201
|
Abstract
Receptor-mediated endocytosis is used by a number of viruses and toxins to gain entry into cells. Some have evolved to use specific lipids in the plasma membrane as their receptors. They include bacterial toxins such as Shiga and Cholera toxin and viruses such as mouse polyoma virus and simian virus 40. Through multivalent binding to glycosphingolipids, they induce lipid clustering and changes in membrane properties. Internalization occurs by unusual endocytic mechanisms involving lipid rafts, induction of membrane curvature, trans-bilayer coupling, and activation of signaling pathways. Once delivered to early endosomes, they follow diverse intracellular routes to the lumen of the ER, from which they penetrate into the cytosol. The role of the lipid receptors is central in these well-studied processes.
Collapse
Affiliation(s)
- Helge Ewers
- Laboratorium für Physikalische Chemie, ETH Zurich, 8093 Zurich, Switzerland
| | | |
Collapse
|
202
|
Lemkul JA, Bevan DR. Lipid composition influences the release of Alzheimer's amyloid β-peptide from membranes. Protein Sci 2011; 20:1530-45. [PMID: 21692120 DOI: 10.1002/pro.678] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2011] [Revised: 05/08/2011] [Accepted: 06/09/2011] [Indexed: 12/15/2022]
Abstract
The behavior of the amyloid β-peptide (Aβ) within a membrane environment is integral to its toxicity and the progression of Alzheimer's disease. Ganglioside GM1 has been shown to enhance the aggregation of Aβ, but the underlying mechanism is unknown. Using atomistic molecular dynamics simulations, we explored the interactions between the 40-residue alloform of Aβ (Aβ(40) ) and several model membranes, including pure palmitoyloleoylphosphatidylcholine (POPC) and palmitoyloleoylphosphatidylserine (POPS), an equimolar mixture of POPC and palmitoyloleoylphosphatidylethanolamine (POPE), and lipid rafts, both with and without GM1, to understand the behavior of Aβ(40) in various membrane microenvironments. Aβ(40) remained inserted in POPC, POPS, POPC/POPE, and raft membranes, but in several instances exited the raft containing GM1. Aβ(40) interacted with GM1 largely through hydrogen bonding, producing configurations containing β-strands with C-termini that, in some cases, exited the membrane and became exposed to solvent. These observations provide insight into the release of Aβ from the membrane, a previously uncharacterized process of the Aβ aggregation pathway.
Collapse
Affiliation(s)
- Justin A Lemkul
- Department of Biochemistry, Virginia Tech, Blacksburg, Virginia 24061, USA
| | | |
Collapse
|
203
|
Whitehead SN, Chan KHN, Gangaraju S, Slinn J, Li J, Hou ST. Imaging mass spectrometry detection of gangliosides species in the mouse brain following transient focal cerebral ischemia and long-term recovery. PLoS One 2011; 6:e20808. [PMID: 21687673 PMCID: PMC3110773 DOI: 10.1371/journal.pone.0020808] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2011] [Accepted: 05/10/2011] [Indexed: 11/18/2022] Open
Abstract
Gangliosides, a member of the glycosphingolipid family, are heterogeneously expressed in biological membranes and are particularly enriched within the central nervous system. Gangliosides consist of mono- or poly-sialylated oligosaccharide chains of variable lengths attached to a ceramide unit and are found to be intimately involved in brain disease development. The purpose of this study is to examine the spatial profile of ganglioside species using matrix-assisted laser desorption/ionization (MALDI) imaging (IMS) following middle cerebral artery occlusion (MCAO) reperfusion injury in the mouse. IMS is a powerful method to not only discriminate gangliosides by their oligosaccharide components, but also by their carbon length within their sphingosine base. Mice were subjected to a 30 min unilateral MCAO followed by long-term survival (up to 28 days of reperfusion). Brain sections were sprayed with the matrix 5-Chloro-2-mercaptobenzothiazole, scanned and analyzed for a series of ganglioside molecules using an Applied Biosystems 4800 MALDI TOF/TOF. Traditional histological and immunofluorescence techniques were performed to assess brain tissue damage and verification of the expression of gangliosides of interest. Results revealed a unique anatomical profile of GM1, GD1 and GT1b (d18∶1, d20∶1 as well as other members of the glycosphingolipid family). There was marked variability in the ratio of expression between ipsilateral and contralateral cortices for the various detected ganglioside species following MCAO-reperfusion injury. Most interestingly, MCAO resulted in the transient induction of both GM2 and GM3 signals within the ipsilateral hemisphere; at the border of the infarcted tissue. Taken together, the data suggest that brain region specific expression of gangliosides, particularly with respect to hydrocarbon length, may play a role in neuronal responses to injury.
Collapse
Affiliation(s)
- Shawn N. Whitehead
- Experimental NeuroTherapeutics Laboratory, Institute for Biological Sciences, National Research Council of Canada, Ottawa, Ontario, Canada
- * E-mail: (SNW); (STH)
| | - Kenneth H. N. Chan
- Mass Spectrometry Glycoanalysis Laboratory, Institute for Biological Sciences, National Research Council of Canada, Ottawa, Ontario, Canada
| | - Sandhya Gangaraju
- Experimental NeuroTherapeutics Laboratory, Institute for Biological Sciences, National Research Council of Canada, Ottawa, Ontario, Canada
| | - Jacqueline Slinn
- Experimental NeuroTherapeutics Laboratory, Institute for Biological Sciences, National Research Council of Canada, Ottawa, Ontario, Canada
| | - Jianjun Li
- Mass Spectrometry Glycoanalysis Laboratory, Institute for Biological Sciences, National Research Council of Canada, Ottawa, Ontario, Canada
| | - Sheng T. Hou
- Experimental NeuroTherapeutics Laboratory, Institute for Biological Sciences, National Research Council of Canada, Ottawa, Ontario, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
- * E-mail: (SNW); (STH)
| |
Collapse
|
204
|
Jang JH, Kim MY, Lee JW, Kim SC, Cho JH. Enhancement of the cancer targeting specificity of buforin IIb by fusion with an anionic peptide via a matrix metalloproteinases-cleavable linker. Peptides 2011; 32:895-9. [PMID: 21334412 DOI: 10.1016/j.peptides.2011.02.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2010] [Revised: 02/12/2011] [Accepted: 02/12/2011] [Indexed: 01/25/2023]
Abstract
Buforin IIb is a novel cell-penetrating anticancer peptide derived from histone H2A. In this study, we enhanced the cancer targeting specificity of buforin IIb using a tumor-associated enzyme-controlled activation strategy. Buforin IIb was fused with an anionic peptide (modified magainin intervening sequence, MMIS), which neutralizes the positive charge of buforin IIb and thus renders it inactive, via a matrix metalloproteinases (MMPs)-cleavable linker. The resulting MMIS:buforin IIb fusion peptide was completely inactive against MMPs-nonproducing cells. However, when the fusion peptide was administrated to MMPs-producing cancer cells, it regained the killing activity by releasing free buforin IIb through MMPs-mediated cleavage. Moreover, the activity of the fusion peptide toward MMPs-producing cancer cells was significantly decreased when the cells were pretreated with a MMP inhibitor. Taken together, these data indicate that the cancer targeting specificity of MMIS:buforin IIb is enhanced compared to the parent peptide by reactivation at the specialized areas where MMPs are pathologically produced.
Collapse
Affiliation(s)
- Ju Hye Jang
- Department of Biology, Research Institute of Life Science, Gyeongsang National University, 900 Gajwa-dong, Jinju 660-701, Republic of Korea
| | | | | | | | | |
Collapse
|
205
|
Tetala KKR, Heikema AP, Pukin AV, Weijers CAGM, Tio-Gillen AP, Gilbert M, Endtz HP, van Belkum A, Zuilhof H, Visser GM, Jacobs BC, van Beek TA. Selective Depletion of Neuropathy-Related Antibodies from Human Serum by Monolithic Affinity Columns Containing Ganglioside Mimics. J Med Chem 2011; 54:3500-5. [DOI: 10.1021/jm101594s] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Kishore K. R. Tetala
- Laboratory of Organic Chemistry, Wageningen University, Dreijenplein 8, 6703 HB Wageningen, The Netherlands
| | - Astrid P. Heikema
- Department of Neurology and Immunology, Erasmus MC, University Medical Centre, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands
| | - Aliaksei V. Pukin
- Laboratory of Organic Chemistry, Wageningen University, Dreijenplein 8, 6703 HB Wageningen, The Netherlands
| | - Carel A. G. M. Weijers
- Laboratory of Organic Chemistry, Wageningen University, Dreijenplein 8, 6703 HB Wageningen, The Netherlands
| | - Anne P. Tio-Gillen
- Department of Neurology and Immunology, Erasmus MC, University Medical Centre, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands
| | - Michel Gilbert
- Institute for Biological Sciences, National Research Council Canada, Ottawa, Ontario K1A 0R6, Canada
| | - Hubert P. Endtz
- Department of Neurology and Immunology, Erasmus MC, University Medical Centre, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands
| | - Alex van Belkum
- Department of Medical Microbiology and Infectious Diseases, Erasmus MC, University Medical Centre, 's-Gravendijksewal 230, 3015 CE Rotterdam, The Netherlands
| | - Han Zuilhof
- Laboratory of Organic Chemistry, Wageningen University, Dreijenplein 8, 6703 HB Wageningen, The Netherlands
| | - Gerben M. Visser
- Laboratory of Organic Chemistry, Wageningen University, Dreijenplein 8, 6703 HB Wageningen, The Netherlands
| | - Bart C. Jacobs
- Department of Neurology and Immunology, Erasmus MC, University Medical Centre, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands
| | - Teris A. van Beek
- Laboratory of Organic Chemistry, Wageningen University, Dreijenplein 8, 6703 HB Wageningen, The Netherlands
| |
Collapse
|
206
|
Kabaso D, Lokar M, Kralj-Iglič V, Veranič P, Iglič A. Temperature and cholera toxin B are factors that influence formation of membrane nanotubes in RT4 and T24 urothelial cancer cell lines. Int J Nanomedicine 2011; 6:495-509. [PMID: 21468353 PMCID: PMC3065796 DOI: 10.2147/ijn.s16982] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2011] [Indexed: 01/31/2023] Open
Abstract
The growth of membrane nanotubes is crucial for intercellular communication in both normal development and pathological conditions. Therefore, identifying factors that influence their stability and formation are important for both basic research and in development of potential treatments of pathological states. Here we investigate the effect of cholera toxin B (CTB) and temperature on two pathological model systems: urothelial cell line RT4, as a model system of a benign tumor, and urothelial cell line T24, as a model system of a metastatic tumor. In particular, the number of intercellular membrane nanotubes (ICNs; ie, membrane nanotubes that bridge neighboring cells) was counted. In comparison with RT4 cells, we reveal a significantly higher number in the density of ICNs in T24 cells not derived from RT4 without treatments (P = 0.005), after 20 minutes at room temperature (P = 0.0007), and following CTB treatment (P = 0.000025). The binding of CTB to GM1–lipid complexes in membrane exvaginations or tips of membrane nanotubes may reduce the positive spontaneous (intrinsic) curvature of GM1–lipid complexes, which may lead to lipid mediated attractive interactions between CTB–GM1–lipid complexes, their aggregation and consequent formation of enlarged spherical tips of nanotubes. The binding of CTB to GM1 molecules in the outer membrane leaflet of membrane exvaginations and tips of membrane nanotubes may also increase the area difference between the two leaflets and in this way facilitate the growth of membrane nanotubes.
Collapse
Affiliation(s)
- Doron Kabaso
- Laboratory of Biophysics, Faculty of Electrical Engineering, University of Ljubljana, Slovenia.
| | | | | | | | | |
Collapse
|
207
|
Baksh MM, Kussrow AK, Mileni M, Finn MG, Bornhop DJ. Label-free quantification of membrane-ligand interactions using backscattering interferometry. Nat Biotechnol 2011; 29:357-60. [PMID: 21399645 DOI: 10.1038/nbt.1790] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2010] [Accepted: 01/26/2011] [Indexed: 11/09/2022]
Abstract
Although membrane proteins are ubiquitous within all living organisms and represent the majority of drug targets, a general method for direct, label-free measurement of ligand binding to native membranes has not been reported. Here we show that backscattering interferometry (BSI) can accurately quantify ligand-receptor binding affinities in a variety of membrane environments. By detecting minute changes in the refractive index of a solution, BSI allows binding interactions of proteins with their ligands to be measured at picomolar concentrations. Equilibrium binding constants in the micromolar to picomolar range were obtained for small- and large-molecule interactions in both synthetic and cell-derived membranes without the use of labels or supporting substrates. The simple and low-cost hardware, high sensitivity and label-free nature of BSI should make it readily applicable to the study of many membrane-associated proteins of biochemical and pharmacological interest.
Collapse
Affiliation(s)
- Michael M Baksh
- Department of Chemistry, The Scripps Research Institute, La Jolla, California, USA
| | | | | | | | | |
Collapse
|
208
|
Colsch B, Jackson SN, Dutta S, Woods AS. Molecular Microscopy of Brain Gangliosides: Illustrating their Distribution in Hippocampal Cell Layers. ACS Chem Neurosci 2011; 2:213-222. [PMID: 21961052 DOI: 10.1021/cn100096h] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Gangliosides are amphiphilic molecules found in the outer layer of plasma membranes of all vertebrate cells. They play a major role in cell recognition and signaling and are involved in diseases affecting the central nervous system (CNS). We are reporting the differential distribution of ganglioside species in the rat brain's cerebrum, based on their ceramide associated core, and for the first time the presence of acetylation detected by matrix-assisted laser desorption/ionization (MALDI) mass spectrometry, which was used to map and image gangliosides with detailed structural information and histological accuracy. In the hippocampus, localization of the major species GM1, GD1, O-acetylGD1, GT1, and O-acetylGT1 depends on the sphingoïd base (d18:1 sphingosine or d20:1 eïcosasphingosine) in the molecular layer of the dentate gyrus (ML), which is made up of three distinct layers, the inner molecular layer (IML), which contains sphingosine exclusively, and the middle molecular layer (MML) and the outer molecular layer (OML) where eïcosasphingosine is the only sphingoïd base. These results demonstrate that there is a different distribution of gangliosides in neuronal axons and dendrites depending on the ceramide core of each layer. GM3, GM2, GD3, and GD2 contain sphingosine predominantly and are mainly present in body cell layers, which are made up of the pyramidal cell layer (Py) and the granular layer of the dentate gyrus (GL), in contrast with GQ1 and the O-acetylated forms of GD1, GT1, and GQ1 gangliosides, which contain both sphingoïd bases. However their distribution is based on the sialylated and acetylated oligosaccharide chains in the neuronal cell bodies.
Collapse
Affiliation(s)
- Benoit Colsch
- Structural Biology Unit, Cellular Neurobiology Section, NIDA IRP, NIH, Baltimore, Maryland 21224, United States
| | - Shelley N. Jackson
- Structural Biology Unit, Cellular Neurobiology Section, NIDA IRP, NIH, Baltimore, Maryland 21224, United States
| | - Sucharita Dutta
- Thermo Fisher Scientific, San Jose, California, United States
| | - Amina S. Woods
- Structural Biology Unit, Cellular Neurobiology Section, NIDA IRP, NIH, Baltimore, Maryland 21224, United States
| |
Collapse
|
209
|
Aureli M, Loberto N, Lanteri P, Chigorno V, Prinetti A, Sonnino S. Cell surface sphingolipid glycohydrolases in neuronal differentiation and aging in culture. J Neurochem 2011; 116:891-9. [DOI: 10.1111/j.1471-4159.2010.07019.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
210
|
Prinetti A, Prioni S, Chiricozzi E, Schuchman EH, Chigorno V, Sonnino S. Secondary Alterations of Sphingolipid Metabolism in Lysosomal Storage Diseases. Neurochem Res 2011; 36:1654-68. [DOI: 10.1007/s11064-010-0380-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/20/2010] [Indexed: 12/20/2022]
|
211
|
Role of Gangliosides and Plasma Membrane-Associated Sialidase in the Process of Cell Membrane Organization. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2011; 705:297-316. [DOI: 10.1007/978-1-4419-7877-6_14] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
212
|
Inokuchi JI. Physiopathological function of hematoside (GM3 ganglioside). PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2011; 87:179-98. [PMID: 21558756 PMCID: PMC3149380 DOI: 10.2183/pjab.87.179] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Since I was involved in the molecular cloning of GM3 synthase (SAT-I), which is the primary enzyme for the biosynthesis of gangliosides in 1998, my research group has been concentrating on our efforts to explore the physiological and pathological implications of gangliosides especially for GM3. During the course of study, we demonstrated the molecular pathogenesis of type 2 diabetes and insulin resistance focusing on the interaction between insulin receptor and gangliosides in membrane microdomains and propose a new concept: Life style-related diseases, such as type 2 diabetes, are a membrane microdomain disorder caused by aberrant expression of gangliosides. We also encountered an another interesting aspect indicating the indispensable role of gangliosides in auditory system. After careful behavioral examinations of SAT-I knockout mice, their hearing ability was seriously impaired with selective degeneration of the stereocilia of hair cells in the organ of Corti. This is the first observation demonstrating a direct link between gangliosides and hearing functions.
Collapse
Affiliation(s)
- Jin-ichi Inokuchi
- Division of Glycopathology, Institute of Molecular Biomembranes and Glycobiology, Tohoku Pharmaceutical University, Miyagi, Japan.
| |
Collapse
|
213
|
Inhibition of ganglioside biosynthesis as a novel therapeutic approach in insulin resistance. Handb Exp Pharmacol 2011:165-78. [PMID: 21484572 DOI: 10.1007/978-3-642-17214-4_8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
A new concept "Life style-related diseases, such as type 2 diabetes, are a membrane microdomain disorder caused by aberrant expression of gangliosides" has arisen. By examining this working hypothesis, we demonstrate the molecular pathogenesis of type 2 diabetes and insulin resistance focusing on the interaction between insulin receptor and gangliosides in microdomains microdomains and propose the new therapeutic strategy "membrane microdomain ortho-signaling therapy".
Collapse
|
214
|
Differences in CD75s- and iso-CD75s-ganglioside content and altered mRNA expression of sialyltransferases ST6GAL1 and ST3GAL6 in human hepatocellular carcinomas and nontumoral liver tissues. Glycobiology 2010; 21:584-94. [DOI: 10.1093/glycob/cwq200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
|
215
|
Sonnino S, Prinetti A. Lipids and membrane lateral organization. Front Physiol 2010; 1:153. [PMID: 21423393 PMCID: PMC3059948 DOI: 10.3389/fphys.2010.00153] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2010] [Accepted: 10/28/2010] [Indexed: 01/08/2023] Open
Abstract
Shortly after the elucidation of the very basic structure and properties of cellular membranes, it became evident that cellular membranes are highly organized structures with multiple and multi-dimensional levels of order. Very early observations suggested that the lipid components of biological membranes might be active players in the creation of these levels of order. In the late 1980s, several different and diverse experimental pieces of evidence coalesced together giving rise to the lipid raft hypothesis. Lipid rafts became enormously (and, in the opinion of these authors, sometimes acritically) popular, surprisingly not just within the lipidologist community (who is supposed to be naturally sensitive to the fascination of lipid rafts). Today, a PubMed search using the key word "lipid rafts" returned a list of 3767 papers, including 690 reviews (as a term of comparison, searching over the same time span for a very hot lipid-related key word, "ceramide" returned 6187 hits with 799 reviews), and a tremendous number of different cellular functions have been described as "lipid raft-dependent." However, a clear consensus definition of lipid raft has been proposed only in recent times, and the basic properties, the ruling forces, and even the existence of lipid rafts in living cells has been recently matter of intense debate. The scenario that is gradually emerging from the controversies elicited by the lipid raft hypothesis emphasizes multiple roles for membrane lipids in determining membrane order, that encompass their tendency to phase separation but are clearly not limited to this. In this review, we would like to re-focus the attention of the readers on the importance of lipids in organizing the fine structure of cellular membranes.
Collapse
Affiliation(s)
- Sandro Sonnino
- Department of Medical Chemistry, Biochemistry and Biotechnology, University of MilanoMilano, Italy
| | - Alessandro Prinetti
- Department of Medical Chemistry, Biochemistry and Biotechnology, University of MilanoMilano, Italy
| |
Collapse
|
216
|
Ikeda K, Taguchi R. Highly sensitive localization analysis of gangliosides and sulfatides including structural isomers in mouse cerebellum sections by combination of laser microdissection and hydrophilic interaction liquid chromatography/electrospray ionization mass spectrometry with theoretically expanded multiple reaction monitoring. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2010; 24:2957-2965. [PMID: 20872628 DOI: 10.1002/rcm.4716] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Liquid chromatography/electrospray ionization mass spectrometry (LC/ESI-MS) is suitable for analysis of glycosphingolipids such as fragile gangliosides avoiding the use of the sialic acid elimination. However, it was not possible to distinguish the structural isomers such as GD1a and GD1b with reversed-phase LC/ESI-MS by hydrophobic interaction. Here we report an effective method for targeted analysis of theoretically expanded ganglioside molecular species including structural isomers by hydrophilic interaction liquid chromatography (HILIC)/ESI-MS with multiple reaction monitoring (MRM). As a result of MRM analysis of glycosphingolipid mixtures from porcine brain, each of the lipid classes was detected within 25 min in the following order: sulfatides > GM3 > GM2 > GM1 > GD3 > GD1a > GD2 > GD1b > GT1a > GT1b > GQ1b. For the advanced application, localization analysis of postnatal day 15 (P15) mouse cerebellum layered structures was carried out by combination of MRM and laser microdissection (LMD). As a result, GM3, GD1a, GT1b and GQ1b were abundantly detected in the molecular and granular layers, whereas GM1 was widely presented in each layered structure. These gangliosides were mainly composed of d18:1-18:0 and d18:1-20:0, but GM3 was d18:1-16:0 and d18:1-20:0. Meanwhile, sulfatide molecular species were mostly localized in the myelinated fibers and scarcely found in the molecular layer. These results suggested that our method is suitable to detect a variety of ganglioside classes and sulfatides with high sensitivity at the molecular species level and effective for localization analysis of these glycosphingolipids from mouse brain sections.
Collapse
Affiliation(s)
- Kazutaka Ikeda
- Department of Metabolome, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | | |
Collapse
|
217
|
Gavella M, Kveder M, Lipovac V. Modulation of ROS production in human leukocytes by ganglioside micelles. Braz J Med Biol Res 2010; 43:942-9. [DOI: 10.1590/s0100-879x2010007500092] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2010] [Accepted: 09/02/2010] [Indexed: 11/21/2022] Open
Affiliation(s)
- M. Gavella
- Vuk Vrhovac University Clinic for Diabetes, Endocrinology and Metabolic Diseases, Croatia
| | | | - V. Lipovac
- Vuk Vrhovac University Clinic for Diabetes, Endocrinology and Metabolic Diseases, Croatia
| |
Collapse
|
218
|
Kato T, Muraoka M, Hatanaka K. Novel method for chase analysis of oligosaccharide metabolic error caused by xenobiotics. Anal Biochem 2010; 405:103-8. [PMID: 20570645 DOI: 10.1016/j.ab.2010.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2010] [Revised: 05/12/2010] [Accepted: 06/01/2010] [Indexed: 10/19/2022]
Abstract
Saccharide primers, such as dodecyl beta-lactoside (Lac-C12), are unique artificial precursors of glycolipid synthesis. In culture media supplemented with saccharide primers, they are taken up by the cells in the culture media and glycosylated by cellular glycosyltransferases in the Golgi apparatus to form pseudo-glycolipids. In this study, we examine the effects of various xenobiotics on glycolipid synthesis by implementing a novel method to analyze pseudo-glycolipids, mainly gangliosides, produced by ONS-76 medulloblastoma cells in a culture medium containing various xenobiotics. The ganglioside group of pseudo-glycolipids was effectively purified by using strong anion-exchange cartridges. The production of pseudo-gangliosides was stimulated by N-(n-butyl)deoxygalactonojirimycin (NB-DGJ), but was inhibited by castanospermine, 2-deoxy-2-fluoro-d-galactose, tunicamycin, and brefeldin A. Because the cells in the culture medium are exposed to the saccharide primers and xenobiotics at the same time, and are secreted in the culture medium in their glycosylated form, our method can be used to effectively analyze the direct effects of xenobiotics on ganglioside synthesis.
Collapse
Affiliation(s)
- Tomohisa Kato
- Japan Chemical Innovation Institute, Chiyoda-ku, Tokyo 101-0051, Japan.
| | | | | |
Collapse
|
219
|
Karman J, Tedstone JL, Gumlaw NK, Zhu Y, Yew N, Siegel C, Guo S, Siwkowski A, Ruzek M, Jiang C, Cheng SH. Reducing glycosphingolipid biosynthesis in airway cells partially ameliorates disease manifestations in a mouse model of asthma. Int Immunol 2010; 22:593-603. [PMID: 20497953 DOI: 10.1093/intimm/dxq044] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Lipid rafts reportedly play an important role in modulating the activation of mast cells and granulocytes, the primary effector cells of airway hyperresponsiveness and asthma. Activation is mediated through resident signaling molecules whose activity, in part, may be modulated by the composition of glycosphingolipids (GSLs) in membrane rafts. In this study, we evaluated the impact of inhibiting GSL biosynthesis in mast cells and in the ovalbumin (OVA)-induced mouse model of asthma using either a small molecule inhibitor or anti-sense oligonucleotides (ASOs) directed against specific enzymes in the GSL pathway. Lowering GSL levels in mast cells through inhibition of glucosylceramide synthase (GCS) reduced phosphorylation of Syk tyrosine kinase and phospholipase C gamma 2 (PLC-gamma2) as well as cytoplasmic Ca(2+) levels. Modulating these intracellular signaling events also resulted in a significant decrease in mast cell degranulation. Primary mast cells isolated from a GM3 synthase (GM3S) knockout mouse exhibited suppressed activation-induced degranulation activity further supporting a role of GSLs in this process. In previously OVA-sensitized mice, intra-nasal administration of ASOs to GCS, GM3S or lactosylceramide synthase (LCS) significantly suppressed metacholine-induced airway hyperresponsiveness and pulmonary inflammation to a subsequent local challenge with OVA. However, administration of the ASOs into mice that had been sensitized and locally challenged with the allergen did not abate the consequent pulmonary inflammatory sequelae. These results suggest that GSLs contribute to the initiation phase of the pathogenesis of airway hyperreactivity and asthma and lowering GSL levels may offer a novel strategy to modulate these manifestations.
Collapse
Affiliation(s)
- Jozsef Karman
- Genzyme Corporation, 49 New York Avenue, Framingham, MA 01701, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
220
|
Abstract
Huntington's disease (HD) is a neurodegenerative disorder caused by the expansion of a polyglutamine stretch in the protein huntingtin (Htt). HD neurons are dysfunctional at multiple levels and have increased susceptibility to stress and apoptotic stimuli. We have discovered that synthesis of the ganglioside GM1 is reduced in fibroblasts from HD patients and in cell and animal models of HD, and that decreased GM1 levels contribute to heighten HD cell susceptibility to apoptosis. The apoptotic susceptibility is recapitulated through inhibition of ganglioside synthesis in wild-type striatal cells, suggesting that decreased GM1 levels might be one of the key events leading to HD pathogenesis and progression. Administration of GM1 restores ganglioside levels in HD cells and promotes activation of AKT and phosphorylation of mutant Htt, leading to decreased mutant Htt toxicity and increased survival of HD cells. Our data identify GM1 as a potential treatment for HD.
Collapse
|
221
|
Petr T, Smíd V, Smídová J, Hůlková H, Jirkovská M, Elleder M, Muchová L, Vitek L, Smíd F. Histochemical detection of GM1 ganglioside using cholera toxin-B subunit. Evaluation of critical factors optimal for in situ detection with special emphasis to acetone pre-extraction. Eur J Histochem 2010; 54:e23. [PMID: 20558344 PMCID: PMC3167299 DOI: 10.4081/ejh.2010.e23] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2009] [Revised: 03/22/2010] [Accepted: 03/22/2010] [Indexed: 11/25/2022] Open
Abstract
A comparison of histochemical detection of GM1 ganglioside in cryostat sections using cholera toxin B-subunit after fixation with 4% formaldehyde and dry acetone gave tissue-dependent results. In the liver no pre-treatment showed detectable differences related to GM1 reaction products, while studies in the brain showed the superiority of acetone pre-extraction (followed by formaldehyde), which yielded sharper images compared with the diffuse, blurred staining pattern associated with formaldehyde. Therefore, the aim of our study was to define the optimal conditions for the GM1 detection using cholera toxin B-subunit. Ganglioside extractability with acetone, the ever neglected topic, was tested comparing anhydrous acetone with acetone containing admixture of water. TLC analysis of acetone extractable GM1 ganglioside from liver sections did not exceed 2% of the total GM1 ganglioside content using anhydrous acetone at −20°C, and 4% at room temperature. The loss increased to 30.5% using 9:1 acetone/water. Similarly, photometric analysis of lipid sialic acid, extracted from dried liver homogenates with anhydrous acetone, showed the loss of gangliosides into acetone 3.0±0.3% only. The loss from dried brain homogenate was 9.5±1.1%. Thus, anhydrous conditions (dry tissue samples and anhydrous acetone) are crucial factors for optimal in situ ganglioside detection using acetone pre-treatment. This ensures effective physical fixation, especially in tissues rich in polar lipids (precipitation, prevention of in situ diffusion), and removal of cholesterol, which can act as a hydrophobic blocking barrier.
Collapse
Affiliation(s)
- T Petr
- Charles University in Prague, 1st Faculty of Medicine, Institute of Clinical Biochemistry and Laboratory Diagnostics, Prague, Czech Republic
| | | | | | | | | | | | | | | | | |
Collapse
|
222
|
Müthing J, Distler U. Advances on the compositional analysis of glycosphingolipids combining thin-layer chromatography with mass spectrometry. MASS SPECTROMETRY REVIEWS 2010; 29:425-479. [PMID: 19609886 DOI: 10.1002/mas.20253] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Glycosphingolipids (GSLs), composed of a hydrophilic carbohydrate chain and a lipophilic ceramide anchor, play pivotal roles in countless biological processes, including infectious diseases and the development of cancer. Knowledge of the number and sequence of monosaccharides and their anomeric configuration and linkage type, which make up the principal items of the glyco code of biologically active carbohydrate chains, is essential for exploring the function of GSLs. As part of the investigation of the vertebrate glycome, GSL analysis is undergoing rapid expansion owing to the application of novel biochemical and biophysical technologies. Mass spectrometry (MS) takes part in the network of collaborations to further unravel structural and functional aspects within the fascinating world of GSLs with the ultimate aim to better define their role in human health and disease. However, a single-method analytical MS technique without supporting tools is limited yielding only partial structural information. Because of its superior resolving power, robustness, and easy handling, high-performance thin-layer chromatography (TLC) is widely used as an invaluable tool in GSL analysis. The intention of this review is to give an insight into current advances obtained by coupling supplementary techniques such as TLC and mass spectrometry. A retrospective view of the development of this concept and the recent improvements by merging (1) TLC separation of GSLs, (2) their detection with oligosaccharide-specific proteins, and (3) in situ MS analysis of protein-detected GSLs directly on the TLC plate, are provided. The procedure works on a nanogram scale and was successfully applied to the identification of cancer-associated GSLs in several types of human tumors. The combination of these two supplementary techniques opens new doors by delivering specific structural information of trace quantities of GSLs with only limited investment in sample preparation.
Collapse
Affiliation(s)
- Johannes Müthing
- Institute for Hygiene, University of Münster, Robert-Koch-Str. 41, D-48149 Münster, Germany.
| | | |
Collapse
|
223
|
Paglia G, Ifa DR, Wu C, Corso G, Cooks RG. Desorption electrospray ionization mass spectrometry analysis of lipids after two-dimensional high-performance thin-layer chromatography partial separation. Anal Chem 2010; 82:1744-50. [PMID: 20128616 PMCID: PMC2830312 DOI: 10.1021/ac902325j] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Molecular imaging of separate but still incompletely resolved spots on high-performance thin-layer chromatography (HPTLC) plates is used for the direct analysis of porcine brain lipids by desorption electrospray ionization mass spectrometry (DESI-MS). Eight class-specific spots were imaged in the negative ion mode and shown to contain more than fifty lipids. A low lateral resolution of 400 x 400 microm allowed simple, rapid, and incomplete separation to be combined with DESI imaging for the identification of many components of these extremely complex mixtures. In this work, tandem mass spectrometry (MS/MS) was also employed to confirm the identity of particular lipids directly on HPTLC plates.
Collapse
Affiliation(s)
- Giuseppe Paglia
- Department of Biomedical Sciences, Faculty of Medicine, University of Foggia, Viale L. Pinto, 1-71100 Foggia, Italy
| | - Demian R. Ifa
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, IN – 47907
| | - Chunping Wu
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, IN – 47907
| | - Gaetano Corso
- Department of Biomedical Sciences, Faculty of Medicine, University of Foggia, Viale L. Pinto, 1-71100 Foggia, Italy
| | - R. Graham Cooks
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, IN – 47907
| |
Collapse
|
224
|
Colsch B, Woods AS. Localization and imaging of sialylated glycosphingolipids in brain tissue sections by MALDI mass spectrometry. Glycobiology 2010; 20:661-7. [PMID: 20190299 DOI: 10.1093/glycob/cwq031] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
In this study, we describe a simple and efficient method for mapping the distribution and localization of all sialylated sphingoglycolipids present in coronal mouse brain sections using a conventional axial matrix-assisted laser desorption/ionization time of flight. A single scan of a histological tissue section gives a complete profile of ganglioside species without derivatization or labeling. We have developed and tested a new matrix preparation (2,6-dihydroxyacetophenone [DHA]/ammonium sulfate/heptafluorobutyric acid [HFBA]) to maximize the detection of all ganglioside species; the ammonium sulfate limits the formation of salt adducts, while the addition of HFBA increases the stability of DHA in a vacuum, thus facilitating imaging applications. Our results, in both extracted samples and whole tissue sections using negative ion reflectron and linear modes, show differences in localization in several brain regions depending on the sialic acids and the ceramide-associated core gangliosides.
Collapse
Affiliation(s)
- Benoit Colsch
- Cellular Neurobiology, NIDA IRP, NIH, Baltimore, MD 21224, USA
| | | |
Collapse
|
225
|
Piccinini M, Scandroglio F, Prioni S, Buccinnà B, Loberto N, Aureli M, Chigorno V, Lupino E, DeMarco G, Lomartire A, Rinaudo MT, Sonnino S, Prinetti A. Deregulated sphingolipid metabolism and membrane organization in neurodegenerative disorders. Mol Neurobiol 2010; 41:314-40. [PMID: 20127207 DOI: 10.1007/s12035-009-8096-6] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2009] [Accepted: 12/22/2009] [Indexed: 12/13/2022]
Abstract
Sphingolipids are polar membrane lipids present as minor components in eukaryotic cell membranes. Sphingolipids are highly enriched in nervous cells, where they exert important biological functions. They deeply affect the structural and geometrical properties and the lateral order of cellular membranes, modulate the function of several membrane-associated proteins, and give rise to important intra- and extracellular lipid mediators. Sphingolipid metabolism is regulated along the differentiation and development of the nervous system, and the expression of a peculiar spatially and temporarily regulated sphingolipid pattern is essential for the maintenance of the functional integrity of the nervous system: sphingolipids in the nervous system participate to several signaling pathways controlling neuronal survival, migration, and differentiation, responsiveness to trophic factors, synaptic stability and synaptic transmission, and neuron-glia interactions, including the formation and stability of central and peripheral myelin. In several neurodegenerative diseases, sphingolipid metabolism is deeply deregulated, leading to the expression of abnormal sphingolipid patterns and altered membrane organization that participate to several events related to the pathogenesis of these diseases. The most impressive consequence of this deregulation is represented by anomalous sphingolipid-protein interactions that are at least, in part, responsible for the misfolding events that cause the fibrillogenic and amyloidogenic processing of disease-specific protein isoforms, such as amyloid beta peptide in Alzheimer's disease, huntingtin in Huntington's disease, alpha-synuclein in Parkinson's disease, and prions in transmissible encephalopathies. Targeting sphingolipid metabolism represents today an underexploited but realistic opportunity to design novel therapeutic strategies for the intervention in these diseases.
Collapse
Affiliation(s)
- Marco Piccinini
- Section of Biochemistry, Department of Medicine and Experimental Oncology, University of Turin, Turin, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
226
|
Schnaar RL, Lopez PHH. Myelin-associated glycoprotein and its axonal receptors. J Neurosci Res 2010; 87:3267-76. [PMID: 19156870 DOI: 10.1002/jnr.21992] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Myelin-associated glycoprotein (MAG) is expressed on the innermost myelin membrane wrap, directly apposed to the axon surface. Although it is not required for myelination, MAG enhances long-term axon-myelin stability, helps to structure nodes of Ranvier, and regulates the axon cytoskeleton. In addition to its role in axon-myelin stabilization, MAG inhibits axon regeneration after injury; MAG and a discrete set of other molecules on residual myelin membranes at injury sites actively signal axons to halt elongation. Both the stabilizing and the axon outgrowth inhibitory effects of MAG are mediated by complementary MAG receptors on the axon surface. Two MAG receptor families have been described, sialoglycans (specifically gangliosides GD1a and GT1b) and Nogo receptors (NgRs). Controversies remain about which receptor(s) mediates which of MAG's biological effects. Here we review the findings and challenges in associating MAG's biological effects with specific receptors.
Collapse
Affiliation(s)
- Ronald L Schnaar
- Department of Pharmacology, The Johns Hopkins School of Medicine, 725 N. Wolfe Street, Baltimore, MD 21205, USA.
| | | |
Collapse
|
227
|
Sonnino S, Prinetti A. Gangliosides as regulators of cell membrane organization and functions. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 688:165-84. [PMID: 20919654 DOI: 10.1007/978-1-4419-6741-1_12] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Gangliosides, characteristic complex lipids present in the external layer of plasma membranes, deeply influence the organization of the membrane as a whole and the function of specific membrane associated proteins due to lipid-lipid and lipid-protein lateral interaction. Here we discuss the basis for the membrane-organizing potential of gangliosides, examples of ganglioside-regulated membrane protein complexes and the mechanisms for the regulation of ganglioside membrane composition.
Collapse
Affiliation(s)
- Sandro Sonnino
- Center of Excellence on Neurodegenerative Diseases, Department of Medical Chemistry, University of Milan, Segrate, Italy
| | | |
Collapse
|
228
|
Determination of sialic acid and gangliosides in biological samples and dairy products: A review. J Pharm Biomed Anal 2010; 51:346-57. [DOI: 10.1016/j.jpba.2009.04.023] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2009] [Revised: 04/17/2009] [Accepted: 04/23/2009] [Indexed: 11/20/2022]
|
229
|
Morris RJ. Ionic control of the metastable inner leaflet of the plasma membrane: Fusions natural and artefactual. FEBS Lett 2009; 584:1665-9. [PMID: 19913542 DOI: 10.1016/j.febslet.2009.11.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2009] [Revised: 11/02/2009] [Accepted: 11/07/2009] [Indexed: 10/20/2022]
Abstract
The phospholipids of the inner and outer leaflets of the plasma membrane face chemically very different environments, and are specialized to serve different needs. While lipids of the outer leaflet are inherently stable in a lamellar (bilayer) phase, the main lipid of the inner layer, phosphatidylethanolamine (PE), does not form a lamellar phase unless evenly mixed with phosphatidylserine (PS(-)). This mixture can be readily perturbed by factors that include an influx of Ca(2+) that chelates the negatively charged PS(-), thereby destabilizing PE. The implications of this metastability of the inner leaflet for vesicular trafficking, and experimentally for the isolation of detergent-resistant membrane domains (DRMs) at physiological temperature, are considered.
Collapse
Affiliation(s)
- Roger J Morris
- Wolfson Centre for Age-Related Disease, Guy's Campus, King's College London, UK.
| |
Collapse
|
230
|
Yin J, Miyazaki K, Shaner RL, Merrill AH, Kannagi R. Altered sphingolipid metabolism induced by tumor hypoxia - new vistas in glycolipid tumor markers. FEBS Lett 2009; 584:1872-8. [PMID: 19913543 DOI: 10.1016/j.febslet.2009.11.019] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2009] [Revised: 11/07/2009] [Accepted: 11/09/2009] [Indexed: 02/06/2023]
Abstract
Uncontrolled growth of malignant cells produces hypoxic regions in locally advanced tumors. Recently we showed that tumor hypoxia-induced transcription of multiple genes involved in glycan synthesis, leading to expression of useful glycolipid tumor markers, such as gangliosides having N-glycolyl sialic acid. Our subsequent studies indicated that the ceramide portion of glycolipids, as well as their glycan moiety, was also significantly affected by hypoxia. Tumor hypoxia-induced marked accumulation of sphinganine (dihydrosphingosine) long-chain base, and significant reduction of unsaturated very long-chain fatty acids in the ceramide moiety. Mass-spectrometry, which yields information on both glycan- and ceramide moieties, is expected to be clinically useful in detecting such distinct molecular species of cancer-associated glycolipids having combined alteration in both glycan- and ceramide moieties.
Collapse
Affiliation(s)
- Jun Yin
- Department of Molecular Pathology, Aichi Cancer Center, Nagoya 464-8681, Japan
| | | | | | | | | |
Collapse
|
231
|
Schnaar RL. Brain gangliosides in axon-myelin stability and axon regeneration. FEBS Lett 2009; 584:1741-7. [PMID: 19822144 DOI: 10.1016/j.febslet.2009.10.011] [Citation(s) in RCA: 118] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2009] [Revised: 10/02/2009] [Accepted: 10/05/2009] [Indexed: 01/21/2023]
Abstract
Gangliosides, sialic acid-bearing glycosphingolipids, are expressed at high abundance and complexity in the brain. Altered ganglioside expression results in neural disorders, including seizures and axon degeneration. Brain gangliosides function, in part, by interacting with a ganglioside-binding lectin, myelin-associated glycoprotein (MAG). MAG, on the innermost wrap of the myelin sheath, binds to gangliosides GD1a and GT1b on axons. MAG-ganglioside binding ensures optimal axon-myelin cell-cell interactions, enhances long-term axon-myelin stability and inhibits axon outgrowth after injury. Knowledge of the molecular interactions of brain gangliosides may improve understanding of axon-myelin stability and provide opportunities to enhance recovery after nerve injury.
Collapse
Affiliation(s)
- Ronald L Schnaar
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
232
|
Inokuchi JI. Membrane microdomains and insulin resistance. FEBS Lett 2009; 584:1864-71. [PMID: 19822143 DOI: 10.1016/j.febslet.2009.10.012] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2009] [Revised: 10/03/2009] [Accepted: 10/06/2009] [Indexed: 11/18/2022]
Abstract
A new concept, that "metabolic disorders, such as type 2 diabetes, are membrane microdomain disorders caused by aberrant expression of gangliosides", has arisen. By examining this working hypothesis, we demonstrate the molecular pathogenesis of type 2 diabetes and insulin resistance focusing on the interaction between insulin receptor and gangliosides in microdomains and propose the new therapeutic strategy "membrane microdomain ortho-signaling therapy".
Collapse
Affiliation(s)
- Jin-ichi Inokuchi
- Division of Glycopathology, Institute of Molecular Biomembranes and Glycobiology, Tohoku Pharmaceutical University, Aoba-ku, Sendai, Miyagi, Japan.
| |
Collapse
|
233
|
Ilan Y. Alpha versus beta: are we on the way to resolve the mystery as to which is the endogenous ligand for natural killer T cells? Clin Exp Immunol 2009; 158:300-7. [PMID: 19793337 DOI: 10.1111/j.1365-2249.2009.04030.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Natural killer T (NKT) lymphocytes are a unique subset of cells that play a role in regulating the immune system. For the past decade, studies have focused upon attempts to define these cells and to determine the ligand(s) that are required for their development and peripheral activation. Many research groups have focused upon determining the mechanisms for activating or inhibiting NKT cells in an attempt to control immune-mediated disorders as well as infectious and malignant conditions by using different ligand structures. Alpha-anomeric glycolipids and phospholipids derived from mammalian, bacterial, protozoan and plant species have been suggested as potential ligands for these lymphocytes. Some of these ligands were structured in forms that can bind to CD1d molecules. The lack of alpha-anomeric glycosphingolipids in mammals and the modest effect of these ligands in human studies, along with recent data from animal models and humans on the NKT-dependent immunomodulatory effect of beta-glycosphingolipids, suggest that the beta-anomeric ligands have the potential to be the endogenous NKT ligand.
Collapse
Affiliation(s)
- Y Ilan
- Department of Medicine, Hebrew University - Hadassah Medical Center, Jerusalem, Israel.
| |
Collapse
|
234
|
Silveira e Souza AMM, Trindade ES, Jamur MC, Oliver C. Gangliosides are important for the preservation of the structure and organization of RBL-2H3 mast cells. J Histochem Cytochem 2009; 58:83-93. [PMID: 19786609 DOI: 10.1369/jhc.2009.954776] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Gangliosides are known to be important in many biological processes. However, details concerning the exact function of these glycosphingolipids in cell physiology are poorly understood. In this study, the role of gangliosides present on the surface of rodent mast cells in maintaining cell structure was examined using RBL-2H3 mast cells and two mutant cell lines (E5 and D1) deficient in the gangliosides, GM(1) and the alpha-galactosyl derivatives of the ganglioside GD(1b). The two deficient cell lines were morphologically different from each other as well as from the parental RBL-2H3 cells. Actin filaments in RBL-2H3 and E5 cells were under the plasma membrane following the spindle shape of the cells, whereas in D1 cells, they were concentrated in large membrane ruffles. Microtubules in RBL-2H3 and E5 cells radiated from the centrosome and were organized into long, straight bundles. The bundles in D1 cells were thicker and organized circumferentially under the plasma membrane. The endoplasmic reticulum, the Golgi complex, and the secretory granule matrix were also altered in the mutant cell lines. These results suggest that the mast cell-specific alpha-galactosyl derivatives of ganglioside GD(1b) and GM(1) are important in maintaining normal cell morphology.
Collapse
Affiliation(s)
- Adriana Maria Mariano Silveira e Souza
- Department of Cell and Molecular Biology and Pathogenic Bioagents, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Avenida Bandeirantes 3900, Ribeirão Preto, SP, Brazil
| | | | | | | |
Collapse
|
235
|
Hou TY, Ward SM, Murad JM, Watson NP, Israel MA, Duffield GE. ID2 (inhibitor of DNA binding 2) is a rhythmically expressed transcriptional repressor required for circadian clock output in mouse liver. J Biol Chem 2009; 284:31735-45. [PMID: 19740747 DOI: 10.1074/jbc.m109.013961] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Id2 is a helix-loop-helix transcription factor gene expressed in a circadian manner in multiple tissues with a phase-locked relationship with canonical clock genes. Our previous studies have identified circadian phenotypes in Id2 null mice, including enhanced photo-entrainment and disruption of activity rhythms, and have demonstrated a potent inhibitory effect of ID proteins upon CLOCK-BMAL1 transactivation of clock gene and clock-controlled gene activity. We have now begun to explore the potential role that ID2 may play in specifically regulating clock output. Here we show that ID2 protein is rhythmically expressed in mouse liver. Time-of-day-specific liver gene expression in Id2(+/+) and Id2(-/-) mice under circadian conditions was studied using DNA microarray analysis, identifying 651 differentially expressed genes, including a subset of 318 genes deemed rhythmically expressed in other studies. Examination of individual time courses reveals that these genes are dysregulated in a highly time-specific manner. A cohort of different functional groups were identified, including genes associated with glucose and lipid metabolism, e.g. serum protein Igfbp1 and lipoprotein lipase. We also reveal that the Id2(-/-) mice show a reduction in lipid storage in the liver and white adipose tissue, suggesting that disruption of normal circadian activity of components of lipid metabolism can result in overt physiological alterations. These data reveal a role for the transcriptional repressor ID2 as a circadian output regulator in the periphery.
Collapse
Affiliation(s)
- Tim Y Hou
- Department of Biological Sciences, Galvin Life Science Center, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | | | | | | | | | | |
Collapse
|
236
|
Yu RK, Suzuki Y, Yanagisawa M. Membrane glycolipids in stem cells. FEBS Lett 2009; 584:1694-9. [PMID: 19716368 DOI: 10.1016/j.febslet.2009.08.026] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2009] [Revised: 08/22/2009] [Accepted: 08/24/2009] [Indexed: 01/13/2023]
Abstract
Stem cells, such as embryonic stem cells, hematopoietic stem cells, neural stem cells, mesenchymal stem cells, and very small embryonic-like stem cells, are undifferentiated cells that are endowed with a high potential for proliferation and the capacity for self-renewal with retention of pluri/multipotency to differentiate into their progenies. Recently, studies regarding the biological functions of glycolipids and cell surface microdomains (caveolae, lipid rafts, or glycolipid-enriched microdomains) in stem cells are emerging. In this review, we introduce the expression patterns of glycolipids and the functional roles of cell surface microdomains in stem cells.
Collapse
Affiliation(s)
- Robert K Yu
- Institute of Molecular Medicine and Genetics and Institute of Neuroscience, Medical College of Georgia, Augusta, GA 30912, USA.
| | | | | |
Collapse
|
237
|
Plomp JJ, Willison HJ. Pathophysiological actions of neuropathy-related anti-ganglioside antibodies at the neuromuscular junction. J Physiol 2009; 587:3979-99. [PMID: 19564393 PMCID: PMC2756433 DOI: 10.1113/jphysiol.2009.171702] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2009] [Accepted: 06/24/2009] [Indexed: 12/17/2022] Open
Abstract
The outer leaflet of neuronal membranes is highly enriched in gangliosides. Therefore, specific neuronal roles have been attributed to this family of sialylated glycosphingolipids, e.g. in modulation of ion channels and transporters, neuronal interaction and recognition, temperature adaptation, Ca(2+) homeostasis, axonal growth, (para)node of Ranvier stability and synaptic transmission. Recent developmental, ageing and injury studies on transgenic mice lacking subsets of gangliosides indicate that gangliosides are involved in maintenance rather than development of the nervous system and that ganglioside family members are able to act in a mutually compensatory manner. Besides having physiological functions, gangliosides are the likely antigenic targets of autoantibodies present in Guillain-Barré syndrome (GBS), a group of neuropathies with clinical symptoms of motor- and/or sensory peripheral nerve dysfunction. Antibody binding to peripheral nerves is thought to either interfere with ganglioside function or activate complement, causing axonal damage and thereby disturbed action potential conduction. The presynaptic motor nerve terminal at the neuromuscular junction (NMJ) may be a prominent target because it is highly enriched in gangliosides and lies outside the blood-nerve barrier, allowing antibody access. The ensuing neuromuscular synaptopathy might contribute to the muscle weakness in GBS patients. Several groups, including our own, have studied the effects of anti-ganglioside antibodies in ex vivo and in vivo experimental settings at mouse NMJs. Here, after providing a background overview on ganglioside synthesis, localization and physiology, we will review those studies, which clearly show that anti-ganglioside antibodies are capable of binding to NMJs and thereby can exert a variety of pathophysiological effects. Furthermore, we will discuss the human clinical electrophysiological and histological evidence produced so far of the existence of a neuromuscular synaptopathy contributing to muscle weakness in GBS patients.
Collapse
Affiliation(s)
- Jaap J Plomp
- Glasgow Biomedical Research Centre, Room B330, 120 University Place, University of Glasgow, Glasgow G12 8TA, UK
| | | |
Collapse
|
238
|
Imamura A, Ando H, Ishida H, Kiso M. Ganglioside GQ1b: efficient total synthesis and the expansion to synthetic derivatives to elucidate its biological roles. J Org Chem 2009; 74:3009-23. [PMID: 19296672 DOI: 10.1021/jo8027888] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The convergent total synthesis of ganglioside GQ1b based on the "cassette approach" between the nonreducing end GQ1b-core heptasaccharide and glucosylceramide building blocks was accomplished in high overall yield. The use of a sialylalpha(2-->8)sialylalpha(2-->3)galactose sequence as the key building block enhanced the efficiency of the glycan assembly and led to preparative-scale synthesis readily applicable for large-scale preparation. In addition, a judicious choice of p-methoxybenzyl protecting groups on glucosylceramide provided a solution to the previous synthetic problems, including a decrease in the yield of the deprotection steps, and led to elevation of the total yield. Furthermore, unnatural-type GQ1b derivatives were synthesized systematically in good yields by capitalizing on a similar approach in order to elucidate their biological roles.
Collapse
Affiliation(s)
- Akihiro Imamura
- Department of Applied Bioorganic Chemistry, Faculty of Applied Biological Sciences, Gifu University, 1-1 Yanagido, Gifu-shi, Gifu 501-1193, Japan.
| | | | | | | |
Collapse
|
239
|
Fu Z, Chen C, Barbieri JT, Kim JJP, Baldwin MR. Glycosylated SV2 and gangliosides as dual receptors for botulinum neurotoxin serotype F. Biochemistry 2009; 48:5631-41. [PMID: 19476346 DOI: 10.1021/bi9002138] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Botulinum neurotoxin causes rapid flaccid paralysis through the inhibition of acetylcholine release at the neuromuscular junction. The seven BoNT serotypes (A-G) have been proposed to bind motor neurons via ganglioside-protein dual receptors. To date, the structure-function properties of BoNT/F host receptor interactions have not been resolved. Here, we report the crystal structures of the receptor binding domains (HCR) of BoNT/A and BoNT/F and the characterization of the dual receptors for BoNT/F. The overall polypeptide fold of HCR/A is essentially identical to the receptor binding domain of the BoNT/A holotoxin, and the structure of HCR/F is very similar to that of HCR/A, except for two regions implicated in neuronal binding. Solid phase array analysis identified two HCR/F binding glycans: ganglioside GD1a and oligosaccharides containing an N-acetyllactosamine core. Using affinity chromatography, HCR/F bound native synaptic vesicle glycoproteins as part of a protein complex. Deglycosylation of glycoproteins using alpha(1-3,4)-fucosidase, endo-beta-galactosidase, and PNGase F disrupted the interaction with HCR/F, while the binding of HCR/B to its cognate receptor, synaptotagmin I, was unaffected. These data indicate that the HCR/F binds synaptic vesicle glycoproteins through the keratan sulfate moiety of SV2. The interaction of HCR/F with gangliosides was also investigated. HCR/F bound specifically to gangliosides that contain alpha2,3-linked sialic acid on the terminal galactose of a neutral saccharide core (binding order GT1b = GD1a >> GM3; no binding to GD1b and GM1a). Mutations within the putative ganglioside binding pocket of HCR/F decreased binding to gangliosides, synaptic vesicle protein complexes, and primary rat hippocampal neurons. Thus, BoNT/F neuronal discrimination involves the recognition of ganglioside and protein (glycosylated SV2) carbohydrate moieties, providing a structural basis for the high affinity and specificity of BoNT/F for neurons.
Collapse
Affiliation(s)
- Zhuji Fu
- Department of Biochemistry, Medical Collegeof Wisconsin, 8701 Watertown Plank Road, Milwaukee, Wisconsin 53226, USA
| | | | | | | | | |
Collapse
|
240
|
Lopez PHH, Schnaar RL. Gangliosides in cell recognition and membrane protein regulation. Curr Opin Struct Biol 2009; 19:549-57. [PMID: 19608407 DOI: 10.1016/j.sbi.2009.06.001] [Citation(s) in RCA: 228] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2009] [Accepted: 06/10/2009] [Indexed: 12/16/2022]
Abstract
Gangliosides, sialic acid-bearing glycosphingolipids, are expressed on all vertebrate cells, and are the major glycans on nerve cells. They are anchored to the plasma membrane through their ceramide lipids with their varied glycans extending into the extracellular space. Through sugar-specific interactions with glycan-binding proteins on apposing cells, gangliosides function as receptors in cell-cell recognition, regulating natural killer cell cytotoxicity via Siglec-7, myelin-axon interactions via Siglec-4 (myelin-associated glycoprotein), and inflammation via E-selectin. Gangliosides also interact laterally in their own membranes, regulating the responsiveness of signaling proteins including the insulin, epidermal growth factor, and vascular endothelial growth factor receptors. In these ways, gangliosides act as regulatory elements in the immune system, in the nervous system, in metabolic regulation, and in cancer progression.
Collapse
Affiliation(s)
- Pablo H H Lopez
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins School of Medicine, 725 N. Wolfe Street, Baltimore, MD 21205, USA
| | | |
Collapse
|
241
|
Gavella M, Kveder M, Lipovac V, Jurasin D, Filipovi-Vincekovic N. Antioxidant properties of ganglioside micelles. Free Radic Res 2009; 41:1143-50. [PMID: 17886036 DOI: 10.1080/10715760701618245] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Antioxidant activity of gangliosides GM1 and GT1b in the Fenton type of reaction was investigated by EPR spectroscopy using DMPO as a spin trap. Hydroxyl radical spin adduct signal intensity was significantly reduced in the presence of gangliosides at their micellar concentrations. Mean micellar hydrodynamic diameter was not changed, whereas significant changes in negative Zeta potential values were observed as evidenced by Zetasizer Nano ZS. This study showed that the primary mode of ganglioside action was not due to direct scavenging of OH., but rather to the inhibition of hydroxyl radical formation. This phenomenon is related to the ability of ganglioside micelles to bind oppositely charged ferrous ions, thus reducing their concentration and consequently inhibiting OH. formation.
Collapse
Affiliation(s)
- Mirjana Gavella
- Laboratory of Cell Biochemistry, Vuk Vrhovac University Clinic for Diabetes, Endocrinology and Metabolic Diseases, Zagreb, Croatia.
| | | | | | | | | |
Collapse
|
242
|
Sorting of lipids and proteins in membrane curvature gradients. Biophys J 2009; 96:2676-88. [PMID: 19348750 DOI: 10.1016/j.bpj.2008.11.067] [Citation(s) in RCA: 229] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2008] [Revised: 11/11/2008] [Accepted: 11/24/2008] [Indexed: 11/20/2022] Open
Abstract
The sorting of lipids and proteins in cellular trafficking pathways is a process of central importance in maintaining compartmentalization in eukaryotic cells. However, the mechanisms behind these sorting phenomena are currently far from being understood. Among several mechanistic suggestions, membrane curvature has been invoked as a means to segregate lipids and proteins in cellular sorting centers. To assess this hypothesis, we investigate the sorting of lipid analog dye trace components between highly curved tubular membranes and essentially flat membranes of giant unilamellar vesicles. Our experimental findings indicate that intracellular lipid sorting, contrary to frequent assumptions, is unlikely to occur by lipids fitting into membrane regions of appropriate curvature. This observation is explained in the framework of statistical mechanical lattice models that show that entropy, rather than curvature energy, dominates lipid distribution in the absence of strongly preferential lateral intermolecular interactions. Combined with previous findings of curvature induced phase segregation, we conclude that lipid cooperativity is required to enable efficient sorting. In contrast to lipid analog dyes, the peripheral membrane binding protein Cholera toxin subunit B is effectively curvature-sorted. The sorting of Cholera toxin subunit B is rationalized by statistical models. We discuss the implications of our findings for intracellular sorting mechanisms.
Collapse
|
243
|
Glucocerebroside: an evolutionary advantage for patients with Gaucher disease and a new immunomodulatory agent. Immunol Cell Biol 2009; 87:514-24. [PMID: 19529001 DOI: 10.1038/icb.2009.42] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Gaucher disease (GD) is caused by the reduced activity of a lysosomal enzyme, glucocerebrosidase, leading to the accumulation of glucocerebroside (GC). The relatively high prevalence of this disease within an ethnic group is believed to reflect a selective advantage. Treatment with enzyme replacement therapy (ERT) is safe and effective in ameliorating the primary symptoms of the disease, yet there have been reports that some patients on ERT have developed type 2 diabetes or metabolic syndrome, malignancies and central nervous system disorders. A series of animal studies suggest that these complications may be related to the reduction of GC levels by the enzyme administered. GC has been shown to have an immunomodulatory effect through the promotion of dendritic cells, natural killer T cells, and regulatory T cells. The break down of GC to ceramide can underline part of these findings. Clinical trials suggested a beneficial effect of GC in type 2 diabetes or nonalcoholic steatohepatitis. This review of the data from animal models and humans proposes that the increased level of GC may provide an evolutionary advantage for patients with GD. Indirectly, these data support treating symptomatic patients with mild/moderate GD with low-dose ERT and re-evaluating the use of ERT in asymptomatic patients.
Collapse
|
244
|
Segregation of GM1 and GM3 clusters in the cell membrane depends on the intact actin cytoskeleton. Biochim Biophys Acta Mol Cell Biol Lipids 2009; 1791:388-96. [DOI: 10.1016/j.bbalip.2009.01.008] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
245
|
Gavella M, Garaj-Vrhovac V, Lipovac V, Antica M, Gajski G, Car N. Ganglioside GT1b protects human spermatozoa from hydrogen peroxide-induced DNA and membrane damage. ACTA ACUST UNITED AC 2009; 33:536-44. [PMID: 19490186 DOI: 10.1111/j.1365-2605.2009.00962.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
We have reported previously that various gangliosides, the sialic acid containing glycosphingolipids, provide protection against sperm injury caused by reactive oxygen species (ROS). In this study, we investigated the effect of treatment of human spermatozoa with ganglioside GT1b on hydrogen peroxide (H(2)O(2))-induced DNA fragmentation and plasma membrane damage. Single-cell gel electrophoresis (Comet assay) used in the assessment of sperm DNA integrity showed that in vitro supplemented GT1b (100 microm) significantly reduced DNA damage induced by H(2)O(2) (200 microm) (p < 0.05). Measurements of Annexin V binding in combination with the propidium iodide vital dye labelling demonstrated that the spermatozoa pre-treated with GT1b exhibited a significant increase (p < 0.05) in the percentage of live cells with intact membrane and decreased phosphatidylserine translocation after exposure to H(2)O(2). Flow cytometry using the intracellular ROS-sensitive fluorescence dichlorodihydrofluorescein diacetate dye employed to investigate the transport of the extracellularly supplied H(2)O(2) into the cell interior revealed that ganglioside GT1b completely inhibited the passage of H(2)O(2) through the sperm membrane. These results suggest that ganglioside GT1b may protect human spermatozoa from H(2)O(2)-induced damage by rendering sperm membrane more hydrophobic, thus inhibiting the diffusion of H(2)O(2) across the membrane.
Collapse
Affiliation(s)
- Mirjana Gavella
- Department for Cell Biochemistry, Vuk Vrhovac University Clinic for Diabetes, Zagreb, Croatia.
| | | | | | | | | | | |
Collapse
|
246
|
Greenshields KN, Halstead SK, Zitman FM, Rinaldi S, Brennan KM, O’Leary C, Chamberlain LH, Easton A, Roxburgh J, Pediani J, Furukawa K, Furukawa K, Goodyear CS, Plomp JJ, Willison HJ. The neuropathic potential of anti-GM1 autoantibodies is regulated by the local glycolipid environment in mice. J Clin Invest 2009; 119:595-610. [PMID: 19221437 PMCID: PMC2648697 DOI: 10.1172/jci37338] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2008] [Accepted: 12/22/2008] [Indexed: 01/06/2023] Open
Abstract
Anti-GM1 ganglioside autoantibodies are used as diagnostic markers for motor axonal peripheral neuropathies and are believed to be the primary mediators of such diseases. However, their ability to bind and exert pathogenic effects at neuronal membranes is highly inconsistent. Using human and mouse monoclonal anti-GM1 antibodies to probe the GM1-rich motor nerve terminal membrane in mice, we here show that the antigenic oligosaccharide of GM1 in the live plasma membrane is cryptic, hidden on surface domains that become buried for a proportion of anti-GM1 antibodies due to a masking effect of neighboring gangliosides. The cryptic GM1 binding domain was exposed by sialidase treatment that liberated sialic acid from masking gangliosides including GD1a or by disruption of the live membrane by freezing or fixation. This cryptic behavior was also recapitulated in solid-phase immunoassays. These data show that certain anti-GM1 antibodies exert potent complement activation-mediated neuropathogenic effects, including morphological damage at living terminal motor axons, leading to a block of synaptic transmission. This occurred only when GM1 was topologically available for antibody binding, but not when GM1 was cryptic. This revised understanding of the complexities in ganglioside membrane topology provides a mechanistic account for wide variations in the neuropathic potential of anti-GM1 antibodies.
Collapse
Affiliation(s)
- Kay N. Greenshields
- Division of Clinical Neurosciences, Glasgow Biomedical Research Centre, University of Glasgow, Glasgow, United Kingdom.
Department of Neurology and
Department of Molecular Cell Biology — Group Neurophysiology, Leiden University Medical Centre, Leiden, The Netherlands.
Henry Wellcome Laboratory of Cell Biology, Division of Biochemistry and Molecular Biology, Faculty of Biomedical and Life Sciences, University of Glasgow, Glasgow, United Kingdom.
Department of Biochemistry II, Nagoya University School of Medicine, Nagoya, Japan
| | - Susan K. Halstead
- Division of Clinical Neurosciences, Glasgow Biomedical Research Centre, University of Glasgow, Glasgow, United Kingdom.
Department of Neurology and
Department of Molecular Cell Biology — Group Neurophysiology, Leiden University Medical Centre, Leiden, The Netherlands.
Henry Wellcome Laboratory of Cell Biology, Division of Biochemistry and Molecular Biology, Faculty of Biomedical and Life Sciences, University of Glasgow, Glasgow, United Kingdom.
Department of Biochemistry II, Nagoya University School of Medicine, Nagoya, Japan
| | - Femke M.P. Zitman
- Division of Clinical Neurosciences, Glasgow Biomedical Research Centre, University of Glasgow, Glasgow, United Kingdom.
Department of Neurology and
Department of Molecular Cell Biology — Group Neurophysiology, Leiden University Medical Centre, Leiden, The Netherlands.
Henry Wellcome Laboratory of Cell Biology, Division of Biochemistry and Molecular Biology, Faculty of Biomedical and Life Sciences, University of Glasgow, Glasgow, United Kingdom.
Department of Biochemistry II, Nagoya University School of Medicine, Nagoya, Japan
| | - Simon Rinaldi
- Division of Clinical Neurosciences, Glasgow Biomedical Research Centre, University of Glasgow, Glasgow, United Kingdom.
Department of Neurology and
Department of Molecular Cell Biology — Group Neurophysiology, Leiden University Medical Centre, Leiden, The Netherlands.
Henry Wellcome Laboratory of Cell Biology, Division of Biochemistry and Molecular Biology, Faculty of Biomedical and Life Sciences, University of Glasgow, Glasgow, United Kingdom.
Department of Biochemistry II, Nagoya University School of Medicine, Nagoya, Japan
| | - Kathryn M. Brennan
- Division of Clinical Neurosciences, Glasgow Biomedical Research Centre, University of Glasgow, Glasgow, United Kingdom.
Department of Neurology and
Department of Molecular Cell Biology — Group Neurophysiology, Leiden University Medical Centre, Leiden, The Netherlands.
Henry Wellcome Laboratory of Cell Biology, Division of Biochemistry and Molecular Biology, Faculty of Biomedical and Life Sciences, University of Glasgow, Glasgow, United Kingdom.
Department of Biochemistry II, Nagoya University School of Medicine, Nagoya, Japan
| | - Colin O’Leary
- Division of Clinical Neurosciences, Glasgow Biomedical Research Centre, University of Glasgow, Glasgow, United Kingdom.
Department of Neurology and
Department of Molecular Cell Biology — Group Neurophysiology, Leiden University Medical Centre, Leiden, The Netherlands.
Henry Wellcome Laboratory of Cell Biology, Division of Biochemistry and Molecular Biology, Faculty of Biomedical and Life Sciences, University of Glasgow, Glasgow, United Kingdom.
Department of Biochemistry II, Nagoya University School of Medicine, Nagoya, Japan
| | - Luke H. Chamberlain
- Division of Clinical Neurosciences, Glasgow Biomedical Research Centre, University of Glasgow, Glasgow, United Kingdom.
Department of Neurology and
Department of Molecular Cell Biology — Group Neurophysiology, Leiden University Medical Centre, Leiden, The Netherlands.
Henry Wellcome Laboratory of Cell Biology, Division of Biochemistry and Molecular Biology, Faculty of Biomedical and Life Sciences, University of Glasgow, Glasgow, United Kingdom.
Department of Biochemistry II, Nagoya University School of Medicine, Nagoya, Japan
| | - Alistair Easton
- Division of Clinical Neurosciences, Glasgow Biomedical Research Centre, University of Glasgow, Glasgow, United Kingdom.
Department of Neurology and
Department of Molecular Cell Biology — Group Neurophysiology, Leiden University Medical Centre, Leiden, The Netherlands.
Henry Wellcome Laboratory of Cell Biology, Division of Biochemistry and Molecular Biology, Faculty of Biomedical and Life Sciences, University of Glasgow, Glasgow, United Kingdom.
Department of Biochemistry II, Nagoya University School of Medicine, Nagoya, Japan
| | - Jennifer Roxburgh
- Division of Clinical Neurosciences, Glasgow Biomedical Research Centre, University of Glasgow, Glasgow, United Kingdom.
Department of Neurology and
Department of Molecular Cell Biology — Group Neurophysiology, Leiden University Medical Centre, Leiden, The Netherlands.
Henry Wellcome Laboratory of Cell Biology, Division of Biochemistry and Molecular Biology, Faculty of Biomedical and Life Sciences, University of Glasgow, Glasgow, United Kingdom.
Department of Biochemistry II, Nagoya University School of Medicine, Nagoya, Japan
| | - John Pediani
- Division of Clinical Neurosciences, Glasgow Biomedical Research Centre, University of Glasgow, Glasgow, United Kingdom.
Department of Neurology and
Department of Molecular Cell Biology — Group Neurophysiology, Leiden University Medical Centre, Leiden, The Netherlands.
Henry Wellcome Laboratory of Cell Biology, Division of Biochemistry and Molecular Biology, Faculty of Biomedical and Life Sciences, University of Glasgow, Glasgow, United Kingdom.
Department of Biochemistry II, Nagoya University School of Medicine, Nagoya, Japan
| | - Koichi Furukawa
- Division of Clinical Neurosciences, Glasgow Biomedical Research Centre, University of Glasgow, Glasgow, United Kingdom.
Department of Neurology and
Department of Molecular Cell Biology — Group Neurophysiology, Leiden University Medical Centre, Leiden, The Netherlands.
Henry Wellcome Laboratory of Cell Biology, Division of Biochemistry and Molecular Biology, Faculty of Biomedical and Life Sciences, University of Glasgow, Glasgow, United Kingdom.
Department of Biochemistry II, Nagoya University School of Medicine, Nagoya, Japan
| | - Keiko Furukawa
- Division of Clinical Neurosciences, Glasgow Biomedical Research Centre, University of Glasgow, Glasgow, United Kingdom.
Department of Neurology and
Department of Molecular Cell Biology — Group Neurophysiology, Leiden University Medical Centre, Leiden, The Netherlands.
Henry Wellcome Laboratory of Cell Biology, Division of Biochemistry and Molecular Biology, Faculty of Biomedical and Life Sciences, University of Glasgow, Glasgow, United Kingdom.
Department of Biochemistry II, Nagoya University School of Medicine, Nagoya, Japan
| | - Carl S. Goodyear
- Division of Clinical Neurosciences, Glasgow Biomedical Research Centre, University of Glasgow, Glasgow, United Kingdom.
Department of Neurology and
Department of Molecular Cell Biology — Group Neurophysiology, Leiden University Medical Centre, Leiden, The Netherlands.
Henry Wellcome Laboratory of Cell Biology, Division of Biochemistry and Molecular Biology, Faculty of Biomedical and Life Sciences, University of Glasgow, Glasgow, United Kingdom.
Department of Biochemistry II, Nagoya University School of Medicine, Nagoya, Japan
| | - Jaap J. Plomp
- Division of Clinical Neurosciences, Glasgow Biomedical Research Centre, University of Glasgow, Glasgow, United Kingdom.
Department of Neurology and
Department of Molecular Cell Biology — Group Neurophysiology, Leiden University Medical Centre, Leiden, The Netherlands.
Henry Wellcome Laboratory of Cell Biology, Division of Biochemistry and Molecular Biology, Faculty of Biomedical and Life Sciences, University of Glasgow, Glasgow, United Kingdom.
Department of Biochemistry II, Nagoya University School of Medicine, Nagoya, Japan
| | - Hugh J. Willison
- Division of Clinical Neurosciences, Glasgow Biomedical Research Centre, University of Glasgow, Glasgow, United Kingdom.
Department of Neurology and
Department of Molecular Cell Biology — Group Neurophysiology, Leiden University Medical Centre, Leiden, The Netherlands.
Henry Wellcome Laboratory of Cell Biology, Division of Biochemistry and Molecular Biology, Faculty of Biomedical and Life Sciences, University of Glasgow, Glasgow, United Kingdom.
Department of Biochemistry II, Nagoya University School of Medicine, Nagoya, Japan
| |
Collapse
|
247
|
Lalazar G, Ben Ya'acov A, Livovsky DM, El Haj M, Pappo O, Preston S, Zolotarov L, Ilan Y. Beta-glycoglycosphingolipid-induced alterations of the STAT signaling pathways are dependent on CD1d and the lipid raft protein flotillin-2. THE AMERICAN JOURNAL OF PATHOLOGY 2009; 174:1390-9. [PMID: 19246642 DOI: 10.2353/ajpath.2009.080841] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Beta-glucosylceramide has been shown to affect natural killer T cell function in models of inflammation. We, therefore, investigated the effects of different beta-glycosphingolipids, including beta-glucosylceramide, on STAT (signal transducers and activators of transcription) signaling pathways and determined whether these effects were mediated by lipid raft microdomains and/or CD1d molecules. The effects of alpha- and beta-structured ligands on the lipid raft protein flotillin-2 were studied in both natural killer T hybridoma cells and leptin-deficient mice. To determine whether CD1d was involved in the effects of the beta-glycosphingolipids, an anti-CD1d blocking antibody was used in a cell proliferation assay system. The downstream effects on the protein phosphorylation levels of STAT1, STAT3, and STAT6 were examined in both immune-mediated hepatitis and hepatoma models. The effects of beta-glycosphingolipids on the STAT signaling pathways were found to be dependent on CD1d. Lipid rafts were affected by both the dose and ratio of the beta-glycosphingolipids and the acyl chain length, and these effects were followed by downstream effects on STAT proteins. Our results show that beta-glycosphingolipids have beneficial effects in natural killer T cell-dependent immune-mediated metabolic and malignant animal models in vivo.
Collapse
Affiliation(s)
- Gadi Lalazar
- Liver Unit, Department of Medicine, Hebrew University-Hadassah Medical Center, P.O.B 12000, Jerusalem, Israel, IL-91120
| | | | | | | | | | | | | | | |
Collapse
|
248
|
Seah N, Santacroce PV, Basu A. Probing the Lactose·GM3 Carbohydrate−Carbohydrate Interaction with Glycodendrimers. Org Lett 2009; 11:559-62. [DOI: 10.1021/ol802613r] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Nicole Seah
- Department of Chemistry, Brown University, Providence, Rhode Island 02912
| | - Paul V. Santacroce
- Department of Chemistry, Brown University, Providence, Rhode Island 02912
| | - Amit Basu
- Department of Chemistry, Brown University, Providence, Rhode Island 02912
| |
Collapse
|
249
|
Sodeoka M, Hirai G, Watanabe T, Miyagi T. A strategy for constructing C-sialosides based on Ireland-Claisen rearrangement and its application for synthesis of CF2-linked ganglioside GM4 analog. PURE APPL CHEM 2009. [DOI: 10.1351/pac-con-08-09-14] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Sialidase-resistant ganglioside analogs having similar biological activities to natural gangliosides are expected to be important probes for clarifying the biological functions of gangliosides. Focusing on difluoromethylene-linked (CF2-linked) and methylene-linked (CH2-linked) α(2,3)sialylgalactose as a core structure of sialidase-resistant ganglioside mimics, we have developed novel, stereocontrolled, and efficient methodologies to synthesize C-sialosides based on Ireland-Claisen rearrangement. These methods were employed to synthesize CF2-linked GM4. The CF2-linked GM4 inhibited human sialidases NEU2 and NEU4 with IC50 values of 754 and 930 μM, respectively, and strongly inhibited human lymphocyte proliferation in the same concentration range as natural GM4.
Collapse
Affiliation(s)
- Mikiko Sodeoka
- 1Synthetic Organic Chemistry Laboratory, RIKEN, Hirosawa, Wako, Saitama 351 0198, Japan
| | - Go Hirai
- 1Synthetic Organic Chemistry Laboratory, RIKEN, Hirosawa, Wako, Saitama 351 0198, Japan
| | - Toru Watanabe
- 1Synthetic Organic Chemistry Laboratory, RIKEN, Hirosawa, Wako, Saitama 351 0198, Japan
| | - Taeko Miyagi
- 2Division of Biochemistry, Miyagi Cancer Center Research Institute, Natori 981-1293, Japan, and CREST,JST Kawaguchi 332-1102, Japan
| |
Collapse
|
250
|
Prinetti A, Loberto N, Chigorno V, Sonnino S. Glycosphingolipid behaviour in complex membranes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2009; 1788:184-93. [DOI: 10.1016/j.bbamem.2008.09.001] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2008] [Revised: 09/02/2008] [Accepted: 09/03/2008] [Indexed: 12/12/2022]
|