Okkenhaug K, Ali K, Vanhaesebroeck B. Antigen receptor signalling: a distinctive role for the p110delta isoform of PI3K.
Trends Immunol 2007;
28:80-7. [PMID:
17208518 PMCID:
PMC2358943 DOI:
10.1016/j.it.2006.12.007]
[Citation(s) in RCA: 89] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2006] [Revised: 11/24/2006] [Accepted: 12/18/2006] [Indexed: 11/24/2022]
Abstract
The activation of antigen receptors triggers two important signalling pathways originating from phosphatidylinositol(4,5)-bisphosphate [PtdIns(4,5)P2]. The first is phospholipase Cγ (PLCγ)-mediated hydrolysis of PtdIns(4,5)P2, resulting in the activation of Ras, protein kinase C and Ca2+ flux. This culminates in profound alterations in gene expression and effector-cell responses, including secretory granule exocytosis and cytokine production. By contrast, phosphoinositide 3-kinases (PI3Ks) phosphorylate PtdIns(4,5)P2 to yield phosphatidylinositol(3,4,5)-trisphosphate, activating signalling pathways that overlap with PLCγ or are PI3K-specific. Pathways that are PI3K-specific include Akt-mediated inactivation of Foxo transcription factors and transcription-independent regulation of glucose uptake and metabolism. The p110δ isoform of PI3K is the main source of PI3K activity following antigen recognition by B cells, T cells and mast cells. Here, we review the roles of p110δ in regulating antigen-dependent responses in these cell types.
Collapse