201
|
Halder A, Verma A, Biswas D, Srivastava S. Recent advances in mass-spectrometry based proteomics software, tools and databases. DRUG DISCOVERY TODAY. TECHNOLOGIES 2021; 39:69-79. [PMID: 34906327 DOI: 10.1016/j.ddtec.2021.06.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 05/08/2021] [Accepted: 06/21/2021] [Indexed: 01/12/2023]
Abstract
The field of proteomics immensely depends on data generation and data analysis which are thoroughly supported by software and databases. There has been a massive advancement in mass spectrometry-based proteomics over the last 10 years which has compelled the scientific community to upgrade or develop algorithms, tools, and repository databases in the field of proteomics. Several standalone software, and comprehensive databases have aided the establishment of integrated omics pipeline and meta-analysis workflow which has contributed to understand the disease pathobiology, biomarker discovery and predicting new therapeutic modalities. For shotgun proteomics where Data Dependent Acquisition is performed, several user-friendly software are developed that can analyse the pre-processed data to provide mechanistic insights of the disease. Likewise, in Data Independent Acquisition, pipelines are emerged which can accomplish the task from building the spectral library to identify the therapeutic targets. Furthermore, in the age of big data analysis the implications of machine learning and cloud computing are appending robustness, rapidness and in-depth proteomics data analysis. The current review talks about the recent advancement, and development of software, tools, and database in the field of mass-spectrometry based proteomics.
Collapse
Affiliation(s)
- Ankit Halder
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Ayushi Verma
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Deeptarup Biswas
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Sanjeeva Srivastava
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India.
| |
Collapse
|
202
|
Fisher-Wellman KH, Hagen JT, Kassai M, Kao LP, Nelson MAM, McLaughlin KL, Coalson HS, Fox TE, Tan SF, Feith DJ, Kester M, Loughran TP, Claxton DF, Cabot MC. Alterations in sphingolipid composition and mitochondrial bioenergetics represent synergistic therapeutic vulnerabilities linked to multidrug resistance in leukemia. FASEB J 2021; 36:e22094. [PMID: 34888943 DOI: 10.1096/fj.202101194rrr] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 11/11/2021] [Accepted: 11/24/2021] [Indexed: 12/23/2022]
Abstract
Modifications in sphingolipid (SL) metabolism and mitochondrial bioenergetics are key factors implicated in cancer cell response to chemotherapy, including chemotherapy resistance. In the present work, we utilized acute myeloid leukemia (AML) cell lines, selected to be refractory to various chemotherapeutics, to explore the interplay between SL metabolism and mitochondrial biology supportive of multidrug resistance (MDR). In agreement with previous findings in cytarabine or daunorubicin resistant AML cells, relative to chemosensitive wildtype controls, HL-60 cells refractory to vincristine (HL60/VCR) presented with alterations in SL enzyme expression and lipidome composition. Such changes were typified by upregulated expression of various ceramide detoxifying enzymes, as well as corresponding shifts in ceramide, glucosylceramide, and sphingomyelin (SM) molecular species. With respect to mitochondria, despite consistent increases in both basal respiration and maximal respiratory capacity, direct interrogation of the oxidative phosphorylation (OXPHOS) system revealed intrinsic deficiencies in HL60/VCR, as well as across multiple MDR model systems. Based on the apparent requirement for augmented SL and mitochondrial flux to support the MDR phenotype, we explored a combinatorial therapeutic paradigm designed to target each pathway. Remarkably, despite minimal cytotoxicity in peripheral blood mononuclear cells (PBMC), co-targeting SL metabolism, and respiratory complex I (CI) induced synergistic cytotoxicity consistently across multiple MDR leukemia models. Together, these data underscore the intimate connection between cellular sphingolipids and mitochondrial metabolism and suggest that pharmacological intervention across both pathways may represent a novel treatment strategy against MDR.
Collapse
Affiliation(s)
- Kelsey H Fisher-Wellman
- Department of Physiology, Brody School of Medicine, and the East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, North Carolina, USA
| | - James T Hagen
- Department of Physiology, Brody School of Medicine, and the East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, North Carolina, USA
| | - Miki Kassai
- Department of Biochemistry & Molecular Biology, Brody School of Medicine, and the East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, North Carolina, USA
| | - Li-Pin Kao
- Department of Biochemistry & Molecular Biology, Brody School of Medicine, and the East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, North Carolina, USA
| | - Margaret A M Nelson
- Department of Physiology, Brody School of Medicine, and the East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, North Carolina, USA
| | - Kelsey L McLaughlin
- Department of Physiology, Brody School of Medicine, and the East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, North Carolina, USA
| | - Hannah S Coalson
- Department of Physiology, Brody School of Medicine, and the East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, North Carolina, USA
| | - Todd E Fox
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Su-Fern Tan
- Department of Medicine, Hematology/Oncology, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - David J Feith
- Department of Medicine, Hematology/Oncology, University of Virginia School of Medicine, Charlottesville, Virginia, USA.,University of Virginia Cancer Center, Charlottesville, Virginia, USA
| | - Mark Kester
- Department of Medicine, Hematology/Oncology, University of Virginia School of Medicine, Charlottesville, Virginia, USA.,University of Virginia Cancer Center, Charlottesville, Virginia, USA
| | - Thomas P Loughran
- Department of Medicine, Hematology/Oncology, University of Virginia School of Medicine, Charlottesville, Virginia, USA.,University of Virginia Cancer Center, Charlottesville, Virginia, USA
| | - David F Claxton
- Department of Medicine, Division of Hematology and Oncology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA.,Penn state Cancer Institute, Hershey, Pennsylvania, USA
| | - Myles C Cabot
- Department of Biochemistry & Molecular Biology, Brody School of Medicine, and the East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, North Carolina, USA
| |
Collapse
|
203
|
van de Geer WS, van Riet J, van de Werken HJG. ProteoDisco: a flexible R approach to generate customized protein databases for extended search space of novel and variant proteins in proteogenomic studies. Bioinformatics 2021; 38:1437-1439. [PMID: 34864882 PMCID: PMC8826347 DOI: 10.1093/bioinformatics/btab809] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 11/08/2021] [Accepted: 11/26/2021] [Indexed: 01/05/2023] Open
Abstract
SUMMARY We present an R-based open-source software termed ProteoDisco that allows for flexible incorporation of genomic variants, fusion genes and (aberrant) transcriptomic variants from standardized formats into protein variant sequences. ProteoDisco allows for a flexible step-by-step workflow allowing for in-depth customization to suit a myriad of research approaches in the field of proteogenomics, on all organisms for which a reference genome and transcript annotations are available. AVAILABILITY AND IMPLEMENTATION ProteoDisco (R package version ≥ 1.0.0) is available on Bioconductor at https://doi.org/doi:10.18129/B9.bioc.ProteoDisco and from https://github.com/ErasmusMC-CCBC/ProteoDisco/. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Wesley S van de Geer
- Cancer Computational Biology Center, Erasmus MC Cancer Institute, University Medical Center, 3015 GD Rotterdam, The Netherlands,Department of Medical Oncology, Erasmus MC Cancer Institute, University Medical Center, 3015 GD Rotterdam, The Netherlands,Department of Urology Erasmus MC Cancer Institute, University Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Job van Riet
- Cancer Computational Biology Center, Erasmus MC Cancer Institute, University Medical Center, 3015 GD Rotterdam, The Netherlands,Department of Medical Oncology, Erasmus MC Cancer Institute, University Medical Center, 3015 GD Rotterdam, The Netherlands,Department of Urology Erasmus MC Cancer Institute, University Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Harmen J G van de Werken
- Cancer Computational Biology Center, Erasmus MC Cancer Institute, University Medical Center, 3015 GD Rotterdam, The Netherlands,Department of Urology Erasmus MC Cancer Institute, University Medical Center, 3015 GD Rotterdam, The Netherlands,Department of Immunology, Erasmus MC Cancer Institute, University Medical Center, 3015 GD Rotterdam, The Netherlands,To whom correspondence should be addressed.
| |
Collapse
|
204
|
Vallat B, Webb B, Fayazi M, Voinea S, Tangmunarunkit H, Ganesan SJ, Lawson CL, Westbrook JD, Kesselman C, Sali A, Berman HM. New system for archiving integrative structures. Acta Crystallogr D Struct Biol 2021; 77:1486-1496. [PMID: 34866606 PMCID: PMC8647179 DOI: 10.1107/s2059798321010871] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 10/19/2021] [Indexed: 11/30/2022] Open
Abstract
Structures of many complex biological assemblies are increasingly determined using integrative approaches, in which data from multiple experimental methods are combined. A standalone system, called PDB-Dev, has been developed for archiving integrative structures and making them publicly available. Here, the data standards and software tools that support PDB-Dev are described along with the new and updated components of the PDB-Dev data-collection, processing and archiving infrastructure. Following the FAIR (Findable, Accessible, Interoperable and Reusable) principles, PDB-Dev ensures that the results of integrative structure determinations are freely accessible to everyone.
Collapse
Affiliation(s)
- Brinda Vallat
- RCSB PDB, Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA
| | - Benjamin Webb
- Department of Bioengineering and Therapeutic Sciences, Department of Pharmaceutical Chemistry, and California Institute for Quantitative Biosciences, University of California at San Francisco, San Francisco, California, USA
| | - Maryam Fayazi
- RCSB PDB, Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA
| | - Serban Voinea
- Information Sciences Institute, Viterbi School of Engineering, University of Southern California, Los Angeles, California, USA
| | - Hongsuda Tangmunarunkit
- Information Sciences Institute, Viterbi School of Engineering, University of Southern California, Los Angeles, California, USA
| | - Sai J. Ganesan
- Department of Bioengineering and Therapeutic Sciences, Department of Pharmaceutical Chemistry, and California Institute for Quantitative Biosciences, University of California at San Francisco, San Francisco, California, USA
| | - Catherine L. Lawson
- RCSB PDB, Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA
| | - John D. Westbrook
- RCSB PDB, Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA
| | - Carl Kesselman
- RCSB PDB, Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA
| | - Andrej Sali
- Department of Bioengineering and Therapeutic Sciences, Department of Pharmaceutical Chemistry, and California Institute for Quantitative Biosciences, University of California at San Francisco, San Francisco, California, USA
| | - Helen M. Berman
- Department of Chemistry and Chemical Biology and Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA
| |
Collapse
|
205
|
Targeting CAMKK2 and SOC Channels as a Novel Therapeutic Approach for Sensitizing Acute Promyelocytic Leukemia Cells to All-Trans Retinoic Acid. Cells 2021; 10:cells10123364. [PMID: 34943872 PMCID: PMC8699360 DOI: 10.3390/cells10123364] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/20/2021] [Accepted: 11/22/2021] [Indexed: 12/18/2022] Open
Abstract
Calcium ions (Ca2+) play important and diverse roles in the regulation of autophagy, cell death and differentiation. Here, we investigated the impact of Ca2+ in regulating acute promyelocytic leukemia (APL) cell fate in response to the anti-cancer agent all-trans retinoic acid (ATRA). We observed that ATRA promotes calcium entry through store-operated calcium (SOC) channels into acute promyelocytic leukemia (APL) cells. This response is associated with changes in the expression profiles of ORAI1 and STIM1, two proteins involved in SOC channels activation, as well as with a significant upregulation of several key proteins associated to calcium signaling. Moreover, ATRA treatment of APL cells led to a significant activation of calcium/calmodulin-dependent protein kinase kinase 2 (CAMKK2) and its downstream effector AMP-activated protein kinase (AMPK), linking Ca2+ signaling to autophagy. Pharmacological inhibition of SOC channels and CAMKK2 enhanced ATRA-induced cell differentiation and death. Altogether, our results unravel an ATRA-elicited signaling pathway that involves SOC channels/CAMKK2 activation, induction of autophagy, inhibition of cellular differentiation and suppression of cell death. We suggest that SOC channels and CAMKK2 may constitute novel drug targets for potentiating the anti-cancer effect of ATRA in APL patients.
Collapse
|
206
|
Pinto VB, Almeida VC, Pereira-Lima ÍA, Vale EM, Araújo WL, Silveira V, Viana JMS. Deciphering the major metabolic pathways associated with aluminum tolerance in popcorn roots using label-free quantitative proteomics. PLANTA 2021; 254:132. [PMID: 34821986 DOI: 10.1007/s00425-021-03786-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Accepted: 11/10/2021] [Indexed: 06/13/2023]
Abstract
Al responsive proteins are associated with starch, sucrose, and other carbohydrate metabolic pathways. Sucrose synthase is a candidate to Al tolerance. Al responses are regulated at transcriptional and post-transcriptional levels. Aluminum toxicity is one of the important abiotic stresses that affects worldwide crop production. The soluble form of aluminum (Al3+) inhibits root growth by altering water and nutrient uptake, a process that also reduces plant growth and development. Under long-term Al3+ exposure, plants can activate several tolerance mechanisms. To date, no reports of large-scale proteomic data concerning maize responses to this ion have been published. To investigate the post-transcriptional regulation in response to Al toxicity, we performed label-free quantitative proteomics for comparative analysis of two Al-contrasting popcorn inbred lines and an Al-tolerant commercial hybrid during 72 h under Al-stress conditions. A total of 489 differentially accumulated proteins (DAPs) were identified in the Al-sensitive inbred line, 491 in the Al-tolerant inbred line, and 277 in the commercial hybrid. Among them, 120 DAPs were co-expressed in both Al tolerant genotypes. Bioinformatics analysis indicated that starch, sucrose, and other components of carbohydrate metabolism and glycolysis/gluconeogenesis are the biochemical processes regulated in response to Al toxicity. Sucrose synthase accumulation and an increase in sucrose content and starch degradation suggest that these components may enhance popcorn tolerance to Al stress. The accumulation of citrate synthase suggests a key role for this enzyme in the detoxification process in the Al-tolerant inbred line. The integration of transcriptomic and proteomic data indicates that the Al tolerance response presents a complex regulatory network into the transcription and translation dynamics of popcorn root development.
Collapse
Affiliation(s)
- Vitor Batista Pinto
- Departamento de Biologia Geral, Universidade Federal de Viçosa (UFV), Viçosa, MG, 36570-900, Brazil.
- Laboratório de Biotecnologia, Centro de Biociências e Biotecnologia (CBB), Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Av. Alberto Lamego, 2000, Campos dos Goytacazes, RJ, 28013-602, Brazil.
- Setor de Genômica e Proteômica. CBB, Unidade de Biologia Integrativa, UENF, Campos dos Goytacazes, RJ, Brazil.
| | - Vinicius Costa Almeida
- Departamento de Biologia Geral, Universidade Federal de Viçosa (UFV), Viçosa, MG, 36570-900, Brazil
| | - Ítalo A Pereira-Lima
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa (UFV), Viçosa, MG, 36570-900, Brazil
| | - Ellen Moura Vale
- Laboratório de Biotecnologia, Centro de Biociências e Biotecnologia (CBB), Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Av. Alberto Lamego, 2000, Campos dos Goytacazes, RJ, 28013-602, Brazil
- Setor de Genômica e Proteômica. CBB, Unidade de Biologia Integrativa, UENF, Campos dos Goytacazes, RJ, Brazil
| | - Wagner L Araújo
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa (UFV), Viçosa, MG, 36570-900, Brazil
| | - Vanildo Silveira
- Laboratório de Biotecnologia, Centro de Biociências e Biotecnologia (CBB), Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Av. Alberto Lamego, 2000, Campos dos Goytacazes, RJ, 28013-602, Brazil
- Setor de Genômica e Proteômica. CBB, Unidade de Biologia Integrativa, UENF, Campos dos Goytacazes, RJ, Brazil
| | | |
Collapse
|
207
|
Zhang Y, Zheng S, Mao Y, Cao W, Zhao L, Wu C, Cheng J, Liu F, Li G, Yang H. Systems analysis of plasma IgG intact N-glycopeptides from patients with chronic kidney diseases via EThcD-sceHCD-MS/MS. Analyst 2021; 146:7274-7283. [PMID: 34747425 DOI: 10.1039/d1an01657a] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Immunoglobulin G (IgG) molecules modulate an immune response. However, site-specific N-glycosylation signatures of plasma IgG in patients with chronic kidney disease (CKD) remain unclear. This study aimed to propose a novel method to explore the N-glycosylation pattern of IgG and to compare it with reported methods. We separated human plasma IgG from 58 healthy controls (HC) and 111 patients with CKD. Purified IgG molecules were digested by trypsin. Tryptic peptides without enrichment of intact N-glycopeptides were analyzed using a combination of electron-transfer/higher-energy collisional dissociation (EThcD) and stepped collision energy/higher-energy collisional dissociation (sceHCD) mass spectrometry (EThcD-sceHCD-MS/MS). This resulted in higher spectral quality, more informative fragment ions, higher Byonic score, and nearly twice the depth of intact N-glycopeptide identification than sceHCD or EThcD alone. Site-specific N-glycosylation mapping revealed that intact N-glycopeptides were differentially expressed in HC and CKD patients; thus, it can be a diagnostic tool. This study provides a method for the determination of glycosylation patterns in CKD and a framework for understanding the role of IgG in the pathophysiology of CKD. Data are available via ProteomeXchange with identifier PXD027174.
Collapse
Affiliation(s)
- Yong Zhang
- NHC Key Laboratory of Transplant Engineering and Immunology, Institutes for Systems Genetics; National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China. .,Sichuan Provincial Engineering Laboratory of Pathology in Clinical Application, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Shanshan Zheng
- NHC Key Laboratory of Transplant Engineering and Immunology, Institutes for Systems Genetics; National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Yonghong Mao
- Institute of Thoracic Oncology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Wei Cao
- NHC Key Laboratory of Transplant Engineering and Immunology, Institutes for Systems Genetics; National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Lijun Zhao
- Division of Nephrology, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Changwei Wu
- Renal Department and Institute of Nephrology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Sichuan Clinical Research Center for Kidney Diseases, Chengdu 611731, China.
| | - Jingqiu Cheng
- NHC Key Laboratory of Transplant Engineering and Immunology, Institutes for Systems Genetics; National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Fang Liu
- Division of Nephrology, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Guisen Li
- Renal Department and Institute of Nephrology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Sichuan Clinical Research Center for Kidney Diseases, Chengdu 611731, China.
| | - Hao Yang
- NHC Key Laboratory of Transplant Engineering and Immunology, Institutes for Systems Genetics; National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China. .,Sichuan Provincial Engineering Laboratory of Pathology in Clinical Application, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
208
|
De Morais JA, Zelanis A. Bioinformatic reanalysis of public proteomics data reveals that nuclear proteins are recurrent in cancer secretomes. Traffic 2021; 23:98-108. [PMID: 34806804 DOI: 10.1111/tra.12827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 11/05/2021] [Accepted: 11/18/2021] [Indexed: 11/27/2022]
Abstract
Proteins secreted by tumoral cells (cancer secretomes) have been continuously associated with cancer development and progression processes. In this context, secreted proteins contribute to the signaling mechanisms related to tumor growth and spreading and studies on tumor secretomes provide valuable clues on putative tumor biomarkers. Although the in vitro identification of intracellular proteins in cancer secretome studies has usually been associated with contamination derived from cell lysis or fetal bovine serum, accumulated evidence reports on intracellular proteins with moonlighting functions in the extracellular environment. In this study, we performed a systematic reanalysis of public proteomics data regarding different cancer secretomes, aiming to identify intracellular proteins potentially secreted by tumor cells via unconventional secretion pathways. We found a similar repertoire of unconventionally secreted proteins, including the recurrent identification of nuclear proteins secreted by different cancer cells. In addition, in some cancer types, immunohistochemical data were in line with proteomics identifications and suggested that nuclear proteins might relocate from the nucleus to the cytoplasm. Both the presence of nuclear proteins and the likely unconventional secretion of such proteins may comprise biological signatures of malignant transformation in distinct cancer types and may be targeted for further analysis aiming at the prognostic/therapeutic value of such features.
Collapse
Affiliation(s)
- Juliana A De Morais
- Functional Proteomics Laboratory, Institute of Science and Technology, Federal University of São Paulo, UNIFESP, São José dos Campos, São Paulo, Brazil
| | - André Zelanis
- Functional Proteomics Laboratory, Institute of Science and Technology, Federal University of São Paulo, UNIFESP, São José dos Campos, São Paulo, Brazil
| |
Collapse
|
209
|
Lou R, Liu W, Li R, Li S, He X, Shui W. DeepPhospho accelerates DIA phosphoproteome profiling through in silico library generation. Nat Commun 2021; 12:6685. [PMID: 34795227 PMCID: PMC8602247 DOI: 10.1038/s41467-021-26979-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 10/26/2021] [Indexed: 12/27/2022] Open
Abstract
Phosphoproteomics integrating data-independent acquisition (DIA) enables deep phosphoproteome profiling with improved quantification reproducibility and accuracy compared to data-dependent acquisition (DDA)-based phosphoproteomics. DIA data mining heavily relies on a spectral library that in most cases is built on DDA analysis of the same sample. Construction of this project-specific DDA library impairs the analytical throughput, limits the proteome coverage, and increases the sample size for DIA phosphoproteomics. Herein we introduce a deep neural network, DeepPhospho, which conceptually differs from previous deep learning models to achieve accurate predictions of LC-MS/MS data for phosphopeptides. By leveraging in silico libraries generated by DeepPhospho, we establish a DIA workflow for phosphoproteome profiling which involves DIA data acquisition and data mining with DeepPhospho predicted libraries, thus circumventing the need of DDA library construction. Our DeepPhospho-empowered workflow substantially expands the phosphoproteome coverage while maintaining high quantification performance, which leads to the discovery of more signaling pathways and regulated kinases in an EGF signaling study than the DDA library-based approach. DeepPhospho is provided as a web server as well as an offline app to facilitate user access to model training, predictions and library generation.
Collapse
Affiliation(s)
- Ronghui Lou
- iHuman Institute, ShanghaiTech University, Shanghai, 201210, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Weizhen Liu
- School of Information Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Rongjie Li
- School of Information Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Shanshan Li
- iHuman Institute, ShanghaiTech University, Shanghai, 201210, China
| | - Xuming He
- School of Information Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
- Shanghai Engineering Research Center of Intelligent Vision and Imaging, Shanghai, 201210, China.
| | - Wenqing Shui
- iHuman Institute, ShanghaiTech University, Shanghai, 201210, China.
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
| |
Collapse
|
210
|
Biochemical Characterisation of Human Transglutaminase 4. Int J Mol Sci 2021; 22:ijms222212448. [PMID: 34830327 PMCID: PMC8619550 DOI: 10.3390/ijms222212448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/12/2021] [Accepted: 11/15/2021] [Indexed: 11/17/2022] Open
Abstract
Transglutaminases are protein-modifying enzymes involved in physiological and pathological processes with potent therapeutic possibilities. Human TG4, also called prostate transglutaminase, is involved in the development of autoimmune and tumour diseases. Although rodent TG4 is well characterised, biochemical characteristics of human TG4 that could help th e understanding of its way of action are not published. First, we analysed proteomics databases and found that TG4 protein is present in human tissues beyond the prostate. Then, we studied in vitro the transamidase activity of human TG4 and its regulation using the microtitre plate method. Human TG4 has low transamidase activity which prefers slightly acidic pH and a reducing environment. It is enhanced by submicellar concentrations of SDS suggesting that membrane proximity is an important regulatory event. Human TG4 does not bind GTP as tested by GTP-agarose and BODIPY-FL-GTPγS binding, and its proteolytic activation by dispase or when expressed in AD-293 cells was not observed either. We identified several potential human TG4 glutamine donor substrates in the AD-293 cell extract by biotin-pentylamine incorporation and mass spectrometry. Several of these potential substrates are involved in cell–cell interaction, adhesion and proliferation, suggesting that human TG4 could become an anticancer therapeutic target.
Collapse
|
211
|
Zhang Q, Tombline G, Ablaeva J, Zhang L, Zhou X, Smith Z, Zhao Y, Xiaoli AM, Wang Z, Lin JR, Jabalameli MR, Mitra J, Nguyen N, Vijg J, Seluanov A, Gladyshev VN, Gorbunova V, Zhang ZD. Genomic expansion of Aldh1a1 protects beavers against high metabolic aldehydes from lipid oxidation. Cell Rep 2021; 37:109965. [PMID: 34758328 PMCID: PMC8656434 DOI: 10.1016/j.celrep.2021.109965] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 06/07/2021] [Accepted: 10/19/2021] [Indexed: 12/24/2022] Open
Abstract
The North American beaver is an exceptionally long-lived and cancer-resistant rodent species. Here, we report the evolutionary changes in its gene coding sequences, copy numbers, and expression. We identify changes that likely increase its ability to detoxify aldehydes, enhance tumor suppression and DNA repair, and alter lipid metabolism, potentially contributing to its longevity and cancer resistance. Hpgd, a tumor suppressor gene, is uniquely duplicated in beavers among rodents, and several genes associated with tumor suppression and longevity are under positive selection in beavers. Lipid metabolism genes show positive selection signals, changes in copy numbers, or altered gene expression in beavers. Aldh1a1, encoding an enzyme for aldehydes detoxification, is particularly notable due to its massive expansion in beavers, which enhances their cellular resistance to ethanol and capacity to metabolize diverse aldehyde substrates from lipid oxidation and their woody diet. We hypothesize that the amplification of Aldh1a1 may contribute to the longevity of beavers. Zhang et al. examine the genome of North American beavers and find evolutionary changes that could contribute to beavers’ longevity. In particular, Aldh1a1, encoding an enzyme for aldehyde detoxification, is massively expanded in the beaver genome, protecting them against exposure to aldehydes from lipid oxidation and their woody diet.
Collapse
Affiliation(s)
- Quanwei Zhang
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Gregory Tombline
- Department of Biology, University of Rochester, Rochester, NY 14627, USA
| | - Julia Ablaeva
- Department of Biology, University of Rochester, Rochester, NY 14627, USA
| | - Lei Zhang
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Xuming Zhou
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Zachary Smith
- Department of Biology, University of Rochester, Rochester, NY 14627, USA
| | - Yang Zhao
- Department of Biology, University of Rochester, Rochester, NY 14627, USA
| | - Alus M Xiaoli
- Departments of Medicine and Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Zhen Wang
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Jhih-Rong Lin
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, USA
| | - M Reza Jabalameli
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Joydeep Mitra
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Nha Nguyen
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Jan Vijg
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Andrei Seluanov
- Department of Biology, University of Rochester, Rochester, NY 14627, USA
| | - Vadim N Gladyshev
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Vera Gorbunova
- Department of Biology, University of Rochester, Rochester, NY 14627, USA
| | - Zhengdong D Zhang
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
212
|
van Wijk KJ, Leppert T, Sun Q, Boguraev SS, Sun Z, Mendoza L, Deutsch EW. The Arabidopsis PeptideAtlas: Harnessing worldwide proteomics data to create a comprehensive community proteomics resource. THE PLANT CELL 2021; 33:3421-3453. [PMID: 34411258 PMCID: PMC8566204 DOI: 10.1093/plcell/koab211] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 08/13/2021] [Indexed: 05/02/2023]
Abstract
We developed a resource, the Arabidopsis PeptideAtlas (www.peptideatlas.org/builds/arabidopsis/), to solve central questions about the Arabidopsis thaliana proteome, such as the significance of protein splice forms and post-translational modifications (PTMs), or simply to obtain reliable information about specific proteins. PeptideAtlas is based on published mass spectrometry (MS) data collected through ProteomeXchange and reanalyzed through a uniform processing and metadata annotation pipeline. All matched MS-derived peptide data are linked to spectral, technical, and biological metadata. Nearly 40 million out of ∼143 million MS/MS (tandem MS) spectra were matched to the reference genome Araport11, identifying ∼0.5 million unique peptides and 17,858 uniquely identified proteins (only isoform per gene) at the highest confidence level (false discovery rate 0.0004; 2 non-nested peptides ≥9 amino acid each), assigned canonical proteins, and 3,543 lower-confidence proteins. Physicochemical protein properties were evaluated for targeted identification of unobserved proteins. Additional proteins and isoforms currently not in Araport11 were identified that were generated from pseudogenes, alternative start, stops, and/or splice variants, and small Open Reading Frames; these features should be considered when updating the Arabidopsis genome. Phosphorylation can be inspected through a sophisticated PTM viewer. PeptideAtlas is integrated with community resources including TAIR, tracks in JBrowse, PPDB, and UniProtKB. Subsequent PeptideAtlas builds will incorporate millions more MS/MS data.
Collapse
Affiliation(s)
- Klaas J van Wijk
- Section of Plant Biology, School of Integrative Plant Sciences (SIPS), Cornell University, Ithaca, New York 14853, USA
- Authors for correspondence: (K.J.V.W.), (E.W.D.)
| | - Tami Leppert
- Institute for Systems Biology (ISB), Seattle, Washington 98109, USA
| | - Qi Sun
- Computational Biology Service Unit, Cornell University, Ithaca, New York 14853, USA
| | - Sascha S Boguraev
- Section of Plant Biology, School of Integrative Plant Sciences (SIPS), Cornell University, Ithaca, New York 14853, USA
| | - Zhi Sun
- Institute for Systems Biology (ISB), Seattle, Washington 98109, USA
| | - Luis Mendoza
- Institute for Systems Biology (ISB), Seattle, Washington 98109, USA
| | - Eric W Deutsch
- Institute for Systems Biology (ISB), Seattle, Washington 98109, USA
- Authors for correspondence: (K.J.V.W.), (E.W.D.)
| |
Collapse
|
213
|
Biodesulfurization Induces Reprogramming of Sulfur Metabolism in Rhodococcus qingshengii IGTS8: Proteomics and Untargeted Metabolomics. Microbiol Spectr 2021; 9:e0069221. [PMID: 34468196 PMCID: PMC8557817 DOI: 10.1128/spectrum.00692-21] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Sulfur metabolism in fuel-biodesulfurizing bacteria and the underlying physiological adaptations are not understood, which has impeded the development of a commercially viable bioprocess for fuel desulfurization. To fill these knowledge gaps, we performed comparative proteomics and untargeted metabolomics in cultures of the biodesulfurization reference strain Rhodococcus qingshengii IGTS8 grown on either inorganic sulfate or the diesel-borne organosulfur compound dibenzothiophene as a sole sulfur source. Dibenzothiophene significantly altered the biosynthesis of many sulfur metabolism proteins and metabolites in a growth phase-dependent manner, which enabled us to reconstruct the first experimental model for sulfur metabolism in a fuel-biodesulfurizing bacterium. All key pathways related to assimilatory sulfur metabolism were represented in the sulfur proteome, including uptake of the sulfur sources, sulfur acquisition, and assimilatory sulfate reduction, in addition to biosynthesis of key sulfur-containing metabolites such as S-adenosylmethionine, coenzyme A, biotin, thiamin, molybdenum cofactor, mycothiol, and ergothioneine (low-molecular weight thiols). Fifty-two proteins exhibited significantly different abundance during at least one growth phase. Sixteen proteins were uniquely detected and 47 proteins were significantly more abundant in the dibenzothiophene culture during at least one growth phase. The sulfate-free dibenzothiophene-containing culture reacted to sulfate starvation by restricting sulfur assimilation, enforcing sulfur-sparing, and maintaining redox homeostasis. Biodesulfurization triggered alternative pathways for sulfur assimilation different from those operating in the inorganic sulfate culture. Sulfur metabolism reprogramming and metabolic switches in the dibenzothiophene culture were manifested in limiting sulfite reduction and biosynthesis of cysteine, while boosting the production of methionine via the cobalamin-independent pathway, as well as the biosynthesis of the redox buffers mycothiol and ergothioneine. The omics data underscore the key role of sulfur metabolism in shaping the biodesulfurization phenotype and highlight potential targets for improving the biodesulfurization catalytic activity via metabolic engineering. IMPORTANCE For many decades, research on biodesulfurization of fossil fuels was conducted amid a large gap in knowledge of sulfur metabolism and its regulation in fuel-biodesulfurizing bacteria, which has impeded the development of a commercially viable bioprocess. In addition, lack of understanding of biodesulfurization-associated metabolic and physiological adaptations prohibited the development of efficient biodesulfurizers. Our integrated omics-based findings reveal the assimilatory sulfur metabolism in the biodesulfurization reference strain Rhodococcus qingshengii IGTS8 and show how sulfur metabolism and oxidative stress response were remodeled and orchestrated to shape the biodesulfurization phenotype. Our findings not only explain the frequently encountered low catalytic activity of native fuel-biodesulfurizing bacteria but also uncover unprecedented potential targets in sulfur metabolism that could be exploited via metabolic engineering to boost the biodesulfurization catalytic activity, a prerequisite for commercial application.
Collapse
|
214
|
Baniasad M, Reed AJ, Lai SM, Zhang L, Schulte KQ, Smith AR, LeSassier DS, Weber KL, Hewitt FC, Woerner AE, Gardner MW, Wysocki VH, Freitas MA. Optimization of proteomics sample preparation for forensic analysis of skin samples. J Proteomics 2021; 249:104360. [PMID: 34481086 DOI: 10.1016/j.jprot.2021.104360] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 07/28/2021] [Accepted: 08/22/2021] [Indexed: 01/11/2023]
Abstract
We present an efficient protein extraction and in-solution enzymatic digestion protocol optimized for mass spectrometry-based proteomics studies of human skin samples. Human skin cells are a proteinaceous matrix that can enable forensic identification of individuals. We performed a systematic optimization of proteomic sample preparation for a protein-based human forensic identification application. Digestion parameters, including incubation duration, temperature, and the type and concentration of surfactant, were systematically varied to maximize digestion completeness. Through replicate digestions, parameter optimization was performed to maximize repeatability and increase the number of identified peptides and proteins. Final digestion conditions were selected based on the parameters that yielded the greatest percent of peptides with zero missed tryptic cleavages, which benefit the analysis of genetically variable peptides (GVPs). We evaluated the final digestion conditions for identification of GVPs by applying MS-based proteomics on a mixed-donor sample. The results were searched against a human proteome database appended with a database of GVPs constructed from known non-synonymous single nucleotide polymorphisms (SNPs) that occur at known population frequencies. The aim of this study was to demonstrate the potential of our proteomics sample preparation for future implementation of GVP analysis by forensic laboratories to facilitate human identification. SIGNIFICANCE: Genetically variable peptides (GVPs) can provide forensic evidence that is complementary to traditional DNA profiling and be potentially used for human identification. An efficient protein extraction and reproducible digestion method of skin proteins is a key contributor for downstream analysis of GVPs and further development of this technology in forensic application. In this study, we optimized the enzymatic digestion conditions, such as incubation time and temperature, for skin samples. Our study is among the first attempts towards optimization of proteomics sample preparation for protein-based skin identification in forensic applications such as touch samples. Our digestion method employs RapiGest (an acid-labile surfactant), trypsin enzymatic digestion, and an incubation time of 16 h at 37 °C.
Collapse
Affiliation(s)
- Maryam Baniasad
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, USA
| | - Andrew J Reed
- Mass Spectrometry and Proteomics Facility, Campus Chemistry Instrument Center, The Ohio State University, Columbus, OH, USA
| | - Stella M Lai
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, USA
| | - Liwen Zhang
- Mass Spectrometry and Proteomics Facility, Campus Chemistry Instrument Center, The Ohio State University, Columbus, OH, USA
| | | | | | | | | | | | - August E Woerner
- Center for Human Identification, University of North Texas Health Science Center, Fort Worth, TX, USA
| | | | - Vicki H Wysocki
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, USA
| | - Michael A Freitas
- Mass Spectrometry and Proteomics Facility, Campus Chemistry Instrument Center, The Ohio State University, Columbus, OH, USA; The Ohio State University Wexner Medical Center, Columbus, OH, USA.
| |
Collapse
|
215
|
Eukaryotic initiation factor 2 signaling behind neural invasion linked with lymphatic and vascular invasion in pancreatic cancer. Sci Rep 2021; 11:21197. [PMID: 34707166 PMCID: PMC8551178 DOI: 10.1038/s41598-021-00727-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 10/15/2021] [Indexed: 12/12/2022] Open
Abstract
Perineural invasion (PNI) is a typical poor prognostic factor in pancreatic ductal adenocarcinoma (PDAC). The mechanisms linking PNI to poor prognosis remain unclear. This study aimed to clarify what changes occurred alongside PNI in PDAC. A 128-patient cohort undergoing surgery for early-stage PDAC was evaluated. Subdivided into two groups, according to pathological state, a pancreatic nerve invasion (ne) score of less than three (from none to moderate invasion) was designated as the low-grade ne group. The high-grade (marked invasion) ne group (74 cases, 57.8%) showed a higher incidence of lymphatic metastasis (P = 0.002), a higher incidence of early recurrence (P = 0.004), decreased RFS (P < 0.001), and decreased DSS (P < 0.001). The severity of lymphatic (r = 0.440, P = 0.042) and venous (r = 0.610, P = 0.002) invasions was positively correlated with the ne score. Tumors having abundant stroma often displayed severe ne. Proteomics identified eukaryotic initiation factor 2 (EIF2) signaling as the most significantly enriched pathway in high-grade ne PDAC. Additionally, EIF2 signaling-related ribosome proteins decreased according to severity. Results showed that PNI is linked with lymphatic and vascular invasion in early-stage PDAC. Furthermore, the dysregulation of proteostasis and ribosome biogenesis can yield a difference in PNI severity.
Collapse
|
216
|
Molecular characterization of hematopoietic stem cells after in vitro amplification on biomimetic 3D PDMS cell culture scaffolds. Sci Rep 2021; 11:21163. [PMID: 34707135 PMCID: PMC8551314 DOI: 10.1038/s41598-021-00619-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 10/14/2021] [Indexed: 12/11/2022] Open
Abstract
Hematopoietic stem cell (HSC) transplantation is successfully applied since the late 1950s. However, its efficacy can be impaired by insufficient numbers of donor HSCs. A promising strategy to overcome this hurdle is the use of an advanced ex vivo culture system that supports the proliferation and, at the same time, maintains the pluripotency of HSCs. Therefore, we have developed artificial 3D bone marrow-like scaffolds made of polydimethylsiloxane (PDMS) that model the natural HSC niche in vitro. These 3D PDMS scaffolds in combination with an optimized HSC culture medium allow the amplification of high numbers of undifferentiated HSCs. After 14 days in vitro cell culture, we performed transcriptome and proteome analysis. Ingenuity pathway analysis indicated that the 3D PDMS cell culture scaffolds altered PI3K/AKT/mTOR pathways and activated SREBP, HIF1α and FOXO signaling, leading to metabolic adaptations, as judged by ELISA, Western blot and metabolic flux analysis. These molecular signaling pathways can promote the expansion of HSCs and are involved in the maintenance of their pluripotency. Thus, we have shown that the 3D PDMS scaffolds activate key molecular signaling pathways to amplify the numbers of undifferentiated HSCs ex vivo effectively.
Collapse
|
217
|
Carapito R, Li R, Helms J, Carapito C, Gujja S, Rolli V, Guimaraes R, Malagon-Lopez J, Spinnhirny P, Lederle A, Mohseninia R, Hirschler A, Muller L, Bastard P, Gervais A, Zhang Q, Danion F, Ruch Y, Schenck M, Collange O, Chamaraux-Tran TN, Molitor A, Pichot A, Bernard A, Tahar O, Bibi-Triki S, Wu H, Paul N, Mayeur S, Larnicol A, Laumond G, Frappier J, Schmidt S, Hanauer A, Macquin C, Stemmelen T, Simons M, Mariette X, Hermine O, Fafi-Kremer S, Goichot B, Drenou B, Kuteifan K, Pottecher J, Mertes PM, Kailasan S, Aman MJ, Pin E, Nilsson P, Thomas A, Viari A, Sanlaville D, Schneider F, Sibilia J, Tharaux PL, Casanova JL, Hansmann Y, Lidar D, Radosavljevic M, Gulcher JR, Meziani F, Moog C, Chittenden TW, Bahram S. Identification of driver genes for critical forms of COVID-19 in a deeply phenotyped young patient cohort. Sci Transl Med 2021; 14:eabj7521. [PMID: 34698500 DOI: 10.1126/scitranslmed.abj7521] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Raphael Carapito
- Laboratoire d'ImmunoRhumatologie Moléculaire, plateforme GENOMAX, INSERM UMR_S 1109, Faculté de Médecine, Institut Thématique Interdisciplinaire (ITI) de Médecine de Précision de Strasbourg, Transplantex NG, Université de Strasbourg; 67085 Strasbourg, France.,Service d'Immunologie Biologique, Plateau Technique de Biologie, Pôle de Biologie, Nouvel Hôpital Civil; 67091 Strasbourg, France.,Fédération Hospitalo-Universitaire (FHU) OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Centre de Recherche d'Immunologie et d'Hématologie; 67085, Strasbourg, France
| | - Richard Li
- Genuity AI Research Institute, Genuity Science; Boston, MA 02114, USA
| | - Julie Helms
- Laboratoire d'ImmunoRhumatologie Moléculaire, plateforme GENOMAX, INSERM UMR_S 1109, Faculté de Médecine, Institut Thématique Interdisciplinaire (ITI) de Médecine de Précision de Strasbourg, Transplantex NG, Université de Strasbourg; 67085 Strasbourg, France.,Fédération Hospitalo-Universitaire (FHU) OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Centre de Recherche d'Immunologie et d'Hématologie; 67085, Strasbourg, France.,Service de Médecine Intensive-Réanimation, Nouvel Hôpital Civil, Hôpitaux Universitaires de Strasbourg; 67091 Strasbourg, France
| | - Christine Carapito
- Fédération Hospitalo-Universitaire (FHU) OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Centre de Recherche d'Immunologie et d'Hématologie; 67085, Strasbourg, France.,Laboratoire de Spectrométrie de Masse BioOrganique, Université de Strasbourg, CNRS, IPHC, UMR 7178; 67000, Strasbourg, France
| | - Sharvari Gujja
- Genuity AI Research Institute, Genuity Science; Boston, MA 02114, USA
| | - Véronique Rolli
- Laboratoire d'ImmunoRhumatologie Moléculaire, plateforme GENOMAX, INSERM UMR_S 1109, Faculté de Médecine, Institut Thématique Interdisciplinaire (ITI) de Médecine de Précision de Strasbourg, Transplantex NG, Université de Strasbourg; 67085 Strasbourg, France.,Service d'Immunologie Biologique, Plateau Technique de Biologie, Pôle de Biologie, Nouvel Hôpital Civil; 67091 Strasbourg, France.,Fédération Hospitalo-Universitaire (FHU) OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Centre de Recherche d'Immunologie et d'Hématologie; 67085, Strasbourg, France
| | - Raony Guimaraes
- Genuity AI Research Institute, Genuity Science; Boston, MA 02114, USA
| | | | - Perrine Spinnhirny
- Laboratoire d'ImmunoRhumatologie Moléculaire, plateforme GENOMAX, INSERM UMR_S 1109, Faculté de Médecine, Institut Thématique Interdisciplinaire (ITI) de Médecine de Précision de Strasbourg, Transplantex NG, Université de Strasbourg; 67085 Strasbourg, France.,Fédération Hospitalo-Universitaire (FHU) OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Centre de Recherche d'Immunologie et d'Hématologie; 67085, Strasbourg, France
| | - Alexandre Lederle
- Laboratoire d'ImmunoRhumatologie Moléculaire, plateforme GENOMAX, INSERM UMR_S 1109, Faculté de Médecine, Institut Thématique Interdisciplinaire (ITI) de Médecine de Précision de Strasbourg, Transplantex NG, Université de Strasbourg; 67085 Strasbourg, France.,Fédération Hospitalo-Universitaire (FHU) OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Centre de Recherche d'Immunologie et d'Hématologie; 67085, Strasbourg, France
| | - Razieh Mohseninia
- Center for Quantum Information Science and Technology, University of Southern California; Los Angeles, 90089-0484 CA, USA
| | - Aurélie Hirschler
- Fédération Hospitalo-Universitaire (FHU) OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Centre de Recherche d'Immunologie et d'Hématologie; 67085, Strasbourg, France.,Laboratoire de Spectrométrie de Masse BioOrganique, Université de Strasbourg, CNRS, IPHC, UMR 7178; 67000, Strasbourg, France
| | - Leslie Muller
- Fédération Hospitalo-Universitaire (FHU) OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Centre de Recherche d'Immunologie et d'Hématologie; 67085, Strasbourg, France.,Laboratoire de Spectrométrie de Masse BioOrganique, Université de Strasbourg, CNRS, IPHC, UMR 7178; 67000, Strasbourg, France
| | - Paul Bastard
- St Giles laboratory of human genetics of infectious diseases, Rockefeller Branch, The Rockefeller University; New York, NY 10065, USA.,Laboratory of human genetics of infectious diseases, Necker Branch, INSERM, Necker Hospital for Sick Children; 75015 Paris, France.,University of Paris, Imagine Institute; 75015 Paris, France
| | - Adrian Gervais
- Laboratory of human genetics of infectious diseases, Necker Branch, INSERM, Necker Hospital for Sick Children; 75015 Paris, France.,University of Paris, Imagine Institute; 75015 Paris, France
| | - Qian Zhang
- St Giles laboratory of human genetics of infectious diseases, Rockefeller Branch, The Rockefeller University; New York, NY 10065, USA.,Laboratory of human genetics of infectious diseases, Necker Branch, INSERM, Necker Hospital for Sick Children; 75015 Paris, France.,University of Paris, Imagine Institute; 75015 Paris, France
| | - François Danion
- Laboratoire d'ImmunoRhumatologie Moléculaire, plateforme GENOMAX, INSERM UMR_S 1109, Faculté de Médecine, Institut Thématique Interdisciplinaire (ITI) de Médecine de Précision de Strasbourg, Transplantex NG, Université de Strasbourg; 67085 Strasbourg, France.,Fédération Hospitalo-Universitaire (FHU) OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Centre de Recherche d'Immunologie et d'Hématologie; 67085, Strasbourg, France.,Department of Infectious and Tropical Diseases, Hôpitaux Universitaires de Strasbourg; 67091 Strasbourg, France
| | - Yvon Ruch
- Fédération Hospitalo-Universitaire (FHU) OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Centre de Recherche d'Immunologie et d'Hématologie; 67085, Strasbourg, France.,Department of Infectious and Tropical Diseases, Hôpitaux Universitaires de Strasbourg; 67091 Strasbourg, France
| | - Maleka Schenck
- Fédération Hospitalo-Universitaire (FHU) OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Centre de Recherche d'Immunologie et d'Hématologie; 67085, Strasbourg, France.,Service de Médecine Intensive-Réanimation, Hôpital de Hautepierre, Hôpitaux Universitaires de Strasbourg; Avenue Molière, 67200 Strasbourg, France
| | - Olivier Collange
- Fédération Hospitalo-Universitaire (FHU) OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Centre de Recherche d'Immunologie et d'Hématologie; 67085, Strasbourg, France.,Service d'Anesthésie-Réanimation et Médecine Péri-Opératoire, Nouvel Hôpital Civil, Hôpitaux Universitaires de Strasbourg; 67000 Strasbourg, France
| | - Thiên-Nga Chamaraux-Tran
- Fédération Hospitalo-Universitaire (FHU) OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Centre de Recherche d'Immunologie et d'Hématologie; 67085, Strasbourg, France.,Service d'Anesthésie-Réanimation et Médecine Péri-Opératoire, Hôpital de Hautepierre, Hôpitaux Universitaires de Strasbourg; 67200 Strasbourg Cedex, France
| | - Anne Molitor
- Laboratoire d'ImmunoRhumatologie Moléculaire, plateforme GENOMAX, INSERM UMR_S 1109, Faculté de Médecine, Institut Thématique Interdisciplinaire (ITI) de Médecine de Précision de Strasbourg, Transplantex NG, Université de Strasbourg; 67085 Strasbourg, France.,Fédération Hospitalo-Universitaire (FHU) OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Centre de Recherche d'Immunologie et d'Hématologie; 67085, Strasbourg, France
| | - Angélique Pichot
- Laboratoire d'ImmunoRhumatologie Moléculaire, plateforme GENOMAX, INSERM UMR_S 1109, Faculté de Médecine, Institut Thématique Interdisciplinaire (ITI) de Médecine de Précision de Strasbourg, Transplantex NG, Université de Strasbourg; 67085 Strasbourg, France.,Fédération Hospitalo-Universitaire (FHU) OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Centre de Recherche d'Immunologie et d'Hématologie; 67085, Strasbourg, France
| | - Alice Bernard
- Laboratoire d'ImmunoRhumatologie Moléculaire, plateforme GENOMAX, INSERM UMR_S 1109, Faculté de Médecine, Institut Thématique Interdisciplinaire (ITI) de Médecine de Précision de Strasbourg, Transplantex NG, Université de Strasbourg; 67085 Strasbourg, France.,Fédération Hospitalo-Universitaire (FHU) OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Centre de Recherche d'Immunologie et d'Hématologie; 67085, Strasbourg, France
| | - Ouria Tahar
- Service d'Immunologie Biologique, Plateau Technique de Biologie, Pôle de Biologie, Nouvel Hôpital Civil; 67091 Strasbourg, France.,Fédération Hospitalo-Universitaire (FHU) OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Centre de Recherche d'Immunologie et d'Hématologie; 67085, Strasbourg, France
| | - Sabrina Bibi-Triki
- Laboratoire d'ImmunoRhumatologie Moléculaire, plateforme GENOMAX, INSERM UMR_S 1109, Faculté de Médecine, Institut Thématique Interdisciplinaire (ITI) de Médecine de Précision de Strasbourg, Transplantex NG, Université de Strasbourg; 67085 Strasbourg, France.,Fédération Hospitalo-Universitaire (FHU) OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Centre de Recherche d'Immunologie et d'Hématologie; 67085, Strasbourg, France
| | - Haiguo Wu
- Genuity AI Research Institute, Genuity Science; Boston, MA 02114, USA
| | - Nicodème Paul
- Laboratoire d'ImmunoRhumatologie Moléculaire, plateforme GENOMAX, INSERM UMR_S 1109, Faculté de Médecine, Institut Thématique Interdisciplinaire (ITI) de Médecine de Précision de Strasbourg, Transplantex NG, Université de Strasbourg; 67085 Strasbourg, France.,Fédération Hospitalo-Universitaire (FHU) OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Centre de Recherche d'Immunologie et d'Hématologie; 67085, Strasbourg, France
| | - Sylvain Mayeur
- Laboratoire d'ImmunoRhumatologie Moléculaire, plateforme GENOMAX, INSERM UMR_S 1109, Faculté de Médecine, Institut Thématique Interdisciplinaire (ITI) de Médecine de Précision de Strasbourg, Transplantex NG, Université de Strasbourg; 67085 Strasbourg, France.,Fédération Hospitalo-Universitaire (FHU) OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Centre de Recherche d'Immunologie et d'Hématologie; 67085, Strasbourg, France
| | - Annabel Larnicol
- Laboratoire d'ImmunoRhumatologie Moléculaire, plateforme GENOMAX, INSERM UMR_S 1109, Faculté de Médecine, Institut Thématique Interdisciplinaire (ITI) de Médecine de Précision de Strasbourg, Transplantex NG, Université de Strasbourg; 67085 Strasbourg, France.,Fédération Hospitalo-Universitaire (FHU) OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Centre de Recherche d'Immunologie et d'Hématologie; 67085, Strasbourg, France
| | - Géraldine Laumond
- Laboratoire d'ImmunoRhumatologie Moléculaire, plateforme GENOMAX, INSERM UMR_S 1109, Faculté de Médecine, Institut Thématique Interdisciplinaire (ITI) de Médecine de Précision de Strasbourg, Transplantex NG, Université de Strasbourg; 67085 Strasbourg, France.,Fédération Hospitalo-Universitaire (FHU) OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Centre de Recherche d'Immunologie et d'Hématologie; 67085, Strasbourg, France
| | - Julia Frappier
- Laboratoire d'ImmunoRhumatologie Moléculaire, plateforme GENOMAX, INSERM UMR_S 1109, Faculté de Médecine, Institut Thématique Interdisciplinaire (ITI) de Médecine de Précision de Strasbourg, Transplantex NG, Université de Strasbourg; 67085 Strasbourg, France.,Fédération Hospitalo-Universitaire (FHU) OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Centre de Recherche d'Immunologie et d'Hématologie; 67085, Strasbourg, France
| | - Sylvie Schmidt
- Laboratoire d'ImmunoRhumatologie Moléculaire, plateforme GENOMAX, INSERM UMR_S 1109, Faculté de Médecine, Institut Thématique Interdisciplinaire (ITI) de Médecine de Précision de Strasbourg, Transplantex NG, Université de Strasbourg; 67085 Strasbourg, France.,Fédération Hospitalo-Universitaire (FHU) OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Centre de Recherche d'Immunologie et d'Hématologie; 67085, Strasbourg, France
| | - Antoine Hanauer
- Laboratoire d'ImmunoRhumatologie Moléculaire, plateforme GENOMAX, INSERM UMR_S 1109, Faculté de Médecine, Institut Thématique Interdisciplinaire (ITI) de Médecine de Précision de Strasbourg, Transplantex NG, Université de Strasbourg; 67085 Strasbourg, France.,Fédération Hospitalo-Universitaire (FHU) OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Centre de Recherche d'Immunologie et d'Hématologie; 67085, Strasbourg, France
| | - Cécile Macquin
- Laboratoire d'ImmunoRhumatologie Moléculaire, plateforme GENOMAX, INSERM UMR_S 1109, Faculté de Médecine, Institut Thématique Interdisciplinaire (ITI) de Médecine de Précision de Strasbourg, Transplantex NG, Université de Strasbourg; 67085 Strasbourg, France.,Fédération Hospitalo-Universitaire (FHU) OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Centre de Recherche d'Immunologie et d'Hématologie; 67085, Strasbourg, France
| | - Tristan Stemmelen
- Laboratoire d'ImmunoRhumatologie Moléculaire, plateforme GENOMAX, INSERM UMR_S 1109, Faculté de Médecine, Institut Thématique Interdisciplinaire (ITI) de Médecine de Précision de Strasbourg, Transplantex NG, Université de Strasbourg; 67085 Strasbourg, France.,Service d'Immunologie Biologique, Plateau Technique de Biologie, Pôle de Biologie, Nouvel Hôpital Civil; 67091 Strasbourg, France.,Fédération Hospitalo-Universitaire (FHU) OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Centre de Recherche d'Immunologie et d'Hématologie; 67085, Strasbourg, France
| | - Michael Simons
- Yale Cardiovascular Research Center, Departments of Medicine and Cell Biology, Yale University School of Medicine; New Haven, CT 06511, USA
| | - Xavier Mariette
- Department of Rheumatology, Hôpital Bicêtre, Assistance Publique-Hôpitaux de Paris; 94270 Paris, France.,Université Paris-Saclay, INSERM UMR_S 1184; 94270 Le Kremlin Bicêtre, France
| | - Olivier Hermine
- University of Paris, Imagine Institute; 75015 Paris, France.,Department of Hematology, INSERM UMR_S 1153, Imagine Institute, Necker Hospital, University of Paris, Assistance Publique-Hôpitaux de Paris, 75015 Paris, France
| | - Samira Fafi-Kremer
- Laboratoire d'ImmunoRhumatologie Moléculaire, plateforme GENOMAX, INSERM UMR_S 1109, Faculté de Médecine, Institut Thématique Interdisciplinaire (ITI) de Médecine de Précision de Strasbourg, Transplantex NG, Université de Strasbourg; 67085 Strasbourg, France.,Fédération Hospitalo-Universitaire (FHU) OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Centre de Recherche d'Immunologie et d'Hématologie; 67085, Strasbourg, France.,Department of Virology, Hôpitaux Universitaires de Strasbourg; 67091 Strasbourg, France
| | - Bernard Goichot
- Fédération Hospitalo-Universitaire (FHU) OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Centre de Recherche d'Immunologie et d'Hématologie; 67085, Strasbourg, France.,Service de Médecine Interne, Endocrinologie et Nutrition, Hôpital de Hautepierre, Hôpitaux Universitaires de Strasbourg; 67200 Strasbourg, France
| | - Bernard Drenou
- Département d'Hématologie, Groupe Hospitalier de la région Mulhouse Sud Alsace; 68100 Mulhouse, France
| | - Khaldoun Kuteifan
- Service de Réanimation Médicale, Groupe Hospitalier de la région Mulhouse Sud Alsace; 68100 Mulhouse, France
| | - Julien Pottecher
- Fédération Hospitalo-Universitaire (FHU) OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Centre de Recherche d'Immunologie et d'Hématologie; 67085, Strasbourg, France.,Service d'Anesthésie-Réanimation et Médecine Péri-Opératoire, Hôpital de Hautepierre, Hôpitaux Universitaires de Strasbourg; 67200 Strasbourg Cedex, France
| | - Paul-Michel Mertes
- Fédération Hospitalo-Universitaire (FHU) OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Centre de Recherche d'Immunologie et d'Hématologie; 67085, Strasbourg, France.,Service d'Anesthésie-Réanimation et Médecine Péri-Opératoire, Nouvel Hôpital Civil, Hôpitaux Universitaires de Strasbourg; 67000 Strasbourg, France
| | | | - M Javad Aman
- Integrated BioTherapeutics, Inc.; Rockville, MD 20850, USA
| | - Elisa Pin
- Division of Affinity Proteomics, Department of Protein Science, KTH Royal Institute of Technology, SciLifeLab; Stockholm, SE-171 21, Sweden
| | - Peter Nilsson
- Division of Affinity Proteomics, Department of Protein Science, KTH Royal Institute of Technology, SciLifeLab; Stockholm, SE-171 21, Sweden
| | | | | | | | - Francis Schneider
- Fédération Hospitalo-Universitaire (FHU) OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Centre de Recherche d'Immunologie et d'Hématologie; 67085, Strasbourg, France.,Service de Médecine Intensive-Réanimation, Hôpital de Hautepierre, Hôpitaux Universitaires de Strasbourg; Avenue Molière, 67200 Strasbourg, France
| | - Jean Sibilia
- Laboratoire d'ImmunoRhumatologie Moléculaire, plateforme GENOMAX, INSERM UMR_S 1109, Faculté de Médecine, Institut Thématique Interdisciplinaire (ITI) de Médecine de Précision de Strasbourg, Transplantex NG, Université de Strasbourg; 67085 Strasbourg, France.,Fédération Hospitalo-Universitaire (FHU) OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Centre de Recherche d'Immunologie et d'Hématologie; 67085, Strasbourg, France.,Service de Rhumatologie, Centre National de Référence des Maladies Auto-immunes Systémiques Rares Est Sud-Ouest, Hôpitaux Universitaires de Strasbourg; 67200 Strasbourg, France
| | - Pierre-Louis Tharaux
- INSERM (Institut de la Santé et de la Recherche Médicale), Université de Paris, Paris Cardiovascular Center-PARCC; 75015 Paris, France
| | - Jean-Laurent Casanova
- St Giles laboratory of human genetics of infectious diseases, Rockefeller Branch, The Rockefeller University; New York, NY 10065, USA.,Laboratory of human genetics of infectious diseases, Necker Branch, INSERM, Necker Hospital for Sick Children; 75015 Paris, France.,University of Paris, Imagine Institute; 75015 Paris, France.,Howard Hughes Medical Institute; New York, NY 10065, USA
| | - Yves Hansmann
- Fédération Hospitalo-Universitaire (FHU) OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Centre de Recherche d'Immunologie et d'Hématologie; 67085, Strasbourg, France.,Department of Infectious and Tropical Diseases, Hôpitaux Universitaires de Strasbourg; 67091 Strasbourg, France
| | - Daniel Lidar
- Center for Quantum Information Science and Technology, University of Southern California; Los Angeles, 90089-0484 CA, USA.,Department of Electrical and Computer Engineering, Department of Chemistry, Department of Physics and Astronomy, University of Southern California; Los Angeles, CA 90089, USA
| | - Mirjana Radosavljevic
- Laboratoire d'ImmunoRhumatologie Moléculaire, plateforme GENOMAX, INSERM UMR_S 1109, Faculté de Médecine, Institut Thématique Interdisciplinaire (ITI) de Médecine de Précision de Strasbourg, Transplantex NG, Université de Strasbourg; 67085 Strasbourg, France.,Service d'Immunologie Biologique, Plateau Technique de Biologie, Pôle de Biologie, Nouvel Hôpital Civil; 67091 Strasbourg, France.,Fédération Hospitalo-Universitaire (FHU) OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Centre de Recherche d'Immunologie et d'Hématologie; 67085, Strasbourg, France
| | - Jeffrey R Gulcher
- Genuity AI Research Institute, Genuity Science; Boston, MA 02114, USA
| | - Ferhat Meziani
- Fédération Hospitalo-Universitaire (FHU) OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Centre de Recherche d'Immunologie et d'Hématologie; 67085, Strasbourg, France.,Service de Médecine Intensive-Réanimation, Nouvel Hôpital Civil, Hôpitaux Universitaires de Strasbourg; 67091 Strasbourg, France
| | - Christiane Moog
- Laboratoire d'ImmunoRhumatologie Moléculaire, plateforme GENOMAX, INSERM UMR_S 1109, Faculté de Médecine, Institut Thématique Interdisciplinaire (ITI) de Médecine de Précision de Strasbourg, Transplantex NG, Université de Strasbourg; 67085 Strasbourg, France.,Fédération Hospitalo-Universitaire (FHU) OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Centre de Recherche d'Immunologie et d'Hématologie; 67085, Strasbourg, France
| | - Thomas W Chittenden
- Genuity AI Research Institute, Genuity Science; Boston, MA 02114, USA.,Division of Genetics and Genomics, Boston Children's Hospital, Harvard Medical School; Boston, MA 02115, USA
| | - Seiamak Bahram
- Laboratoire d'ImmunoRhumatologie Moléculaire, plateforme GENOMAX, INSERM UMR_S 1109, Faculté de Médecine, Institut Thématique Interdisciplinaire (ITI) de Médecine de Précision de Strasbourg, Transplantex NG, Université de Strasbourg; 67085 Strasbourg, France.,Service d'Immunologie Biologique, Plateau Technique de Biologie, Pôle de Biologie, Nouvel Hôpital Civil; 67091 Strasbourg, France.,Fédération Hospitalo-Universitaire (FHU) OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Centre de Recherche d'Immunologie et d'Hématologie; 67085, Strasbourg, France
| |
Collapse
|
218
|
Wang Q, Wang Y, Yang S, Lin C, Aliyu L, Chen Y, Parsons L, Tian Y, Jia H, Pekosz A, Betenbaugh MJ, Cipollo JF. A Linkage-specific Sialic Acid Labeling Strategy Reveals Different Site-specific Glycosylation Patterns in SARS-CoV-2 Spike Protein Produced in CHO and HEK Cell Substrates. Front Chem 2021; 9:735558. [PMID: 34631661 PMCID: PMC8497748 DOI: 10.3389/fchem.2021.735558] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 08/02/2021] [Indexed: 12/11/2022] Open
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus utilizes the extensively glycosylated spike (S) protein protruding from the viral envelope to bind to angiotensin-converting enzyme-related carboxypeptidase (ACE2) as its primary receptor to mediate host-cell entry. Currently, the main recombinant S protein production hosts are Chinese hamster ovary (CHO) and human embryonic kidney (HEK) cells. In this study, a recombinant S protein truncated at the transmembrane domain and engineered to express a C-terminal trimerization motif was transiently produced in CHO and HEK cell suspensions. To further evaluate the sialic acid linkages presenting on S protein, a two-step amidation process, employing dimethylamine and ammonium hydroxide reactions in a solid support system, was developed to differentially modify the sialic acid linkages on the glycans and glycopeptides from the S protein. The process also adds a charge to Asp and Glu which aids in ionization. We used MALDI-TOF and LC-MS/MS with electron-transfer/higher-energy collision dissociation (EThcD) fragmentation to determine global and site-specific N-linked glycosylation patterns. We identified 21 and 19 out of the 22 predicted N-glycosites of the SARS-CoV-2 S proteins produced in CHO and HEK, respectively. It was found that the N-glycosite at 1,158 position (N1158) and at 122, 282 and 1,158 positions (N122, N282 and N1158) were absent on S from CHO and HEK cells, respectively. The structural mapping of glycans of recombinant human S proteins reveals that CHO-Spike exhibits more complex and higher sialylation (α2,3-linked) content while HEK-Spike exhibits more high-mannose and a small amount of α2,3- and α2,6-linked sialic acids. The N74 site represents the most abundant glycosite on both spike proteins. The relatively higher amount of high-mannose abundant sites (N17, N234, N343, N616, N709, N717, N801, and N1134) on HEK-Spike suggests that glycan-shielding may differ among the two constructs. HEK-Spike can also provide different host immune system interaction profiles based on known immune system active lectins. Collectively, these data underscore the importance of characterizing the site-specific glycosylation of recombinant human spike proteins from HEK and CHO cells in order to better understand the impact of the production host on this complex and important protein used in research, diagnostics and vaccines.
Collapse
Affiliation(s)
- Qiong Wang
- Laboratory of Bacterial Polysaccharides, Division of Bacterial, Parasitic and Allergenic Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Baltimore, MD, United States
| | - Yan Wang
- Mass Spectrometry Facility, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, United States
| | - Shuang Yang
- Laboratory of Bacterial Polysaccharides, Division of Bacterial, Parasitic and Allergenic Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Baltimore, MD, United States.,Center for Clinical Mass Spectrometry, School of Pharmaceutical Sciences, Soochow University, Jiangsu, China
| | - Changyi Lin
- Facility for Biotechnology Resources, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, United States
| | - Lateef Aliyu
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, United States
| | - Yiqun Chen
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, United States
| | - Lisa Parsons
- Laboratory of Bacterial Polysaccharides, Division of Bacterial, Parasitic and Allergenic Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Baltimore, MD, United States
| | - Yuan Tian
- Laboratory of Bacterial Polysaccharides, Division of Bacterial, Parasitic and Allergenic Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Baltimore, MD, United States
| | - Hongpeng Jia
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Andrew Pekosz
- Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, United States
| | - Michael J Betenbaugh
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, United States
| | - John F Cipollo
- Laboratory of Bacterial Polysaccharides, Division of Bacterial, Parasitic and Allergenic Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Baltimore, MD, United States
| |
Collapse
|
219
|
Phospholipase Cγ2 regulates endocannabinoid and eicosanoid networks in innate immune cells. Proc Natl Acad Sci U S A 2021; 118:2112971118. [PMID: 34607960 DOI: 10.1073/pnas.2112971118] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/24/2021] [Indexed: 02/07/2023] Open
Abstract
Human genetic studies have pointed to a prominent role for innate immunity and lipid pathways in immunological and neurodegenerative disorders. Our understanding of the composition and function of immunomodulatory lipid networks in innate immune cells, however, remains incomplete. Here, we show that phospholipase Cγ2 (PLCγ2 or PLCG2)-mutations in which are associated with autoinflammatory disorders and Alzheimer's disease-serves as a principal source of diacylglycerol (DAG) pools that are converted into a cascade of bioactive endocannabinoid and eicosanoid lipids by DAG lipase (DAGL) and monoacylglycerol lipase (MGLL) enzymes in innate immune cells. We show that this lipid network is tonically stimulated by disease-relevant human mutations in PLCγ2, as well as Fc receptor activation in primary human and mouse macrophages. Genetic disruption of PLCγ2 in mouse microglia suppressed DAGL/MGLL-mediated endocannabinoid-eicosanoid cross-talk and also caused widespread transcriptional and proteomic changes, including the reorganization of immune-relevant lipid pathways reflected in reductions in DAGLB and elevations in PLA2G4A. Despite these changes, Plcg2 -/- mice showed generally normal proinflammatory cytokine and chemokine responses to lipopolysaccharide treatment, instead displaying a more restricted deficit in microglial activation that included impairments in prostaglandin production and CD68 expression. Our findings enhance the understanding of PLCγ2 function in innate immune cells, delineating a role in cross-talk with endocannabinoid/eicosanoid pathways and modulation of subsets of cellular responses to inflammatory stimuli.
Collapse
|
220
|
Burat B, Reynaerts A, Baiwir D, Fléron M, Eppe G, Leal T, Mazzucchelli G. Characterization of the Human Eccrine Sweat Proteome-A Focus on the Biological Variability of Individual Sweat Protein Profiles. Int J Mol Sci 2021; 22:ijms221910871. [PMID: 34639210 PMCID: PMC8509809 DOI: 10.3390/ijms221910871] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/04/2021] [Accepted: 10/04/2021] [Indexed: 12/17/2022] Open
Abstract
The potential of eccrine sweat as a bio-fluid of interest for diagnosis and personalized therapy has not yet been fully evaluated, due to the lack of in-depth sweat characterization studies. Thanks to recent developments in omics, together with the availability of accredited sweat collection methods, the analysis of human sweat may now be envisioned as a standardized, non-invasive test for individualized monitoring and personalized medicine. Here, we characterized individual sweat samples, collected from 28 healthy adult volunteers under the most standardized sampling methodology, by applying optimized shotgun proteomics. The thorough characterization of the sweat proteome allowed the identification of 983 unique proteins from which 344 were identified across all samples. Annotation-wise, the study of the sweat proteome unveiled the over-representation of newly addressed actin dynamics, oxidative stress and proteasome-related functions, in addition to well-described proteolysis and anti-microbial immunity. The sweat proteome composition correlated with the inter-individual variability of sweat secretion parameters. In addition, both gender-exclusive proteins and gender-specific protein abundances were highlighted, despite the high similarity between human female and male sweat proteomes. In conclusion, standardized sample collection coupled with optimized shotgun proteomics significantly improved the depth of sweat proteome coverage, far beyond previous similar studies. The identified proteins were involved in many diverse biological processes and molecular functions, indicating the potential of this bio-fluid as a valuable biological matrix for further studies. Addressing sweat variability, our results prove the proteomic profiling of sweat to be a promising bio-fluid analysis for individualized, non-invasive monitoring and personalized medicine.
Collapse
Affiliation(s)
- Bastien Burat
- Mass Spectrometry Laboratory, MolSys Research Unit, Liège Université, B-4000 Liège, Belgium;
- Correspondence: (B.B.); (G.M.); Tel.: +32-(0)-4-366-34-11; Fax: +32-(0)-4-366-43-8 (G.M.)
| | - Audrey Reynaerts
- Louvain Center for Toxicology and Applied Pharmacology (LTAP), Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain, B-1200 Brussels, Belgium; (A.R.); (T.L.)
| | - Dominique Baiwir
- GIGA Proteomics Facility, Liège Université, B-4000 Liège, Belgium; (D.B.); (M.F.)
| | - Maximilien Fléron
- GIGA Proteomics Facility, Liège Université, B-4000 Liège, Belgium; (D.B.); (M.F.)
| | - Gauthier Eppe
- Mass Spectrometry Laboratory, MolSys Research Unit, Liège Université, B-4000 Liège, Belgium;
| | - Teresinha Leal
- Louvain Center for Toxicology and Applied Pharmacology (LTAP), Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain, B-1200 Brussels, Belgium; (A.R.); (T.L.)
| | - Gabriel Mazzucchelli
- Mass Spectrometry Laboratory, MolSys Research Unit, Liège Université, B-4000 Liège, Belgium;
- Correspondence: (B.B.); (G.M.); Tel.: +32-(0)-4-366-34-11; Fax: +32-(0)-4-366-43-8 (G.M.)
| |
Collapse
|
221
|
McMillen JC, Gutierrez DB, Judd AM, Spraggins JM, Caprioli RM. Enhancement of Tryptic Peptide Signals from Tissue Sections Using MALDI IMS Postionization (MALDI-2). JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2021; 32:2583-2591. [PMID: 34515472 DOI: 10.1021/jasms.1c00213] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Matrix-assisted laser desorption/ionization imaging mass spectrometry (MALDI IMS) allows for highly multiplexed, unlabeled mapping of analytes from tissue sections. However, further work is needed to improve the sensitivity and depth of coverage for protein and peptide IMS. We demonstrate signal enhancement of proteolytic peptides from thin tissue sections of human kidney by conventional MALDI (MALDI-1) augmented using a second ionizing laser (termed MALDI-2). Proteins were digested in situ using trypsin prior to IMS analysis. For tentative identification of peptides and proteins, a tissue homogenate from the same organ used for IMS was analyzed by LC-MS/MS, and data are available via ProteomeXchange with identifier PXD023877. These identified proteins were then digested in silico to generate a database of theoretical peptides to then match to MALDI IMS data sets. Peptides were tentatively identified by matching the MALDI peak list to the database peptide list based on mass accuracy (5 ppm mass error). This resulted in 1337 ± 96 (n = 3) peptides and 2076 ± 362 (n = 3) unique peptides matched to IMS peaks from MALDI-1 and MALDI-2, respectively. Protein identifications requiring two or more peptides per protein resulted in 276 ± 20 proteins with MALDI-1 and 401 ± 60 with MALDI-2. These results demonstrate that MALDI-2 provides enhanced sensitivity for the spatial mapping of tryptic peptides and significantly increases the number of proteins identified in IMS experiments.
Collapse
Affiliation(s)
- Josiah C McMillen
- Department of Chemistry, Vanderbilt University, 7330 Stevenson Center, Station B 351822, Nashville, Tennessee 37235, United States
- Mass Spectrometry Research Center, Vanderbilt University, 465 21st Avenue S #9160, Nashville, Tennessee 37235, United States
| | - Danielle B Gutierrez
- Mass Spectrometry Research Center, Vanderbilt University, 465 21st Avenue S #9160, Nashville, Tennessee 37235, United States
- Department of Biochemistry, Vanderbilt University, 607 Light Hall, Nashville, Tennessee 37205, United States
| | - Audra M Judd
- Mass Spectrometry Research Center, Vanderbilt University, 465 21st Avenue S #9160, Nashville, Tennessee 37235, United States
| | - Jeffrey M Spraggins
- Department of Chemistry, Vanderbilt University, 7330 Stevenson Center, Station B 351822, Nashville, Tennessee 37235, United States
- Mass Spectrometry Research Center, Vanderbilt University, 465 21st Avenue S #9160, Nashville, Tennessee 37235, United States
- Department of Biochemistry, Vanderbilt University, 607 Light Hall, Nashville, Tennessee 37205, United States
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, 465 21st Avenue S #3218, Nashville, Tennessee 37205, United States
| | - Richard M Caprioli
- Department of Chemistry, Vanderbilt University, 7330 Stevenson Center, Station B 351822, Nashville, Tennessee 37235, United States
- Mass Spectrometry Research Center, Vanderbilt University, 465 21st Avenue S #9160, Nashville, Tennessee 37235, United States
- Department of Biochemistry, Vanderbilt University, 607 Light Hall, Nashville, Tennessee 37205, United States
- Department of Pharmacology, Vanderbilt University, 2220 Pierce Avenue, Nashville, Tennessee 37232, United States
- Department of Medicine, Vanderbilt University, 1161 21st Avenue S, Nashville, Tennessee 37232, United States
| |
Collapse
|
222
|
Hsu WH, Han DS, Ku WC, Chao YM, Chen CC, Lin YL. Metabolomic and proteomic characterization of sng and pain phenotypes in fibromyalgia. Eur J Pain 2021; 26:445-462. [PMID: 34608709 PMCID: PMC9298249 DOI: 10.1002/ejp.1871] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 09/16/2021] [Accepted: 10/03/2021] [Indexed: 12/11/2022]
Abstract
BACKGROUND Fibromyalgia (FM) is characterized by chronic widespread pain. Its pathophysiological mechanisms remain poorly understood, and effective diagnosis and treatments are lacking. This study aimed to identify significantly changed biosignatures in FM and propose a novel classification for FM based on pain and soreness (sng) symptoms. METHODS Urine and serum samples from 30 FM patients and 25 controls underwent metabolomic and proteomic profiling. RESULTS Compared with controls, FM patients showed significant differential expression of three metabolites in urine and five metabolites and eight proteins in serum. Of them, DETP, 4-guanidinobutanoic acid, SM(d18:1/18:0), PC(20:1(11Z)/18:0), S100A7, SERPINB3, galectin-7 and LYVE1 were first reported as potential biomarkers for FM. Furthermore, lactate, 2-methylmaleate and cotinine in urine and lactate, SM(d18:1/25:1), SM(d18:1/26:1) and prostaglandin D2 (PGD2) and PCYOX1, ITIH4, PFN1, LRG1, C8G, C8A, CP, CDH5 and DBH in serum could differentiate pain- (PG) and sng-dominant groups (SG). Lactate, 2-methylmaleate, cotinine, PCYOX1, ITIH4, PFN1 and DBH have a higher level in SG. SM(d18:1/25:1), SM(d18:1/26:1), PGD2, LRG1, C8G, C8A, CP and CDH5 in SG are lower than PG. The omics results indicated disordered free radical scavenging, and lipid and amino acid metabolism networks and resulting NF-κB-dependent cytokine generation in FM. Lactate level was altered simultaneously in urine and serum and significantly higher in sng-dominant patients than others. CONCLUSIONS In this study, we identified potential biomarkers from FM patients. The selected biomarkers could discriminate sng and pain phenotypes in FM patients. These results could help elucidate the underlying pathological mechanisms for more effective diagnosis and therapy for FM.
Collapse
Affiliation(s)
- Wei-Hsiang Hsu
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, China Medical University, Taichung, Taiwan
| | - Der-Sheng Han
- Department of Physical Medicine and Rehabilitation, National Taiwan University Hospital, Bei-Hu Branch, Taipei, Taiwan.,Community and Geriatric Medicine Research Center, National Taiwan University Hospital, Bei-Hu Branch, Taipei, Taiwan.,Department of Physical Medicine and Rehabilitation, National Taiwan University College of Medicine, Taipei, Taiwan.,Health Science and Wellness Center, National Taiwan University, Taipei, Taiwan
| | - Wei-Chi Ku
- School of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei, Taiwan
| | - Yen-Ming Chao
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, China Medical University, Taichung, Taiwan
| | - Chih-Cheng Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan.,Neuroscience Program of Academia Sinica, Academia Sinica, Taipei, Taiwan.,Taiwan Mouse Clinic, Biomedical Translation Research Center, Academia Sinica, Taipei, Taiwan
| | - Yun-Lian Lin
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, China Medical University, Taichung, Taiwan.,Department of Pharmacy, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
223
|
Xu X, Yin S, Ren Y, Hu C, Zhang A, Lin Y. Proteomics analysis reveals the correlation of programmed ROS-autophagy loop and dysregulated G1/S checkpoint with imatinib resistance in chronic myeloid leukemia cells. Proteomics 2021; 22:e2100094. [PMID: 34564948 DOI: 10.1002/pmic.202100094] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 08/23/2021] [Accepted: 09/01/2021] [Indexed: 11/07/2022]
Abstract
Although tyrosine kinase inhibitors (TKIs), including imatinib, have greatly improved clinical treatment of patients with chronic myeloid leukemia (CML), drug resistance remains a major obstacle. Studies on the mechanisms underlying imatinib resistance and other alternative drugs are urgently needed. Liquid chromatography tandem mass spectrometry was applied to investigate the differences in proteomics and phosphoproteomics between K562 and K562/G (imatinib resistant K562). Multiple bioinformatics analyses were performed to unveil the differential signal pathways. CCK-8 was used to detect cell proliferation. Flow cytometry was performed to analyze reactive oxygen species (ROS), cell cycle, and cell apoptosis. Western blotting and quantitative real-time reverse transcription-polymerase chain reaction (qRT-PCR) were used to observe the changes of ROS and autophagy associated with imatinib resistance in CML. Our results indicated that ROS-autophagy formed one negative feedback loop and was associated with imatinib resistance. Additionally, the limited-rate enzymes of serine synthesis pathway were escalated in K562/G, which could contribute to the increased cyclin-dependent kinases and cell proliferation index. According to phosphoproteomics data, K562/G cells exhibited abnormal phosphorylation of splicing signals. These results revealed that it could be one useful strategy to correct metabolism shift and oxidative stress, or moderately regulate autophagy. Future research should focus on the discovery of potential targets in ROS-autophagy loop.
Collapse
Affiliation(s)
- Xiucai Xu
- Department of Clinical Laboratory, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, People's Republic of China
| | - Shihong Yin
- Department of Clinical Laboratory, The Fourth Affiliated Hospital of Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Yingli Ren
- Department of Clinical Laboratory, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Chaojie Hu
- Department of Clinical Laboratory, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, People's Republic of China
| | - Aimei Zhang
- Department of Clinical Laboratory, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, People's Republic of China
| | - Ya Lin
- Wannan Medical College, Wuhu, Anhui, People's Republic of China
| |
Collapse
|
224
|
Bisnett BJ, Condon BM, Linhart NA, Lamb CH, Huynh DT, Bai J, Smith TJ, Hu J, Georgiou GR, Boyce M. Evidence for nutrient-dependent regulation of the COPII coat by O-GlcNAcylation. Glycobiology 2021; 31:1102-1120. [PMID: 34142147 PMCID: PMC8457363 DOI: 10.1093/glycob/cwab055] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 06/01/2021] [Accepted: 06/03/2021] [Indexed: 12/18/2022] Open
Abstract
O-linked β-N-acetylglucosamine (O-GlcNAc) is a dynamic form of intracellular glycosylation common in animals, plants and other organisms. O-GlcNAcylation is essential in mammalian cells and is dysregulated in myriad human diseases, such as cancer, neurodegeneration and metabolic syndrome. Despite this pathophysiological significance, key aspects of O-GlcNAc signaling remain incompletely understood, including its impact on fundamental cell biological processes. Here, we investigate the role of O-GlcNAcylation in the coat protein II complex (COPII), a system universally conserved in eukaryotes that mediates anterograde vesicle trafficking from the endoplasmic reticulum. We identify new O-GlcNAcylation sites on Sec24C, Sec24D and Sec31A, core components of the COPII system, and provide evidence for potential nutrient-sensitive pathway regulation through site-specific glycosylation. Our work suggests a new connection between metabolism and trafficking through the conduit of COPII protein O-GlcNAcylation.
Collapse
Affiliation(s)
- Brittany J Bisnett
- Department of Biochemistry, Duke University School of Medicine, Durham, NC 27710, USA
| | - Brett M Condon
- Department of Biochemistry, Duke University School of Medicine, Durham, NC 27710, USA
| | - Noah A Linhart
- Department of Biochemistry, Duke University School of Medicine, Durham, NC 27710, USA
| | - Caitlin H Lamb
- Department of Biochemistry, Duke University School of Medicine, Durham, NC 27710, USA
| | - Duc T Huynh
- Department of Biochemistry, Duke University School of Medicine, Durham, NC 27710, USA
| | - Jingyi Bai
- Department of Biochemistry, Duke University School of Medicine, Durham, NC 27710, USA
| | - Timothy J Smith
- Department of Biochemistry, Duke University School of Medicine, Durham, NC 27710, USA
| | - Jimin Hu
- Department of Biochemistry, Duke University School of Medicine, Durham, NC 27710, USA
| | - George R Georgiou
- Department of Biochemistry, Duke University School of Medicine, Durham, NC 27710, USA
| | - Michael Boyce
- Department of Biochemistry, Duke University School of Medicine, Durham, NC 27710, USA
| |
Collapse
|
225
|
Li X, Zhou J, Zhao W, Wen Q, Wang W, Peng H, Gao Y, Bouchonville KJ, Offer SM, Chan K, Wang Z, Li N, Gan H. Defining Proximity Proteomics of Histone Modifications by Antibody-mediated Protein A-APEX2 Labeling. GENOMICS PROTEOMICS & BIOINFORMATICS 2021; 20:87-100. [PMID: 34555496 PMCID: PMC9510856 DOI: 10.1016/j.gpb.2021.09.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/08/2021] [Accepted: 09/10/2021] [Indexed: 12/02/2022]
Abstract
Proximity labeling catalyzed by promiscuous enzymes, such as APEX2, has emerged as a powerful approach to characterize multiprotein complexes and protein–protein interactions. However, current methods depend on the expression of exogenous fusion proteins and cannot be applied to identify proteins surrounding post-translationally modified proteins. To address this limitation, we developed a new method to label proximal proteins of interest by antibody-mediated protein A-ascorbate peroxidase 2 (pA-APEX2) labeling (AMAPEX). In this method, a modified protein is bound in situ by a specific antibody, which then tethers a pA-APEX2 fusion protein. Activation of APEX2 labels the nearby proteins with biotin; the biotinylated proteins are then purified using streptavidin beads and identified by mass spectrometry. We demonstrated the utility of this approach by profiling the proximal proteins of histone modifications including H3K27me3, H3K9me3, H3K4me3, H4K5ac, and H4K12ac, as well as verifying the co-localization of these identified proteins with bait proteins by published ChIP-seq analysis and nucleosome immunoprecipitation. Overall, AMAPEX is an efficient method to identify proteins that are proximal to modified histones.
Collapse
Affiliation(s)
- Xinran Li
- Shenzhen Key Laboratory of Synthetic Genomics, Guangdong Provincial Key Laboratory of Synthetic Genomics, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Jiaqi Zhou
- Shenzhen Key Laboratory of Synthetic Genomics, Guangdong Provincial Key Laboratory of Synthetic Genomics, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Wenjuan Zhao
- Shenzhen Key Laboratory of Synthetic Genomics, Guangdong Provincial Key Laboratory of Synthetic Genomics, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Qing Wen
- Shenzhen Key Laboratory of Synthetic Genomics, Guangdong Provincial Key Laboratory of Synthetic Genomics, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Weijie Wang
- Shenzhen Key Laboratory of Synthetic Genomics, Guangdong Provincial Key Laboratory of Synthetic Genomics, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Huipai Peng
- Shenzhen Key Laboratory of Synthetic Genomics, Guangdong Provincial Key Laboratory of Synthetic Genomics, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Yuan Gao
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Kelly J Bouchonville
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA
| | - Steven M Offer
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA; Mayo Clinic College of Medicine, Rochester, MN 55905, USA; Mayo Clinic Cancer Center, Rochester, MN 55905, USA
| | - Kuiming Chan
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong Special Administrative Region 999077, China; Key Laboratory of Biochip Technology, Biotech and Health Centre, Shenzhen Research Institute of City University of Hong Kong, Shenzhen 518172, China
| | - Zhiquan Wang
- Mayo Clinic College of Medicine, Rochester, MN 55905, USA; Division of Hematology, Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA.
| | - Nan Li
- Shenzhen Key Laboratory of Synthetic Genomics, Guangdong Provincial Key Laboratory of Synthetic Genomics, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.
| | - Haiyun Gan
- Shenzhen Key Laboratory of Synthetic Genomics, Guangdong Provincial Key Laboratory of Synthetic Genomics, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.
| |
Collapse
|
226
|
Ali Mohammed MM, Pettersen VK, Nerland AH, Wiker HG, Bakken V. Label-free quantitative proteomic analysis of the oral bacteria Fusobacterium nucleatum and Porphyromonas gingivalis to identify protein features relevant in biofilm formation. Anaerobe 2021; 72:102449. [PMID: 34543761 DOI: 10.1016/j.anaerobe.2021.102449] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 07/24/2021] [Accepted: 09/14/2021] [Indexed: 11/28/2022]
Abstract
BACKGROUND The opportunistic pathogens Fusobacterium nucleatum and Porphyromonas gingivalis are Gram-negative bacteria associated with oral biofilm and periodontal disease. This study investigated interactions between F. nucleatum and P. gingivalis proteomes with the objective to identify proteins relevant in biofilm formation. METHODS We applied liquid chromatography-tandem mass spectrometry to determine the expressed proteome of F. nucleatum and P. gingivalis cells grown in biofilm or planktonic culture, and as mono- and dual-species models. The detected proteins were classified into functional categories and their label-free quantitative (LFQ) intensities statistically compared. RESULTS The proteomic analyses detected 1,322 F. nucleatum and 966 P. gingivalis proteins, including abundant virulence factors. Using univariate statistics, we identified significant changes between biofilm and planktonic culture (p-value ≤0.05) in 0,4% F. nucleatum, 7% P. gingivalis, and 14% of all proteins in the dual-species model. For both species, proteins involved in vitamin B2 (riboflavin) metabolism had significantly increased levels in biofilm. In both mono- and dual-species biofilms, P. gingivalis increased the production of proteins for translation, oxidation-reduction, and amino acid metabolism compared to planktonic cultures. However, when we compared LFQ intensities between mono- and dual-species, over 90% of the significantly changed P. gingivalis proteins had their levels reduced in biofilm and planktonic settings of the dual-species model. CONCLUSIONS The findings suggest that P. gingivalis reduces the production of multiple proteins because of the F. nucleatum presence. The results highlight the complex interactions of bacteria contributing to oral biofilms, which need to be considered in the design of prevention strategies.
Collapse
Affiliation(s)
| | | | - Audun H Nerland
- Department of Clinical Science, Faculty of Medicine, University of Bergen, Bergen, Norway.
| | - Harald G Wiker
- Department of Clinical Science, Faculty of Medicine, University of Bergen, Bergen, Norway.
| | - Vidar Bakken
- Department of Clinical Science, Faculty of Medicine, University of Bergen, Bergen, Norway.
| |
Collapse
|
227
|
Wang Q. Building Personalized Cancer Therapeutics through Multi-Omics Assays and Bacteriophage-Eukaryotic Cell Interactions. Int J Mol Sci 2021; 22:ijms22189712. [PMID: 34575870 PMCID: PMC8468737 DOI: 10.3390/ijms22189712] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 08/31/2021] [Accepted: 09/01/2021] [Indexed: 12/11/2022] Open
Abstract
Bacteriophage-eukaryotic cell interaction provides the biological foundation of Phage Display technology, which has been widely adopted in studies involving protein-protein and protein-peptide interactions, and it provides a direct link between the proteins and the DNA encoding them. Phage display has also facilitated the development of new therapeutic agents targeting personalized cancer mutations. Proteins encoded by mutant genes in cancers can be processed and presented on the tumor cell surface by human leukocyte antigen (HLA) molecules, and such mutant peptides are called Neoantigens. Neoantigens are naturally existing tumor markers presented on the cell surface. In clinical settings, the T-cell recognition of neoantigens is the foundation of cancer immunotherapeutics. This year, we utilized phage display to successfully develop the 1st antibody-based neoantigen targeting approach for next-generation personalized cancer therapeutics. In this article, we discussed the strategies for identifying neoantigens, followed by using phage display to create personalized cancer therapeutics-a complete pipeline for personalized cancer treatment.
Collapse
Affiliation(s)
- Qing Wang
- Complete Omics Inc., 1448 S. Rolling Rd, Baltimore, MD 21227, USA
| |
Collapse
|
228
|
Jha SG, Borowsky AT, Cole BJ, Fahlgren N, Farmer A, Huang SSC, Karia P, Libault M, Provart NJ, Rice SL, Saura-Sanchez M, Agarwal P, Ahkami AH, Anderton CR, Briggs SP, Brophy JAN, Denolf P, Di Costanzo LF, Exposito-Alonso M, Giacomello S, Gomez-Cano F, Kaufmann K, Ko DK, Kumar S, Malkovskiy AV, Nakayama N, Obata T, Otegui MS, Palfalvi G, Quezada-Rodríguez EH, Singh R, Uhrig RG, Waese J, Van Wijk K, Wright RC, Ehrhardt DW, Birnbaum KD, Rhee SY. Vision, challenges and opportunities for a Plant Cell Atlas. eLife 2021; 10:e66877. [PMID: 34491200 PMCID: PMC8423441 DOI: 10.7554/elife.66877] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 08/26/2021] [Indexed: 02/06/2023] Open
Abstract
With growing populations and pressing environmental problems, future economies will be increasingly plant-based. Now is the time to reimagine plant science as a critical component of fundamental science, agriculture, environmental stewardship, energy, technology and healthcare. This effort requires a conceptual and technological framework to identify and map all cell types, and to comprehensively annotate the localization and organization of molecules at cellular and tissue levels. This framework, called the Plant Cell Atlas (PCA), will be critical for understanding and engineering plant development, physiology and environmental responses. A workshop was convened to discuss the purpose and utility of such an initiative, resulting in a roadmap that acknowledges the current knowledge gaps and technical challenges, and underscores how the PCA initiative can help to overcome them.
Collapse
Affiliation(s)
- Suryatapa Ghosh Jha
- Department of Plant Biology, Carnegie Institution for ScienceStanfordUnited States
| | - Alexander T Borowsky
- Department of Botany and Plant Sciences, University of California, RiversideRiversideUnited States
| | - Benjamin J Cole
- Joint Genome Institute, Lawrence Berkeley National LaboratoryWalnut CreekUnited States
| | - Noah Fahlgren
- Donald Danforth Plant Science CenterSt. LouisUnited States
| | - Andrew Farmer
- National Center for Genome ResourcesSanta FeUnited States
| | | | - Purva Karia
- Department of Plant Biology, Carnegie Institution for ScienceStanfordUnited States
- Department of Cell and Systems Biology, University of TorontoTorontoCanada
| | - Marc Libault
- Department of Agronomy and Horticulture, University of Nebraska-LincolnLincolnUnited States
| | - Nicholas J Provart
- Department of Cell and Systems Biology and the Centre for the Analysis of Genome Evolution and Function, University of TorontoTorontoCanada
| | - Selena L Rice
- Department of Plant Biology, Carnegie Institution for ScienceStanfordUnited States
| | - Maite Saura-Sanchez
- Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura, Facultad de Agronomía, Universidad de Buenos AiresBuenos AiresArgentina
| | - Pinky Agarwal
- National Institute of Plant Genome ResearchNew DelhiIndia
| | - Amir H Ahkami
- Environmental Molecular Sciences Division, Pacific Northwest National LaboratoryRichlandUnited States
| | - Christopher R Anderton
- Environmental Molecular Sciences Division, Pacific Northwest National LaboratoryRichlandUnited States
| | - Steven P Briggs
- Department of Biological Sciences, University of California, San DiegoSan DiegoUnited States
| | | | | | - Luigi F Di Costanzo
- Department of Agricultural Sciences, University of Naples Federico IINapoliItaly
| | - Moises Exposito-Alonso
- Department of Plant Biology, Carnegie Institution for ScienceStanfordUnited States
- Department of Plant Biology, Carnegie Institution for ScienceTübingenGermany
| | | | - Fabio Gomez-Cano
- Department of Biochemistry and Molecular Biology, Michigan State UniversityEast LansingUnited States
| | - Kerstin Kaufmann
- Department for Plant Cell and Molecular Biology, Institute for Biology, Humboldt-Universitaet zu BerlinBerlinGermany
| | - Dae Kwan Ko
- Great Lakes Bioenergy Research Center, Michigan State UniversityEast LansingUnited States
| | - Sagar Kumar
- Department of Plant Breeding & Genetics, Mata Gujri College, Fatehgarh Sahib, Punjabi UniversityPatialaIndia
| | - Andrey V Malkovskiy
- Department of Plant Biology, Carnegie Institution for ScienceStanfordUnited States
| | - Naomi Nakayama
- Department of Bioengineering, Imperial College LondonLondonUnited Kingdom
| | - Toshihiro Obata
- Department of Biochemistry, University of Nebraska-LincolnMadisonUnited States
| | - Marisa S Otegui
- Department of Botany, University of Wisconsin-MadisonMadisonUnited States
| | - Gergo Palfalvi
- Division of Evolutionary Biology, National Institute for Basic BiologyOkazakiJapan
| | - Elsa H Quezada-Rodríguez
- Ciencias Agrogenómicas, Escuela Nacional de Estudios Superiores Unidad León, Universidad Nacional Autónoma de MéxicoLeónMexico
| | - Rajveer Singh
- School of Agricultural Biotechnology, Punjab Agricultural UniversityLudhianaIndia
| | - R Glen Uhrig
- Department of Science, University of AlbertaEdmontonCanada
| | - Jamie Waese
- Department of Cell and Systems Biology/Centre for the Analysis of Genome Evolution and Function, University of TorontoTorontoCanada
| | - Klaas Van Wijk
- School of Integrated Plant Science, Plant Biology Section, Cornell UniversityIthacaUnited States
| | - R Clay Wright
- Department of Biological Systems Engineering, Virginia TechBlacksburgUnited States
| | - David W Ehrhardt
- Department of Plant Biology, Carnegie Institution for ScienceStanfordUnited States
| | - Kenneth D Birnbaum
- Center for Genomics and Systems Biology, New York UniversityNew YorkUnited States
| | - Seung Y Rhee
- Department of Plant Biology, Carnegie Institution for ScienceStanfordUnited States
| |
Collapse
|
229
|
Kumar D, Rains A, Herranz-Pérez V, Lu Q, Shi X, Swaney DL, Stevenson E, Krogan NJ, Huang B, Westlake C, Garcia-Verdugo JM, Yoder BK, Reiter JF. A ciliopathy complex builds distal appendages to initiate ciliogenesis. J Cell Biol 2021; 220:e202011133. [PMID: 34241634 PMCID: PMC8276316 DOI: 10.1083/jcb.202011133] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 05/12/2021] [Accepted: 06/14/2021] [Indexed: 12/16/2022] Open
Abstract
Cells inherit two centrioles, the older of which is uniquely capable of generating a cilium. Using proteomics and superresolved imaging, we identify a module that we term DISCO (distal centriole complex). The DISCO components CEP90, MNR, and OFD1 underlie human ciliopathies. This complex localizes to both distal centrioles and centriolar satellites, proteinaceous granules surrounding centrioles. Cells and mice lacking CEP90 or MNR do not generate cilia, fail to assemble distal appendages, and do not transduce Hedgehog signals. Disrupting the satellite pools does not affect distal appendage assembly, indicating that it is the centriolar populations of MNR and CEP90 that are critical for ciliogenesis. CEP90 recruits the most proximal known distal appendage component, CEP83, to root distal appendage formation, an early step in ciliogenesis. In addition, MNR, but not CEP90, restricts centriolar length by recruiting OFD1. We conclude that DISCO acts at the distal centriole to support ciliogenesis by restraining centriole length and assembling distal appendages, defects in which cause human ciliopathies.
Collapse
Affiliation(s)
- Dhivya Kumar
- Department of Biochemistry and Biophysics, Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA
| | - Addison Rains
- Department of Cell, Developmental, and Integrative Biology, University of Alabama, Birmingham, AL
| | - Vicente Herranz-Pérez
- Laboratory of Comparative Neurobiology, Cavanilles Institute of Biodiversity and Evolutionary Biology, University of Valencia, Biomedical Research Networking Center on Neurodegenerative Diseases, Valencia, Spain
- Predepartamental Unit of Medicine, Faculty of Health Sciences, Universitat Jaume I, Castelló de la Plana, Spain
| | - Quanlong Lu
- Laboratory of Cellular and Developmental Signaling, Center for Cancer Research, National Cancer Institute Frederick, Frederick, MD
| | - Xiaoyu Shi
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA
| | - Danielle L. Swaney
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA
- California Institute for Quantitative Biosciences, Quantitative Biosciences Institute, University of California, San Francisco, San Francisco, CA
- J. David Gladstone Institutes, San Francisco, CA
| | - Erica Stevenson
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA
- California Institute for Quantitative Biosciences, Quantitative Biosciences Institute, University of California, San Francisco, San Francisco, CA
- J. David Gladstone Institutes, San Francisco, CA
| | - Nevan J. Krogan
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA
- California Institute for Quantitative Biosciences, Quantitative Biosciences Institute, University of California, San Francisco, San Francisco, CA
- J. David Gladstone Institutes, San Francisco, CA
| | - Bo Huang
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA
- Chan Zuckerberg Biohub, San Francisco, CA
| | - Christopher Westlake
- Laboratory of Cellular and Developmental Signaling, Center for Cancer Research, National Cancer Institute Frederick, Frederick, MD
| | - Jose Manuel Garcia-Verdugo
- Laboratory of Comparative Neurobiology, Cavanilles Institute of Biodiversity and Evolutionary Biology, University of Valencia, Biomedical Research Networking Center on Neurodegenerative Diseases, Valencia, Spain
| | - Bradley K. Yoder
- Department of Cell, Developmental, and Integrative Biology, University of Alabama, Birmingham, AL
| | - Jeremy F. Reiter
- Department of Biochemistry and Biophysics, Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA
- Chan Zuckerberg Biohub, San Francisco, CA
| |
Collapse
|
230
|
Hathazi D, Cox D, D'Amico A, Tasca G, Charlton R, Carlier RY, Baumann J, Kollipara L, Zahedi RP, Feldmann I, Deleuze JF, Torella A, Cohn R, Robinson E, Ricci F, Jungbluth H, Fattori F, Boland A, O’Connor E, Horvath R, Barresi R, Lochmüller H, Urtizberea A, Jacquemont ML, Nelson I, Swan L, Bonne G, Roos A. INPP5K and SIL1 associated pathologies with overlapping clinical phenotypes converge through dysregulation of PHGDH. Brain 2021; 144:2427-2442. [PMID: 33792664 PMCID: PMC8418339 DOI: 10.1093/brain/awab133] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 01/12/2021] [Accepted: 01/30/2021] [Indexed: 12/22/2022] Open
Abstract
Marinesco-Sjögren syndrome is a rare human disorder caused by biallelic mutations in SIL1 characterized by cataracts in infancy, myopathy and ataxia, symptoms which are also associated with a novel disorder caused by mutations in INPP5K. While these phenotypic similarities may suggest commonalties at a molecular level, an overlapping pathomechanism has not been established yet. In this study, we present six new INPP5K patients and expand the current mutational and phenotypical spectrum of the disease showing the clinical overlap between Marinesco-Sjögren syndrome and the INPP5K phenotype. We applied unbiased proteomic profiling on cells derived from Marinesco-Sjögren syndrome and INPP5K patients and identified alterations in d-3-PHGDH as a common molecular feature. d-3-PHGDH modulates the production of l-serine and mutations in this enzyme were previously associated with a neurological phenotype, which clinically overlaps with Marinesco-Sjögren syndrome and INPP5K disease. As l-serine administration represents a promising therapeutic strategy for d-3-PHGDH patients, we tested the effect of l-serine in generated sil1, phgdh and inpp5k a+b zebrafish models, which showed an improvement in their neuronal phenotype. Thus, our study defines a core phenotypical feature underpinning a key common molecular mechanism in three rare diseases and reveals a common and novel therapeutic target for these patients.
Collapse
Affiliation(s)
- Denisa Hathazi
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V, Dortmund, Germany
- Department of Clinical Neurosciences, School of Clinical Medicine, University of Cambridge, Cambridge, CB2 0PY, UK
| | - Dan Cox
- The John Walton Muscular Dystrophy Research Centre, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, International Centre for Life, Newcastle upon Tyne, NE1 3BZ, UK
| | - Adele D'Amico
- Laboratory of Molecular Medicine for Neuromuscular and Neurodegenerative Disorders, Bambino Gesù Children’s Hospital, 00146 Rome, Italy
| | - Giorgio Tasca
- Unità Operativa Complessa di Neurologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Richard Charlton
- The John Walton Muscular Dystrophy Research Centre, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, International Centre for Life, Newcastle upon Tyne, NE1 3BZ, UK
| | - Robert-Yves Carlier
- AP-HP, Service d’Imagerie Médicale, Raymond Poincaré Hospital, 92380 Garches, France
- Inserm U 1179, University of Versailles Saint-Quentin-en-Yvelines (UVSQ), 78180 Versailles, France
| | - Jennifer Baumann
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V, Dortmund, Germany
| | | | - René P Zahedi
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V, Dortmund, Germany
- Segal Cancer Proteomics Centre, Lady Davis Institute, Jewish General Hospital, McGill University, Montreal, QC H3T 1E2, Canada
| | - Ingo Feldmann
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V, Dortmund, Germany
| | - Jean-Francois Deleuze
- Centre National de Recherche en Génomique Humaine (CNRGH) (A.B., J.F.D.), Institut de Biologie François Jacob, CEA, Université Paris-Saclay, 91000 Evry, France
| | - Annalaura Torella
- Dipartimento di Medicina di Precisione, Università degli Studi della Campania “Luigi Vanvitelli”, 80138 Napoli, Italy
- Telethon Institute of Genetics and Medicine (TIGEM), 80078 Pozzuoli, Italy
| | - Ronald Cohn
- SickKids Research Institute, Department of Paediatrics and Molecular Genetics, University of Toronto, Toronto, ON M5G 0A4, Canada
| | - Emily Robinson
- Department of molecular Physiology and Cell Signalling, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, L69 7BE, UK
| | - Francesco Ricci
- Department of molecular Physiology and Cell Signalling, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, L69 7BE, UK
| | - Heinz Jungbluth
- Guy’s and St Thomas’ NHS Trust, King’s College London, London, SE1 7EH, UK
| | - Fabiana Fattori
- Laboratory of Molecular Medicine for Neuromuscular and Neurodegenerative Disorders, Bambino Gesù Children’s Hospital, 00146 Rome, Italy
| | - Anne Boland
- Centre National de Recherche en Génomique Humaine (CNRGH) (A.B., J.F.D.), Institut de Biologie François Jacob, CEA, Université Paris-Saclay, 91000 Evry, France
| | - Emily O’Connor
- Children’s Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, ON K1H 5B2, Canada
| | - Rita Horvath
- Department of Clinical Neurosciences, School of Clinical Medicine, University of Cambridge, Cambridge, CB2 0PY, UK
| | - Rita Barresi
- The John Walton Muscular Dystrophy Research Centre, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, International Centre for Life, Newcastle upon Tyne, NE1 3BZ, UK
| | - Hanns Lochmüller
- Children’s Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, ON K1H 5B2, Canada
- Department of Neuropediatrics and Muscle Disorders, Medical Center—University of Freiburg, Faculty of Medicine, 79095 Freiburg, Germany
| | | | - Marie-Line Jacquemont
- Unité de Génétique Médicale, Pôle Femme-Mère-Enfant, Groupe Hospitalier Sud Réunion, CHU de La Réunion, 97410 La Réunion, France
| | - Isabelle Nelson
- Sorbonne Université, Inserm UMRS974, Centre de Recherche en Myologie, Institut de Myologie, 75013 Paris, France
| | - Laura Swan
- Department of molecular Physiology and Cell Signalling, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, L69 7BE, UK
| | - Gisèle Bonne
- Sorbonne Université, Inserm UMRS974, Centre de Recherche en Myologie, Institut de Myologie, 75013 Paris, France
| | - Andreas Roos
- Children’s Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, ON K1H 5B2, Canada
- Department of Pediatric Neurology, University Hospital Essen, University of Duisburg-Essen, Faculty of Medicine, 45147 Essen, Germany
| |
Collapse
|
231
|
Chen P, Paschoal Sobreira TJ, Hall MC, Hazbun TR. Discovering the N-Terminal Methylome by Repurposing of Proteomic Datasets. J Proteome Res 2021; 20:4231-4247. [PMID: 34382793 PMCID: PMC11955830 DOI: 10.1021/acs.jproteome.1c00009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Protein α-N-methylation is an underexplored post-translational modification involving the covalent addition of methyl groups to the free α-amino group at protein N-termini. To systematically explore the extent of α-N-terminal methylation in yeast and humans, we reanalyzed publicly accessible proteomic datasets to identify N-terminal peptides contributing to the α-N-terminal methylome. This repurposing approach found evidence of α-N-methylation of established and novel protein substrates with canonical N-terminal motifs of established α-N-terminal methyltransferases, including human NTMT1/2 and yeast Tae1. NTMT1/2 are implicated in cancer and aging processes but have unclear and context-dependent roles. Moreover, α-N-methylation of noncanonical sequences was surprisingly prevalent, suggesting unappreciated and cryptic methylation events. Analysis of the amino acid frequencies of α-N-methylated peptides revealed a [S]1-[S/A/Q]2 pattern in yeast and [A/N/G]1-[A/S/V]2-[A/G]3 in humans, which differs from the canonical motif. We delineated the distribution of the two types of prevalent N-terminal modifications, acetylation and methylation, on amino acids at the first position. We tested three potentially methylated proteins and confirmed the α-N-terminal methylation of Hsp31 by additional proteomic analysis and immunoblotting. The other two proteins, Vma1 and Ssa3, were found to be predominantly acetylated, indicating that proteomic searching for α-N-terminal methylation requires careful consideration of mass spectra. This study demonstrates the feasibility of reprocessing proteomic data for global α-N-terminal methylome investigations.
Collapse
Affiliation(s)
- Panyue Chen
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907
| | | | - Mark C. Hall
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907
- Purdue Center for Cancer Research, Purdue University, West Lafayette, IN 47907
| | - Tony R. Hazbun
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907
- Purdue Center for Cancer Research, Purdue University, West Lafayette, IN 47907
| |
Collapse
|
232
|
Zacchini F, Heber MF, Arena R, Radczuk N, Jankowska U, Ptak GE. Perturbations of the hepatic proteome behind the onset of metabolic disorders in mouse offspring developed following embryo manipulation. Theriogenology 2021; 171:119-129. [PMID: 34052779 DOI: 10.1016/j.theriogenology.2021.05.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 05/19/2021] [Accepted: 05/20/2021] [Indexed: 11/26/2022]
Abstract
Assisted Reproductive Technologies (ART) allowed the births of >8 million babies worldwide. Even if ART children are healthy at birth, several studies reported that ART may cause changes in foetal programming, leading to an increased predisposition to metabolic disorders in adulthood. Previous studies on mouse model showed obesity, glucose intolerance, and hepatic lipid accumulation in ART offspring. A cumulative effect of the different components of ART protocol has been previously described, for example, in the occurrence of epigenetic defects. Here, we investigated whether there is a cumulative effect of embryo transfer (ET), in vitro culture (IVC) and blastomere biopsy (BB) in the onset of metabolic disorders in mouse offspring vs those naturally conceived (Control - CTR). To this aim, proteomic analysis was performed on the livers from adult mouse offspring developed following ET, IVC and BB vs CTR. We observed deregulated expression of proteins involved in lipid, carbohydrate, energy metabolisms and cellular processes in ART offspring. Moreover, we found increased body weight in all ART offspring while i) insulin resistance in BB male, ii) females glucose intolerance and high level of triglycerides and cholesterol in BB females and iii) low levels of interleukin-6 in BB, IVC and ET males. In conclusion, our study suggests that the use of various embryo manipulations influences the metabolic health of adult offspring, resulting in an increased predisposition to hepatic diseases and metabolic syndrome in a sex-specific manner.
Collapse
Affiliation(s)
- Federica Zacchini
- Małopolska Centre of Biotechnology at Jagiellonian University, Str Gronostajowa 7a, 30-348, Krakow, Poland; Institute of Genetics and Animal Biotechnology PAS, Str Postępu 36A, Jastrzębiec, 05-552, Magdalenka, Poland; Percuros BV, Str Zernikedreef 8, 2333 CL, Leiden, the Netherlands.
| | - Maria Florencia Heber
- Małopolska Centre of Biotechnology at Jagiellonian University, Str Gronostajowa 7a, 30-348, Krakow, Poland
| | - Roberta Arena
- Małopolska Centre of Biotechnology at Jagiellonian University, Str Gronostajowa 7a, 30-348, Krakow, Poland; Institute of Genetics and Animal Biotechnology PAS, Str Postępu 36A, Jastrzębiec, 05-552, Magdalenka, Poland
| | - Natalia Radczuk
- Małopolska Centre of Biotechnology at Jagiellonian University, Str Gronostajowa 7a, 30-348, Krakow, Poland
| | - Urszula Jankowska
- Małopolska Centre of Biotechnology at Jagiellonian University, Str Gronostajowa 7a, 30-348, Krakow, Poland
| | - Grażyna Ewa Ptak
- Małopolska Centre of Biotechnology at Jagiellonian University, Str Gronostajowa 7a, 30-348, Krakow, Poland; University of Teramo, Str R. Balzarini 1, 64100, Teramo, Italy
| |
Collapse
|
233
|
Approaching In Vivo Models of Pneumococcus-Host Interaction: Insights into Surface Proteins, Capsule Production, and Extracellular Vesicles. Pathogens 2021; 10:pathogens10091098. [PMID: 34578131 PMCID: PMC8471892 DOI: 10.3390/pathogens10091098] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 08/24/2021] [Accepted: 08/26/2021] [Indexed: 11/16/2022] Open
Abstract
Infections caused by the Gram-positive bacterium Streptococcus pneumoniae have become a major health problem worldwide because of their high morbidity and mortality rates, especially in developing countries. This microorganism colonizes the human upper respiratory tract and becomes pathogenic under certain circumstances, which are not well known. In the interaction with the host, bacterial surface structures and proteins play major roles. To gain knowledge into gradual changes and adaptive mechanisms that this pathogen undergoes from when it enters the host, we mimicked several in vivo situations representing interaction with epithelial and macrophage cells, as well as a condition of presence in blood. Then, we analyzed, in four pneumococcal strains, two major surface structures, the capsule and extracellular vesicles produced by the pneumococci, as well as surface proteins by proteomics, using the “shaving” approach, followed by LC-MS/MS. We found important differences in both surface ultrastructures and proteins among the culture conditions and strains used. Thus, this work provides insights into physiological adaptations of the pneumococcus when it interacts with the host, which may be useful for the design of strategies to combat infections caused by this pathogen.
Collapse
|
234
|
Gawin M, Kurczyk A, Niemiec J, Stanek-Widera A, Grela-Wojewoda A, Adamczyk A, Biskup-Frużyńska M, Polańska J, Widłak P. Intra-Tumor Heterogeneity Revealed by Mass Spectrometry Imaging Is Associated with the Prognosis of Breast Cancer. Cancers (Basel) 2021; 13:4349. [PMID: 34503159 PMCID: PMC8431441 DOI: 10.3390/cancers13174349] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/23/2021] [Accepted: 08/24/2021] [Indexed: 12/12/2022] Open
Abstract
Intra-tumor heterogeneity (ITH) results from the coexistence of genetically distinct cancer cell (sub)populations, their phenotypic plasticity, and the presence of heterotypic components of the tumor microenvironment (TME). Here we addressed the potential association between phenotypic ITH revealed by mass spectrometry imaging (MSI) and the prognosis of breast cancer. Tissue specimens resected from 59 patients treated radically due to the locally advanced HER2-positive invasive ductal carcinoma were included in the study. After the on-tissue trypsin digestion of cellular proteins, peptide maps of all cancer regions (about 380,000 spectra in total) were segmented by an unsupervised approach to reveal their intrinsic heterogeneity. A high degree of similarity between spectra was observed, which indicated the relative homogeneity of cancer regions. However, when the number and diversity of the detected clusters of spectra were analyzed, differences between patient groups were observed. It is noteworthy that a higher degree of heterogeneity was found in tumors from patients who remained disease-free during a 5-year follow-up (n = 38) compared to tumors from patients with progressive disease (distant metastases detected during the follow-up, n = 21). Interestingly, such differences were not observed between patients with a different status of regional lymph nodes, cancer grade, or expression of estrogen receptor at the time of the primary treatment. Subsequently, spectral components with different abundance in cancer regions were detected in patients with different outcomes, and their hypothetical identity was established by assignment to measured masses of tryptic peptides identified in corresponding tissue lysates. Such differentiating components were associated with proteins involved in immune regulation and hemostasis. Further, a positive correlation between the level of tumor-infiltrating lymphocytes and heterogeneity revealed by MSI was observed. We postulate that a higher heterogeneity of tumors with a better prognosis could reflect the presence of heterotypic components including infiltrating immune cells, that facilitated the response to treatment.
Collapse
Affiliation(s)
- Marta Gawin
- Maria Skłodowska-Curie National Research Institute of Oncology, Gliwice Branch, 44-102 Gliwice, Poland; (M.G.); (A.K.); (A.S.-W.); (M.B.-F.)
| | - Agata Kurczyk
- Maria Skłodowska-Curie National Research Institute of Oncology, Gliwice Branch, 44-102 Gliwice, Poland; (M.G.); (A.K.); (A.S.-W.); (M.B.-F.)
| | - Joanna Niemiec
- Maria Skłodowska-Curie National Research Institute of Oncology, Kraków Branch, 31-115 Kraków, Poland; (J.N.); (A.G.-W.); (A.A.)
- Medical College of Rzeszow University, 35-959 Rzeszów, Poland
| | - Agata Stanek-Widera
- Maria Skłodowska-Curie National Research Institute of Oncology, Gliwice Branch, 44-102 Gliwice, Poland; (M.G.); (A.K.); (A.S.-W.); (M.B.-F.)
- Faculty of Medicine, University of Technology in Katowice, 40-555 Katowice, Poland
| | - Aleksandra Grela-Wojewoda
- Maria Skłodowska-Curie National Research Institute of Oncology, Kraków Branch, 31-115 Kraków, Poland; (J.N.); (A.G.-W.); (A.A.)
| | - Agnieszka Adamczyk
- Maria Skłodowska-Curie National Research Institute of Oncology, Kraków Branch, 31-115 Kraków, Poland; (J.N.); (A.G.-W.); (A.A.)
| | - Magdalena Biskup-Frużyńska
- Maria Skłodowska-Curie National Research Institute of Oncology, Gliwice Branch, 44-102 Gliwice, Poland; (M.G.); (A.K.); (A.S.-W.); (M.B.-F.)
| | | | - Piotr Widłak
- Maria Skłodowska-Curie National Research Institute of Oncology, Gliwice Branch, 44-102 Gliwice, Poland; (M.G.); (A.K.); (A.S.-W.); (M.B.-F.)
| |
Collapse
|
235
|
Combination of Antibody Arrays to Functionally Characterize Dark Proteins in Human Olfactory Neuroepithelial Cells. Methods Mol Biol 2021. [PMID: 34115363 DOI: 10.1007/978-1-0716-1562-1_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
The completion and annotation of the human proteome require the availability of information related to protein function. Currently, more than 1800 human genes constitute the "dark proteome," which include missing proteins, uncharacterized human genes validated at protein level, smORFs, proteins from lncRNAs, or any uncharacterized transcripts. During the last years, different experimental workflows based on multi-omics analyses, bioinformatics, and in vitro and in vivo studies have been promoted by the Human Proteome Project Consortium to enhance the annotation of dark proteins. In this chapter, we describe a method that utilizes recombinant proteins and antibody arrays to establish a straightforward methodology in order to rapidly characterize potential functional features of dark proteins associated to intracellular signaling dynamics and extracellular immune response in human cell cultures. Further validating the method, this workflow was applied to probe changes in the activation patterns of kinases and transcription factors as well as in cytokine production modulated by the dark C1orf128 (PITHD1) protein in human olfactory neuroepithelial cells.
Collapse
|
236
|
Merli ML, Padgett-Pagliai KA, Cuaycal AE, Garcia L, Marano MR, Lorca GL, Gonzalez CF. ' Candidatus Liberibacter asiaticus' Multimeric LotP Mediates Citrus sinensis Defense Response Activation. Front Microbiol 2021; 12:661547. [PMID: 34421834 PMCID: PMC8371691 DOI: 10.3389/fmicb.2021.661547] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 07/06/2021] [Indexed: 11/13/2022] Open
Abstract
‘Candidatus Liberibacter asiaticus’ is known as the most pathogenic organism associated with citrus greening disease. Since its publicized emergence in Florida in 2005, ‘Ca. L. asiaticus’ remains unculturable. Currently, a limited number of potential disease effectors have been identified through in silico analysis. Therefore, these potential effectors remain poorly characterized and do not fully explain the complexity of symptoms observed in citrus trees infected with ‘Ca. L. asiaticus.’ LotP has been identified as a potential effector and have been partially characterized. This protein retains structural homology to the substrate binding domain of the Lon protease. LotP interacts with chaperones like GroEL, Hsp40, DnaJ, and ClpX and may exercise its biological role through interactions with different proteins involved in proteostasis networks. Here, we evaluate the interactome of LotP—revealing a new protein–protein interaction target (Lon-serine protease) and its effect on citrus plant tissue integrity. We found that via protein–protein interactions, LotP can enhance Lon protease activity, increasing the degradation rate of its specific targets. Infiltration of purified LotP strained citrus plant tissue causing photoinhibition and chlorosis after several days. Proteomics analysis of LotP tissues recovering after the infiltration revealed a large abundance of plant proteins associated with the stabilization and processing of mRNA transcripts, a subset of important transcription factors; and pathways associated with innate plant defense were highly expressed. Furthermore, interactions and substrate binding module of LotP suggest potential interactions with plant proteins, most likely proteases.
Collapse
Affiliation(s)
- Marcelo L Merli
- Department of Microbiology and Cell Science, Genetics Institute, Institute of Food and Agricultural Science, University of Florida, Gainesville, FL, United States
| | - Kaylie A Padgett-Pagliai
- Department of Microbiology and Cell Science, Genetics Institute, Institute of Food and Agricultural Science, University of Florida, Gainesville, FL, United States
| | - Alexandra E Cuaycal
- Department of Microbiology and Cell Science, Genetics Institute, Institute of Food and Agricultural Science, University of Florida, Gainesville, FL, United States
| | - Lucila Garcia
- Instituto de Biología Molecular y Celular de Rosario (IBR), Consejo Nacional de Investigaciones Científicas y Tecnológicas, Rosario, Argentina
| | - Maria Rosa Marano
- Instituto de Biología Molecular y Celular de Rosario (IBR), Consejo Nacional de Investigaciones Científicas y Tecnológicas, Rosario, Argentina
| | - Graciela L Lorca
- Department of Microbiology and Cell Science, Genetics Institute, Institute of Food and Agricultural Science, University of Florida, Gainesville, FL, United States
| | - Claudio F Gonzalez
- Department of Microbiology and Cell Science, Genetics Institute, Institute of Food and Agricultural Science, University of Florida, Gainesville, FL, United States
| |
Collapse
|
237
|
Ősz Á, Lánczky A, Győrffy B. Survival analysis in breast cancer using proteomic data from four independent datasets. Sci Rep 2021; 11:16787. [PMID: 34408238 PMCID: PMC8373859 DOI: 10.1038/s41598-021-96340-5] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 07/28/2021] [Indexed: 11/18/2022] Open
Abstract
Breast cancer clinical treatment selection is based on the immunohistochemical determination of four protein biomarkers: ESR1, PGR, HER2, and MKI67. Our aim was to correlate immunohistochemical results to proteome-level technologies in measuring the expression of these markers. We also aimed to integrate available proteome-level breast cancer datasets to identify and validate new prognostic biomarker candidates. We searched studies involving breast cancer patient cohorts with published survival and proteomic information. Immunohistochemistry and proteomic technologies were compared using the Mann-Whitney test. Receiver operating characteristics (ROC) curves were generated to validate discriminative power. Cox regression and Kaplan-Meier survival analysis were calculated to assess prognostic power. False Discovery Rate was computed to correct for multiple hypothesis testing. We established a database integrating protein expression data and survival information from four independent cohorts for 1229 breast cancer patients. In all four studies combined, a total of 7342 unique proteins were identified, and 1417 of these were identified in at least three datasets. ESR1, PGR, and HER2 protein expression levels determined by RPPA or LC-MS/MS methods showed a significant correlation with the levels determined by immunohistochemistry (p < 0.0001). PGR and ESR1 levels showed a moderate correlation (correlation coefficient = 0.17, p = 0.0399). An additional panel of candidate proteins, including apoptosis-related proteins (BCL2,), adhesion markers (CDH1, CLDN3, CLDN7) and basal markers (cytokeratins), were validated as prognostic biomarkers. Finally, we expanded our previously established web tool designed to validate survival-associated biomarkers by including the proteomic datasets analyzed in this study ( https://kmplot.com/ ). In summary, large proteomic studies now provide sufficient data enabling the validation and ranking of potential protein biomarkers.
Collapse
Affiliation(s)
- Ágnes Ősz
- Department of Bioinformatics, Semmelweis University, Tűzoltó u. 7-9, 1094, Budapest, Hungary
- TTK Momentum Cancer Biomarker Research Group, Institute of Enzymology, 1117, Budapest, Hungary
| | - András Lánczky
- Department of Bioinformatics, Semmelweis University, Tűzoltó u. 7-9, 1094, Budapest, Hungary
- TTK Momentum Cancer Biomarker Research Group, Institute of Enzymology, 1117, Budapest, Hungary
| | - Balázs Győrffy
- Department of Bioinformatics, Semmelweis University, Tűzoltó u. 7-9, 1094, Budapest, Hungary.
- TTK Momentum Cancer Biomarker Research Group, Institute of Enzymology, 1117, Budapest, Hungary.
- 2nd Department of Pediatrics, Semmelweis University, 1094, Budapest, Hungary.
| |
Collapse
|
238
|
Moradi A, Dai S, Wong EOY, Zhu G, Yu F, Lam HM, Wang Z, Burlingame A, Lin C, Afsharifar A, Yu W, Wang T, Li N. Isotopically Dimethyl Labeling-Based Quantitative Proteomic Analysis of Phosphoproteomes of Soybean Cultivars. Biomolecules 2021; 11:1218. [PMID: 34439883 PMCID: PMC8393417 DOI: 10.3390/biom11081218] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 08/05/2021] [Accepted: 08/06/2021] [Indexed: 12/29/2022] Open
Abstract
Isotopically dimethyl labeling was applied in a quantitative post-translational modification (PTM) proteomic study of phosphoproteomic changes in the drought responses of two contrasting soybean cultivars. A total of 9457 phosphopeptides were identified subsequently, corresponding to 4571 phosphoprotein groups and 3889 leading phosphoproteins, which contained nine kinase families consisting of 279 kinases. These phosphoproteins contained a total of 8087 phosphosites, 6106 of which were newly identified and constituted 54% of the current soybean phosphosite repository. These phosphosites were converted into the highly conserved kinase docking sites by bioinformatics analysis, which predicted six kinase families that matched with those newly found nine kinase families. The overly post-translationally modified proteins (OPP) occupies 2.1% of these leading phosphoproteins. Most of these OPPs are photoreceptors, mRNA-, histone-, and phospholipid-binding proteins, as well as protein kinase/phosphatases. The subgroup population distribution of phosphoproteins over the number of phosphosites of phosphoproteins follows the exponential decay law, Y = 4.13e-0.098X - 0.04. Out of 218 significantly regulated unique phosphopeptide groups, 188 phosphoproteins were regulated by the drought-tolerant cultivar under the water loss condition. These significantly regulated phosphoproteins (SRP) are mainly enriched in the biological functions of water transport and deprivation, methionine metabolic processes, photosynthesis/light reaction, and response to cadmium ion, osmotic stress, and ABA response. Seventeen and 15 SRPs are protein kinases/phosphatases and transcription factors, respectively. Bioinformatics analysis again revealed that three members of the calcium dependent protein kinase family (CAMK family), GmSRK2I, GmCIPK25, and GmAKINβ1 kinases, constitute a phosphor-relay-mediated signal transduction network, regulating ion channel activities and many nuclear events in this drought-tolerant cultivar, which presumably contributes to the development of the soybean drought tolerance under water deprivation process.
Collapse
Affiliation(s)
- Atieh Moradi
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong, China; (A.M.); (E.O.Y.W.); (G.Z.)
- Institute of Biotechnology, School of Agriculture, Shiraz University, Shiraz 71946-84471, Iran
| | - Shuaijian Dai
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Hong Kong, China;
| | - Emily Oi Ying Wong
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong, China; (A.M.); (E.O.Y.W.); (G.Z.)
| | - Guang Zhu
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong, China; (A.M.); (E.O.Y.W.); (G.Z.)
| | - Fengchao Yu
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Hong Kong, China;
| | - Hon-Ming Lam
- Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China;
| | - Zhiyong Wang
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA 94305, USA;
| | - Al Burlingame
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94143, USA;
| | - Chengtao Lin
- Department of Molecular, Cell & Developmental Biology, University of California, Los Angeles, CA 90095, USA;
| | - Alireza Afsharifar
- Plant Virology Research Centre, School of Agriculture, Shiraz University, Shiraz 71946-84471, Iran;
| | - Weichuan Yu
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Hong Kong, China;
| | - Tingliang Wang
- Tsinghua-Peking Joint Centre for Life Sciences, Centre for Structural Biology, School of Life Sciences and School of Medicine, Tsinghua University, Beijing 100084, China
| | - Ning Li
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong, China; (A.M.); (E.O.Y.W.); (G.Z.)
- The HKUST Shenzhen Research Institut, Shenzhen 518057, China
| |
Collapse
|
239
|
Leitão I, Leclercq CC, Ribeiro DM, Renaut J, Almeida AM, Martins LL, Mourato MP. Stress response of lettuce (Lactuca sativa) to environmental contamination with selected pharmaceuticals: A proteomic study. J Proteomics 2021; 245:104291. [PMID: 34089899 DOI: 10.1016/j.jprot.2021.104291] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 04/29/2021] [Accepted: 05/24/2021] [Indexed: 11/19/2022]
Abstract
Pharmaceutical compounds have been found in rivers and treated wastewaters. They often contaminate irrigation waters and consequently accumulate in edible vegetables, causing changes in plants metabolism. The main objective of this work is to understand how lettuce plants cope with the contamination from three selected pharmaceuticals using a label free proteomic analysis. A lettuce hydroponic culture, grown for 36 days, was exposed to metformin, acetaminophen and carbamazepine (at 1 mg/L), during 8 days, after which roots and leaves were sampled and analysed using a liquid chromatography-mass spectrometry proteomics-based approach. In roots, a total of 612 proteins showed differentially accumulation while in leaves 237 proteins were identified with significant differences over controls. Carbamazepine was the contaminant that most affected protein abundance in roots, while in leaves the highest number of differentially accumulated proteins was observed for acetaminophen. In roots under carbamazepine, stress related protein species such as catalase, superoxide dismutase and peroxidases presented higher abundance. Ascorbate peroxidase increased in roots under metformin. Cell respiration protein species were affected by the presence of the three pharmaceuticals suggesting possible dysregulation of the Krebs cycle. Acetaminophen caused the main differences in respiration pathways, with more emphasis in leaves. Lettuce plants revealed different tolerance levels when contaminants were compared, being more tolerant to metformin presence and less tolerant to carbamazepine. SIGNIFICANCE: The significant increase of emerging contaminants in ecosystems makes essential to understand how these compounds may affect the metabolism of different organisms. Our study contributes with a detailed approach of the main interactions that may occur in plant metabolism when subjected to the stress induced by three different pharmaceuticals (acetaminophen, carbamazepine and metformin).
Collapse
Affiliation(s)
- Inês Leitão
- LEAF - Linking Landscape, Environment, Agriculture and Food, Instituto Superior de Agronomia, Universidade de Lisboa, 1349-017 Lisboa, Portugal.
| | - Céline C Leclercq
- LIST - Luxembourg Institute of Science and Technology Green Tech Platform, Environmental Research and Innovation Department (ERIN), L-4422 Belvaux, Luxembourg
| | - David M Ribeiro
- LEAF - Linking Landscape, Environment, Agriculture and Food, Instituto Superior de Agronomia, Universidade de Lisboa, 1349-017 Lisboa, Portugal
| | - Jenny Renaut
- LIST - Luxembourg Institute of Science and Technology Green Tech Platform, Environmental Research and Innovation Department (ERIN), L-4422 Belvaux, Luxembourg
| | - André M Almeida
- LEAF - Linking Landscape, Environment, Agriculture and Food, Instituto Superior de Agronomia, Universidade de Lisboa, 1349-017 Lisboa, Portugal
| | - Luisa L Martins
- LEAF - Linking Landscape, Environment, Agriculture and Food, Instituto Superior de Agronomia, Universidade de Lisboa, 1349-017 Lisboa, Portugal
| | - Miguel P Mourato
- LEAF - Linking Landscape, Environment, Agriculture and Food, Instituto Superior de Agronomia, Universidade de Lisboa, 1349-017 Lisboa, Portugal
| |
Collapse
|
240
|
Abstract
Interpreting the effects of genetic variants is key to understanding individual susceptibility to disease and designing personalized therapeutic approaches. Modern experimental technologies are enabling the generation of massive compendia of human genome sequence data and associated molecular and phenotypic traits, together with genome-scale expression, epigenomics and other functional genomic data. Integrative computational models can leverage these data to understand variant impact, elucidate the effect of dysregulated genes on biological pathways in specific disease and tissue contexts, and interpret disease risk beyond what is feasible with experiments alone. In this Review, we discuss recent developments in machine learning algorithms for genome interpretation and for integrative molecular-level modelling of cells, tissues and organs relevant to disease. More specifically, we highlight existing methods and key challenges and opportunities in identifying specific disease-causing genetic variants and linking them to molecular pathways and, ultimately, to disease phenotypes.
Collapse
|
241
|
Martinez Gomez L, Pozo F, Walsh TA, Abascal F, Tress ML. The clinical importance of tandem exon duplication-derived substitutions. Nucleic Acids Res 2021; 49:8232-8246. [PMID: 34302486 PMCID: PMC8373072 DOI: 10.1093/nar/gkab623] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 07/21/2021] [Indexed: 01/04/2023] Open
Abstract
Most coding genes in the human genome are annotated with multiple alternative transcripts. However, clear evidence for the functional relevance of the protein isoforms produced by these alternative transcripts is often hard to find. Alternative isoforms generated from tandem exon duplication-derived substitutions are an exception. These splice events are rare, but have important functional consequences. Here, we have catalogued the 236 tandem exon duplication-derived substitutions annotated in the GENCODE human reference set. We find that more than 90% of the events have a last common ancestor in teleost fish, so are at least 425 million years old, and twenty-one can be traced back to the Bilateria clade. Alternative isoforms generated from tandem exon duplication-derived substitutions also have significantly more clinical impact than other alternative isoforms. Tandem exon duplication-derived substitutions have >25 times as many pathogenic and likely pathogenic mutations as other alternative events. Tandem exon duplication-derived substitutions appear to have vital functional roles in the cell and may have played a prominent part in metazoan evolution.
Collapse
Affiliation(s)
- Laura Martinez Gomez
- Bioinformatics Unit, Spanish National Cancer Research Centre (CNIO), C. Melchor Fernandez Almagro, 3, 28029 Madrid, Spain
| | - Fernando Pozo
- Bioinformatics Unit, Spanish National Cancer Research Centre (CNIO), C. Melchor Fernandez Almagro, 3, 28029 Madrid, Spain
| | - Thomas A Walsh
- Bioinformatics Unit, Spanish National Cancer Research Centre (CNIO), C. Melchor Fernandez Almagro, 3, 28029 Madrid, Spain.,Eukaryotic Annotation Team, EMBL-EBI, Wellcome Genome Campus, Hinxton, Cambridgeshire CB10 1SA. UK
| | - Federico Abascal
- Somatic Evolution Group, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire CB10 1SA, UK
| | - Michael L Tress
- Bioinformatics Unit, Spanish National Cancer Research Centre (CNIO), C. Melchor Fernandez Almagro, 3, 28029 Madrid, Spain
| |
Collapse
|
242
|
Wang S, Zhong Y, Cheng J, Yang H. EnrichVisBox: A Versatile and Powerful Web Toolbox for Visualizing Complex Functional Enrichment Results of Omics Data. J Comput Biol 2021; 28:922-930. [PMID: 34271847 DOI: 10.1089/cmb.2020.0564] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Efficient visualization helps researchers obtain valuable mechanistic insights and present interesting results with regard to the functional enrichment analysis of omics data. However, the functions of existing published tools used to implement relevant visualization are neither sufficiently comprehensive nor easily accessible. Most of these tools require users to have professional programming skills. This study alleviates this issue by proposing EnrichVisBox, a web application developed for integrative and versatile data visualization, including bubble plots, UpSet plots, polar bar plots, rectangle plots, ridgeline plots, network plots, and variant chord plots. Specifically, scientists can use these insightful plots to conveniently present functional enrichment analysis results of omics data with a simple mouse click through a user-friendly interface.
Collapse
Affiliation(s)
- Shisheng Wang
- Frontiers Science Center for Disease-Related Molecular Network, Institutes for Systems Genetics, Key Lab of Transplant Engineering and Immunology, MOH, West China Hospital, Sichuan University, Chengdu, China
| | - Yi Zhong
- Frontiers Science Center for Disease-Related Molecular Network, Institutes for Systems Genetics, Key Lab of Transplant Engineering and Immunology, MOH, West China Hospital, Sichuan University, Chengdu, China
| | - Jingqiu Cheng
- Frontiers Science Center for Disease-Related Molecular Network, Institutes for Systems Genetics, Key Lab of Transplant Engineering and Immunology, MOH, West China Hospital, Sichuan University, Chengdu, China
| | - Hao Yang
- Frontiers Science Center for Disease-Related Molecular Network, Institutes for Systems Genetics, Key Lab of Transplant Engineering and Immunology, MOH, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
243
|
Lewandowska AE, Fel A, Thiel M, Czaplewska P, Łukaszuk K, Wiśniewski JR, Ołdziej S. Compatibility of Distinct Label-Free Proteomic Workflows in Absolute Quantification of Proteins Linked to the Oocyte Quality in Human Follicular Fluid. Int J Mol Sci 2021; 22:7415. [PMID: 34299044 PMCID: PMC8304916 DOI: 10.3390/ijms22147415] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/07/2021] [Accepted: 07/08/2021] [Indexed: 01/02/2023] Open
Abstract
We present two separate label-free quantitative workflows based on different high-resolution mass spectrometers and LC setups, which are termed after the utilized instrument: Quad-Orbitrap (nano-LC) and Triple Quad-TOF (micro-LC) and their directed adaptation toward the analysis of human follicular fluid proteome. We identified about 1000 proteins in each distinct workflow using various sample preparation methods. With assistance of the Total Protein Approach, we were able to obtain absolute protein concentrations for each workflow. In a pilot study of twenty samples linked to diverse oocyte quality status from four donors, 455 and 215 proteins were quantified by the Quad-Orbitrap and Triple Quad-TOF workflows, respectively. The concentration values obtained from both workflows correlated to a significant degree. We found reasonable agreement of both workflows in protein fold changes between tested groups, resulting in unified lists of 20 and 22 proteins linked to oocyte maturity and blastocyst development, respectively. The Quad-Orbitrap workflow was best suited for an in-depth analysis without the need of extensive fractionation, especially of low abundant proteome, whereas the Triple Quad-TOF workflow allowed a more robust approach with a greater potential to increase in effectiveness with the growing number of analyzed samples after the initial effort of building a comprehensive spectral library.
Collapse
Affiliation(s)
- Aleksandra E. Lewandowska
- Intercollegiate Faculty of Biotechnology UG&MUG, University of Gdańsk, Abrahama 58, 80-307 Gdańsk, Poland; (A.F.); (M.T.); (P.C.)
| | - Anna Fel
- Intercollegiate Faculty of Biotechnology UG&MUG, University of Gdańsk, Abrahama 58, 80-307 Gdańsk, Poland; (A.F.); (M.T.); (P.C.)
| | - Marcel Thiel
- Intercollegiate Faculty of Biotechnology UG&MUG, University of Gdańsk, Abrahama 58, 80-307 Gdańsk, Poland; (A.F.); (M.T.); (P.C.)
| | - Paulina Czaplewska
- Intercollegiate Faculty of Biotechnology UG&MUG, University of Gdańsk, Abrahama 58, 80-307 Gdańsk, Poland; (A.F.); (M.T.); (P.C.)
| | - Krzysztof Łukaszuk
- INVICTA Fertility and Reproductive Center, Polna 64, 81-740 Sopot, Poland;
- Department of Obstetrics and Gynecological Nursing, Faculty of Health Sciences, Medical University of Gdańsk, Dębinki 7, 80-211 Gdańsk, Poland
| | - Jacek R. Wiśniewski
- Department of Proteomics and Signal Transduction, Max-Planck-Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany;
| | - Stanisław Ołdziej
- Intercollegiate Faculty of Biotechnology UG&MUG, University of Gdańsk, Abrahama 58, 80-307 Gdańsk, Poland; (A.F.); (M.T.); (P.C.)
| |
Collapse
|
244
|
ATR regulates neuronal activity by modulating presynaptic firing. Nat Commun 2021; 12:4067. [PMID: 34210973 PMCID: PMC8249387 DOI: 10.1038/s41467-021-24217-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 06/01/2021] [Indexed: 02/06/2023] Open
Abstract
Ataxia Telangiectasia and Rad3-related (ATR) protein, as a key DNA damage response (DDR) regulator, plays an essential function in response to replication stress and controls cell viability. Hypomorphic mutations of ATR cause the human ATR-Seckel syndrome, characterized by microcephaly and intellectual disability, which however suggests a yet unknown role for ATR in non-dividing cells. Here we show that ATR deletion in postmitotic neurons does not compromise brain development and formation; rather it enhances intrinsic neuronal activity resulting in aberrant firing and an increased epileptiform activity, which increases the susceptibility of ataxia and epilepsy in mice. ATR deleted neurons exhibit hyper-excitability, associated with changes in action potential conformation and presynaptic vesicle accumulation, independent of DDR signaling. Mechanistically, ATR interacts with synaptotagmin 2 (SYT2) and, without ATR, SYT2 is highly upregulated and aberrantly translocated to excitatory neurons in the hippocampus, thereby conferring a hyper-excitability. This study identifies a physiological function of ATR, beyond its DDR role, in regulating neuronal activity.
Collapse
|
245
|
Deutsch EW, Perez-Riverol Y, Carver J, Kawano S, Mendoza L, Van Den Bossche T, Gabriels R, Binz PA, Pullman B, Sun Z, Shofstahl J, Bittremieux W, Mak TD, Klein J, Zhu Y, Lam H, Vizcaíno JA, Bandeira N. Universal Spectrum Identifier for mass spectra. Nat Methods 2021; 18:768-770. [PMID: 34183830 PMCID: PMC8405201 DOI: 10.1038/s41592-021-01184-6] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 05/10/2021] [Indexed: 02/03/2023]
Abstract
Mass spectra provide the ultimate evidence to support the findings of mass spectrometry proteomics studies in publications, and it is therefore crucial to be able to trace the conclusions back to the spectra. The Universal Spectrum Identifier (USI) provides a standardized mechanism for encoding a virtual path to any mass spectrum contained in datasets deposited to public proteomics repositories. USI enables greater transparency of spectral evidence, with more than 1 billion USI identifications from over 3 billion spectra already available through ProteomeXchange repositories.
Collapse
Affiliation(s)
- Eric W. Deutsch
- Institute for Systems Biology, 401 Terry Ave N, Seattle, WA, 98109, USA,Address correspondence to: , Phone: 206-732-1200, Fax: 206-732-1299. , Phone: 858-534-8666
| | - Yasset Perez-Riverol
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, United Kingdom
| | - Jeremy Carver
- Center for Computational Mass Spectrometry, Department of Computer Science and Engineering, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, 92093-0404, USA
| | - Shin Kawano
- Toyama University of International Studies, 930-1292 Toyama, Japan
| | - Luis Mendoza
- Institute for Systems Biology, 401 Terry Ave N, Seattle, WA, 98109, USA
| | - Tim Van Den Bossche
- VIB - UGent Center for Medical Biotechnology, VIB, Ghent, Belgium,Department of Biomolecular Medicine, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Ralf Gabriels
- VIB - UGent Center for Medical Biotechnology, VIB, Ghent, Belgium,Department of Biomolecular Medicine, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Pierre-Alain Binz
- Clinical Chemistry Service, Lausanne University Hospital, 1011 Lausanne, Switzerland
| | - Benjamin Pullman
- Center for Computational Mass Spectrometry, Department of Computer Science and Engineering, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, 92093-0404, USA
| | - Zhi Sun
- Institute for Systems Biology, 401 Terry Ave N, Seattle, WA, 98109, USA
| | - Jim Shofstahl
- Thermo Fisher Scientific, 355 River Oaks Parkway San Jose, CA 95134, USA
| | - Wout Bittremieux
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093, USA,Department of Computer Science, University of Antwerp, 2020 Antwerp, Belgium
| | - Tytus D. Mak
- Mass Spectrometry Data Center, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, MD 20899, USA
| | - Joshua Klein
- Program for Bioinformatics, Boston University, Boston, MA 02215, USA
| | - Yunping Zhu
- National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, #38, Life Science Park, Changping District, Beijing 102206, China
| | - Henry Lam
- Department of Chemical and Biological Engineering, the Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong
| | - Juan Antonio Vizcaíno
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, United Kingdom
| | - Nuno Bandeira
- Center for Computational Mass Spectrometry, Department of Computer Science and Engineering, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, 92093-0404, USA,Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093, USA,Address correspondence to: , Phone: 206-732-1200, Fax: 206-732-1299. , Phone: 858-534-8666
| |
Collapse
|
246
|
van Strien J, Haupt A, Schulte U, Braun HP, Cabrera-Orefice A, Choudhary JS, Evers F, Fernandez-Vizarra E, Guerrero-Castillo S, Kooij TWA, Páleníková P, Pardo M, Ugalde C, Wittig I, Wöhlbrand L, Brandt U, Arnold S, Huynen MA. CEDAR, an online resource for the reporting and exploration of complexome profiling data. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2021; 1862:148411. [PMID: 33722514 DOI: 10.1016/j.bbabio.2021.148411] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 03/02/2021] [Accepted: 03/08/2021] [Indexed: 02/06/2023]
Abstract
Complexome profiling is an emerging 'omics' approach that systematically interrogates the composition of protein complexes (the complexome) of a sample, by combining biochemical separation of native protein complexes with mass-spectrometry based quantitation proteomics. The resulting fractionation profiles hold comprehensive information on the abundance and composition of the complexome, and have a high potential for reuse by experimental and computational researchers. However, the lack of a central resource that provides access to these data, reported with adequate descriptions and an analysis tool, has limited their reuse. Therefore, we established the ComplexomE profiling DAta Resource (CEDAR, www3.cmbi.umcn.nl/cedar/), an openly accessible database for depositing and exploring mass spectrometry data from complexome profiling studies. Compatibility and reusability of the data is ensured by a standardized data and reporting format containing the "minimum information required for a complexome profiling experiment" (MIACE). The data can be accessed through a user-friendly web interface, as well as programmatically using the REST API portal. Additionally, all complexome profiles available on CEDAR can be inspected directly on the website with the profile viewer tool that allows the detection of correlated profiles and inference of potential complexes. In conclusion, CEDAR is a unique, growing and invaluable resource for the study of protein complex composition and dynamics across biological systems.
Collapse
Affiliation(s)
- Joeri van Strien
- Center for Molecular and Biomolecular Informatics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Alexander Haupt
- Institute of Physiology, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| | - Uwe Schulte
- Institute of Physiology, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany; Center for Biological Signalling Studies (BIOSS) and Center for Integrative Signalling Studies (CIBSS), 79104 Freiburg, Germany
| | - Hans-Peter Braun
- Institute of Plant Genetics, Leibniz Universität Hannover, Herrenhäuser Str. 2, 30419 Hannover, Germany
| | - Alfredo Cabrera-Orefice
- Center for Molecular and Biomolecular Informatics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Jyoti S Choudhary
- Functional Proteomics, The Institute of Cancer Research, London SW7 3RP, UK
| | - Felix Evers
- Medical Microbiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | | | - Sergio Guerrero-Castillo
- University Children's Research@Kinder-UKE, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Taco W A Kooij
- Medical Microbiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | | | - Mercedes Pardo
- Functional Proteomics, The Institute of Cancer Research, London SW7 3RP, UK
| | - Cristina Ugalde
- Hospital 12 de Octubre Research Institute, Madrid 28041, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), U723, Madrid, Spain
| | - Ilka Wittig
- Functional Proteomics, Medical School, Goethe-University, 60590 Frankfurt am Main, Germany
| | - Lars Wöhlbrand
- General and Molecular Microbiology, Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky University of Oldenburg, Oldenburg, Germany
| | - Ulrich Brandt
- Radboud Center for Mitochondrial Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Susanne Arnold
- Radboud Center for Mitochondrial Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Martijn A Huynen
- Center for Molecular and Biomolecular Informatics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands.
| |
Collapse
|
247
|
Surface-Shaving Proteomics of Mycobacterium marinum Identifies Biofilm Subtype-Specific Changes Affecting Virulence, Tolerance, and Persistence. mSystems 2021; 6:e0050021. [PMID: 34156290 PMCID: PMC8269238 DOI: 10.1128/msystems.00500-21] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The complex cell wall and biofilm matrix (ECM) act as key barriers to antibiotics in mycobacteria. Here, the ECM and envelope proteins of Mycobacterium marinum ATCC 927, a nontuberculous mycobacterial model, were monitored over 3 months by label-free proteomics and compared with cell surface proteins on planktonic cells to uncover pathways leading to virulence, tolerance, and persistence. We show that ATCC 927 forms pellicle-type and submerged-type biofilms (PBFs and SBFs, respectively) after 2 weeks and 2 days of growth, respectively, and that the increased CelA1 synthesis in this strain prevents biofilm formation and leads to reduced rifampicin tolerance. The proteomic data suggest that specific changes in mycolic acid synthesis (cord factor), Esx1 secretion, and cell wall adhesins explain the appearance of PBFs as ribbon-like cords and SBFs as lichen-like structures. A subpopulation of cells resisting 64× MIC rifampicin (persisters) was detected in both biofilm subtypes and already in 1-week-old SBFs. The key forces boosting their development could include subtype-dependent changes in asymmetric cell division, cell wall biogenesis, tricarboxylic acid/glyoxylate cycle activities, and energy/redox/iron metabolisms. The effect of various ambient oxygen tensions on each cell type and nonclassical protein secretion are likely factors explaining the majority of the subtype-specific changes. The proteomic findings also imply that Esx1-type protein secretion is more efficient in planktonic (PL) and PBF cells, while SBF may prefer both the Esx5 and nonclassical pathways to control virulence and prolonged viability/persistence. In conclusion, this study reports the first proteomic insight into aging mycobacterial biofilm ECMs and indicates biofilm subtype-dependent mechanisms conferring increased adaptive potential and virulence of nontuberculous mycobacteria. IMPORTANCE Mycobacteria are naturally resilient, and mycobacterial infections are notoriously difficult to treat with antibiotics, with biofilm formation being the main factor complicating the successful treatment of tuberculosis (TB). The present study shows that nontuberculous Mycobacterium marinum ATCC 927 forms submerged- and pellicle-type biofilms with lichen- and ribbon-like structures, respectively, as well as persister cells under the same conditions. We show that both biofilm subtypes differ in terms of virulence-, tolerance-, and persistence-conferring activities, highlighting the fact that both subtypes should be targeted to maximize the power of antimycobacterial treatment therapies.
Collapse
|
248
|
Damm M, Hempel BF, Süssmuth RD. Old World Vipers-A Review about Snake Venom Proteomics of Viperinae and Their Variations. Toxins (Basel) 2021; 13:toxins13060427. [PMID: 34204565 PMCID: PMC8235416 DOI: 10.3390/toxins13060427] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/11/2021] [Accepted: 06/16/2021] [Indexed: 12/12/2022] Open
Abstract
Fine-tuned by millions of years of evolution, snake venoms have frightened but also fascinated humanity and nowadays they constitute potential resources for drug development, therapeutics and antivenoms. The continuous progress of mass spectrometry techniques and latest advances in proteomics workflows enabled toxinologists to decipher venoms by modern omics technologies, so-called ‘venomics’. A tremendous upsurge reporting on snake venom proteomes could be observed. Within this review we focus on the highly venomous and widely distributed subfamily of Viperinae (Serpentes: Viperidae). A detailed public literature database search was performed (2003–2020) and we extensively reviewed all compositional venom studies of the so-called Old-World Vipers. In total, 54 studies resulted in 89 venom proteomes. The Viperinae venoms are dominated by four major, four secondary, six minor and several rare toxin families and peptides, respectively. The multitude of different venomics approaches complicates the comparison of venom composition datasets and therefore we differentiated between non-quantitative and three groups of quantitative workflows. The resulting direct comparisons within these groups show remarkable differences on the intra- and interspecies level across genera with a focus on regional differences. In summary, the present compilation is the first comprehensive up-to-date database on Viperinae venom proteomes and differentiating between analytical methods and workflows.
Collapse
Affiliation(s)
- Maik Damm
- Department of Chemistry, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany;
| | - Benjamin-Florian Hempel
- BIH Center for Regenerative Therapies, Berlin Institute of Health at Charité-Universitätsmedizin Berlin, (BCRT), 10117 Berlin, Germany;
| | - Roderich D. Süssmuth
- Department of Chemistry, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany;
- Correspondence: ; Tel.: +49-(0)30-314-24205
| |
Collapse
|
249
|
Feng B, Li S, Wang Z, Cao F, Wang Z, Li G, Liu K. Systematic analysis of lysine 2-hydroxyisobutyrylation posttranslational modification in wheat leaves. PLoS One 2021; 16:e0253325. [PMID: 34138952 PMCID: PMC8211214 DOI: 10.1371/journal.pone.0253325] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 06/02/2021] [Indexed: 01/15/2023] Open
Abstract
Lysine 2-hydroxyisobutyrylation (Khib) is a recently discovered post-translational modification (PTM) showing diverse biological functions and effects in living organisms. However, the study of Khib in plant species is still relatively limited. Wheat (Triticum aestivum L.) is a global important cereal plant. In this study, the systematic Khib analysis was performed in wheat leave tissues. A total of 3004 Khib sites in 1104 proteins were repeatedly identified. Structure characterization of these Khib peptides revealed 12 conserved sequence motifs. Function classification and enrichment analysis indicated these Khib proteins showed a wide function and pathway distribution, of which ribosome activity, protein biosynthesis and photosynthesis were the preferred biological processes. Subcellular location predication indicated chloroplast was the dominant subcellular compartment where Khib was distributed. There may be some crosstalks among Khib, lysine acetylation and lysine succinylation modification because some proteins and sites were modified by all these three acylations. The present study demonstrated the critical role of Khib in wheat biological and physiology, which has expanded the scope of Khib in plant species. Our study is an available resource and reference of Khib function demonstration and structure characterization in cereal plant, as well as in plant kingdom.
Collapse
Affiliation(s)
- Bo Feng
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Ji’nan, Shandong, P. R. China
| | - Shengdong Li
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Ji’nan, Shandong, P. R. China
| | - Zongshuai Wang
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Ji’nan, Shandong, P. R. China
| | - Fang Cao
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Ji’nan, Shandong, P. R. China
| | - Zheng Wang
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Ji’nan, Shandong, P. R. China
| | - Geng Li
- College of Agronomy, Shandong Agricultural University, Tai’an, Shandong, P. R. China
| | - Kaichang Liu
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Ji’nan, Shandong, P. R. China
| |
Collapse
|
250
|
Nelson MAM, McLaughlin KL, Hagen JT, Coalson HS, Schmidt C, Kassai M, Kew KA, McClung JM, Neufer PD, Brophy P, Vohra NA, Liles D, Cabot MC, Fisher-Wellman KH. Intrinsic OXPHOS limitations underlie cellular bioenergetics in leukemia. eLife 2021; 10:e63104. [PMID: 34132194 PMCID: PMC8221809 DOI: 10.7554/elife.63104] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 06/16/2021] [Indexed: 02/06/2023] Open
Abstract
Currently there is great interest in targeting mitochondrial oxidative phosphorylation (OXPHOS) in cancer. However, notwithstanding the targeting of mutant dehydrogenases, nearly all hopeful 'mito-therapeutics' cannot discriminate cancerous from non-cancerous OXPHOS and thus suffer from a limited therapeutic index. Using acute myeloid leukemia (AML) as a model, herein, we leveraged an in-house diagnostic biochemical workflow to identify 'actionable' bioenergetic vulnerabilities intrinsic to cancerous mitochondria. Consistent with prior reports, AML growth and proliferation was associated with a hyper-metabolic phenotype which included increases in basal and maximal respiration. However, despite having nearly 2-fold more mitochondria per cell, clonally expanding hematopoietic stem cells, leukemic blasts, as well as chemoresistant AML were all consistently hallmarked by intrinsic OXPHOS limitations. Remarkably, by performing experiments across a physiological span of ATP free energy, we provide direct evidence that leukemic mitochondria are particularly poised to consume ATP. Relevant to AML biology, acute restoration of oxidative ATP synthesis proved highly cytotoxic to leukemic blasts, suggesting that active OXPHOS repression supports aggressive disease dissemination in AML. Together, these findings argue against ATP being the primary output of leukemic mitochondria and provide proof-of-principle that restoring, rather than disrupting, OXPHOS may represent an untapped therapeutic avenue for combatting hematological malignancy and chemoresistance.
Collapse
Affiliation(s)
- Margaret AM Nelson
- Department of Physiology, Brody School of Medicine, East Carolina UniversityGreenvilleUnited States
- East Carolina Diabetes and Obesity Institute, East Carolina UniversityGreenvilleUnited States
| | - Kelsey L McLaughlin
- Department of Physiology, Brody School of Medicine, East Carolina UniversityGreenvilleUnited States
- East Carolina Diabetes and Obesity Institute, East Carolina UniversityGreenvilleUnited States
| | - James T Hagen
- Department of Physiology, Brody School of Medicine, East Carolina UniversityGreenvilleUnited States
- East Carolina Diabetes and Obesity Institute, East Carolina UniversityGreenvilleUnited States
| | - Hannah S Coalson
- Department of Physiology, Brody School of Medicine, East Carolina UniversityGreenvilleUnited States
- East Carolina Diabetes and Obesity Institute, East Carolina UniversityGreenvilleUnited States
| | - Cameron Schmidt
- Department of Physiology, Brody School of Medicine, East Carolina UniversityGreenvilleUnited States
- East Carolina Diabetes and Obesity Institute, East Carolina UniversityGreenvilleUnited States
| | - Miki Kassai
- East Carolina Diabetes and Obesity Institute, East Carolina UniversityGreenvilleUnited States
- Department of Biochemistry and Molecular Biology, Brody School of Medicine, East Carolina UniversityGreenvilleUnited States
| | - Kimberly A Kew
- Department of Biochemistry and Molecular Biology, Brody School of Medicine, East Carolina UniversityGreenvilleUnited States
| | - Joseph M McClung
- Department of Physiology, Brody School of Medicine, East Carolina UniversityGreenvilleUnited States
- East Carolina Diabetes and Obesity Institute, East Carolina UniversityGreenvilleUnited States
- Department of Cardiovascular Sciences, Brody School of Medicine, East Carolina UniversityGreenvilleUnited States
| | - P Darrell Neufer
- East Carolina Diabetes and Obesity Institute, East Carolina UniversityGreenvilleUnited States
| | - Patricia Brophy
- East Carolina Diabetes and Obesity Institute, East Carolina UniversityGreenvilleUnited States
| | - Nasreen A Vohra
- Department of Surgery, Brody School of Medicine, East Carolina UniversityGreenvilleUnited States
| | - Darla Liles
- Department of Internal Medicine, Brody School of Medicine, East Carolina UniversityGreenvilleUnited States
| | - Myles C Cabot
- East Carolina Diabetes and Obesity Institute, East Carolina UniversityGreenvilleUnited States
- Department of Biochemistry and Molecular Biology, Brody School of Medicine, East Carolina UniversityGreenvilleUnited States
| | - Kelsey H Fisher-Wellman
- Department of Physiology, Brody School of Medicine, East Carolina UniversityGreenvilleUnited States
- East Carolina Diabetes and Obesity Institute, East Carolina UniversityGreenvilleUnited States
| |
Collapse
|