201
|
Holliday GL, Akiva E, Meng EC, Brown SD, Calhoun S, Pieper U, Sali A, Booker SJ, Babbitt PC. Atlas of the Radical SAM Superfamily: Divergent Evolution of Function Using a "Plug and Play" Domain. Methods Enzymol 2018; 606:1-71. [PMID: 30097089 DOI: 10.1016/bs.mie.2018.06.004] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The radical SAM superfamily contains over 100,000 homologous enzymes that catalyze a remarkably broad range of reactions required for life, including metabolism, nucleic acid modification, and biogenesis of cofactors. While the highly conserved SAM-binding motif responsible for formation of the key 5'-deoxyadenosyl radical intermediate is a key structural feature that simplifies identification of superfamily members, our understanding of their structure-function relationships is complicated by the modular nature of their structures, which exhibit varied and complex domain architectures. To gain new insight about these relationships, we classified the entire set of sequences into similarity-based subgroups that could be visualized using sequence similarity networks. This superfamily-wide analysis reveals important features that had not previously been appreciated from studies focused on one or a few members. Functional information mapped to the networks indicates which members have been experimentally or structurally characterized, their known reaction types, and their phylogenetic distribution. Despite the biological importance of radical SAM chemistry, the vast majority of superfamily members have never been experimentally characterized in any way, suggesting that many new reactions remain to be discovered. In addition to 20 subgroups with at least one known function, we identified additional subgroups made up entirely of sequences of unknown function. Importantly, our results indicate that even general reaction types fail to track well with our sequence similarity-based subgroupings, raising major challenges for function prediction for currently identified and new members that continue to be discovered. Interactive similarity networks and other data from this analysis are available from the Structure-Function Linkage Database.
Collapse
Affiliation(s)
- Gemma L Holliday
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA, United States.
| | - Eyal Akiva
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA, United States
| | - Elaine C Meng
- Resource for Biocomputing, Visualization, and Informatics, Department of Pharmaceutical Chemistry, School of Pharmacy, University of California, San Francisco, CA, United States
| | - Shoshana D Brown
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA, United States
| | - Sara Calhoun
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA, United States; Graduate Program in Biophysics, University of California, San Francisco, CA, United States
| | - Ursula Pieper
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA, United States
| | - Andrej Sali
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA, United States; Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA, United States; Quantitative Biosciences Institute, University of California, San Francisco, CA, United States
| | - Squire J Booker
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, United States; Department of Chemistry, The Pennsylvania State University, University Park, PA, United States; The Howard Hughes Medical Institute, The Pennsylvania State University, University Park, PA, United States
| | - Patricia C Babbitt
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA, United States; Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA, United States; Quantitative Biosciences Institute, University of California, San Francisco, CA, United States.
| |
Collapse
|
202
|
Kincannon WM, Bruender NA, Bandarian V. A Radical Clock Probe Uncouples H Atom Abstraction from Thioether Cross-Link Formation by the Radical S-Adenosyl-l-methionine Enzyme SkfB. Biochemistry 2018; 57:4816-4823. [PMID: 29965747 PMCID: PMC6094349 DOI: 10.1021/acs.biochem.8b00537] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
Sporulation
killing factor (SKF) is a ribosomally synthesized and
post-translationally modified peptide (RiPP) produced by Bacillus. SKF contains a thioether cross-link between the α-carbon
at position 40 and the thiol of Cys32, introduced by a member of the
radical S-adenosyl-l-methionine (SAM) superfamily,
SkfB. Radical SAM enzymes employ a 4Fe–4S cluster to bind and
reductively cleave SAM to generate a 5′-deoxyadenosyl radical.
SkfB utilizes this radical intermediate to abstract the α-H
atom at Met40 to initiate cross-linking. In addition to the cluster
that binds SAM, SkfB also has an auxiliary cluster, the function of
which is not known. We demonstrate that a substrate analogue with
a cyclopropylglycine (CPG) moiety replacing the wild-type Met40 side
chain forgoes thioether cross-linking for an alternative radical ring
opening of the CPG side chain. The ring opening reaction also takes
place with a catalytically inactive SkfB variant in which the auxiliary
Fe–S cluster is absent. Therefore, the CPG-containing peptide
uncouples H atom abstraction from thioether bond formation, limiting
the role of the auxiliary cluster to promoting thioether cross-link
formation. CPG proves to be a valuable tool for uncoupling H atom
abstraction from peptide modification in RiPP maturases and demonstrates
potential to leverage RS enzyme reactivity to create noncanonical
amino acids.
Collapse
Affiliation(s)
- William M Kincannon
- Department of Chemistry , University of Utah , 315 South 1400 East , Salt Lake City , Utah 84112 , United States
| | - Nathan A Bruender
- Department of Chemistry , University of Utah , 315 South 1400 East , Salt Lake City , Utah 84112 , United States
| | - Vahe Bandarian
- Department of Chemistry , University of Utah , 315 South 1400 East , Salt Lake City , Utah 84112 , United States
| |
Collapse
|
203
|
Chakravarti A, Selvadurai K, Shahoei R, Lee H, Fatma S, Tajkhorshid E, Huang RH. Reconstitution and substrate specificity for isopentenyl pyrophosphate of the antiviral radical SAM enzyme viperin. J Biol Chem 2018; 293:14122-14133. [PMID: 30030381 DOI: 10.1074/jbc.ra118.003998] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 07/11/2018] [Indexed: 01/09/2023] Open
Abstract
Viperin is a radical SAM enzyme that has been shown to possess antiviral activity against a broad spectrum of viruses; however, its molecular mechanism is unknown. We report here that recombinant fungal and archaeal viperin enzymes catalyze the addition of the 5'-deoxyadenosyl radical (5'-dA•) to the double bond of isopentenyl pyrophosphate (IPP), producing a new compound we named adenylated isopentyl pyrophosphate (AIPP). The reaction is specific for IPP, as other pyrophosphate compounds involved in the mevalonate biosynthetic pathway did not react with 5'-dA• Enzymatic reactions employing IPP derivatives as substrates revealed that any chemical change in IPP diminishes its ability to be an effective substrate of fungal viperin. Mutational studies disclosed that the hydroxyl group on the side chain of Tyr-245 in fungal viperin is the likely source of hydrogen in the last step of the radical addition, providing mechanistic insight into the radical reaction catalyzed by fungal viperin. Structure-based molecular dynamics (MD) simulations of viperin interacting with IPP revealed a good fit of the isopentenyl motif of IPP to the active site cavity of viperin, unraveling the molecular basis of substrate specificity of viperin for IPP. Collectively, our findings indicate that IPP is an effective substrate of fungal and archaeal viperin enzymes and provide critical insights into the reaction mechanism.
Collapse
Affiliation(s)
| | | | - Rezvan Shahoei
- Physics.,the Beckman Institute for Advanced Science and Technology, and
| | - Hugo Lee
- From the Departments of Biochemistry and
| | | | - Emad Tajkhorshid
- From the Departments of Biochemistry and.,the Beckman Institute for Advanced Science and Technology, and.,the Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| | - Raven H Huang
- From the Departments of Biochemistry and .,the Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| |
Collapse
|
204
|
Byer A, Yang H, McDaniel EC, Kathiresan V, Impano S, Pagnier A, Watts H, Denler C, Vagstad AL, Piel J, Duschene KS, Shepard EM, Shields TP, Scott LG, Lilla EA, Yokoyama K, Broderick WE, Hoffman BM, Broderick JB. Paradigm Shift for Radical S-Adenosyl-l-methionine Reactions: The Organometallic Intermediate Ω Is Central to Catalysis. J Am Chem Soc 2018; 140:8634-8638. [PMID: 29954180 PMCID: PMC6053644 DOI: 10.1021/jacs.8b04061] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Radical S-adenosyl-l-methionine (SAM) enzymes comprise a vast superfamily catalyzing diverse reactions essential to all life through homolytic SAM cleavage to liberate the highly reactive 5'-deoxyadenosyl radical (5'-dAdo·). Our recent observation of a catalytically competent organometallic intermediate Ω that forms during reaction of the radical SAM (RS) enzyme pyruvate formate-lyase activating-enzyme (PFL-AE) was therefore quite surprising, and led to the question of its broad relevance in the superfamily. We now show that Ω in PFL-AE forms as an intermediate under a variety of mixing order conditions, suggesting it is central to catalysis in this enzyme. We further demonstrate that Ω forms in a suite of RS enzymes chosen to span the totality of superfamily reaction types, implicating Ω as essential in catalysis across the RS superfamily. Finally, EPR and electron nuclear double resonance spectroscopy establish that Ω involves an Fe-C5' bond between 5'-dAdo· and the [4Fe-4S] cluster. An analogous organometallic bond is found in the well-known adenosylcobalamin (coenzyme B12) cofactor used to initiate radical reactions via a 5'-dAdo· intermediate. Liberation of a reactive 5'-dAdo· intermediate via homolytic metal-carbon bond cleavage thus appears to be similar for Ω and coenzyme B12. However, coenzyme B12 is involved in enzymes catalyzing only a small number (∼12) of distinct reactions, whereas the RS superfamily has more than 100 000 distinct sequences and over 80 reaction types characterized to date. The appearance of Ω across the RS superfamily therefore dramatically enlarges the sphere of bio-organometallic chemistry in Nature.
Collapse
Affiliation(s)
- Amanda
S. Byer
- Department
of Chemistry & Biochemistry, Montana
State University, Bozeman, Montana 59717, United States
| | - Hao Yang
- Department
of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Elizabeth C. McDaniel
- Department
of Chemistry & Biochemistry, Montana
State University, Bozeman, Montana 59717, United States
| | - Venkatesan Kathiresan
- Department
of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Stella Impano
- Department
of Chemistry & Biochemistry, Montana
State University, Bozeman, Montana 59717, United States
| | - Adrien Pagnier
- Department
of Chemistry & Biochemistry, Montana
State University, Bozeman, Montana 59717, United States
| | - Hope Watts
- Department
of Chemistry & Biochemistry, Montana
State University, Bozeman, Montana 59717, United States
| | - Carly Denler
- Department
of Chemistry & Biochemistry, Montana
State University, Bozeman, Montana 59717, United States
| | - Anna L. Vagstad
- Institute
of Microbiology, Eidgenössische Technische
Hochschule Zürich, Vladimir-Prelog-Weg 4, Zürich 8093, Switzerland
| | - Jörn Piel
- Institute
of Microbiology, Eidgenössische Technische
Hochschule Zürich, Vladimir-Prelog-Weg 4, Zürich 8093, Switzerland
| | - Kaitlin S. Duschene
- Department
of Chemistry & Biochemistry, Montana
State University, Bozeman, Montana 59717, United States
| | - Eric M. Shepard
- Department
of Chemistry & Biochemistry, Montana
State University, Bozeman, Montana 59717, United States
| | - Thomas P. Shields
- Cassia,
LLC, 3030 Bunker Hill
Street, Ste. 214, San Diego, California 92109, United States
| | - Lincoln G. Scott
- Cassia,
LLC, 3030 Bunker Hill
Street, Ste. 214, San Diego, California 92109, United States
| | - Edward A. Lilla
- Department
of Biochemistry, Duke University Medical
Center, Durham, North Carolina 27710, United States
| | - Kenichi Yokoyama
- Department
of Biochemistry, Duke University Medical
Center, Durham, North Carolina 27710, United States
| | - William E. Broderick
- Department
of Chemistry & Biochemistry, Montana
State University, Bozeman, Montana 59717, United States
| | - Brian M. Hoffman
- Department
of Chemistry, Northwestern University, Evanston, Illinois 60208, United States,
| | - Joan B. Broderick
- Department
of Chemistry & Biochemistry, Montana
State University, Bozeman, Montana 59717, United States,
| |
Collapse
|
205
|
Yokoyama K, Lilla EA. C-C bond forming radical SAM enzymes involved in the construction of carbon skeletons of cofactors and natural products. Nat Prod Rep 2018; 35:660-694. [PMID: 29633774 PMCID: PMC6051890 DOI: 10.1039/c8np00006a] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Covering: up to the end of 2017 C-C bond formations are frequently the key steps in cofactor and natural product biosynthesis. Historically, C-C bond formations were thought to proceed by two electron mechanisms, represented by Claisen condensation in fatty acids and polyketide biosynthesis. These types of mechanisms require activated substrates to create a nucleophile and an electrophile. More recently, increasing number of C-C bond formations catalyzed by radical SAM enzymes are being identified. These free radical mediated reactions can proceed between almost any sp3 and sp2 carbon centers, allowing introduction of C-C bonds at unconventional positions in metabolites. Therefore, free radical mediated C-C bond formations are frequently found in the construction of structurally unique and complex metabolites. This review discusses our current understanding of the functions and mechanisms of C-C bond forming radical SAM enzymes and highlights their important roles in the biosynthesis of structurally complex, naturally occurring organic molecules. Mechanistic consideration of C-C bond formation by radical SAM enzymes identifies the significance of three key mechanistic factors: radical initiation, acceptor substrate activation and radical quenching. Understanding the functions and mechanisms of these characteristic enzymes will be important not only in promoting our understanding of radical SAM enzymes, but also for understanding natural product and cofactor biosynthesis.
Collapse
Affiliation(s)
- Kenichi Yokoyama
- Department of Biochemistry, Duke University Medical Center, Durham, NC 27710, USA.
| | | |
Collapse
|
206
|
A radical S-adenosyl-L-methionine enzyme and a methyltransferase catalyze cyclopropane formation in natural product biosynthesis. Nat Commun 2018; 9:2771. [PMID: 30018376 PMCID: PMC6050322 DOI: 10.1038/s41467-018-05217-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 05/23/2018] [Indexed: 11/09/2022] Open
Abstract
Cyclopropanation of unactivated olefinic bonds via addition of a reactive one-carbon species is well developed in synthetic chemistry, whereas natural cyclopropane biosynthesis employing this strategy is very limited. Here, we identify a two-component cyclopropanase system, composed of a HemN-like radical S-adenosyl-L-methionine (SAM) enzyme C10P and a methyltransferase C10Q, catalyzes chemically challenging cyclopropanation in the antitumor antibiotic CC-1065 biosynthesis. C10P uses its [4Fe-4S] cluster for reductive cleavage of the first SAM to yield a highly reactive 5'-deoxyadenosyl radical, which abstracts a hydrogen from the second SAM to produce a SAM methylene radical that adds to an sp2-hybridized carbon of substrate to form a SAM-substrate adduct. C10Q converts this adduct to CC-1065 via an intramolecular SN2 cyclization mechanism with elimination of S-adenosylhomocysteine. This cyclopropanation strategy not only expands the enzymatic reactions catalyzed by the radical SAM enzymes and methyltransferases, but also sheds light on previously unnoticed aspects of the versatile SAM-based biochemistry.
Collapse
|
207
|
Lewis JK, Bruender NA, Bandarian V. QueE: A Radical SAM Enzyme Involved in the Biosynthesis of 7-Deazapurine Containing Natural Products. Methods Enzymol 2018; 606:95-118. [PMID: 30097106 PMCID: PMC6484087 DOI: 10.1016/bs.mie.2018.05.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
7-Carboxy-7-deazaguanine (CDG) is a common intermediate in the biosynthesis of 7-deazapurine-containing natural products. The biosynthesis of CDG from GTP requires three enzymes: GTP cyclohydrolase I, 6-carboxy-5,6,7,8-tetrahydropterin (CPH4) synthase, and CDG synthase (QueE). QueE is a member of the radical S-adenosyl-l-methionine (SAM) superfamily and catalyzes the SAM-dependent radical-mediated ring contraction of CPH4 to generate CDG. This chapter focuses on methods to reconstitute the activity of QueE in vitro.
Collapse
Affiliation(s)
- Julia K Lewis
- Department of Chemistry, University of Utah, Salt Lake City, UT, United States
| | - Nathan A Bruender
- Department of Chemistry and Biochemistry, St. Cloud State University, St. Cloud, MN, United States
| | - Vahe Bandarian
- Department of Chemistry, University of Utah, Salt Lake City, UT, United States.
| |
Collapse
|
208
|
Skotnicová P, Sobotka R, Shepherd M, Hájek J, Hrouzek P, Tichý M. The cyanobacterial protoporphyrinogen oxidase HemJ is a new b-type heme protein functionally coupled with coproporphyrinogen III oxidase. J Biol Chem 2018; 293:12394-12404. [PMID: 29925590 DOI: 10.1074/jbc.ra118.003441] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 06/14/2018] [Indexed: 12/27/2022] Open
Abstract
Protoporphyrinogen IX oxidase (PPO), the last enzyme that is common to both chlorophyll and heme biosynthesis pathways, catalyzes the oxidation of protoporphyrinogen IX to protoporphyrin IX. PPO has several isoforms, including the oxygen-dependent HemY and an oxygen-independent enzyme, HemG. However, most cyanobacteria encode HemJ, the least characterized PPO form. We have characterized HemJ from the cyanobacterium Synechocystis sp. PCC 6803 (Synechocystis 6803) as a bona fide PPO; HemJ down-regulation resulted in accumulation of tetrapyrrole precursors and in the depletion of chlorophyll precursors. The expression of FLAG-tagged Synechocystis 6803 HemJ protein (HemJ.f) and affinity isolation of HemJ.f under native conditions revealed that it binds heme b The most stable HemJ.f form was a dimer, and higher oligomeric forms were also observed. Using both oxygen and artificial electron acceptors, we detected no enzymatic activity with the purified HemJ.f, consistent with the hypothesis that the enzymatic mechanism for HemJ is distinct from those of other PPO isoforms. The heme absorption spectra and distant HemJ homology to several membrane oxidases indicated that the heme in HemJ is redox-active and involved in electron transfer. HemJ was conditionally complemented by another PPO, HemG from Escherichia coli. If grown photoautotrophically, the complemented strain accumulated tripropionic tetrapyrrole harderoporphyrin, suggesting a defect in enzymatic conversion of coproporphyrinogen III to protoporphyrinogen IX, catalyzed by coproporphyrinogen III oxidase (CPO). This observation supports the hypothesis that HemJ is functionally coupled with CPO and that this coupling is disrupted after replacement of HemJ by HemG.
Collapse
Affiliation(s)
- Petra Skotnicová
- From the Czech Academy of Sciences, Institute of Microbiology, Centre Algatech, 379 81 Třeboň, Czech Republic.,the Faculty of Science, University of South Bohemia, 370 05 České Budějovice, Czech Republic, and
| | - Roman Sobotka
- From the Czech Academy of Sciences, Institute of Microbiology, Centre Algatech, 379 81 Třeboň, Czech Republic.,the Faculty of Science, University of South Bohemia, 370 05 České Budějovice, Czech Republic, and
| | - Mark Shepherd
- the School of Biosciences, RAPID Group, University of Kent, Canterbury CT2 7NZ,United Kingdom
| | - Jan Hájek
- From the Czech Academy of Sciences, Institute of Microbiology, Centre Algatech, 379 81 Třeboň, Czech Republic.,the Faculty of Science, University of South Bohemia, 370 05 České Budějovice, Czech Republic, and
| | - Pavel Hrouzek
- From the Czech Academy of Sciences, Institute of Microbiology, Centre Algatech, 379 81 Třeboň, Czech Republic.,the Faculty of Science, University of South Bohemia, 370 05 České Budějovice, Czech Republic, and
| | - Martin Tichý
- From the Czech Academy of Sciences, Institute of Microbiology, Centre Algatech, 379 81 Třeboň, Czech Republic, .,the Faculty of Science, University of South Bohemia, 370 05 České Budějovice, Czech Republic, and
| |
Collapse
|
209
|
Kovačević B, Barić D, Babić D, Bilić L, Hanževački M, Sandala GM, Radom L, Smith DM. Computational Tale of Two Enzymes: Glycerol Dehydration With or Without B12. J Am Chem Soc 2018; 140:8487-8496. [DOI: 10.1021/jacs.8b03109] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Borislav Kovačević
- Department of Physical Chemistry, Ruđer Bošković Institute, 10000 Zagreb, Croatia
| | - Danijela Barić
- Department of Physical Chemistry, Ruđer Bošković Institute, 10000 Zagreb, Croatia
| | - Darko Babić
- Department of Physical Chemistry, Ruđer Bošković Institute, 10000 Zagreb, Croatia
| | - Luka Bilić
- Department of Physical Chemistry, Ruđer Bošković Institute, 10000 Zagreb, Croatia
| | - Marko Hanževački
- Department of Physical Chemistry, Ruđer Bošković Institute, 10000 Zagreb, Croatia
| | - Gregory M. Sandala
- Department of Chemistry and Biochemistry, Mount Allison University, Sackville, New Brunswick E4L 1G8, Canada
| | - Leo Radom
- School of Chemistry, University of Sydney, Sydney, NSW 2006, Australia
| | - David M. Smith
- Department of Physical Chemistry, Ruđer Bošković Institute, 10000 Zagreb, Croatia
| |
Collapse
|
210
|
Grell TJ, Young AP, Drennan CL, Bandarian V. Biochemical and Structural Characterization of a Schiff Base in the Radical-Mediated Biosynthesis of 4-Demethylwyosine by TYW1. J Am Chem Soc 2018; 140:6842-6852. [PMID: 29792696 PMCID: PMC5994729 DOI: 10.1021/jacs.8b01493] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Indexed: 12/03/2022]
Abstract
TYW1 is a radical S-adenosyl-l-methionine (SAM) enzyme that catalyzes the condensation of pyruvate and N-methylguanosine to form the posttranscriptional modification, 4-demethylwyosine, in situ on transfer RNA (tRNA). Two mechanisms have been proposed for this transformation, with one of the possible mechanisms invoking a Schiff base intermediate formed between a conserved lysine residue and pyruvate. Utilizing a combination of mass spectrometry and X-ray crystallography, we have obtained evidence to support the formation of a Schiff base lysine adduct in TYW1. When 13C labeled pyruvate is used, the mass shift of the adduct matches that of the labeled pyruvate, indicating that pyruvate is the source of the adduct. Furthermore, a crystal structure of TYW1 provides visualization of the Schiff base lysine-pyruvate adduct, which is positioned directly adjacent to the auxiliary [4Fe-4S] cluster. The adduct coordinates the unique iron of the auxiliary cluster through the lysine nitrogen and a carboxylate oxygen, reminiscent of how the radical SAM [4Fe-4S] cluster is coordinated by SAM. The structure provides insight into the binding site for tRNA and further suggests how radical SAM chemistry can be combined with Schiff base chemistry for RNA modification.
Collapse
Affiliation(s)
- Tsehai
A. J. Grell
- Department
of Chemistry, Department of Biology, and Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Anthony P. Young
- Department
of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Catherine L. Drennan
- Department
of Chemistry, Department of Biology, and Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Vahe Bandarian
- Department
of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| |
Collapse
|
211
|
Young AP, Bandarian V. TYW1: A Radical SAM Enzyme Involved in the Biosynthesis of Wybutosine Bases. Methods Enzymol 2018; 606:119-153. [PMID: 30097090 DOI: 10.1016/bs.mie.2018.04.024] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2022]
Abstract
Transfer RNA is extensively modified by the actions of a variety of enzymes. The radical S-adenosyl-l-methionine enzyme TYW1 modifies tRNAPhe forming the characteristic tricyclic ring via the condensation of carbons 2 and 3 of pyruvate. This chapter details methods that are required for studies of TYW1.
Collapse
Affiliation(s)
- Anthony P Young
- Department of Chemistry, University of Utah, Salt Lake City, UT, United States
| | - Vahe Bandarian
- Department of Chemistry, University of Utah, Salt Lake City, UT, United States.
| |
Collapse
|
212
|
Abstract
Enzymes in biosynthetic pathways, especially in plant and microbial metabolism, generate structural and functional group complexity in small molecules by conversion of acyclic frameworks to cyclic scaffolds via short, efficient routes. The distinct chemical logic used by several distinct classes of cyclases, oxidative and non-oxidative, has recently been elucidated by genome mining, heterologous expression, and genetic and mechanistic analyses. These include enzymes performing pericyclic transformations, pyran synthases, tandem acting epoxygenases, and epoxide "hydrolases", as well as oxygenases and radical S-adenosylmethionine enzymes that involve rearrangements of substrate radicals under aerobic or anaerobic conditions.
Collapse
Affiliation(s)
- Christopher T. Walsh
- Stanford University Chemistry, Engineering, and Medicine for Human Health (ChEM-H), Stanford University, Stanford, CA
| | - Yi Tang
- Department of Chemical and Biomolecular Engineering and Department of Chemistry and Biochemistry, University of California, Los Angeles, CA
| |
Collapse
|
213
|
Pang H, Yokoyama K. Lessons From the Studies of a CC Bond Forming Radical SAM Enzyme in Molybdenum Cofactor Biosynthesis. Methods Enzymol 2018; 606:485-522. [PMID: 30097104 DOI: 10.1016/bs.mie.2018.04.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
MoaA is one of the founding members of the radical S-adenosyl-L-methionine (SAM) superfamily, and together with the second enzyme, MoaC, catalyzes the construction of the pyranopterin backbone structure of the molybdenum cofactor (Moco). However, the exact functions of both MoaA and MoaC had remained ambiguous for more than 2 decades. Recently, their functions were finally elucidated through successful characterization of the MoaA product as 3',8-cyclo-7,8-dihydro-GTP (3',8-cH2GTP), which was shown to be converted to cyclic pyranopterin monophosphate (cPMP) by MoaC. 3',8-cH2GTP was produced in a small quantity and was highly oxygen sensitive, which explains why this compound had previously eluded characterization. This chapter describes the methodologies for the characterization of MoaA, MoaC, and 3',8-cH2GTP, which together significantly altered the view of the mechanism of the pyranopterin backbone construction during the Moco biosynthesis. Through this chapter, we hope to share not only the protocols to study the first step of Moco biosynthesis but also the lessons we learned from the characterization of the chemically labile biosynthetic intermediate, which would be informative for the study of many other metabolic pathways and enzymes.
Collapse
Affiliation(s)
- Haoran Pang
- Department of Biochemistry, Duke University Medical Center, Durham, NC, United States
| | - Kenichi Yokoyama
- Department of Biochemistry, Duke University Medical Center, Durham, NC, United States.
| |
Collapse
|
214
|
Dukhovny A, Shlomai A, Sklan EH. The antiviral protein Viperin suppresses T7 promoter dependent RNA synthesis-possible implications for its antiviral activity. Sci Rep 2018; 8:8100. [PMID: 29802323 PMCID: PMC5970183 DOI: 10.1038/s41598-018-26516-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 05/11/2018] [Indexed: 12/28/2022] Open
Abstract
Viperin is a multifunctional interferon-inducible broad-spectrum antiviral protein. Viperin belongs to the S-Adenosylmethionine (SAM) superfamily of enzymes known to catalyze a wide variety of radical-mediated reactions. However, the exact mechanism by which viperin exerts its functions is still unclear. Interestingly, for many RNA viruses viperin was shown to inhibit viral RNA accumulation by interacting with different viral non-structural proteins. Here, we show that viperin inhibits RNA synthesis by bacteriophage T7 polymerase in mammalian cells. This inhibition is specific and occurs at the RNA level. Viperin expression significantly reduced T7-mediated cytoplasmic RNA levels. The data showing that viperin inhibits the bacteriophage T7 polymerase supports the conservation of viperin’s antiviral activity between species. These results highlight the possibility that viperin might utilize a broader mechanism of inhibition. Accordingly, our results suggest a novel mechanism involving polymerase inhibition and provides a tractable system for future mechanistic studies of viperin.
Collapse
Affiliation(s)
- Anna Dukhovny
- Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Amir Shlomai
- Department of Medicine D and the Liver Institute, Rabin Medical Center, Beilinson Hospital, Petach-Tikva, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ella H Sklan
- Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, 69978, Israel.
| |
Collapse
|
215
|
Rettberg L, Tanifuji K, Jasniewski A, Ribbe MW, Hu Y. Radical S-Adenosyl-l-Methionine (SAM) Enzyme Involved in the Maturation of the Nitrogenase Cluster. Methods Enzymol 2018; 606:341-361. [PMID: 30097098 DOI: 10.1016/bs.mie.2018.04.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Nitrogenase is the only known enzymatic system that converts atmospheric dinitrogen (N2) into bioavailable ammonia (NH3). The active-site cofactor responsible for this reactivity is a [(R-homocitrate)MoFe7S9C] cluster that is designated as the M-cluster. This important cofactor is assembled stepwise from a pair of [Fe4S4] clusters that become fused into a [Fe8S9C] core before additional refinements take place to complete the biosynthesis. NifB, a member of the radical S-adenosyl-l-methionine (SAM) superfamily, facilitates the conversion of the [Fe4S4] clusters (called the K-cluster) to the [Fe8S9C] core (called the L-cluster). This transformation includes a SAM-dependent carbide insertion with concomitant incorporation of an additional sulfur. While difficulties with the purification of NifB have historically prevented detailed biochemical analyses, we have developed a heterologous expression system in Escherichia coli that yields stable NifB proteins from various N2-fixing methanogenic organisms that can be used for studies. This chapter details the procedures necessary to prepare an active NifB protein. The methods used for the biochemical characterization of the SAM-dependent carbide insertion reactions are also described.
Collapse
Affiliation(s)
- Lee Rettberg
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, United States
| | - Kazuki Tanifuji
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, United States
| | - Andrew Jasniewski
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, United States
| | - Markus Walter Ribbe
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, United States; Department of Chemistry, University of California, Irvine, CA, United States.
| | - Yilin Hu
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, United States
| |
Collapse
|
216
|
Identification of a unique Radical SAM methyltransferase required for the sp 3-C-methylation of an arginine residue of methyl-coenzyme M reductase. Sci Rep 2018; 8:7404. [PMID: 29743535 PMCID: PMC5943407 DOI: 10.1038/s41598-018-25716-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 04/27/2018] [Indexed: 12/27/2022] Open
Abstract
The biological formation of methane (methanogenesis) is a globally important process, which is exploited in biogas technology, but also contributes to global warming through the release of a potent greenhouse gas into the atmosphere. The last and methane-releasing step of methanogenesis is catalysed by the enzyme methyl-coenzyme M reductase (MCR), which carries several exceptional posttranslational amino acid modifications. Among these, a 5-C-(S)-methylarginine is located close to the active site of the enzyme. Here, we show that a unique Radical S-adenosyl-L-methionine (SAM) methyltransferase is required for the methylation of the arginine residue. The gene encoding the methyltransferase is currently annotated as “methanogenesis marker 10” whose function was unknown until now. The deletion of the methyltransferase gene ma4551 in Methanosarcina acetivorans WWM1 leads to the production of an active MCR lacking the C-5-methylation of the respective arginine residue. The growth behaviour of the corresponding M. acetivorans mutant strain and the biophysical characterization of the isolated MCR indicate that the methylated arginine is important for MCR stability under stress conditions.
Collapse
|
217
|
Dal Magro C, Keller P, Kotter A, Werner S, Duarte V, Marchand V, Ignarski M, Freiwald A, Müller RU, Dieterich C, Motorin Y, Butter F, Atta M, Helm M. Die stark wachsende chemische Vielfalt der RNA-Modifikationen enthält eine Thioacetalstruktur. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201713188] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Christina Dal Magro
- Institut für Pharmazie und Biochemie; Johannes Gutenberg-Universität Mainz; Staudinger Weg 5 55128 Mainz Deutschland
| | - Patrick Keller
- Institut für Pharmazie und Biochemie; Johannes Gutenberg-Universität Mainz; Staudinger Weg 5 55128 Mainz Deutschland
| | - Annika Kotter
- Institut für Pharmazie und Biochemie; Johannes Gutenberg-Universität Mainz; Staudinger Weg 5 55128 Mainz Deutschland
| | - Stephan Werner
- Institut für Pharmazie und Biochemie; Johannes Gutenberg-Universität Mainz; Staudinger Weg 5 55128 Mainz Deutschland
| | - Victor Duarte
- Laboratoire de Chimie et Biologie des Métaux; Université Grenoble Alpes, CEA/BIG, CNRS; 17 rue des martyrs 38000 Grenoble Frankreich
| | - Virginie Marchand
- Next-Generation Sequencing Core Facility, FR3209 Bioingénierie Moléculaire Cellulaire et Thérapeutique, CNRS; Lorraine University; 54505 Vandoeuvre-les-Nancy Frankreich
| | - Michael Ignarski
- Department II of Internal Medicine and Center for Molecular Medicine; Universität zu Köln; Kerpener Straße 62 50937 Cologne Deutschland
| | - Anja Freiwald
- Institute of Molecular Biology (IMB); Ackermannweg 4 55128 Mainz Deutschland
| | - Roman-Ulrich Müller
- Department II of Internal Medicine and Center for Molecular Medicine; Universität zu Köln; Kerpener Straße 62 50937 Cologne Deutschland
| | - Christoph Dieterich
- Deutsches Zentrum für Herz-Kreislauf-Forschung e. V. (DZHK); Universitätsklinikum Heidelberg; Im Neuenheimer Feld 669 69120 Heidelberg Deutschland
| | - Yuri Motorin
- Laboratoire Ingénierie Moléculaire et Physiopathologie Articulaire (IMoPA) UMR7365 CNRS-UL; BioPôle de l'Université de Lorraine Campus Biologie-Santé; 9 avenue de la Forêt de Haye, CS 50184 54505 Vandoeuvre-les-Nancy Frankreich
| | - Falk Butter
- Institute of Molecular Biology (IMB); Ackermannweg 4 55128 Mainz Deutschland
| | - Mohamed Atta
- Laboratoire de Chimie et Biologie des Métaux; Université Grenoble Alpes, CEA/BIG, CNRS; 17 rue des martyrs 38000 Grenoble Frankreich
| | - Mark Helm
- Institut für Pharmazie und Biochemie; Johannes Gutenberg-Universität Mainz; Staudinger Weg 5 55128 Mainz Deutschland
| |
Collapse
|
218
|
Dal Magro C, Keller P, Kotter A, Werner S, Duarte V, Marchand V, Ignarski M, Freiwald A, Müller RU, Dieterich C, Motorin Y, Butter F, Atta M, Helm M. A Vastly Increased Chemical Variety of RNA Modifications Containing a Thioacetal Structure. Angew Chem Int Ed Engl 2018; 57:7893-7897. [DOI: 10.1002/anie.201713188] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Indexed: 12/19/2022]
Affiliation(s)
- Christina Dal Magro
- Institute of Pharmacy and Biochemistry; Johannes Gutenberg-University Mainz; Staudingerweg 5 55128 Mainz Germany
| | - Patrick Keller
- Institute of Pharmacy and Biochemistry; Johannes Gutenberg-University Mainz; Staudingerweg 5 55128 Mainz Germany
| | - Annika Kotter
- Institute of Pharmacy and Biochemistry; Johannes Gutenberg-University Mainz; Staudingerweg 5 55128 Mainz Germany
| | - Stephan Werner
- Institute of Pharmacy and Biochemistry; Johannes Gutenberg-University Mainz; Staudingerweg 5 55128 Mainz Germany
| | - Victor Duarte
- Laboratoire de Chimie et Biologie des Métaux; Université Grenoble Alpes, CEA/BIG; CNRS; 17 rue des martyrs 38000 Grenoble France
| | - Virginie Marchand
- Next-Generation Sequencing Core Facility, FR3209 Bioingénierie Moléculaire Cellulaire et Thérapeutique, CNRS; Lorraine University; 54505 Vandoeuvre-les-Nancy France
| | - Michael Ignarski
- Department II of Internal Medicine and Center for Molecular Medicine; University of Cologne; Kerpener Strasse 62 50937 Cologne Germany
| | - Anja Freiwald
- Institute of Molecular Biology (IMB); Ackermannweg 4 55128 Mainz Germany
| | - Roman-Ulrich Müller
- Department II of Internal Medicine and Center for Molecular Medicine; University of Cologne; Kerpener Strasse 62 50937 Cologne Germany
| | - Christoph Dieterich
- German Center for Cardiovascular Research (DZHK); University Hospital Heidelberg; Im Neuenheimer Feld 669 69120 Heidelberg Germany
| | - Yuri Motorin
- Laboratoire Ingénierie Moléculaire et Physiopathologie Articulaire (IMoPA) UMR7365 CNRS-UL; BioPôle de l'Université de Lorraine Campus Biologie-Santé; 9 avenue de la Forêt de Haye, CS 50184 54505 Vandoeuvre-les-Nancy France
| | - Falk Butter
- Institute of Molecular Biology (IMB); Ackermannweg 4 55128 Mainz Germany
| | - Mohamed Atta
- Laboratoire de Chimie et Biologie des Métaux; Université Grenoble Alpes, CEA/BIG; CNRS; 17 rue des martyrs 38000 Grenoble France
| | - Mark Helm
- Institute of Pharmacy and Biochemistry; Johannes Gutenberg-University Mainz; Staudingerweg 5 55128 Mainz Germany
| |
Collapse
|
219
|
Affiliation(s)
- Christof M. Jäger
- University of Nottingham; Department of Chemical and Environmental Engineering; NG7 2RD Nottingham United Kingdom
| | - Anna K. Croft
- University of Nottingham; Department of Chemical and Environmental Engineering; NG7 2RD Nottingham United Kingdom
| |
Collapse
|
220
|
Rose HR, Ghosh MK, Maggiolo AO, Pollock CJ, Blaesi EJ, Hajj V, Wei Y, Rajakovich LJ, Chang WC, Han Y, Hajj M, Krebs C, Silakov A, Pandelia ME, Bollinger JM, Boal AK. Structural Basis for Superoxide Activation of Flavobacterium johnsoniae Class I Ribonucleotide Reductase and for Radical Initiation by Its Dimanganese Cofactor. Biochemistry 2018; 57:2679-2693. [PMID: 29609464 DOI: 10.1021/acs.biochem.8b00247] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A ribonucleotide reductase (RNR) from Flavobacterium johnsoniae ( Fj) differs fundamentally from known (subclass a-c) class I RNRs, warranting its assignment to a new subclass, Id. Its β subunit shares with Ib counterparts the requirements for manganese(II) and superoxide (O2-) for activation, but it does not require the O2--supplying flavoprotein (NrdI) needed in Ib systems, instead scavenging the oxidant from solution. Although Fj β has tyrosine at the appropriate sequence position (Tyr 104), this residue is not oxidized to a radical upon activation, as occurs in the Ia/b proteins. Rather, Fj β directly deploys an oxidized dimanganese cofactor for radical initiation. In treatment with one-electron reductants, the cofactor can undergo cooperative three-electron reduction to the II/II state, in contrast to the quantitative univalent reduction to inactive "met" (III/III) forms seen with I(a-c) βs. This tendency makes Fj β unusually robust, as the II/II form can readily be reactivated. The structure of the protein rationalizes its distinctive traits. A distortion in a core helix of the ferritin-like architecture renders the active site unusually open, introduces a cavity near the cofactor, and positions a subclass-d-specific Lys residue to shepherd O2- to the Mn2II/II cluster. Relative to the positions of the radical tyrosines in the Ia/b proteins, the unreactive Tyr 104 of Fj β is held away from the cofactor by a hydrogen bond with a subclass-d-specific Thr residue. Structural comparisons, considered with its uniquely simple mode of activation, suggest that the Id protein might most closely resemble the primordial RNR-β.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yifeng Wei
- Department of Chemistry , Massachusetts Institute of Technology , Cambridge , Massachusetts 02139 , United States
| | | | | | | | | | | | | | - Maria-Eirini Pandelia
- Department of Biochemistry , Brandeis University , Waltham , Massachusetts 02454 , United States
| | | | | |
Collapse
|
221
|
Schweifer A, Hammerschmidt F. Stereochemical Course of Methyl Transfer by Cobalamin-Dependent Radical SAM Methyltransferase in Fosfomycin Biosynthesis. Biochemistry 2018; 57:2069-2073. [PMID: 29578699 DOI: 10.1021/acs.biochem.8b00264] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The methyl groups of [ methyl-( S)]- and [ methyl-( R)]-[ methyl-D,T]-l-methionine fed to Streptomyces fradiae were incorporated into fosfomycin, which was chemically degraded to chiral AcONa. The enzymatic test gave the ( S)-configuration for the chiral AcONa derived from methionine with the ( S)-[D,T]methyl group ( F = 31.7) and ( R) for the one derived from methionine with the ( R)-[D,T]methyl group ( F = 83.0). The radical SAM methyltransferase transfers the methyl group of MeCbl to HEP-CMP with inversion of configuration.
Collapse
Affiliation(s)
- Anna Schweifer
- Institute of Organic Chemistry , University of Vienna , Währingerstraße 38 , A-1090 Vienna , Austria
| | - Friedrich Hammerschmidt
- Institute of Organic Chemistry , University of Vienna , Währingerstraße 38 , A-1090 Vienna , Austria
| |
Collapse
|
222
|
Abstract
The biosynthesis of B12, involving up to 30 different enzyme-mediated steps, only occurs in bacteria. Thus, most eukaryotes require an external source of B12, and yet the vitamin appears to have only two functions in eukaryotes: as a cofactor for the enzymes methionine synthase and methylmalonylCoA mutase. These two functions are crucial for normal health in humans, and in particular, the formation of methionine is essential for providing methyl groups for over 100 methylation processes. Interference with the methionine synthase reaction not only depletes the body of methyl groups but also leads to the accumulation of homocysteine, a risk factor for many diseases. The syndrome pernicious anemia, characterized by lack of intrinsic factor, leads to a severe, sometimes fatal form of B12 deficiency. However, there is no sharp cutoff for B12 deficiency; rather, there is a continuous inverse relationship between serum B12 and a variety of undesirable outcomes, including neural tube defects, stroke, and dementia. The brain is particularly vulnerable; in children, inadequate B12 stunts brain and intellectual development. Suboptimal B12 status (serum B12<300pmol/L) is very common, occurring in 30%-60% of the population, in particular in pregnant women and in less-developed countries. Thus, many tens of millions of people in the world may suffer harm from having a poor B12 status. Public health steps are urgently needed to correct this inadequacy.
Collapse
Affiliation(s)
- A David Smith
- Department of Pharmacology, University of Oxford, Oxford, United Kingdom.
| | - Martin J Warren
- School of Biosciences, University of Kent, Canterbury, Kent, United Kingdom
| | - Helga Refsum
- Department of Nutrition, University of Oslo, Oslo, Norway
| |
Collapse
|
223
|
Wilcoxen J, Bruender NA, Bandarian V, Britt RD. A Radical Intermediate in Bacillus subtilis QueE during Turnover with the Substrate Analogue 6-Carboxypterin. J Am Chem Soc 2018; 140:1753-1759. [PMID: 29303575 DOI: 10.1021/jacs.7b10860] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
7-Carboxy-7-deazaguanine (CDG) synthase (QueE), a member of the radical S-deoxyadenosyl-l-methionine (SAM) superfamily of enzymes, catalyzes a radical-mediated ring rearrangement required to convert 6-carboxy-5,6,7,8-tetrahydropterin (CPH4) into CDG, forming the 7-dezapurine precursor to all pyrrolopyrimidine metabolites. Members of the radical SAM superfamily bind SAM to a [4Fe-4S] cluster, leveraging the reductive cleavage of SAM by the cluster to produce a highly reactive 5'-deoxyadenosyl radical which initiates chemistry by H atom abstraction from the substrate. QueE has recently been shown to use 6-carboxypterin (6-CP) as an alternative substrate, forming 6-deoxyadenosylpterin as the product. This reaction has been proposed to occur by radical addition between 5'-dAdo· and 6-CP, which upon oxidative decarboxylation yields the modified pterin. Here, we present spectroscopic evidence for a 6-CP-dAdo radical. The structure of this intermediate is determined by characterizing its electronic structure by continuous wave and pulse electron paramagnetic resonance spectroscopy.
Collapse
Affiliation(s)
- Jarett Wilcoxen
- Department of Chemistry, University of California, Davis , Davis, California 95616, United States
| | - Nathan A Bruender
- Department of Chemistry and Biochemistry, St. Cloud State University , St. Cloud, Minnesota 56301, United States
| | - Vahe Bandarian
- Department of Chemistry, University of Utah , Salt Lake City, Utah 84112, United States
| | - R David Britt
- Department of Chemistry, University of California, Davis , Davis, California 95616, United States
| |
Collapse
|
224
|
Aminofutalosine Synthase (MqnE): A New Catalytic Motif in Radical SAM Enzymology. Methods Enzymol 2018; 606:179-198. [DOI: 10.1016/bs.mie.2018.05.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
225
|
Bame J, Hoeck C, Carrington MJ, Butts CP, Jäger CM, Croft AK. Improved NOE fitting for flexible molecules based on molecular mechanics data – a case study with S-adenosylmethionine. Phys Chem Chem Phys 2018; 20:7523-7531. [DOI: 10.1039/c7cp07265a] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Using the important biomolecule S-adenosyl methionine as an exemplar, we provide a new, enhanced approach for fitting MD data to high-accuracy NOE data, providing improvements in structure determination.
Collapse
Affiliation(s)
- Jessica Bame
- University of Bristol
- School of Chemistry
- Clifton
- Bristol BS8 1TS
- UK
| | - Casper Hoeck
- University of Bristol
- School of Chemistry
- Clifton
- Bristol BS8 1TS
- UK
| | - Matthew J. Carrington
- University of Nottingham
- Department of Chemical and Environmental Engineering
- University Park
- Nottingham
- UK
| | - Craig P. Butts
- University of Bristol
- School of Chemistry
- Clifton
- Bristol BS8 1TS
- UK
| | - Christof M. Jäger
- University of Nottingham
- Department of Chemical and Environmental Engineering
- University Park
- Nottingham
- UK
| | - Anna K. Croft
- University of Nottingham
- Department of Chemical and Environmental Engineering
- University Park
- Nottingham
- UK
| |
Collapse
|
226
|
Bhandari DM, Fedoseyenko D, Begley TP. Mechanistic Studies on the Radical SAM Enzyme Tryptophan Lyase (NosL). Methods Enzymol 2018; 606:155-178. [DOI: 10.1016/bs.mie.2018.06.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
227
|
Byer AS, McDaniel EC, Impano S, Broderick WE, Broderick JB. Mechanistic Studies of Radical SAM Enzymes: Pyruvate Formate-Lyase Activating Enzyme and Lysine 2,3-Aminomutase Case Studies. Methods Enzymol 2018; 606:269-318. [DOI: 10.1016/bs.mie.2018.04.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
228
|
Zhang Z, Mahanta N, Hudson GA, Mitchell DA, van der Donk WA. Mechanism of a Class C Radical S-Adenosyl-l-methionine Thiazole Methyl Transferase. J Am Chem Soc 2017; 139:18623-18631. [PMID: 29190095 PMCID: PMC5748327 DOI: 10.1021/jacs.7b10203] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The past decade has seen the discovery of four different classes of radical S-adenosylmethionine (rSAM) methyltransferases that methylate unactivated carbon centers. Whereas the mechanism of class A is well understood, the molecular details of methylation by classes B-D are not. In this study, we present detailed mechanistic investigations of the class C rSAM methyltransferase TbtI involved in the biosynthesis of the potent thiopeptide antibiotic thiomuracin. TbtI C-methylates a Cys-derived thiazole during posttranslational maturation. Product analysis demonstrates that two SAM molecules are required for methylation and that one SAM (SAM1) is converted to 5'-deoxyadenosine and the second SAM (SAM2) is converted to S-adenosyl-l-homocysteine (SAH). Isotope labeling studies show that a hydrogen is transferred from the methyl group of SAM2 to the 5'-deoxyadenosine of SAM1 and the other two hydrogens of the methyl group of SAM2 appear in the methylated product. In addition, a hydrogen appears to be transferred from the β-position of the thiazole to the methyl group in the product. We also show that the methyl protons in the product can exchange with solvent. A mechanism consistent with these observations is presented that differs from other characterized radical SAM methyltransferases.
Collapse
Affiliation(s)
- Zhengan Zhang
- Department of Chemistry, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States.,Howard Hughes Medical Institute, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States
| | - Nilkamal Mahanta
- Department of Chemistry, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States.,Institute for Genomic Biology, University of Illinois at Urbana-Champaign , 1206 West Gregory Drive, Urbana, Illinois 61801, United States
| | - Graham A Hudson
- Department of Chemistry, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States
| | - Douglas A Mitchell
- Department of Chemistry, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States.,Institute for Genomic Biology, University of Illinois at Urbana-Champaign , 1206 West Gregory Drive, Urbana, Illinois 61801, United States
| | - Wilfred A van der Donk
- Department of Chemistry, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States.,Howard Hughes Medical Institute, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States.,Institute for Genomic Biology, University of Illinois at Urbana-Champaign , 1206 West Gregory Drive, Urbana, Illinois 61801, United States
| |
Collapse
|
229
|
Integrated Genomic and Proteomic Analyses of High-level Chloramphenicol Resistance in Campylobacter jejuni. Sci Rep 2017; 7:16973. [PMID: 29209085 PMCID: PMC5716995 DOI: 10.1038/s41598-017-17321-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 11/15/2017] [Indexed: 12/02/2022] Open
Abstract
Campylobacter jejuni is a major zoonotic pathogen, and its resistance to antibiotics is of great concern for public health. However, few studies have investigated the global changes of the entire organism with respect to antibiotic resistance. Here, we provide mechanistic insights into high-level resistance to chloramphenicol in C. jejuni, using integrated genomic and proteomic analyses. We identified 27 single nucleotide polymorphisms (SNPs) as well as an efflux pump cmeB mutation that conferred modest resistance. We determined two radical S-adenosylmethionine (SAM) enzymes, one each from an SNP gene and a differentially expressed protein. Validation of major metabolic pathways demonstrated alterations in oxidative phosphorylation and ABC transporters, suggesting energy accumulation and increase in methionine import. Collectively, our data revealed a novel rRNA methylation mechanism by a radical SAM superfamily enzyme, indicating that two resistance mechanisms existed in Campylobacter. This work provided a systems biology perspective on understanding the antibiotic resistance mechanisms in bacteria.
Collapse
|
230
|
LaMattina JW, Wang B, Badding ED, Gadsby LK, Grove TL, Booker SJ. NosN, a Radical S-Adenosylmethionine Methylase, Catalyzes Both C1 Transfer and Formation of the Ester Linkage of the Side-Ring System during the Biosynthesis of Nosiheptide. J Am Chem Soc 2017; 139:17438-17445. [PMID: 29039940 DOI: 10.1021/jacs.7b08492] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Nosiheptide, a member of the e series of macrocyclic thiopeptide natural products, contains a side-ring system composed of a 3,4-dimethylindolic acid (DMIA) moiety connected to Glu6 and Cys8 of the thiopeptide backbone via ester and thioester linkages, respectively. Herein, we show that NosN, a predicted class C radical S-adenosylmethionine (SAM) methylase, catalyzes both the transfer of a C1 unit from SAM to 3-methylindolic acid linked to Cys8 of a synthetic substrate surrogate as well as the formation of the ester linkage between Glu6 and the nascent C4 methylene moiety of DMIA. In contrast to previous studies that indicated that 5'-methylthioadenosine is the immediate methyl donor in the reaction, in our studies, SAM itself plays this role, giving rise to S-adenosylhomocysteine as a coproduct of the reaction.
Collapse
Affiliation(s)
- Joseph W LaMattina
- Departments of Chemistry and ‡Biochemistry and Molecular Biology, and the §Howard Hughes Medical Institute, The Pennsylvania State University , University Park, Pennsylvania 16802, United States
| | - Bo Wang
- Departments of Chemistry and ‡Biochemistry and Molecular Biology, and the §Howard Hughes Medical Institute, The Pennsylvania State University , University Park, Pennsylvania 16802, United States
| | - Edward D Badding
- Departments of Chemistry and ‡Biochemistry and Molecular Biology, and the §Howard Hughes Medical Institute, The Pennsylvania State University , University Park, Pennsylvania 16802, United States
| | - Lauren K Gadsby
- Departments of Chemistry and ‡Biochemistry and Molecular Biology, and the §Howard Hughes Medical Institute, The Pennsylvania State University , University Park, Pennsylvania 16802, United States
| | - Tyler L Grove
- Departments of Chemistry and ‡Biochemistry and Molecular Biology, and the §Howard Hughes Medical Institute, The Pennsylvania State University , University Park, Pennsylvania 16802, United States
| | - Squire J Booker
- Departments of Chemistry and ‡Biochemistry and Molecular Biology, and the §Howard Hughes Medical Institute, The Pennsylvania State University , University Park, Pennsylvania 16802, United States
| |
Collapse
|
231
|
Boss L, Oehme R, Billig S, Birkemeyer C, Layer G. The Radical SAM enzyme NirJ catalyzes the removal of two propionate side chains during hemed1biosynthesis. FEBS J 2017; 284:4314-4327. [DOI: 10.1111/febs.14307] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 10/18/2017] [Accepted: 10/24/2017] [Indexed: 11/30/2022]
Affiliation(s)
- Linda Boss
- Institute of Biochemistry; Leipzig University; Germany
| | - Ramona Oehme
- Institute of Analytical Chemistry; Leipzig University; Germany
| | - Susan Billig
- Institute of Analytical Chemistry; Leipzig University; Germany
| | | | - Gunhild Layer
- Institute of Biochemistry; Leipzig University; Germany
| |
Collapse
|
232
|
Maio N, Rouault TA. Mammalian Fe-S proteins: definition of a consensus motif recognized by the co-chaperone HSC20. Metallomics 2017; 8:1032-1046. [PMID: 27714045 DOI: 10.1039/c6mt00167j] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Iron-sulfur (Fe-S) clusters are inorganic cofactors that are fundamental to several biological processes in all three kingdoms of life. In most organisms, Fe-S clusters are initially assembled on a scaffold protein, ISCU, and subsequently transferred to target proteins or to intermediate carriers by a dedicated chaperone/co-chaperone system. The delivery of assembled Fe-S clusters to recipient proteins is a crucial step in the biogenesis of Fe-S proteins, and, in mammals, it relies on the activity of a multiprotein transfer complex that contains the chaperone HSPA9, the co-chaperone HSC20 and the scaffold ISCU. How the transfer complex efficiently engages recipient Fe-S target proteins involves specific protein interactions that are not fully understood. This mini review focuses on recent insights into the molecular mechanism of amino acid motif recognition and discrimination by the co-chaperone HSC20, which guides Fe-S cluster delivery.
Collapse
Affiliation(s)
- N Maio
- Molecular Medicine Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, 9000 Rockville Pike, 20892 Bethesda, MD, USA.
| | - T A Rouault
- Molecular Medicine Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, 9000 Rockville Pike, 20892 Bethesda, MD, USA.
| |
Collapse
|
233
|
Structure and electrochemistry of proteins harboring iron-sulfur clusters of different nuclearities. Part I. [4Fe-4S] + [2Fe-2S] iron-sulfur proteins. J Struct Biol 2017; 200:1-19. [DOI: 10.1016/j.jsb.2017.05.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 05/25/2017] [Indexed: 01/08/2023]
|
234
|
Backman LRF, Funk MA, Dawson CD, Drennan CL. New tricks for the glycyl radical enzyme family. Crit Rev Biochem Mol Biol 2017; 52:674-695. [PMID: 28901199 DOI: 10.1080/10409238.2017.1373741] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Glycyl radical enzymes (GREs) are important biological catalysts in both strict and facultative anaerobes, playing key roles both in the human microbiota and in the environment. GREs contain a backbone glycyl radical that is post-translationally installed, enabling radical-based mechanisms. GREs function in several metabolic pathways including mixed acid fermentation, ribonucleotide reduction and the anaerobic breakdown of the nutrient choline and the pollutant toluene. By generating a substrate-based radical species within the active site, GREs enable C-C, C-O and C-N bond breaking and formation steps that are otherwise challenging for nonradical enzymes. Identification of previously unknown family members from genomic data and the determination of structures of well-characterized GREs have expanded the scope of GRE-catalyzed reactions as well as defined key features that enable radical catalysis. Here, we review the structures and mechanisms of characterized GREs, classifying members into five categories. We consider the open questions about each of the five GRE classes and evaluate the tools available to interrogate uncharacterized GREs.
Collapse
Affiliation(s)
- Lindsey R F Backman
- a Department of Chemistry , Massachusetts Institute of Technology , Cambridge , MA , USA
| | - Michael A Funk
- a Department of Chemistry , Massachusetts Institute of Technology , Cambridge , MA , USA.,b Department of Chemistry , University of Illinois at Urbana-Champaign , Urbana , IL , USA
| | - Christopher D Dawson
- c Department of Biology , Massachusetts Institute of Technology , Cambridge , MA , USA
| | - Catherine L Drennan
- a Department of Chemistry , Massachusetts Institute of Technology , Cambridge , MA , USA.,c Department of Biology , Massachusetts Institute of Technology , Cambridge , MA , USA.,d Howard Hughes Medical Institute , Massachusetts Institute of Technology , Cambridge , MA , USA
| |
Collapse
|
235
|
Radhakrishnan R, Hashem A, Abd_Allah EF. Bacillus: A Biological Tool for Crop Improvement through Bio-Molecular Changes in Adverse Environments. Front Physiol 2017; 8:667. [PMID: 28932199 PMCID: PMC5592640 DOI: 10.3389/fphys.2017.00667] [Citation(s) in RCA: 258] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 08/22/2017] [Indexed: 02/05/2023] Open
Abstract
Crop productivity is affected by environmental and genetic factors. Microbes that are beneficial to plants are used to enhance the crop yield and are alternatives to chemical fertilizers and pesticides. Pseudomonas and Bacillus species are the predominant plant growth-promoting bacteria. The spore-forming ability of Bacillus is distinguished from that of Pseudomonas. Members of this genus also survive for a long time under unfavorable environmental conditions. Bacillus spp. secrete several metabolites that trigger plant growth and prevent pathogen infection. Limited studies have been conducted to understand the physiological changes that occur in crops in response to Bacillus spp. to provide protection against adverse environmental conditions. This review describes the current understanding of Bacillus-induced physiological changes in plants as an adaptation to abiotic and biotic stresses. During water scarcity, salinity and heavy metal accumulate in soil, Bacillus spp. produce exopolysaccharides and siderophores, which prevent the movement of toxic ions and adjust the ionic balance and water transport in plant tissues while controlling the pathogenic microbial population. In addition, the synthesis of indole-3-acetic acid, gibberellic acid and1-aminocyclopropane-1-carboxylate (ACC) deaminase by Bacillus regulates the intracellular phytohormone metabolism and increases plant stress tolerance. Cell-wall-degrading substances, such as chitosanase, protease, cellulase, glucanase, lipopeptides and hydrogen cyanide from Bacillus spp. damage the pathogenic bacteria, fungi, nematodes, viruses and pests to control their populations in plants and agricultural lands. The normal plant metabolism is affected by unfavorable environmental stimuli, which suppress crop growth and yield. Abiotic and biotic stress factors that have detrimental effects on crops are mitigated by Bacillus-induced physiological changes, including the regulation of water transport, nutrient up-take and the activation of the antioxidant and defense systems. Bacillus association stimulates plant immunity against stresses by altering stress-responsive genes, proteins, phytohormones and related metabolites. This review describes the beneficial effect of Bacillus spp. on crop plants, which improves plant productivity under unfavorable climatic conditions, and the current understanding of the mitigation mechanism of Bacillus spp. in stress-tolerant and/or stress-resistant plants.
Collapse
Affiliation(s)
| | - Abeer Hashem
- Botany and Microbiology Department, College of Science, King Saud UniversityRiyadh, Saudi Arabia
- Mycology and Plant Disease Survey Department, Plant Pathology Research InstituteGiza, Egypt
| | - Elsayed F. Abd_Allah
- Plant Production Department, College of Food and Agricultural Sciences, King Saud UniversityRiyadh, Saudi Arabia
| |
Collapse
|
236
|
Davis KM, Boal AK. Mechanism-Based Strategies for Structural Characterization of Radical SAM Reaction Intermediates. Methods Enzymol 2017; 595:331-359. [PMID: 28882206 DOI: 10.1016/bs.mie.2017.07.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
X-ray crystallographic characterization of enzymes at different stages in their reaction cycles can provide unique insight into the reaction pathway, the number and type of intermediates formed, and their structural context. The known mechanistic diversity in the radical S-adenosylmethionine (SAM) superfamily of enzymes makes it an appealing target for such studies as more than 100,000 sequences have been identified to date with wide-ranging reactivities that share a pattern of complex radical-mediated chemistry. Here, we review selected examples of radical SAM enzyme crystal structures representative of reactant, product, and intermediate state complexes with a particular emphasis on the strategies employed to capture these states. Broader application of structural characterization techniques to analyze mechanism and substrate specificity is certain to play an important role as more members of this family become tractable for biochemical study.
Collapse
Affiliation(s)
- Katherine M Davis
- Princeton University, Princeton, NJ, United States; The Pennsylvania State University, University Park, PA, United States
| | - Amie K Boal
- The Pennsylvania State University, University Park, PA, United States.
| |
Collapse
|
237
|
Shisler KA, Hutcheson RU, Horitani M, Duschene KS, Crain AV, Byer AS, Shepard EM, Rasmussen A, Yang J, Broderick WE, Vey JL, Drennan CL, Hoffman BM, Broderick JB. Monovalent Cation Activation of the Radical SAM Enzyme Pyruvate Formate-Lyase Activating Enzyme. J Am Chem Soc 2017; 139:11803-11813. [PMID: 28768413 PMCID: PMC5579537 DOI: 10.1021/jacs.7b04883] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
![]()
Pyruvate formate-lyase
activating enzyme (PFL-AE) is a radical S-adenosyl-l-methionine (SAM) enzyme that installs
a catalytically essential glycyl radical on pyruvate formate-lyase.
We show that PFL-AE binds a catalytically essential monovalent cation
at its active site, yet another parallel with B12 enzymes,
and we characterize this cation site by a combination of structural,
biochemical, and spectroscopic approaches. Refinement of the PFL-AE
crystal structure reveals Na+ as the most likely ion present
in the solved structures, and pulsed electron nuclear double resonance
(ENDOR) demonstrates that the same cation site is occupied by 23Na in the solution state of the as-isolated enzyme. A SAM
carboxylate-oxygen is an M+ ligand, and EPR and circular
dichroism spectroscopies reveal that both the site occupancy and the
identity of the cation perturb the electronic properties of the SAM-chelated
iron–sulfur cluster. ENDOR studies of the PFL-AE/[13C-methyl]-SAM complex show that the target sulfonium positioning
varies with the cation, while the observation of an isotropic hyperfine
coupling to the cation by ENDOR measurements establishes its intimate,
SAM-mediated interaction with the cluster. This monovalent cation
site controls enzyme activity: (i) PFL-AE in the absence of any simple
monovalent cations has little–no activity; and (ii) among monocations,
going down Group 1 of the periodic table from Li+ to Cs+, PFL-AE activity sharply maximizes at K+, with
NH4+ closely matching the efficacy of K+. PFL-AE is thus a type I M+-activated enzyme whose
M+ controls reactivity by interactions with the cosubstrate,
SAM, which is bound to the catalytic iron–sulfur cluster.
Collapse
Affiliation(s)
- Krista A Shisler
- Department of Chemistry and Biochemistry, Montana State University , Bozeman, Montana 59717, United States
| | - Rachel U Hutcheson
- Department of Chemistry and Biochemistry, Montana State University , Bozeman, Montana 59717, United States
| | - Masaki Horitani
- Department of Chemistry, Northwestern University , Evanston, Illinois 60208, United States
| | - Kaitlin S Duschene
- Department of Chemistry and Biochemistry, Montana State University , Bozeman, Montana 59717, United States
| | - Adam V Crain
- Department of Chemistry and Biochemistry, Montana State University , Bozeman, Montana 59717, United States
| | - Amanda S Byer
- Department of Chemistry and Biochemistry, Montana State University , Bozeman, Montana 59717, United States
| | - Eric M Shepard
- Department of Chemistry and Biochemistry, Montana State University , Bozeman, Montana 59717, United States
| | - Ashley Rasmussen
- Department of Chemistry and Biochemistry, Montana State University , Bozeman, Montana 59717, United States
| | - Jian Yang
- Department of Chemistry and Biochemistry, Montana State University , Bozeman, Montana 59717, United States
| | - William E Broderick
- Department of Chemistry and Biochemistry, Montana State University , Bozeman, Montana 59717, United States
| | - Jessica L Vey
- Department of Chemistry and Biochemistry, California State University Northridge , Northridge, California 91330, United States.,Departments of Chemistry and Biology and the Howard Hughes Medical Institute, Massachusetts Institute of Technology , Cambridge, Massachusetts 02139, United States
| | - Catherine L Drennan
- Departments of Chemistry and Biology and the Howard Hughes Medical Institute, Massachusetts Institute of Technology , Cambridge, Massachusetts 02139, United States
| | - Brian M Hoffman
- Department of Chemistry, Northwestern University , Evanston, Illinois 60208, United States
| | - Joan B Broderick
- Department of Chemistry and Biochemistry, Montana State University , Bozeman, Montana 59717, United States
| |
Collapse
|
238
|
TsrM as a Model for Purifying and Characterizing Cobalamin-Dependent Radical S-Adenosylmethionine Methylases. Methods Enzymol 2017; 595:303-329. [PMID: 28882204 DOI: 10.1016/bs.mie.2017.07.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Cobalamin-dependent radical S-adenosylmethionine (SAM) methylases play vital roles in the de novo biosynthesis of many antibiotics, cofactors, and other important natural products, yet remain an understudied subclass of radical SAM enzymes. In addition to a [4Fe-4S] cluster that is ligated by three cysteine residues, these enzymes also contain an N-terminal cobalamin-binding domain. In vitro studies of these enzymes have been severely limited because many are insoluble or sparingly soluble upon their overproduction in Escherichia coli. This solubility issue has led a number of groups either to purify the protein from inclusion bodies or to purify soluble protein that often lacks proper cofactor incorporation. Herein, we use TsrM as a model to describe methods that we have used to generate soluble protein that is purified in an active form with both cobalamin and [4Fe-4S] cluster cofactors bound. Additionally, we highlight the methods that we developed to characterize the enzyme following purification.
Collapse
|
239
|
Leimkühler S. Shared function and moonlighting proteins in molybdenum cofactor biosynthesis. Biol Chem 2017; 398:1009-1026. [PMID: 28284029 DOI: 10.1515/hsz-2017-0110] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 03/03/2017] [Indexed: 11/15/2022]
Abstract
The biosynthesis of the molybdenum cofactor (Moco) is a highly conserved pathway in bacteria, archaea and eukaryotes. The molybdenum atom in Moco-containing enzymes is coordinated to the dithiolene group of a tricyclic pyranopterin monophosphate cofactor. The biosynthesis of Moco can be divided into three conserved steps, with a fourth present only in bacteria and archaea: (1) formation of cyclic pyranopterin monophosphate, (2) formation of molybdopterin (MPT), (3) insertion of molybdenum into MPT to form Mo-MPT, and (4) additional modification of Mo-MPT in bacteria with the attachment of a GMP or CMP nucleotide, forming the dinucleotide variants of Moco. While the proteins involved in the catalytic reaction of each step of Moco biosynthesis are highly conserved among the Phyla, a surprising link to other cellular pathways has been identified by recent discoveries. In particular, the pathways for FeS cluster assembly and thio-modifications of tRNA are connected to Moco biosynthesis by sharing the same protein components. Further, proteins involved in Moco biosynthesis are not only shared with other pathways, but additionally have moonlighting roles. This review gives an overview of Moco biosynthesis in bacteria and humans and highlights the shared function and moonlighting roles of the participating proteins.
Collapse
|
240
|
Fenwick MK, Li Y, Cresswell P, Modis Y, Ealick SE. Structural studies of viperin, an antiviral radical SAM enzyme. Proc Natl Acad Sci U S A 2017; 114:6806-6811. [PMID: 28607080 PMCID: PMC5495270 DOI: 10.1073/pnas.1705402114] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Viperin is an IFN-inducible radical S-adenosylmethionine (SAM) enzyme that inhibits viral replication. We determined crystal structures of an anaerobically prepared fragment of mouse viperin (residues 45-362) complexed with S-adenosylhomocysteine (SAH) or 5'-deoxyadenosine (5'-dAdo) and l-methionine (l-Met). Viperin contains a partial (βα)6-barrel fold with a disordered N-terminal extension (residues 45-74) and a partially ordered C-terminal extension (residues 285-362) that bridges the partial barrel to form an overall closed barrel structure. Cys84, Cys88, and Cys91 located after the first β-strand bind a [4Fe-4S] cluster. The active site architecture of viperin with bound SAH (a SAM analog) or 5'-dAdo and l-Met (SAM cleavage products) is consistent with the canonical mechanism of 5'-deoxyadenosyl radical generation. The viperin structure, together with sequence alignments, suggests that vertebrate viperins are highly conserved and that fungi contain a viperin-like ortholog. Many bacteria and archaebacteria also express viperin-like enzymes with conserved active site residues. Structural alignments show that viperin is similar to several other radical SAM enzymes, including the molybdenum cofactor biosynthetic enzyme MoaA and the RNA methyltransferase RlmN, which methylates specific nucleotides in rRNA and tRNA. The viperin putative active site contains several conserved positively charged residues, and a portion of the active site shows structural similarity to the GTP-binding site of MoaA, suggesting that the viperin substrate may be a nucleoside triphosphate of some type.
Collapse
Affiliation(s)
- Michael K Fenwick
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853
| | - Yue Li
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520
| | - Peter Cresswell
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520;
| | - Yorgo Modis
- Department of Medicine, University of Cambridge, Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom
| | - Steven E Ealick
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853;
| |
Collapse
|
241
|
Upadhyay AS, Stehling O, Panayiotou C, Rösser R, Lill R, Överby AK. Cellular requirements for iron-sulfur cluster insertion into the antiviral radical SAM protein viperin. J Biol Chem 2017; 292:13879-13889. [PMID: 28615450 DOI: 10.1074/jbc.m117.780122] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 06/05/2017] [Indexed: 01/05/2023] Open
Abstract
Viperin (RSAD2) is an interferon-stimulated antiviral protein that belongs to the radical S-adenosylmethionine (SAM) enzyme family. Viperin's iron-sulfur (Fe/S) cluster is critical for its antiviral activity against many different viruses. CIA1 (CIAO1), an essential component of the cytosolic iron-sulfur protein assembly (CIA) machinery, is crucial for Fe/S cluster insertion into viperin and hence for viperin's antiviral activity. In the CIA pathway, CIA1 cooperates with CIA2A, CIA2B, and MMS19 targeting factors to form various complexes that mediate the dedicated maturation of specific Fe/S recipient proteins. To date, however, the mechanisms of how viperin acquires its radical SAM Fe/S cluster to gain antiviral activity are poorly understood. Using co-immunoprecipitation and 55Fe-radiolabeling experiments, we therefore studied the roles of CIA2A, CIA2B, and MMS19 for Fe/S cluster insertion. CIA2B and MMS19 physically interacted with the C terminus of viperin and used CIA1 as the primary viperin-interacting protein. In contrast, CIA2A bound to viperin's N terminus in a CIA1-, CIA2B-, and MMS19-independent fashion. Of note, the observed interaction of both CIA2 isoforms with a single Fe/S target protein is unprecedented in the CIA pathway. 55Fe-radiolabeling experiments with human cells depleted of CIA1, CIA2A, CIA2B, or MMS19 revealed that CIA1, but none of the other CIA factors, is predominantly required for 55Fe/S cluster incorporation into viperin. Collectively, viperin maturation represents a novel CIA pathway with a minimal requirement of the CIA-targeting factors and represents a new paradigm for the insertion of the Fe/S cofactor into a radical SAM protein.
Collapse
Affiliation(s)
- Arunkumar S Upadhyay
- From the Department of Clinical Microbiology, Virology, Umeå University, 90185 Umeå, Sweden.,the Laboratory for Infection Medicine Sweden (MIMS), Umeå University, 90187 Umeå, Sweden
| | - Oliver Stehling
- the Institut für Zytobiologie und Zytopathologie, Philipps-Universität Marburg, Robert-Koch-strasse 6, 35032 Marburg, Germany, and
| | - Christakis Panayiotou
- From the Department of Clinical Microbiology, Virology, Umeå University, 90185 Umeå, Sweden.,the Laboratory for Infection Medicine Sweden (MIMS), Umeå University, 90187 Umeå, Sweden
| | - Ralf Rösser
- the Institut für Zytobiologie und Zytopathologie, Philipps-Universität Marburg, Robert-Koch-strasse 6, 35032 Marburg, Germany, and
| | - Roland Lill
- the Institut für Zytobiologie und Zytopathologie, Philipps-Universität Marburg, Robert-Koch-strasse 6, 35032 Marburg, Germany, and .,LOEWE Zentrum für Synthetische Mikrobiologie SynMikro, Hans-Meerwein-Strasse, 35043 Marburg, Germany
| | - Anna K Överby
- From the Department of Clinical Microbiology, Virology, Umeå University, 90185 Umeå, Sweden, .,the Laboratory for Infection Medicine Sweden (MIMS), Umeå University, 90187 Umeå, Sweden
| |
Collapse
|
242
|
Generation and Characterization of Acid Tolerant Fibrobacter succinogenes S85. Sci Rep 2017; 7:2277. [PMID: 28536480 PMCID: PMC5442110 DOI: 10.1038/s41598-017-02628-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 04/20/2017] [Indexed: 01/13/2023] Open
Abstract
Microorganisms are key components for plant biomass breakdown within rumen environments. Fibrobacter succinogenes have been identified as being active and dominant cellulolytic members of the rumen. In this study, F. succinogenes type strain S85 was adapted for steady state growth in continuous culture at pH 5.75 and confirmed to grow in the range of pH 5.60–5.65, which is lower than has been reported previously. Wild type and acid tolerant strains digested corn stover with equal efficiency in batch culture at low pH. RNA-seq analysis revealed 268 and 829 genes were differentially expressed at pH 6.10 and 5.65 compared to pH 6.70, respectively. Resequencing analysis identified seven single nucleotide polymorphisms (SNPs) in the sufD, yidE, xylE, rlmM, mscL and dosC genes of acid tolerant strains. Due to the absence of a F. succinogenes genetic system, homologues in Escherichia coli were mutated and complemented and the resulting strains were assayed for acid survival. Complementation with wild-type or acid tolerant F. succinogenes sufD restored E. coli wild-type levels of acid tolerance, suggesting a possible role in acid homeostasis. Recent genetic engineering developments need to be adapted and applied in F. succinogenes to further our understanding of this bacterium.
Collapse
|
243
|
Krishnamoorthy E, Hassan S, Hanna LE, Padmalayam I, Rajaram R, Viswanathan V. Homology modeling of Homo sapiens lipoic acid synthase: Substrate docking and insights on its binding mode. J Theor Biol 2017; 420:259-266. [DOI: 10.1016/j.jtbi.2016.09.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Revised: 06/22/2016] [Accepted: 09/05/2016] [Indexed: 10/20/2022]
|
244
|
Mahanta N, Zhang Z, Hudson GA, van der Donk WA, Mitchell DA. Reconstitution and Substrate Specificity of the Radical S-Adenosyl-methionine Thiazole C-Methyltransferase in Thiomuracin Biosynthesis. J Am Chem Soc 2017; 139:4310-4313. [PMID: 28301141 PMCID: PMC5477235 DOI: 10.1021/jacs.7b00693] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Thiomuracin is a thiopeptide antibiotic with potent activity toward Gram-positive drug-resistant bacteria. Thiomuracin is biosynthesized from a precursor peptide, TbtA, by a complex array of posttranslational modifications. One of several intriguing transformations is the C-methylation of thiazole, occurring at an unactivated sp2 carbon. Herein, we report the in vitro reconstitution of TbtI, the responsible radical S-adenosyl-methionine (rSAM) C-methyltransferase, which catalyzes the formation of 5-methylthiazole at a single site. Our studies demonstrate that a linear hexazole-bearing intermediate of TbtA is a substrate for TbtI whereas macrocyclized thiomuracin GZ is not. In determining the minimal substrate for TbtI, we found that the enzyme is functional when most of the leader peptide has been removed. The in vitro reconstitution of TbtI, a class C rSAM methyltransferase, further adds to the chemical versatility of rSAM enzymes, and informs on the complexity of thiomuracin biosynthesis.
Collapse
Affiliation(s)
- Nilkamal Mahanta
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 1206 West Gregory Drive, Urbana, Illinois 61801, USA
| | - Zhengan Zhang
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
| | - Graham A. Hudson
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
| | - Wilfred A. van der Donk
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 1206 West Gregory Drive, Urbana, Illinois 61801, USA
- Howard Hughes Medical Institute, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
| | - Douglas A. Mitchell
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 1206 West Gregory Drive, Urbana, Illinois 61801, USA
| |
Collapse
|
245
|
Yang L, Li L. Insights into the Activity Change of Spore Photoproduct Lyase Induced by Mutations at a Peripheral Glycine Residue. Front Chem 2017; 5:14. [PMID: 28401144 PMCID: PMC5368176 DOI: 10.3389/fchem.2017.00014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 02/28/2017] [Indexed: 12/19/2022] Open
Abstract
UV radiation triggers the formation of 5-thyminyl-5,6-dihydrothymine, i.e., the spore photoproduct (SP), in the genomic DNA of bacterial endospores. These SPs, if not repaired in time, may lead to genome instability and cell death. SP is mainly repaired by spore photoproduct lyase (SPL) during spore outgrowth via an unprecedented protein-harbored radical transfer pathway that is composed of at least a cysteine and two tyrosine residues. This mechanism is consistent with the recently solved SPL structure that shows all three residues are located in proximity and thus able to participate in the radical transfer process during the enzyme catalysis. In contrast, an earlier in vivo mutational study identified a glycine to arginine mutation at the position 168 on the B. subtilis SPL that is >15 Å away from the enzyme active site. This mutation appears to abolish the enzyme activity because endospores carrying this mutant were sensitive to UV light. To understand the molecular basis for this rendered enzyme activity, we constructed two SPL mutations G168A and G168R, examined their repair of dinucleotide SP TpT, and found that both mutants exhibit reduced enzyme activity. Comparing with the wildtype (WT) SPL enzyme, the G168A mutant slows down the SP TpT repair by 3~4-fold while the G168R mutant by ~ 80-fold. Both mutants exhibit a smaller apparent (DV) kinetic isotope effect (KIE) but a bigger competitive (DV/K) KIE than that by the WT SPL. Moreover, the G168R mutant also produces a large portion of the abortive repair product TpT-[Formula: see text]; the formation of which indicates that cysteine 141 is no longer well positioned as the H-donor to the thymine allylic radical intermediate. All these data imply that the mutation at the remote glycine 168 residue alters the enzyme 3D structure, subsequently reducing the SPL activity by changing the positions of the essential amino acids involved in the radical transfer process.
Collapse
Affiliation(s)
- Linlin Yang
- Department of Chemistry and Chemical Biology, Indiana University-Purdue University IndianapolisIndianapolis, IN, USA
| | - Lei Li
- Department of Chemistry and Chemical Biology, Indiana University-Purdue University IndianapolisIndianapolis, IN, USA
- Department of Dermatology, Indiana University School of MedicineIndianapolis, IN, USA
| |
Collapse
|
246
|
A B 12-dependent radical SAM enzyme involved in oxetanocin A biosynthesis. Nature 2017; 544:322-326. [PMID: 28346939 PMCID: PMC5398914 DOI: 10.1038/nature21689] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 02/03/2017] [Indexed: 11/22/2022]
Abstract
Oxetanocin-A (OXT-A, 1) is a potent antitumor, antiviral, and
antibacterial compound. Biosynthesis of OXT-A has been linked to a
plasmid-borne, Bacillus megaterium gene cluster that contains
four genes, oxsA, oxsB, oxrA,
and oxrB. Here, we show that the oxsA and
oxsB genes are both required for the production of OXT-A.
Biochemical analysis of the encoded proteins, a cobalamin (Cbl)-dependent
S-adenosylmethionine (AdoMet) radical enzyme, OxsB, and an
HD-domain phosphohydrolase, OxsA, revealed that OXT-A is derived from
2′-deoxyadenosine phosphate in an OxsB-catalyzed ring contraction
reaction initiated by H-atom abstraction from C2′. Hence, OxsB
represents the first biochemically characterized non-methylating Cbl-dependent
AdoMet radical enzyme. X-ray analysis of OxsB reveals the fold of a
Cbl-dependent AdoMet radical enzyme for which there are an estimated 7000
members. Overall, this work provides a framework for understanding the interplay
of AdoMet and Cbl cofactors and expands the catalytic repertoire of
Cbl-dependent AdoMet radical enzymes.
Collapse
|
247
|
Mulliez E, Duarte V, Arragain S, Fontecave M, Atta M. On the Role of Additional [4Fe-4S] Clusters with a Free Coordination Site in Radical-SAM Enzymes. Front Chem 2017; 5:17. [PMID: 28361051 PMCID: PMC5352715 DOI: 10.3389/fchem.2017.00017] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 03/03/2017] [Indexed: 11/13/2022] Open
Abstract
The canonical CysXXXCysXXCys motif is the hallmark of the Radical-SAM superfamily. This motif is responsible for the ligation of a [4Fe-4S] cluster containing a free coordination site available for SAM binding. The five enzymes MoaA, TYW1, MiaB, RimO and LipA contain in addition a second [4Fe-4S] cluster itself bound to three other cysteines and thus also displaying a potentially free coordination site. This review article summarizes recent important achievements obtained on these five enzymes with the main focus to delineate the role of this additional [4Fe-4S] cluster in catalysis.
Collapse
Affiliation(s)
- Etienne Mulliez
- Biosciences and Biotechnology Institute of Grenoble, Laboratoire de Chimie et Biologie des Métaux, UMR 5249 CEA-Centre National de la Recherche Scientifique-UGA Grenoble, France
| | - Victor Duarte
- Biosciences and Biotechnology Institute of Grenoble, Laboratoire de Chimie et Biologie des Métaux, UMR 5249 CEA-Centre National de la Recherche Scientifique-UGA Grenoble, France
| | - Simon Arragain
- Laboratoire de Chimie des Processus Biologiques, UMR 8229, Collége de France-Centre National de la Recherche Scientifique-Université P. et M. Curie Paris, France
| | - Marc Fontecave
- Biosciences and Biotechnology Institute of Grenoble, Laboratoire de Chimie et Biologie des Métaux, UMR 5249 CEA-Centre National de la Recherche Scientifique-UGAGrenoble, France; Laboratoire de Chimie des Processus Biologiques, UMR 8229, Collége de France-Centre National de la Recherche Scientifique-Université P. et M. CurieParis, France
| | - Mohamed Atta
- Biosciences and Biotechnology Institute of Grenoble, Laboratoire de Chimie et Biologie des Métaux, UMR 5249 CEA-Centre National de la Recherche Scientifique-UGA Grenoble, France
| |
Collapse
|
248
|
Yang L, Jian Y, Setlow P, Li L. Spore photoproduct within DNA is a surprisingly poor substrate for its designated repair enzyme-The spore photoproduct lyase. DNA Repair (Amst) 2017; 53:31-42. [PMID: 28320593 DOI: 10.1016/j.dnarep.2016.11.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 05/23/2016] [Accepted: 11/15/2016] [Indexed: 12/15/2022]
Abstract
DNA repair enzymes typically recognize their substrate lesions with high affinity to ensure efficient lesion repair. In UV irradiated endospores, a special thymine dimer, 5-thyminyl-5,6-dihydrothymine, termed the spore photoproduct (SP), is the dominant DNA photolesion, which is rapidly repaired during spore outgrowth mainly by spore photoproduct lyase (SPL) using an unprecedented protein-harbored radical transfer process. Surprisingly, our in vitro studies using SP-containing short oligonucleotides, pUC 18 plasmid DNA, and E. coli genomic DNA found that they are all poor substrates for SPL in general, exhibiting turnover numbers of 0.01-0.2min-1. The faster turnover numbers are reached under single turnover conditions, and SPL activity is low with oligonucleotide substrates at higher concentrations. Moreover, SP-containing oligonucleotides do not go past one turnover. In contrast, the dinucleotide SP TpT exhibits a turnover number of 0.3-0.4min-1, and the reaction may reach up to 10 turnovers. These observations distinguish SPL from other specialized DNA repair enzymes. To the best of our knowledge, SPL represents an unprecedented example of a major DNA repair enzyme that cannot effectively repair its substrate lesion within the normal DNA conformation adopted in growing cells. Factors such as other DNA binding proteins, helicases or an altered DNA conformation may cooperate with SPL to enable efficient SP repair in germinating spores. Therefore, both SP formation and SP repair are likely to be tightly controlled by the unique cellular environment in dormant and outgrowing spore-forming bacteria, and thus SP repair may be extremely slow in non-spore-forming organisms.
Collapse
Affiliation(s)
- Linlin Yang
- Department of Chemistry and Chemical Biology, Indiana University-Purdue University Indianapolis (IUPUI), 402 North Blackford Street, Indianapolis, IN 46202, United States
| | - Yajun Jian
- Department of Chemistry and Chemical Biology, Indiana University-Purdue University Indianapolis (IUPUI), 402 North Blackford Street, Indianapolis, IN 46202, United States
| | - Peter Setlow
- Department of Molecular Biology and Biophysics, UConn Health, Farmington, CT 06030, United States
| | - Lei Li
- Department of Chemistry and Chemical Biology, Indiana University-Purdue University Indianapolis (IUPUI), 402 North Blackford Street, Indianapolis, IN 46202, United States; Department of Dermatology, Indiana University School of Medicine, Indianapolis, IN 46202, United States.
| |
Collapse
|
249
|
Zanello P. The competition between chemistry and biology in assembling iron–sulfur derivatives. Molecular structures and electrochemistry. Part V. {[Fe4S4](SCysγ)4} proteins. Coord Chem Rev 2017. [DOI: 10.1016/j.ccr.2016.10.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
250
|
Vitamin B 12 in the spotlight again. Curr Opin Chem Biol 2017; 37:63-70. [PMID: 28167430 DOI: 10.1016/j.cbpa.2017.01.013] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 01/07/2017] [Accepted: 01/17/2017] [Indexed: 11/21/2022]
Abstract
The ability of cobalamin to coordinate different upper axial ligands gives rise to a diversity of reactivity. Traditionally, adenosylcobalamin is associated with radical-based rearrangements, and methylcobalamin with methyl cation transfers. Recently, however, a new role for adenosylcobalamin has been discovered as a light sensor, and a methylcobalamin-dependent enzyme has been identified that is suggested to transfer a methyl anion. Additionally, recent studies have provided a wealth of new information about a third class of cobalamin-dependent enzymes that do not appear to use an upper ligand. They function in reductive dehalogenations and epoxide reduction reactions. Finally, mechanistic details are beginning to emerge about the cobalamin-dependent S-adenosylmethionine radical enzyme superfamily for which the role of cobalamin has been largely enigmatic.
Collapse
|