | - Jisoo Park
- Division of Polar Ocean Environment, Korea Polar Research Institute, Incheon, 21990, Republic of Korea
| | - Jinyoung Jung
- Division of Polar Ocean Environment, Korea Polar Research Institute, Incheon, 21990, Republic of Korea
| | - Yoonsoo Hahn
- Department of Life Science, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Jang-Cheon Cho
- Department of Biological Sciences, Inha University, Incheon, 22212, Republic of Korea
| | - Eugene L Madsen
- Department of Microbiology, Cornell University, Ithaca, NY, 14853-8101, USA
| | - Francisco Rodriguez-Valera
- Evolutionary Genomics Group, División de Microbiología, Universidad Miguel Hernández, Apartado 18, San Juan de Alicante, 03550, Alicante, Spain
| | - Jung-Ho Hyun
- Department of Marine Science and Convergence Engineering, Hanyang University ERICA Campus, Ansan, 15588, Republic of Korea
| | - Sung-Keun Rhee
- Department of Microbiology, Chungbuk National University, Cheongju, 28644, Republic of Korea.
| |
Collapse
|
230
|
Watanabe M, Kojima H, Umezawa K, Fukui M. Genomic Characteristics of Desulfonema ishimotonii Tokyo 01 T Implying Horizontal Gene Transfer Among Phylogenetically Dispersed Filamentous Gliding Bacteria. Front Microbiol 2019; 10:227. [PMID: 30837965 PMCID: PMC6390638 DOI: 10.3389/fmicb.2019.00227] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 01/28/2019] [Indexed: 11/13/2022] Open
Abstract
Desulfonema ishimotonii strain Tokyo 01T is a filamentous sulfate-reducing bacterium isolated from a marine sediment. In this study, the genome of this strain was sequenced and analyzed with a focus on gene transfer from phylogenetically distant organisms. While the strain belongs to the class Deltaproteobacteria, hundreds of proteins encoded in the genome showed the highest sequence similarities to those of organisms outside of the class Deltaproteobacteria, suggesting that more than 20% of the genome is putatively of foreign origins. Many of these proteins had the highest sequence identities with proteins encoded in the genomes of filamentous bacteria, including giant sulfur oxidizers of the orders Thiotrichales, cyanobacteria of various genera, and uncultured bacteria of the candidate phylum KSB3. As mobile genetic elements transferred from phylogenetically distant organisms, putative inteins were identified in the GyrB and DnaE proteins encoded in the genome of strain Tokyo 01T. Genes involved in DNA recombination and repair were enriched in comparison to the closest relatives in the same family. Some of these genes were also related to those of organisms outside of the class Deltaproteobacteria, suggesting that they were acquired by horizontal gene transfer from diverse bacteria. The genomic data suggested significant genetic transfer among filamentous gliding bacteria in phylogenetically dispersed lineages including filamentous sulfate reducers. This study provides insights into the genomic evolution of filamentous bacteria belonging to diverse lineages, characterized by various physiological functions and different ecological roles.
Collapse
Affiliation(s)
- Miho Watanabe
- Institute of Low Temperature Science, Hokkaido University, Sapporo, Japan.,Japan Society for the Promotion of Science, Tokyo, Japan
| | - Hisaya Kojima
- Institute of Low Temperature Science, Hokkaido University, Sapporo, Japan
| | - Kazuhiro Umezawa
- Institute of Low Temperature Science, Hokkaido University, Sapporo, Japan
| | - Manabu Fukui
- Institute of Low Temperature Science, Hokkaido University, Sapporo, Japan
| |
Collapse
|
231
|
Ii KM, Kono N, Paulino-Lima IG, Tomita M, Rothschild LJ, Arakawa K. Complete Genome Sequence of Arthrobacter sp. Strain MN05-02, a UV-Resistant Bacterium from a Manganese Deposit in the Sonoran Desert. J Genomics 2019; 7:18-25. [PMID: 30820258 PMCID: PMC6389495 DOI: 10.7150/jgen.32194] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 01/08/2019] [Indexed: 12/26/2022] Open
Abstract
Arthrobacter sp. strain MN05-02 is a UV-resistant bacterium isolated from a manganese deposit in the Sonoran Desert, Arizona, USA. The LD10 of this strain is 123 Jm-2, which is twice that of Escherichia coli, and therefore can be a useful resource for comparative study of UV resistance and the role of manganese on this phenotype. Its complete genome is comprised of a chromosome of 3,488,433 bp and a plasmid of 154,991 bp. The chromosome contains 3,430 putative genes, including 3,366 protein coding genes, 52 tRNA and 12 rRNA genes. Carotenoid biosynthesis operon structure coded within the genome mirrors the characteristic orange-red pigment this bacterium produces, which presumably partly contribute to its UV resistance.
Collapse
Affiliation(s)
- Konosuke Mark Ii
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata, 997-0052, Japan.,Faculty of Environment and Information Studies, Keio University, Yamagata, 997-0052, Japan
| | - Nobuaki Kono
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata, 997-0052, Japan.,Graduate School of Media and Governance, Keio University, Yamagata, 997-0052, Japan
| | - Ivan Glaucio Paulino-Lima
- Blue Marble Space Institute of Science at NASA Ames Research Center, Mountain View, CA, USA, 94035-0001
| | - Masaru Tomita
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata, 997-0052, Japan.,Faculty of Environment and Information Studies, Keio University, Yamagata, 997-0052, Japan.,Graduate School of Media and Governance, Keio University, Yamagata, 997-0052, Japan
| | | | - Kazuharu Arakawa
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata, 997-0052, Japan.,Faculty of Environment and Information Studies, Keio University, Yamagata, 997-0052, Japan.,Graduate School of Media and Governance, Keio University, Yamagata, 997-0052, Japan
| |
Collapse
|
232
|
Cobaviruses - a new globally distributed phage group infecting Rhodobacteraceae in marine ecosystems. ISME JOURNAL 2019; 13:1404-1421. [PMID: 30718806 PMCID: PMC6775973 DOI: 10.1038/s41396-019-0362-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Revised: 01/15/2019] [Accepted: 01/22/2019] [Indexed: 11/13/2022]
Abstract
Bacteriophages are widely considered to influence bacterial communities, however most phages are still unknown or not studied well enough to understand their ecological roles. We have isolated two phages infecting Lentibacter sp. SH36, affiliated with the marine Roseobacter group, and retrieved similar phage genomes from publicly available metagenomics databases. Phylogenetic analysis placed the new phages within the Cobavirus group, in the here newly proposed genus Siovirus and subfamily Riovirinae of the Podoviridae. Gene composition and presence of direct terminal repeats in cultivated cobaviruses point toward a genome replication and packaging strategy similar to the T7 phage. Investigation of the genomes suggests that viral lysis of the cell proceeds via the canonical holin-endolysin pathway. Cobaviral hosts include members of the genera Lentibacter, Sulfitobacter and Celeribacter of the Roseobacter group within the family Rhodobacteraceae (Alphaproteobacteria). Screening more than 5,000 marine metagenomes, we found cobaviruses worldwide from temperate to tropical waters, in the euphotic zone, mainly in bays and estuaries, but also in the open ocean. The presence of cobaviruses in protist metagenomes as well as the phylogenetic neighborhood of cobaviruses in glutaredoxin and ribonucleotide reductase trees suggest that cobaviruses could infect bacteria associated with phototrophic or grazing protists. With this study, we expand the understanding of the phylogeny, classification, genomic organization, biogeography and ecology of this phage group infecting marine Rhodobacteraceae.
Collapse
|
233
|
Methods in Metagenomics and Environmental Biotechnology. NANOSCIENCE AND BIOTECHNOLOGY FOR ENVIRONMENTAL APPLICATIONS 2019. [DOI: 10.1007/978-3-319-97922-9_4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
234
|
Tanizawa Y, Fujisawa T, Arita M, Nakamura Y. Generating Publication-Ready Prokaryotic Genome Annotations with DFAST. Methods Mol Biol 2019; 1962:215-226. [PMID: 31020563 DOI: 10.1007/978-1-4939-9173-0_13] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
DDBJ Fast Annotation and Submission Tool (DFAST) is a genome annotation pipeline for prokaryotes, which also assists data submission to the public sequence database. It is available both as a web service and as a stand-alone tool that runs on local machines. DFAST can annotate a typical-sized bacterial genome within 5 min. The default annotation workflow contains a gene prediction phase for protein coding sequence, rRNA, tRNA, and CRISPR, and a functional annotation phase to infer protein functions. DFAST generates result files in standard annotation formats and data files for submission to DNA Data Bank of Japan (DDBJ). In this chapter, the annotation workflow and applications of DFAST are introduced.
Collapse
Affiliation(s)
- Yasuhiro Tanizawa
- Department of Informatics, National Institute of Genetics, Shizuoka, Japan.
| | - Takatomo Fujisawa
- Department of Informatics, National Institute of Genetics, Shizuoka, Japan
| | - Masanori Arita
- Department of Informatics, National Institute of Genetics, Shizuoka, Japan
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, Japan
| | - Yasukazu Nakamura
- Department of Informatics, National Institute of Genetics, Shizuoka, Japan
| |
Collapse
|
235
|
Abstract
Understanding how an animal organism and its gut microbes form an integrated biological organization, known as a holobiont, is becoming a central issue in biological studies. Such an organization inevitably involves a complex web of transmission processes that occur on different scales in time and space, across microbes and hosts. Network-based models are introduced in this chapter to tackle aspects of this complexity and to better take into account vertical and horizontal dimensions of transmission. Two types of network-based models are presented, sequence similarity networks and bipartite graphs. One interest of these networks is that they can consider a rich diversity of important players in microbial evolution that are usually excluded from evolutionary studies, like plasmids and viruses. These methods bring forward the notion of "gene externalization," which is defined as the presence of redundant copies of prokaryotic genes on mobile genetic elements (MGEs), and therefore emphasizes a related although distinct process from lateral gene transfer between microbial cells. This chapter introduces guidelines to the construction of these networks, reviews their analysis, and illustrates their possible biological interpretations and uses. The application to human gut microbiomes shows that sequences present in a higher diversity of MGEs have both biased functions and a broader microbial and human host range. These results suggest that an "externalized gut metagenome" is partly common to humans and benefits the gut microbial community. We conclude that testing relationships between microbial genes, microbes, and their animal hosts, using network-based methods, could help to unravel additional mechanisms of transmission in holobionts.
Collapse
|
236
|
Gong Z, Liang Y, Wang M, Jiang Y, Yang Q, Xia J, Zhou X, You S, Gao C, Wang J, He J, Shao H, McMinn A. Viral Diversity and Its Relationship With Environmental Factors at the Surface and Deep Sea of Prydz Bay, Antarctica. Front Microbiol 2018; 9:2981. [PMID: 30559737 PMCID: PMC6287040 DOI: 10.3389/fmicb.2018.02981] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Accepted: 11/19/2018] [Indexed: 12/31/2022] Open
Abstract
A viral metagenomic analysis of five surface and two bottom water (878 meters below surface, mbs, and 3,357 mbs) samples from Prydz Bay, was conducted during February-March 2015. The results demonstrated that most of the DNA viruses were dsDNA viruses (79.73-94.06%, except at PBI1, 37.51%). Of these, Caudovirales (Siphoviridae, Myoviridae, and Podoviridae) phages were most abundant in surface seawater (67.67-71.99%), while nucleocytoplasmic large DNA viruses (NCLDVs) (Phycodnaviridae, Mimiviridae, and Pandoraviridae accounted for >30% of dsDNA viruses) were most abundant in the bottom water (3,357 mbs). Of the ssDNA viruses, Microviridae was the dominant family in PBI2, PBI3, PBOs, and PBI4b (57.09-87.55%), while Inoviridae (58.16%) was the dominant family in PBI1. Cellulophaga phages (phi38:1 and phi10:1) and Flavobacterium phage 11b, infecting the possible host strains affiliated with the family Flavobacteriaceae of the phylum Bacteroidetes, were abundant in surface water dsDNA viromes. The long contig (PBI2_1_C) from the viral metagenomes were most similar to the genome architectures of Cellulophaga phage phi10:1 and Flavobacterium phage 11b from the Arctic Ocean. Comparative analysis showed that the surface viral community of Prydz Bay could be clearly separated from other marine and freshwater environments. The deep sea viral community was similar to the deep sea viral metagenome at A Long-term Oligotrophic Habitat Assessment Station (ALOHA, at 22°45'N, 158°00'W). The multivariable analysis indicated that nutrients probably played an important role in shaping the local viral community structure. This study revealed the preliminary characteristics of the viral community in Prydz Bay, from both the surface and the deep sea. It provided evidence of the relationships between the virome and the environment in Prydz Bay and provided the first data from the deep sea viral community of the Southern Ocean.
Collapse
Affiliation(s)
- Zheng Gong
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Yantao Liang
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
- Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
| | - Min Wang
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
- Key Lab of Polar Oceanography and Global Ocean Change, Ocean University of China, Qingdao, China
- Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, China
| | - Yong Jiang
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
- Key Lab of Polar Oceanography and Global Ocean Change, Ocean University of China, Qingdao, China
- Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, China
| | - Qingwei Yang
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Jun Xia
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Xinhao Zhou
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Siyuan You
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Chen Gao
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Jian Wang
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Jianfeng He
- SOA Key Laboratory for Polar Science, Polar Research Institute of China, Shanghai, China
| | - Hongbing Shao
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Andrew McMinn
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, TAS, Australia
| |
Collapse
|
237
|
Ogunade I, Schweickart H, Andries K, Lay J, Adeyemi J. Monensin Alters the Functional and Metabolomic Profile of Rumen Microbiota in Beef Cattle. Animals (Basel) 2018; 8:ani8110211. [PMID: 30453603 PMCID: PMC6262558 DOI: 10.3390/ani8110211] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 11/13/2018] [Accepted: 11/14/2018] [Indexed: 01/10/2023] Open
Abstract
Simple Summary Monensin can enhance the efficiency of feed utilization by modulating rumen fermentation; however, its effects on rumen function has not been fully described. Thus, this study integrated metagenomics and metabolomics analysis to identify differences in functional attributes and metabolites of rumen microbiota in beef steers fed no or 200 mg/d of monensin. Our results showed differences in relative abundance of functional genes involved in lipid metabolism and amino acid metabolism as well as changes in rumen fluid metabolites and their metabolic pathways. This study revealed a better understanding of the effects of monensin, which may enable more effective use of this additive for beef cattle production. Abstract To identify differences in rumen function as a result of feeding monensin to beef cattle, rumen fluid metagenomics and metabolomics analyses were used to evaluate the functional attributes and metabolites of rumen microbiota in beef steers fed no or 200 mg/d of monensin. Eight rumen-fistulated steers were used in the study for a period of 53 days. Rumen fluid samples were collected on the last day of the experiment. Monensin increased the relative abundance of Selenomonas sp. ND2010, Prevotella dentalis, Hallella seregens, Parabacteroides distasonis, Propionispira raffinosivorans, and Prevotella brevis, but reduced the relative abundance of Robinsoniella sp. KNHs210, Butyrivibrio proteoclasticus, Clostridium botulinum, Clostridium symbiosum, Burkholderia sp. LMG29324, and Clostridium butyricum. Monensin increased the relative abundance of functional genes involved in amino acid metabolism and lipid metabolism. A total of 245 metabolites were identified. Thirty-one metabolites were found to be differentially expressed. Pathway analysis of the differentially expressed metabolites revealed upregulated metabolic pathways associated with metabolism of linoleic acid and some amino acids. These findings confirm that monensin affects rumen fermentation of forage-fed beef cattle by modulating the rumen microbiome, and by reducing amino acid degradation and biohydrogenation of linoleic acid in the rumen.
Collapse
Affiliation(s)
- Ibukun Ogunade
- College of Agriculture, Communities, and the Environment, Kentucky State University, Frankfort, KY 40601, USA.
| | - Hank Schweickart
- College of Agriculture, Communities, and the Environment, Kentucky State University, Frankfort, KY 40601, USA.
| | - Kenneth Andries
- College of Agriculture, Communities, and the Environment, Kentucky State University, Frankfort, KY 40601, USA.
| | - Jerusha Lay
- College of Agriculture, Communities, and the Environment, Kentucky State University, Frankfort, KY 40601, USA.
| | - James Adeyemi
- College of Agriculture, Communities, and the Environment, Kentucky State University, Frankfort, KY 40601, USA.
| |
Collapse
|
238
|
Complete Genome Sequence of Klebsiella pneumoniae Siphophage Sugarland. Microbiol Resour Announc 2018; 7:MRA01014-18. [PMID: 30533796 PMCID: PMC6256483 DOI: 10.1128/mra.01014-18] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 10/02/2018] [Indexed: 02/05/2023] Open
Abstract
Klebsiella pneumoniae is a Gram-negative bacterium associated with the gastrointestinal tract and is a significant nosocomial pathogen due to its antibiotic resistance. Phage therapy against K. pneumoniae may prove useful in treating infections caused by this bacterium. This announcement describes the genome of the T5-like K. pneumoniae siphophage Sugarland.
Collapse
|
239
|
Martin TC, Visconti A, Spector TD, Falchi M. Conducting metagenomic studies in microbiology and clinical research. Appl Microbiol Biotechnol 2018; 102:8629-8646. [PMID: 30078138 PMCID: PMC6153607 DOI: 10.1007/s00253-018-9209-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 06/28/2018] [Accepted: 06/28/2018] [Indexed: 12/11/2022]
Abstract
Owing to the increased cost-effectiveness of high-throughput technologies, the number of studies focusing on the human microbiome and its connections to human health and disease has recently surged. However, best practices in microbiology and clinical research have yet to be clearly established. Here, we present an overview of the challenges and opportunities involved in conducting a metagenomic study, with a particular focus on data processing and analytical methods.
Collapse
Affiliation(s)
- Tiphaine C. Martin
- Department of Twin Research and Genetic Epidemiology, King’s College London, London, UK
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - Alessia Visconti
- Department of Twin Research and Genetic Epidemiology, King’s College London, London, UK
| | - Tim D. Spector
- Department of Twin Research and Genetic Epidemiology, King’s College London, London, UK
| | - Mario Falchi
- Department of Twin Research and Genetic Epidemiology, King’s College London, London, UK
| |
Collapse
|
240
|
Discovering novel hydrolases from hot environments. Biotechnol Adv 2018; 36:2077-2100. [PMID: 30266344 DOI: 10.1016/j.biotechadv.2018.09.004] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 09/21/2018] [Accepted: 09/24/2018] [Indexed: 12/12/2022]
Abstract
Novel hydrolases from hot and other extreme environments showing appropriate performance and/or novel functionalities and new approaches for their systematic screening are of great interest for developing new processes, for improving safety, health and environment issues. Existing processes could benefit as well from their properties. The workflow, based on the HotZyme project, describes a multitude of technologies and their integration from discovery to application, providing new tools for discovering, identifying and characterizing more novel thermostable hydrolases with desired functions from hot terrestrial and marine environments. To this end, hot springs worldwide were mined, resulting in hundreds of environmental samples and thousands of enrichment cultures growing on polymeric substrates of industrial interest. Using high-throughput sequencing and bioinformatics, 15 hot spring metagenomes, as well as several sequenced isolate genomes and transcriptomes were obtained. To facilitate the discovery of novel hydrolases, the annotation platform Anastasia and a whole-cell bioreporter-based functional screening method were developed. Sequence-based screening and functional screening together resulted in about 100 potentially new hydrolases of which more than a dozen have been characterized comprehensively from a biochemical and structural perspective. The characterized hydrolases include thermostable carboxylesterases, enol lactonases, quorum sensing lactonases, gluconolactonases, epoxide hydrolases, and cellulases. Apart from these novel thermostable hydrolases, the project generated an enormous amount of samples and data, thereby allowing the future discovery of even more novel enzymes.
Collapse
|
241
|
Sato M, Suda M, Okuma J, Kato T, Hirose Y, Nishimura A, Kondo Y, Shibata D. Isolation of highly thermostable β-xylosidases from a hot spring soil microbial community using a metagenomic approach. DNA Res 2018; 24:649-656. [PMID: 29106502 PMCID: PMC5726482 DOI: 10.1093/dnares/dsx032] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 07/31/2017] [Indexed: 11/24/2022] Open
Abstract
The DNA extracted from a high-temperature environment in which micro-organisms are living will be a good source for the isolation of thermostable enzymes. Using a metagenomic approach, we aimed to isolate thermostable β-xylosidases that will be exploited for biofuel production from lignocellulosic biomass. DNA samples obtained from the soil near a spout of a hot spring (70°C, pH7.2) were subjected to sequencing, which generated a total of 84.2 Gbp with 967,925 contigs of >500 bp in length. Similarity search for β-xylosidase in the contigs revealed the presence of 168 candidate sequences, each of which may have arisen from more than one gene. Individual genes were amplified by PCR using sequence-specific primers. The resultant DNA fragments were cloned and introduced into Escherichia coli BL21 Star(DE3). Consequently, 269 proteins were successfully expressed in the E. coli cells and then examined for β-xylosidase activity. A total of 82 proteins exhibited β-xylosidase activity at 50°C, six of which retained the activity even at 90°C. Out of the six, three proteins were originated from a single candidate sequence, AR19M-311. An amino acid sequence comparison suggested the amino acid residues that appeared to be crucial for thermal stability of the enzymes.
Collapse
Affiliation(s)
- Masaru Sato
- Department of Biotechnology Research and Development, Kazusa DNA Research Institute, Kisarazu, Chiba 292-0818, Japan
| | - Migiwa Suda
- Department of Biotechnology Research and Development, Kazusa DNA Research Institute, Kisarazu, Chiba 292-0818, Japan
| | - Jiro Okuma
- Honda Research Institute Japan Co., Ltd., Wako, Saitama 351-0188, Japan
| | - Tomohiko Kato
- Department of Biotechnology Research and Development, Kazusa DNA Research Institute, Kisarazu, Chiba 292-0818, Japan
| | - Yoshitsugu Hirose
- Honda Research Institute Japan Co., Ltd., Wako, Saitama 351-0188, Japan
| | - Asuka Nishimura
- Honda Research Institute Japan Co., Ltd., Wako, Saitama 351-0188, Japan
| | - Yasuhiko Kondo
- Honda Research Institute Japan Co., Ltd., Wako, Saitama 351-0188, Japan
| | - Daisuke Shibata
- Department of Biotechnology Research and Development, Kazusa DNA Research Institute, Kisarazu, Chiba 292-0818, Japan
| |
Collapse
|
242
|
Hibrand Saint-Oyant L, Ruttink T, Hamama L, Kirov I, Lakhwani D, Zhou NN, Bourke PM, Daccord N, Leus L, Schulz D, Van de Geest H, Hesselink T, Van Laere K, Debray K, Balzergue S, Thouroude T, Chastellier A, Jeauffre J, Voisine L, Gaillard S, Borm TJA, Arens P, Voorrips RE, Maliepaard C, Neu E, Linde M, Le Paslier MC, Bérard A, Bounon R, Clotault J, Choisne N, Quesneville H, Kawamura K, Aubourg S, Sakr S, Smulders MJM, Schijlen E, Bucher E, Debener T, De Riek J, Foucher F. A high-quality genome sequence of Rosa chinensis to elucidate ornamental traits. NATURE PLANTS 2018; 4:473-484. [PMID: 29892093 DOI: 10.1101/254102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 05/01/2018] [Indexed: 05/27/2023]
Abstract
Rose is the world's most important ornamental plant, with economic, cultural and symbolic value. Roses are cultivated worldwide and sold as garden roses, cut flowers and potted plants. Roses are outbred and can have various ploidy levels. Our objectives were to develop a high-quality reference genome sequence for the genus Rosa by sequencing a doubled haploid, combining long and short reads, and anchoring to a high-density genetic map, and to study the genome structure and genetic basis of major ornamental traits. We produced a doubled haploid rose line ('HapOB') from Rosa chinensis 'Old Blush' and generated a rose genome assembly anchored to seven pseudo-chromosomes (512 Mb with N50 of 3.4 Mb and 564 contigs). The length of 512 Mb represents 90.1-96.1% of the estimated haploid genome size of rose. Of the assembly, 95% is contained in only 196 contigs. The anchoring was validated using high-density diploid and tetraploid genetic maps. We delineated hallmark chromosomal features, including the pericentromeric regions, through annotation of transposable element families and positioned centromeric repeats using fluorescent in situ hybridization. The rose genome displays extensive synteny with the Fragaria vesca genome, and we delineated only two major rearrangements. Genetic diversity was analysed using resequencing data of seven diploid and one tetraploid Rosa species selected from various sections of the genus. Combining genetic and genomic approaches, we identified potential genetic regulators of key ornamental traits, including prickle density and the number of flower petals. A rose APETALA2/TOE homologue is proposed to be the major regulator of petal number in rose. This reference sequence is an important resource for studying polyploidization, meiosis and developmental processes, as we demonstrated for flower and prickle development. It will also accelerate breeding through the development of molecular markers linked to traits, the identification of the genes underlying them and the exploitation of synteny across Rosaceae.
Collapse
Affiliation(s)
- L Hibrand Saint-Oyant
- IRHS, Agrocampus-Ouest, INRA, Université d'Angers, SFR 4207 QuaSaV, Beaucouzé, France
| | - T Ruttink
- ILVO, Flanders Research Institute for Agriculture, Fisheries and Food, Plant Sciences Unit, Melle, Belgium
| | - L Hamama
- IRHS, Agrocampus-Ouest, INRA, Université d'Angers, SFR 4207 QuaSaV, Beaucouzé, France
| | - I Kirov
- ILVO, Flanders Research Institute for Agriculture, Fisheries and Food, Plant Sciences Unit, Melle, Belgium
- Russian State Agrarian University-Moscow Timiryazev Agricultural Academy, Moscow, Russia
| | - D Lakhwani
- IRHS, Agrocampus-Ouest, INRA, Université d'Angers, SFR 4207 QuaSaV, Beaucouzé, France
| | - N N Zhou
- IRHS, Agrocampus-Ouest, INRA, Université d'Angers, SFR 4207 QuaSaV, Beaucouzé, France
| | - P M Bourke
- Plant Breeding, Wageningen University & Research, Wageningen, The Netherlands
| | - N Daccord
- IRHS, Agrocampus-Ouest, INRA, Université d'Angers, SFR 4207 QuaSaV, Beaucouzé, France
| | - L Leus
- ILVO, Flanders Research Institute for Agriculture, Fisheries and Food, Plant Sciences Unit, Melle, Belgium
| | - D Schulz
- Leibniz Universität, Hannover, Germany
| | - H Van de Geest
- Wageningen University & Research, Business Unit Bioscience, Wageningen, The Netherlands
| | - T Hesselink
- Wageningen University & Research, Business Unit Bioscience, Wageningen, The Netherlands
| | - K Van Laere
- ILVO, Flanders Research Institute for Agriculture, Fisheries and Food, Plant Sciences Unit, Melle, Belgium
| | - K Debray
- IRHS, Agrocampus-Ouest, INRA, Université d'Angers, SFR 4207 QuaSaV, Beaucouzé, France
| | - S Balzergue
- IRHS, Agrocampus-Ouest, INRA, Université d'Angers, SFR 4207 QuaSaV, Beaucouzé, France
| | - T Thouroude
- IRHS, Agrocampus-Ouest, INRA, Université d'Angers, SFR 4207 QuaSaV, Beaucouzé, France
| | - A Chastellier
- IRHS, Agrocampus-Ouest, INRA, Université d'Angers, SFR 4207 QuaSaV, Beaucouzé, France
| | - J Jeauffre
- IRHS, Agrocampus-Ouest, INRA, Université d'Angers, SFR 4207 QuaSaV, Beaucouzé, France
| | - L Voisine
- IRHS, Agrocampus-Ouest, INRA, Université d'Angers, SFR 4207 QuaSaV, Beaucouzé, France
| | - S Gaillard
- IRHS, Agrocampus-Ouest, INRA, Université d'Angers, SFR 4207 QuaSaV, Beaucouzé, France
| | - T J A Borm
- Plant Breeding, Wageningen University & Research, Wageningen, The Netherlands
| | - P Arens
- Plant Breeding, Wageningen University & Research, Wageningen, The Netherlands
| | - R E Voorrips
- Plant Breeding, Wageningen University & Research, Wageningen, The Netherlands
| | - C Maliepaard
- Plant Breeding, Wageningen University & Research, Wageningen, The Netherlands
| | - E Neu
- Leibniz Universität, Hannover, Germany
| | - M Linde
- Leibniz Universität, Hannover, Germany
| | - M C Le Paslier
- INRA, US 1279 EPGV, Université Paris-Saclay, Evry, France
| | - A Bérard
- INRA, US 1279 EPGV, Université Paris-Saclay, Evry, France
| | - R Bounon
- INRA, US 1279 EPGV, Université Paris-Saclay, Evry, France
| | - J Clotault
- IRHS, Agrocampus-Ouest, INRA, Université d'Angers, SFR 4207 QuaSaV, Beaucouzé, France
| | - N Choisne
- URGI, INRA, Université Paris-Saclay, Versailles, France
| | - H Quesneville
- URGI, INRA, Université Paris-Saclay, Versailles, France
| | - K Kawamura
- Osaka Institute of Technology, Osaka, Japan
| | - S Aubourg
- IRHS, Agrocampus-Ouest, INRA, Université d'Angers, SFR 4207 QuaSaV, Beaucouzé, France
| | - S Sakr
- IRHS, Agrocampus-Ouest, INRA, Université d'Angers, SFR 4207 QuaSaV, Beaucouzé, France
| | - M J M Smulders
- Plant Breeding, Wageningen University & Research, Wageningen, The Netherlands
| | - E Schijlen
- Wageningen University & Research, Business Unit Bioscience, Wageningen, The Netherlands
| | - E Bucher
- IRHS, Agrocampus-Ouest, INRA, Université d'Angers, SFR 4207 QuaSaV, Beaucouzé, France
| | - T Debener
- Leibniz Universität, Hannover, Germany
| | - J De Riek
- ILVO, Flanders Research Institute for Agriculture, Fisheries and Food, Plant Sciences Unit, Melle, Belgium
| | - F Foucher
- IRHS, Agrocampus-Ouest, INRA, Université d'Angers, SFR 4207 QuaSaV, Beaucouzé, France.
| |
Collapse
|
243
|
Hibrand Saint-Oyant L, Ruttink T, Hamama L, Kirov I, Lakhwani D, Zhou NN, Bourke PM, Daccord N, Leus L, Schulz D, Van de Geest H, Hesselink T, Van Laere K, Debray K, Balzergue S, Thouroude T, Chastellier A, Jeauffre J, Voisine L, Gaillard S, Borm TJA, Arens P, Voorrips RE, Maliepaard C, Neu E, Linde M, Le Paslier MC, Bérard A, Bounon R, Clotault J, Choisne N, Quesneville H, Kawamura K, Aubourg S, Sakr S, Smulders MJM, Schijlen E, Bucher E, Debener T, De Riek J, Foucher F. A high-quality genome sequence of Rosa chinensis to elucidate ornamental traits. NATURE PLANTS 2018; 4:473-484. [PMID: 29892093 PMCID: PMC6786968 DOI: 10.1038/s41477-018-0166-1] [Citation(s) in RCA: 159] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 05/01/2018] [Indexed: 05/18/2023]
Abstract
Rose is the world's most important ornamental plant, with economic, cultural and symbolic value. Roses are cultivated worldwide and sold as garden roses, cut flowers and potted plants. Roses are outbred and can have various ploidy levels. Our objectives were to develop a high-quality reference genome sequence for the genus Rosa by sequencing a doubled haploid, combining long and short reads, and anchoring to a high-density genetic map, and to study the genome structure and genetic basis of major ornamental traits. We produced a doubled haploid rose line ('HapOB') from Rosa chinensis 'Old Blush' and generated a rose genome assembly anchored to seven pseudo-chromosomes (512 Mb with N50 of 3.4 Mb and 564 contigs). The length of 512 Mb represents 90.1-96.1% of the estimated haploid genome size of rose. Of the assembly, 95% is contained in only 196 contigs. The anchoring was validated using high-density diploid and tetraploid genetic maps. We delineated hallmark chromosomal features, including the pericentromeric regions, through annotation of transposable element families and positioned centromeric repeats using fluorescent in situ hybridization. The rose genome displays extensive synteny with the Fragaria vesca genome, and we delineated only two major rearrangements. Genetic diversity was analysed using resequencing data of seven diploid and one tetraploid Rosa species selected from various sections of the genus. Combining genetic and genomic approaches, we identified potential genetic regulators of key ornamental traits, including prickle density and the number of flower petals. A rose APETALA2/TOE homologue is proposed to be the major regulator of petal number in rose. This reference sequence is an important resource for studying polyploidization, meiosis and developmental processes, as we demonstrated for flower and prickle development. It will also accelerate breeding through the development of molecular markers linked to traits, the identification of the genes underlying them and the exploitation of synteny across Rosaceae.
Collapse
Affiliation(s)
- L Hibrand Saint-Oyant
- IRHS, Agrocampus-Ouest, INRA, Université d'Angers, SFR 4207 QuaSaV, Beaucouzé, France
| | - T Ruttink
- ILVO, Flanders Research Institute for Agriculture, Fisheries and Food, Plant Sciences Unit, Melle, Belgium
| | - L Hamama
- IRHS, Agrocampus-Ouest, INRA, Université d'Angers, SFR 4207 QuaSaV, Beaucouzé, France
| | - I Kirov
- ILVO, Flanders Research Institute for Agriculture, Fisheries and Food, Plant Sciences Unit, Melle, Belgium
- Russian State Agrarian University-Moscow Timiryazev Agricultural Academy, Moscow, Russia
| | - D Lakhwani
- IRHS, Agrocampus-Ouest, INRA, Université d'Angers, SFR 4207 QuaSaV, Beaucouzé, France
| | - N N Zhou
- IRHS, Agrocampus-Ouest, INRA, Université d'Angers, SFR 4207 QuaSaV, Beaucouzé, France
| | - P M Bourke
- Plant Breeding, Wageningen University & Research, Wageningen, The Netherlands
| | - N Daccord
- IRHS, Agrocampus-Ouest, INRA, Université d'Angers, SFR 4207 QuaSaV, Beaucouzé, France
| | - L Leus
- ILVO, Flanders Research Institute for Agriculture, Fisheries and Food, Plant Sciences Unit, Melle, Belgium
| | - D Schulz
- Leibniz Universität, Hannover, Germany
| | - H Van de Geest
- Wageningen University & Research, Business Unit Bioscience, Wageningen, The Netherlands
| | - T Hesselink
- Wageningen University & Research, Business Unit Bioscience, Wageningen, The Netherlands
| | - K Van Laere
- ILVO, Flanders Research Institute for Agriculture, Fisheries and Food, Plant Sciences Unit, Melle, Belgium
| | - K Debray
- IRHS, Agrocampus-Ouest, INRA, Université d'Angers, SFR 4207 QuaSaV, Beaucouzé, France
| | - S Balzergue
- IRHS, Agrocampus-Ouest, INRA, Université d'Angers, SFR 4207 QuaSaV, Beaucouzé, France
| | - T Thouroude
- IRHS, Agrocampus-Ouest, INRA, Université d'Angers, SFR 4207 QuaSaV, Beaucouzé, France
| | - A Chastellier
- IRHS, Agrocampus-Ouest, INRA, Université d'Angers, SFR 4207 QuaSaV, Beaucouzé, France
| | - J Jeauffre
- IRHS, Agrocampus-Ouest, INRA, Université d'Angers, SFR 4207 QuaSaV, Beaucouzé, France
| | - L Voisine
- IRHS, Agrocampus-Ouest, INRA, Université d'Angers, SFR 4207 QuaSaV, Beaucouzé, France
| | - S Gaillard
- IRHS, Agrocampus-Ouest, INRA, Université d'Angers, SFR 4207 QuaSaV, Beaucouzé, France
| | - T J A Borm
- Plant Breeding, Wageningen University & Research, Wageningen, The Netherlands
| | - P Arens
- Plant Breeding, Wageningen University & Research, Wageningen, The Netherlands
| | - R E Voorrips
- Plant Breeding, Wageningen University & Research, Wageningen, The Netherlands
| | - C Maliepaard
- Plant Breeding, Wageningen University & Research, Wageningen, The Netherlands
| | - E Neu
- Leibniz Universität, Hannover, Germany
| | - M Linde
- Leibniz Universität, Hannover, Germany
| | - M C Le Paslier
- INRA, US 1279 EPGV, Université Paris-Saclay, Evry, France
| | - A Bérard
- INRA, US 1279 EPGV, Université Paris-Saclay, Evry, France
| | - R Bounon
- INRA, US 1279 EPGV, Université Paris-Saclay, Evry, France
| | - J Clotault
- IRHS, Agrocampus-Ouest, INRA, Université d'Angers, SFR 4207 QuaSaV, Beaucouzé, France
| | - N Choisne
- URGI, INRA, Université Paris-Saclay, Versailles, France
| | - H Quesneville
- URGI, INRA, Université Paris-Saclay, Versailles, France
| | - K Kawamura
- Osaka Institute of Technology, Osaka, Japan
| | - S Aubourg
- IRHS, Agrocampus-Ouest, INRA, Université d'Angers, SFR 4207 QuaSaV, Beaucouzé, France
| | - S Sakr
- IRHS, Agrocampus-Ouest, INRA, Université d'Angers, SFR 4207 QuaSaV, Beaucouzé, France
| | - M J M Smulders
- Plant Breeding, Wageningen University & Research, Wageningen, The Netherlands
| | - E Schijlen
- Wageningen University & Research, Business Unit Bioscience, Wageningen, The Netherlands
| | - E Bucher
- IRHS, Agrocampus-Ouest, INRA, Université d'Angers, SFR 4207 QuaSaV, Beaucouzé, France
| | - T Debener
- Leibniz Universität, Hannover, Germany
| | - J De Riek
- ILVO, Flanders Research Institute for Agriculture, Fisheries and Food, Plant Sciences Unit, Melle, Belgium
| | - F Foucher
- IRHS, Agrocampus-Ouest, INRA, Université d'Angers, SFR 4207 QuaSaV, Beaucouzé, France.
| |
Collapse
|
244
|
A strong link between marine microbial community composition and function challenges the idea of functional redundancy. ISME JOURNAL 2018; 12:2470-2478. [PMID: 29925880 DOI: 10.1038/s41396-018-0158-1] [Citation(s) in RCA: 113] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 05/07/2018] [Accepted: 05/09/2018] [Indexed: 12/31/2022]
Abstract
Marine microbes have tremendous diversity, but a fundamental question remains unanswered: why are there so many microbial species in the sea? The idea of functional redundancy for microbial communities has long been assumed, so that the high level of richness is often explained by the presence of different taxa that are able to conduct the exact same set of metabolic processes and that can readily replace each other. Here, we refute the hypothesis of functional redundancy for marine microbial communities by showing that a shift in the community composition altered the overall functional attributes of communities across different temporal and spatial scales. Our metagenomic monitoring of a coastal northwestern Mediterranean site also revealed that diverse microbial communities harbor a high diversity of potential proteins. Working with all information given by the metagenomes (all reads) rather than relying only on known genes (annotated orthologous genes) was essential for revealing the similarity between taxonomic and functional community compositions. Our finding does not exclude the possibility for a partial redundancy where organisms that share some specific function can coexist when they differ in other ecological requirements. It demonstrates, however, that marine microbial diversity reflects a tremendous diversity of microbial metabolism and highlights the genetic potential yet to be discovered in an ocean of microbes.
Collapse
|
245
|
Nonaka L, Yamamoto T, Maruyama F, Hirose Y, Onishi Y, Kobayashi T, Suzuki S, Nomura N, Masuda M, Yano H. Interplay of a non-conjugative integrative element and a conjugative plasmid in the spread of antibiotic resistance via suicidal plasmid transfer from an aquaculture Vibrio isolate. PLoS One 2018; 13:e0198613. [PMID: 29879198 PMCID: PMC5991714 DOI: 10.1371/journal.pone.0198613] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 05/22/2018] [Indexed: 12/01/2022] Open
Abstract
The capture of antimicrobial resistance genes (ARGs) by mobile genetic elements (MGEs) plays a critical role in resistance acquisition for human-associated bacteria. Although aquaculture environments are recognized as important reservoirs of ARGs, intra- and intercellular mobility of MGEs discovered in marine organisms is poorly characterized. Here, we show a new pattern of interspecies ARGs transfer involving a 'non-conjugative' integrative element. To identify active MGEs in a Vibrio ponticus isolate, we conducted whole-genome sequencing of a transconjugant obtained by mating between Escherichia coli and Vibrio ponticus. This revealed integration of a plasmid (designated pSEA1) into the chromosome, consisting of a self-transmissible plasmid backbone of the MOBH group, ARGs, and a 13.8-kb integrative element Tn6283. Molecular genetics analysis suggested a two-step gene transfer model. First, Tn6283 integrates into the recipient chromosome during suicidal plasmid transfer, followed by homologous recombination between the Tn6283 copy in the chromosome and that in the newly transferred pSEA1. Tn6283 is unusual among integrative elements in that it apparently does not encode transfer function and its excision barely generates unoccupied donor sites. Thus, its movement is analogous to the transposition of insertion sequences rather than to that of canonical integrative and conjugative elements. Overall, this study reveals the presence of a previously unrecognized type of MGE in a marine organism, highlighting diversity in the mode of interspecies gene transfer.
Collapse
Affiliation(s)
- Lisa Nonaka
- Department of Microbiology, Dokkyo Medical University School of Medicine, Mibu, Tochigi, Japan
| | - Tatsuya Yamamoto
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tennodai, Tsukuba, Japan
| | | | - Yuu Hirose
- Department of Environmental and Life Sciences, Toyohashi University of Technology, Tempaku, Toyohashi, Aichi, Japan
| | - Yuki Onishi
- Center for Marine Environmental Studies, Ehime University, Matsuyama, Ehime, Japan
| | | | - Satoru Suzuki
- Center for Marine Environmental Studies, Ehime University, Matsuyama, Ehime, Japan
| | - Nobuhiko Nomura
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tennodai, Tsukuba, Japan
| | - Michiaki Masuda
- Department of Microbiology, Dokkyo Medical University School of Medicine, Mibu, Tochigi, Japan
| | - Hirokazu Yano
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tennodai, Tsukuba, Japan
| |
Collapse
|
246
|
Watanabe M, Kojima H, Fukui M. Complete genome sequence of Marinifilaceae bacterium strain SPP2, isolated from the Antarctic marine sediment. Mar Genomics 2018. [DOI: 10.1016/j.margen.2017.06.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
247
|
Laffy PW, Wood‐Charlson EM, Turaev D, Jutz S, Pascelli C, Botté ES, Bell SC, Peirce TE, Weynberg KD, van Oppen MJH, Rattei T, Webster NS. Reef invertebrate viromics: diversity, host specificity and functional capacity. Environ Microbiol 2018; 20:2125-2141. [DOI: 10.1111/1462-2920.14110] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 03/16/2018] [Accepted: 03/16/2018] [Indexed: 01/14/2023]
Affiliation(s)
- Patrick W. Laffy
- Australian Institute of Marine Science, PMB 3TownsvilleQLD 4810 Australia
| | | | - Dmitrij Turaev
- Department of Microbiology and Ecosystem Science, Division of Computational Systems BiologyUniversity of ViennaVienna Austria
| | - Sabrina Jutz
- Department of Microbiology and Ecosystem Science, Division of Computational Systems BiologyUniversity of ViennaVienna Austria
| | - Cecilia Pascelli
- Australian Institute of Marine Science, PMB 3TownsvilleQLD 4810 Australia
- College of Science and EngineeringJames Cook UniversityTownsville QLD Australia
- AIMS@JCU, Australian Institute of Marine Science and James Cook UniversityTownsville QLD Australia
| | | | - Sara C. Bell
- Australian Institute of Marine Science, PMB 3TownsvilleQLD 4810 Australia
| | - Tyler E. Peirce
- Australian Institute of Marine Science, PMB 3TownsvilleQLD 4810 Australia
| | - Karen D. Weynberg
- Australian Institute of Marine Science, PMB 3TownsvilleQLD 4810 Australia
| | - Madeleine J. H. van Oppen
- Australian Institute of Marine Science, PMB 3TownsvilleQLD 4810 Australia
- School of BiosciencesUniversity of Melbourne, ParkvilleMelbourneVIC 3010 Australia
| | - Thomas Rattei
- Department of Microbiology and Ecosystem Science, Division of Computational Systems BiologyUniversity of ViennaVienna Austria
| | - Nicole S. Webster
- Australian Institute of Marine Science, PMB 3TownsvilleQLD 4810 Australia
- Austalian Centre for Ecogenomics, University of QueenslandBrisbaneQLD 4072 Australia
| |
Collapse
|
248
|
Complete Genome Sequence of Sphingobium sp. Strain YG1, a Lignin Model Dimer-Metabolizing Bacterium Isolated from Sediment in Kagoshima Bay, Japan. GENOME ANNOUNCEMENTS 2018; 6:6/17/e00267-18. [PMID: 29700143 PMCID: PMC5920171 DOI: 10.1128/genomea.00267-18] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Sphingobium sp. strain YG1 is a lignin model dimer-metabolizing bacterium newly isolated from sediment in Kagoshima, Japan, at a depth of 102 m. Here, we report the complete genome nucleotide sequence of strain YG1.
Collapse
|
249
|
Complete Genome Sequence of Altererythrobacter sp. Strain B11, an Aromatic Monomer-Degrading Bacterium, Isolated from Deep-Sea Sediment under the Seabed off Kashima, Japan. GENOME ANNOUNCEMENTS 2018; 6:6/12/e00200-18. [PMID: 29567747 PMCID: PMC5864952 DOI: 10.1128/genomea.00200-18] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Altererythrobacter sp. strain B11 is an aromatic monomer-degrading bacterium newly isolated from sediment under the seabed off Kashima, Japan, at a depth of 2,100 m. Here, we report the complete nucleotide sequence of the genome of strain B11.
Collapse
|
250
|
Ren M, Zhang Z, Wang X, Zhou Z, Chen D, Zeng H, Zhao S, Chen L, Hu Y, Zhang C, Liang Y, She Q, Zhang Y, Peng N. Diversity and Contributions to Nitrogen Cycling and Carbon Fixation of Soil Salinity Shaped Microbial Communities in Tarim Basin. Front Microbiol 2018; 9:431. [PMID: 29593680 PMCID: PMC5855357 DOI: 10.3389/fmicb.2018.00431] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 02/26/2018] [Indexed: 11/14/2022] Open
Abstract
Arid and semi-arid regions comprise nearly one-fifth of the earth's terrestrial surface. However, the diversities and functions of their soil microbial communities are not well understood, despite microbial ecological importance in driving biogeochemical cycling. Here, we analyzed the geochemistry and microbial communities of the desert soils from Tarim Basin, northwestern China. Our geochemical data indicated half of these soils are saline. Metagenomic analysis showed that bacterial phylotypes (89.72% on average) dominated the community, with relatively small proportions of Archaea (7.36%) and Eukaryota (2.21%). Proteobacteria, Firmicutes, Actinobacteria, and Euryarchaeota were most abundant based on metagenomic data, whereas genes attributed to Proteobacteria, Actinobacteria, Euryarchaeota, and Thaumarchaeota most actively transcribed. The most abundant phylotypes (Halobacterium, Halomonas, Burkholderia, Lactococcus, Clavibacter, Cellulomonas, Actinomycetospora, Beutenbergia, Pseudomonas, and Marinobacter) in each soil sample, based on metagenomic data, contributed marginally to the population of all microbial communities, whereas the putative halophiles, which contributed the most abundant transcripts, were in the majority of the active microbial population and is consistent with the soil salinity. Sample correlation analyses according to the detected and active genotypes showed significant differences, indicating high diversity of microbial communities among the Tarim soil samples. Regarding ecological functions based on the metatranscriptomic data, transcription of genes involved in various steps of nitrogen cycling, as well as carbon fixation, were observed in the tested soil samples. Metatranscriptomic data also indicated that Thaumarchaeota are crucial for ammonia oxidation and Proteobacteria play the most important role in other steps of nitrogen cycle. The reductive TCA pathway and dicarboxylate-hydroxybutyrate cycle attributed to Proteobacteria and Crenarchaeota, respectively, were highly represented in carbon fixation. Our study reveals that the microbial communities could provide carbon and nitrogen nutrients for higher plants in the sandy saline soils of Tarim Basin.
Collapse
Affiliation(s)
- Min Ren
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Zhufeng Zhang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Xuelian Wang
- Center for Genome Analysis, ABLife Inc., Wuhan, China
| | - Zhiwei Zhou
- Agricultural Bioinformatics Key Laboratory of Hubei Province, College of Informatics, Huazhong Agricultural University, Wuhan, China
| | - Dong Chen
- Center for Genome Analysis, ABLife Inc., Wuhan, China
| | - Hui Zeng
- Laboratory for Genome Regulation and Human Health, ABLife Inc., Wuhan, China
| | - Shumiao Zhao
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Lingling Chen
- Agricultural Bioinformatics Key Laboratory of Hubei Province, College of Informatics, Huazhong Agricultural University, Wuhan, China
| | - Yuanliang Hu
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China.,Hubei Key Laboratory of Edible Wild Plants Conservation & Utilization, College of Life Sciences, Hubei Normal University, Huangshi, China
| | - Changyi Zhang
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Yunxiang Liang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Qunxin She
- Department of Biology, Archaeal Centre, University of Copenhagen, Copenhagen, Denmark
| | - Yi Zhang
- Center for Genome Analysis, ABLife Inc., Wuhan, China.,Laboratory for Genome Regulation and Human Health, ABLife Inc., Wuhan, China
| | - Nan Peng
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|