201
|
Pastorcic M, Das HK. An upstream element containing an ETS binding site is crucial for transcription of the human presenilin-1 gene. J Biol Chem 1999; 274:24297-307. [PMID: 10446206 DOI: 10.1074/jbc.274.34.24297] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Deletion mapping of the human presenilin-1 (PS1) promoter delineated the most active fragment from -118 to +178 in relation to the transcription start site mapped in this study, in both human neuroblastoma SK-N-SH and hepatoma HepG2 cells. 5' deletions revealed that a crucial element controlling over 90% of the promoter activity in these cell lines is located between -22 and -6. A mutation altering only two nucleotides of the ETS consensus sequence present at -12 (GGAA to TTAA) has a similar effect. Electrophoretic mobility shift assays showed that a set of specific complexes between nuclear factors and the PS1 promoter are eliminated by this point mutation, as well as by competition with an ETS consensus oligonucleotide. Competition experiments in DNase I footprinting correlated with electrophoretic mobility shift assays and showed that only one of several footprints over the PS1 promoter is eliminated by competition with an ETS consensus oligonucleotide. It extends from -14 to -6 and surrounds the ETS motif present at -12. Thus, a crucial ETS element is present at -12 and binds a protein(s) recognizing specifically the ETS consensus motif. At least one such complex is eliminated by preincubating the nuclear extract with an antibody with broad cross-reactivity with Ets-1 and Ets-2 proteins, thus confirming that an ETS transcription factor(s) recognizes the -12 motif. Several Sp1 binding motifs at positions -70, -55, and +20 surround this ETS element. Competition DNase I footprinting showed that Sp1-like nuclear factors recognize specifically these sites in both cell lines. Furthermore, a combination of 5' and 3' deletions indicated the presence of positive promoter elements between -96 and -35 as well as between +6 and +42. Thus, transfection and footprinting assays correlate to suggest that Sp1 transcription factor(s) bind at several sites upstream and downstream from the initiation site and activate the transcription of the PS1 promoter. Sequences downstream from the transcription initiation site also contain major control elements. 3' deletions from +178 to +107 decreased promoter activity by 80%. However, further deletion to +42 increased promoter activity by 3-4-fold. Collectively, these data indicate that sequences upstream and downstream from the transcription start site each control over 80% of the promoter activity. Hence, this suggests that protein-protein interactions between factors recognizing downstream and upstream sequences are involved.
Collapse
Affiliation(s)
- M Pastorcic
- Department of Pharmacology, University of North Texas Health Science Center, Fort Worth, Texas 76107, USA
| | | |
Collapse
|
202
|
Passer BJ, Pellegrini L, Vito P, Ganjei JK, D'Adamio L. Interaction of Alzheimer's presenilin-1 and presenilin-2 with Bcl-X(L). A potential role in modulating the threshold of cell death. J Biol Chem 1999; 274:24007-13. [PMID: 10446169 DOI: 10.1074/jbc.274.34.24007] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The familial Alzheimer's disease gene products, presenilin-1 and presenilin-2, have been reported to be functionally involved in amyloid precursor protein processing, notch receptor signaling, and programmed cell death or apoptosis. However, the molecular mechanisms by which presenilins regulate these processes remain unknown. With regard to the latter, we describe a molecular link between presenilins and the apoptotic pathway. Bcl-X(L), an anti-apoptotic member of the Bcl-2 family was shown to interact with the carboxyl-terminal fragments of PS1 and PS2 by the yeast two-hybrid system. In vivo interaction analysis revealed that both PS2 and its naturally occurring carboxyl-terminal products, PS2short and PS2Ccas, associated with Bcl-X(L), whereas the caspase-3-generated amino-terminal PS2Ncas fragment did not. This interaction was corroborated by demonstrating that Bcl-X(L) and PS2 partially co-localized to sites of the vesicular transport system. Functional analysis revealed that presenilins can influence mitochondrial-dependent apoptotic activities, such as cytochrome c release and Bax-mediated apoptosis. Together, these data support a possible role of the Alzheimer's presenilins in modulating the anti-apoptotic effects of Bcl-X(L).
Collapse
Affiliation(s)
- B J Passer
- T Cell Apoptosis Unit, Laboratory of Cellular and Molecular Immunology, NIAID, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | |
Collapse
|
203
|
Nakai T, Yamasaki A, Sakaguchi M, Kosaka K, Mihara K, Amaya Y, Miura S. Membrane topology of Alzheimer's disease-related presenilin 1. Evidence for the existence of a molecular species with a seven membrane-spanning and one membrane-embedded structure. J Biol Chem 1999; 274:23647-58. [PMID: 10438548 DOI: 10.1074/jbc.274.33.23647] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
A significant member of early-onset familial type of Alzheimer's disease cases has been shown to be caused by dominant mutations in either of the two genes encoding presenilin 1 (PS1) and presenilin 2 (PS2). These two proteins are highly homologous to each other and have been reported to be mainly localized to the membranes of intracellular compartments such as the endoplasmic reticulum. Information about the membrane topological structures of these proteins is indispensable for understanding their physiological and pathological roles. Although several models have been proposed previously, their precise membrane topologies remain unknown. In this study, we examined this issue in detail by expressing a series of C-terminally deleted PS1 mutants fused to the hydrophilic portion of Escherichia coli leader peptidase in vitro using a reticulocyte lysate in the presence of microsomal membranes. Our results predict that PS1 exists mainly in a seven membrane-spanning structure with its C-terminal end exposed to the luminal space. This was also confirmed by expressing these fusion proteins in cultured cells. We further showed that a ninth hydrophobic segment is tightly bound to the membrane without spanning it. Based on the above observations, we propose a novel "seven membrane-spanning and one membrane-embedded" topological model for presenilins.
Collapse
Affiliation(s)
- T Nakai
- Radioisotope Research Center, Yokohama City University School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama 236-0004, Japan
| | | | | | | | | | | | | |
Collapse
|
204
|
Developmental Expression of Wild-Type and Mutant Presenilin-1 in Hippocampal Neurons from Transgenic Mice: Evidence for Novel Species-Specific Properties of Human Presenilin-1. Mol Med 1999. [DOI: 10.1007/bf03401981] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
205
|
Chan SL, Griffin WS, Mattson MP. Evidence for caspase-mediated cleavage of AMPA receptor subunits in neuronal apoptosis and Alzheimer's disease. J Neurosci Res 1999; 57:315-23. [PMID: 10412022 DOI: 10.1002/(sici)1097-4547(19990801)57:3<315::aid-jnr3>3.0.co;2-#] [Citation(s) in RCA: 97] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
In Alzheimer's disease (AD) synapses degenerate and neurons die in brain regions involved in learning and memory processes. Although the cellular and molecular mechanisms underlying the neurodegenerative process in AD are unclear, increasing evidence suggests roles for amyloid beta-peptide (Abeta) and biochemical cascades associated with a form of programmed cell death called apoptosis. Cysteine proteases of the caspase family are activated in neurons undergoing apoptosis and apparently play a major role in the cell death process by cleaving yet-to-be-identified substrates. We now report that caspase activity is increased in brain tissue and neurons from AD patients, and in cultured hippocampal neurons undergoing apoptosis after exposure to amyloid beta-peptide (Abeta). Western blot analyses using antibodies against different subunits of 2-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) and N-methyl-D-aspartate (NMDA) types of ionotropic glutamate receptors indicate that AMPA receptor subunits (GluR1, GluR2/3, and GluR4), but not NMDA receptor subunits (NR1 and NR2A), are proteolytically cleaved after exposure of hippocampal neurons to apoptotic insults, including Abeta, and that the caspase inhibitor zVAD-fmk suppresses such cleavage. Western blot analysis of brain tissue from AD patients and age-matched controls revealed evidence for increased proteolysis of AMPA receptor subunits in AD. Our data suggest roles for caspase-mediated cleavage of AMPA receptor subunits in modifying neuronal responsivity to glutamate and in the neurodegenerative process in AD.
Collapse
Affiliation(s)
- S L Chan
- Sanders-Brown Research Center on Aging and Department of Anatomy and Neurobiology, University of Kentucky, Lexington, KY 40536-0230, USA
| | | | | |
Collapse
|
206
|
Pellegrini L, Passer BJ, Tabaton M, Ganjei JK, D'Adamio L. Alternative, non-secretase processing of Alzheimer's beta-amyloid precursor protein during apoptosis by caspase-6 and -8. J Biol Chem 1999; 274:21011-6. [PMID: 10409650 DOI: 10.1074/jbc.274.30.21011] [Citation(s) in RCA: 130] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder. Although the pathogenesis of AD is unknown, it is widely accepted that AD is caused by extracellular accumulation of a neurotoxic peptide, known as Abeta. Mutations in the beta-amyloid precursor protein (APP), from which Abeta arises by proteolysis, are associated with some forms of familial AD (FAD) and result in increased Abeta production. Two other FAD genes, presenilin-1 and -2, have also been shown to regulate Abeta production; however, studies examining the biological role of these FAD genes suggest an alternative theory for the pathogenesis of AD. In fact, all three genes have been shown to regulate programmed cell death, hinting at the possibility that dysregulation of apoptosis plays a primary role in causing neuronal loss in AD. In an attempt to reconcile these two hypotheses, we investigated APP processing during apoptosis and found that APP is processed by the cell death proteases caspase-6 and -8. APP is cleaved by caspases in the intracellular portion of the protein, in a site distinct from those processed by secretases. Moreover, it represents a general effect of apoptosis, because it occurs during cell death induced by several stimuli both in T cells and in neuronal cells.
Collapse
Affiliation(s)
- L Pellegrini
- T-Cell Apoptosis Unit, Laboratory of Cellular and Molecular Immunology, NIAID, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | |
Collapse
|
207
|
Kelliher M, Fastbom J, Cowburn RF, Bonkale W, Ohm TG, Ravid R, Sorrentino V, O'Neill C. Alterations in the ryanodine receptor calcium release channel correlate with Alzheimer's disease neurofibrillary and beta-amyloid pathologies. Neuroscience 1999; 92:499-513. [PMID: 10408600 DOI: 10.1016/s0306-4522(99)00042-1] [Citation(s) in RCA: 115] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Investigation of the integrity of the ryanodine receptor in Alzheimer's disease is important because it plays a critical role in the regulation of calcium release from the endoplasmic reticulum in brain, impairment of which is believed to contribute to the pathogenesis of Alzheimer's disease. The present study compared ryanodine receptor levels and their functional modulation in particulate fractions from control and Alzheimer's disease temporal cortex, occipital cortex and putamen. Relationships between ryanodine receptor changes and the progression of Alzheimer's disease pathology were determined by examining autoradiographic [3H]ryanodine binding in entorhinal cortex/anterior hippocampus sections from 22 cases that had been staged for neurofibrillary changes and beta-amyloid deposition. A significant (P < 0.02) 40% decrease in the Bmax for [3H]ryanodine binding and significantly higher IC50 values for both magnesium and Ruthenium Red inhibition of [3H]ryanodine binding were detected in Alzheimer's disease temporal cortex particulate fractions compared to controls. Immunoblot analyses showed Type 2 ryanodine receptor holoprotein levels to be decreased by 20% (P < 0.05) in these Alzheimer's disease cases compared to controls. No significant differences were detected in [3H]ryanodine binding comparing control and Alzheimer's disease occipital cortex or putamen samples. The autoradiography study detected increased [3H]ryanodine binding in the subiculum, CA2 and CA1 regions in cases with early (stage I-II) neurofibrillary pathology when compared to Stage 0 cases. Analysis of variance of data with respect to the different stages of neurofibrillary pathology revealed significant stage-related declines of [3H]ryanodine binding in the subiculum (P < 0.02) with trends towards significant decreases in CA1, CA2 and CA4. Post-hoc testing with Fisher's PLSD showed significant reductions (74-94%) of [3H]ryanodine binding in the subiculum, and CA1-CA4 regions of the late isocortical stage (V-VI) cases compared to the early entorhinal stage I-II cases. [3H]Ryanodine binding also showed significant declines with staging for beta-amyloid deposition in the entorhinal cortex (P < 0.01) and CA4 (P < 0.05) with trends towards a significant decrease in the dentate gyrus. We conclude that alterations in ryanodine receptor binding and function are very early events in the pathogenesis of Alzheimer's disease, and may be fundamental to the progression of both neurofibrillary and beta-amyloid pathologies.
Collapse
Affiliation(s)
- M Kelliher
- Department of Biochemistry, University College, Lee Maltings, Prospect Row, Cork, Ireland
| | | | | | | | | | | | | | | |
Collapse
|
208
|
Abstract
Most early onset cases of familial Alzheimer's disease (AD) are caused by mutations in presenilin-1 (PS1) and presenilin-2 (PS2). These mutations lead to increased beta-amyloid formation and may induce apoptosis in some model systems. Using primary cultured hippocampal neurons (HNs) and rat pheochromocytoma (PC12) cells transiently transfected with replication-defective recombinant adenoviral vectors expressing wild-type or mutant PS1, we demonstrate that mutant PS1s induce apoptosis, downregulate the survival factor Akt/PKB, and affect several Akt/PKB downstream targets, including glycogen synthase kinase-3beta and beta-catenin. Expression of a constitutively active Akt/PKB rescues HNs from mutant PS1-induced neuronal cell death, suggesting a potential therapeutic target for AD. Downregulation of Akt/PKB may be a mechanism by which mutant PS1 induces apoptosis and may play a role in the pathogenesis of familial AD.
Collapse
|
209
|
Janicki SM, Monteiro MJ. Presenilin overexpression arrests cells in the G1 phase of the cell cycle. Arrest potentiated by the Alzheimer's disease PS2(N141I)mutant. THE AMERICAN JOURNAL OF PATHOLOGY 1999; 155:135-44. [PMID: 10393846 PMCID: PMC1866651 DOI: 10.1016/s0002-9440(10)65108-5] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
To investigate the mechanism by which presenilin (PS) overexpression induces apoptosis, we studied the effects of these proteins on cell cycle progression. Transiently transfected HeLa cells were bromodeoxyuridine (BrdU) labeled to visualize DNA synthesis by immunofluorescence and stained with propidium iodide to measure DNA content by fluorescence-activated cell sorting (FACS). BrdU labeling was decreased in cells expressing presenilin-1 (PS1), presenilin-2 (PS2), an Alzheimer's disease-associated missense mutation PS2(N141I), and the carboxyl-terminally deleted PS2 construct PS2(166aa), compared with mock and neurofilament-light (NF-L) transfected cells. Analysis of BrdU incorporation in mitotically synchronized HeLa cells suggested that cells were arresting in the G1 phase of the cell cycle, and this was confirmed by FACS analysis. Interestingly, cell cycle progression was more inhibited by the expression of PS2(N141I) compared with wild-type PS2. In addition, ATM, the gene product mutated in ataxia-telangiectasia, does not appear to be a downstream effector of PS-induced cell cycle arrest as transfection of PS constructs into an ataxia-telangiectasia cell line also resulted in cell cycle inhibition. Quantitative immunoblotting of whole-cell lysates from PS-transfected cells did not reveal increases or decreases in the steady-state levels of p21, p27, p53, pRb, or c-myc, suggesting that the presenilins mediate cell cycle arrest by mechanisms other than simple changes in the steady-state levels of these cell-cycle-related proteins.
Collapse
Affiliation(s)
- S M Janicki
- Medical Biotechnology Center and Department of Neurology and Division of Human Genetics, University of Maryland, Baltimore, Maryland, USA
| | | |
Collapse
|
210
|
Stabler SM, Ostrowski LL, Janicki SM, Monteiro MJ. A myristoylated calcium-binding protein that preferentially interacts with the Alzheimer's disease presenilin 2 protein. J Cell Biol 1999; 145:1277-92. [PMID: 10366599 PMCID: PMC2133148 DOI: 10.1083/jcb.145.6.1277] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/1998] [Revised: 04/23/1999] [Indexed: 01/01/2023] Open
Abstract
It is well established that mutations in the presenilin 1 and 2 genes cause the majority of early onset Alzheimer's disease (AD). However, our understanding of the cellular functions of the proteins they encode remains rudimentary. Knowledge of proteins with which the presenilins interact should lead to a better understanding of presenilin function in normal and disease states. We report here the identification of a calcium-binding protein, calmyrin, that interacts preferentially with presenilin 2 (PS2). Calmyrin is myristoylated, membrane-associated, and colocalizes with PS2 when the two proteins are overexpressed in HeLa cells. Yeast two-hybrid liquid assays, affinity chromatography, and coimmunoprecipitation experiments confirm binding between PS2 and calmyrin. Functionally, calmyrin and PS2 increase cell death when cotransfected into HeLa cells. These results allude to several provocative possibilities for a dynamic role of calmyrin in signaling, cell death, and AD.
Collapse
Affiliation(s)
- S M Stabler
- Medical Biotechnology Center and Department of Neurology, University of Maryland, Baltimore, Maryland 21201, USA
| | | | | | | |
Collapse
|
211
|
Abstract
The mechanism whereby mutations in the presenilin-1 (PS-1) gene on chromosome 14 cause early-onset inherited Alzheimer's disease are unknown. We report that PC6 neural cells (a subclone of PC12 cells) expressing PS-1 mutations (M146V and L286V) exhibit increased superoxide production, nitrotyrosine accumulation, and membrane lipid peroxidation following exposure to amyloid beta-peptide 1-42 (Abeta). Mitochondrial calcium accumulation and membrane depolarization following exposure to Abeta were enhanced in cells expressing mutant PS-1. Overexpression of mitochondrial Mn-SOD greatly reduced superoxide production, nitrotyrosine formation, membrane lipid peroxidation, intramitochondrial calcium accumulation, and membrane depolarization following exposure to Abeta and conferred resistance to the apoptosis-enhancing action of the PS-1 mutations. Nitric oxide synthase inhibitors and the peroxynitrite scavenger uric acid blocked the apoptosis-enhancing action of PS-1 mutations. The data suggest pivotal roles for superoxide production and resulting peroxynitrite formation in the pathogenic mechanism of PS-1 mutations.
Collapse
Affiliation(s)
- Q Guo
- Sanders-Brown Research Center on Aging and Department of Anatomy & Neurobiology, University of Kentucky, Lexington 40536-0230, USA
| | | | | | | | | |
Collapse
|
212
|
Dowjat WK, Wisniewski T, Efthimiopoulos S, Wisniewski HM. Inhibition of neurite outgrowth by familial Alzheimer's disease-linked presenilin-1 mutations. Neurosci Lett 1999; 267:141-4. [PMID: 10400232 DOI: 10.1016/s0304-3940(99)00351-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two (P117L; M146L) familial Alzheimer's disease (FAD)-causing presenilin-1 (PS1) mutations have been tested fortheir effect in stably transfected mouse neuroblastoma (N2a) cell lines. The P117L mutation is associated with the earliest onset of AD reported so far (24 years), while the M146L is less pathogenic with the onset at about 43 years. Overexpression of wild-type (wt) PS1 gene was associated with the marked increase in the number and the length of neuritic outgrowths accompanied by accumulation of PS1 immunoreactivity in neurites. The highly pathogenic P117L mutation completely suppressed this effect and the pattern of PS1 immunolabeling resembled a cup structure with all immunoreactivity gathered at one pole of the cell. The effect of less pathogenic M146L mutation was similar, but not as pronounced. These findings suggest that one of the normal functions of PS1 may be the control of neurite outgrowth, and the inhibitory effect of two FAD-linked mutations stresses its importance in the cellular mechanism that leads to the development of Alzheimer's disease (AD).
Collapse
Affiliation(s)
- W K Dowjat
- Institute for Basic Research in Developmental Disabilities, Staten Island, New York, NY 10314-6399, USA.
| | | | | | | |
Collapse
|
213
|
Abstract
The mechanism(s) underlying selective neuronal death in Alzheimer's disease remain unresolved. However, recently, we and others showed that susceptible hippocampal neurones in Alzheimer's disease express markers common to cells in various phases of the cell cycle. Since neuronal maturation is associated with effective escape from the cell division cycle, emergence out of quiescence may be deleterious. Here, we review a number of current findings indicating that disregulated ectopic re-activation of cell cycle-mediated events, akin to neoplasia, represent an important early pathway associated with neuronal death and, more importantly, one that involves virtually the entire spectrum of the pathological events described in Alzheimer's disease.
Collapse
Affiliation(s)
- A K Raina
- Institute of Pathology, Case Western Reserve University, Cleveland, Ohio, USA
| | | | | | | |
Collapse
|
214
|
Guo Q, Sebastian L, Sopher BL, Miller MW, Glazner GW, Ware CB, Martin GM, Mattson MP. Neurotrophic factors [activity-dependent neurotrophic factor (ADNF) and basic fibroblast growth factor (bFGF)] interrupt excitotoxic neurodegenerative cascades promoted by a PS1 mutation. Proc Natl Acad Sci U S A 1999; 96:4125-30. [PMID: 10097174 PMCID: PMC22431 DOI: 10.1073/pnas.96.7.4125] [Citation(s) in RCA: 102] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Although an excitotoxic mechanism of neuronal injury has been proposed to play a role in chronic neurodegenerative disorders such as Alzheimer's disease, and neurotrophic factors have been put forward as potential therapeutic agents, direct evidence is lacking. Taking advantage of the fact that mutations in the presenilin-1 (PS1) gene are causally linked to many cases of early-onset inherited Alzheimer's disease, we generated PS1 mutant knock-in mice and directly tested the excitotoxic and neurotrophic hypotheses of Alzheimer's disease. Primary hippocampal neurons from PS1 mutant knock-in mice exhibited increased production of amyloid beta-peptide 42/43 and increased vulnerability to excitotoxicity, which occurred in a gene dosage-dependent manner. Neurons expressing mutant PS1 exhibited enhanced calcium responses to glutamate and increased oxyradical production and mitochondrial dysfunction. Pretreatment with either basic fibroblast growth factor or activity-dependent neurotrophic factor protected neurons expressing mutant PS1 against excitotoxicity. Both basic fibroblast growth factor and activity-dependent neurotrophic factor stabilized intracellular calcium levels and abrogated the increased oxyradical production and mitochondrial dysfunction otherwise caused by the PS1 mutation. Our data indicate that neurotrophic factors can interrupt excitotoxic neurodegenerative cascades promoted by PS1 mutations.
Collapse
Affiliation(s)
- Q Guo
- Sanders-Brown Research Center on Aging and Department of Anatomy and Neurobiology, University of Kentucky, Lexington, KY 40536, USA
| | | | | | | | | | | | | | | |
Collapse
|
215
|
Guo Q, Sebastian L, Sopher BL, Miller MW, Ware CB, Martin GM, Mattson MP. Increased vulnerability of hippocampal neurons from presenilin-1 mutant knock-in mice to amyloid beta-peptide toxicity: central roles of superoxide production and caspase activation. J Neurochem 1999; 72:1019-29. [PMID: 10037473 DOI: 10.1046/j.1471-4159.1999.0721019.x] [Citation(s) in RCA: 143] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Many cases of early-onset inherited Alzheimer's disease (AD) are caused by mutations in the presenilin-1 (PS1) gene. Overexpression of PS1 mutations in cultured PC12 cells increases their vulnerability to apoptosis-induced trophic factor withdrawal and oxidative insults. We now report that primary hippocampal neurons from PS1 mutant knock-in mice, which express the human PS1M146V mutation at normal levels, exhibit increased vulnerability to amyloid beta-peptide toxicity. The endangering action of mutant PS1 was associated with increased superoxide production, mitochondrial membrane depolarization, and caspase activation. The peroxynitrite-scavenging antioxidant uric acid and the caspase inhibitor benzyloxycarbonyl-Val-Ala-Asp-fluoromethyl ketone protected hippocampal neurons expressing mutant PS1 against cell death induced by amyloid beta-peptide. Increased oxidative stress may contribute to the pathogenic action of PS1 mutations, and antioxidants may counteract the adverse property of such AD-linked mutations.
Collapse
Affiliation(s)
- Q Guo
- Sanders-Brown Research Center on Aging and Department of Anatomy and Neurobiology, University of Kentucky, Lexington 40536-0230, USA
| | | | | | | | | | | | | |
Collapse
|
216
|
Begley JG, Duan W, Chan S, Duff K, Mattson MP. Altered calcium homeostasis and mitochondrial dysfunction in cortical synaptic compartments of presenilin-1 mutant mice. J Neurochem 1999; 72:1030-9. [PMID: 10037474 DOI: 10.1046/j.1471-4159.1999.0721030.x] [Citation(s) in RCA: 111] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Alzheimer's disease is characterized by amyloid beta-peptide deposition, synapse loss, and neuronal death, which are correlated with cognitive impairments. Mutations in the presenilin-1 gene on chromosome 14 are causally linked to many cases of early-onset inherited Alzheimer's disease. We report that synaptosomes prepared from transgenic mice harboring presenilin-1 mutations exhibit enhanced elevations of cytoplasmic calcium levels following exposure to depolarizing agents, amyloid beta-peptide, and a mitochondrial toxin compared with synaptosomes from nontransgenic mice and mice overexpressing wild-type presenilin-1. Mitochondrial dysfunction and caspase activation following exposures to amyloid beta-peptide and metabolic insults were exacerbated in synaptosomes from presenilin-1 mutant mice. Agents that buffer cytoplasmic calcium or that prevent calcium release from the endoplasmic reticulum protected synaptosomes against the adverse effect of presenilin-1 mutations on mitochondrial function. Abnormal synaptic calcium homeostasis and mitochondrial dysfunction may contribute to the pathogenic mechanism of presenilin-1 mutations.
Collapse
Affiliation(s)
- J G Begley
- Sanders-Brown Research Center on Aging and Department of Anatomy and Neurobiology, University of Kentucky, Lexington 40536-0230, USA
| | | | | | | | | |
Collapse
|
217
|
Weidemann A, Paliga K, Dürrwang U, Reinhard FB, Schuckert O, Evin G, Masters CL. Proteolytic processing of the Alzheimer's disease amyloid precursor protein within its cytoplasmic domain by caspase-like proteases. J Biol Chem 1999; 274:5823-9. [PMID: 10026204 DOI: 10.1074/jbc.274.9.5823] [Citation(s) in RCA: 137] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Alzheimer's disease is characterized by neurodegeneration and deposition of betaA4, a peptide that is proteolytically released from the amyloid precursor protein (APP). Missense mutations in the genes coding for APP and for the polytopic membrane proteins presenilin (PS) 1 and PS2 have been linked to familial forms of early-onset Alzheimer's disease. Overexpression of presenilins, especially that of PS2, induces increased susceptibility for apoptosis that is even more pronounced in cells expressing presenilin mutants. Additionally, presenilins themselves are targets for activated caspases in apoptotic cells. When we analyzed APP in COS-7 cells overexpressing PS2, we observed proteolytic processing close to the APP carboxyl terminus. Proteolytic conversion was increased in the presence of PS2-I, which encodes one of the known PS2 pathogenic mutations. The same proteolytic processing occurred in cells treated with chemical inducers of apoptosis, suggesting a participation of activated caspases in the carboxyl-terminal truncation of APP. This was confirmed by showing that specific caspase inhibitors blocked the apoptotic conversion of APP. Sequence analysis of the APP cytosolic domain revealed a consensus motif for group III caspases ((IVL)ExD). Mutation of the corresponding Asp664 residue abolished cleavage, thereby identifying APP as a target molecule for caspase-like proteases in the pathways of programmed cellular death.
Collapse
Affiliation(s)
- A Weidemann
- Zentrum für Molekulare Biologie Heidelberg (ZMBH), Im Neuenheimer Feld 282, D-69120 Heidelberg, Germany.
| | | | | | | | | | | | | |
Collapse
|
218
|
Abstract
Presenilin-1 (PS1) and presenilin-2 (PS2), the major genes of familial Alzheimer's disease, are homologous to sel-12, a Caenorhabditis elegans gene involved in cell fate decision during development. Recently, wild-type and mutant presenilins have been associated also with apoptotic cell death. By using stable transfection of antisense cDNAs, we studied the functions of PS1 and PS2 during neuronal differentiation in the NTera2 human teratocarcinoma (NT2) cell line. Expression of antisense PS1 resulted in a failure of the clones to differentiate into neurons after retinoic acid induction, whereas cells transfected with antisense PS2 differentiated normally. Concomitantly, antisense PS1 clones were associated with increased apoptosis both under basal conditions and during the early period of neuronal differentiation after retinoic acid treatment. Overexpression of bcl-2 in antisense PS1 clones reduced cell death and resulted in a recovery of neuronal differentiation. These studies suggest that PS1 plays a role in differentiation and cell death and that PS1 and PS2 have differing physiological roles in this experimental paradigm.
Collapse
|
219
|
Parent A, Linden DJ, Sisodia SS, Borchelt DR. Synaptic transmission and hippocampal long-term potentiation in transgenic mice expressing FAD-linked presenilin 1. Neurobiol Dis 1999; 6:56-62. [PMID: 10078973 DOI: 10.1006/nbdi.1998.0207] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Mutations in two related genes, presenilin 1 and presenilin 2 (PS1 and PS2), cause a subset of early-onset familial Alzheimer's disease (FAD). PS1 is expressed in a variety of neuronal and peripheral tissues, including neuronal populations known to be at risk in Alzheimer's disease such as CA1 hippocampal neurons. To examine whether FAD-linked mutations in PS1 directly influence the physiology of learning and memory, we measured the field excitatory postsynaptic potential (fEPSP) at the Schaffer collateral-CA1 synapse in hippocampal slices. Basal synaptic transmission and long-term potentiation (LTP) were examined in neurons of transgenic mice expressing wild-type human PS1 (WtTg) and FAD-linked A246E PS1 variant (MTg) and in neurons of nontransgenic littermates (NTg). Several measures of basal synaptic transmission were unaltered in WtTg and MTg compared to NTg mice, including maximum fEPSP slope, maximum fEPSP amplitude, maximum fiber volley amplitude, and the function relating fiber volley amplitude to fEPSP slope, an index of basal synaptic strength. In addition, paired-pulse facilitation was not changed. However, upon theta burst stimulation or high-frequency stimulation, input-specific LTP in MTg animals had a larger initial amplitude and was more persistent than that in WtTg or NTg animals. These data suggest that the FAD-linked A246E variant of PS1 leads to higher degree of LTP induction in mice.
Collapse
Affiliation(s)
- A Parent
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA.
| | | | | | | |
Collapse
|
220
|
Yu Z, Luo H, Fu W, Mattson MP. The endoplasmic reticulum stress-responsive protein GRP78 protects neurons against excitotoxicity and apoptosis: suppression of oxidative stress and stabilization of calcium homeostasis. Exp Neurol 1999; 155:302-14. [PMID: 10072306 DOI: 10.1006/exnr.1998.7002] [Citation(s) in RCA: 352] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The 78-kDa glucose-regulated protein (GRP78) is localized in the endoplasmic reticulum (ER), and its expression is increased by environmental stressors in many types of nonneuronal cells. We report that levels of GRP78 are increased in cultured rat hippocampal neurons exposed to glutamate and oxidative insults (Fe2+ and amyloid beta-peptide) and that treatment of cultures with a GRP78 antisense oligodeoxynucleotide increases neuronal death following exposure to each insult. GRP78 antisense treatment enhanced apoptosis of differentiated PC12 cells following NGF withdrawal or exposure to staurosporine. Pretreatment of hippocampal cells with 2-deoxy-d-glucose, a potent inducer of GRP78 expression, protected neurons against excitotoxic and oxidative injury. GRP78 expression may function to suppress oxidative stress and stabilize calcium homeostasis because treatment with GRP78 antisense resulted in increased levels of reactive oxygen species and intracellular calcium following exposure to glutamate and oxidative insults in hippocampal neurons. Dantrolene (a blocker of ER calcium release), uric acid (an antioxidant), and zVAD-fmk (a caspase inhibitor) each protected neurons against the death-enhancing action of GRP78 antisense. The data suggest that ER stress plays a role in neuronal cell death induced by an array of insults and that GRP78 serves a neuroprotective function.
Collapse
Affiliation(s)
- Z Yu
- Department of Anatomy & Neurobiology, University of Kentucky, Lexington, Kentucky, 40536, USA
| | | | | | | |
Collapse
|
221
|
Chapter 9 The Role of Mitochondrial Genome Mutations in Neurodegenerative Disease. ACTA ACUST UNITED AC 1999. [DOI: 10.1016/s1566-3124(08)60029-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
222
|
Schutte B, Nuydens R, Geerts H, Ramaekers F. Annexin V binding assay as a tool to measure apoptosis in differentiated neuronal cells. J Neurosci Methods 1998; 86:63-9. [PMID: 9894786 DOI: 10.1016/s0165-0270(98)00147-2] [Citation(s) in RCA: 178] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We describe a rapid and reliable method to quantitate the extent of apoptosis in neuronal cell cultures. Based on their annexin V-affinity, resulting from phosphatidylserine (PS) exposure at the outer leaflet of the plasma membrane, apoptotic cells can be distinguished from annexin V-negative living cells, by using microscopic and flow cytometric procedures. When combined with propidium iodide (PI) the double labeling procedure allows a further distinction of necrotic (annexin V+/PI+), apoptotic (annexin V+/PI-) cells. Furthermore, when the cells are incubated with annexin V prior to harvesting, the former cell populations can be separated from cells damaged during isolation (annexin V-/PI+). In the present paper, we show that the annexin V-binding assay is also applicable to differentiated neuronal cells with fragile neurite outgrowths.
Collapse
Affiliation(s)
- B Schutte
- Department of Molecular Cell Biology and Genetics, University of Maastricht, The Netherlands.
| | | | | | | |
Collapse
|
223
|
Overexpression in neurons of human presenilin-1 or a presenilin-1 familial Alzheimer disease mutant does not enhance apoptosis. J Neurosci 1998. [PMID: 9822738 DOI: 10.1523/jneurosci.18-23-09790.1998] [Citation(s) in RCA: 77] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Programmed cell death, or apoptosis, has been implicated in Alzheimer's disease (AD). DNA damage was assessed in primary cortical neurons infected with herpes simplex virus (HSV) vectors expressing the familial Alzheimer's disease (FAD) gene presenilin-1 (PS-1) or an FAD mutant of this gene, A246E. After infection, immunoreactivity for PS-1 was shown to be enhanced in infected cells. The infected cells exhibited no cytotoxicity, as evaluated by trypan blue exclusion and mitochondrial function assays. Quantitative analysis of cells that were immunohistochemically labeled using a Klenow DNA fragmentation assay or the TUNEL method revealed no enhancement of apoptosis in PS-1-infected cells. This result was confirmed using assays for chromatin condensation and for DNA fragmentation. Expression of PS-1 protected against induction of apoptosis in the cortical neurons by etoposide or staurosporine. The specificity of this phenotype was demonstrated by the fact that cortical cultures infected with recombinant HSV vectors expressing the amyloid precursor protein (APP-695) showed, in contrast, a significant increase in the number of apoptotic cells and an increase in DNA fragmentation for all parameters tested. Our results indicate that overexpression of wild-type or A246E mutant PS-1 does not enhance apoptosis in postmitotic cortical cells and suggest that the previously reported enhancement of apoptosis by presenilins may be dependent on cell type.
Collapse
|
224
|
Abstract
Following a brief introduction and discussion of the pathological features of Alzheimer's disease, the main emphasis of this review article will be the genetic factors that have been implicated in this disease. These can be divided into two main categories. First, the three genes in which mutations are known to result in early onset autosomal dominant familial Alzheimer's disease will be discussed. These are well characterised but account for only a small proportion of Alzheimer's disease cases. Late onset, sporadic Alzheimer's disease is more common and evidence suggests that there is a genetic component to this type of disease. A number of genetic risk factors have been implicated that might increase the risk of developing sporadic disease. Many of these are controversial and studies have shown conflicting results, which are discussed in this section. Finally, a brief discussion of some of the mechanisms suggested to play a role in the pathogenesis of Alzheimer's disease is included. It is hoped that this will show why particular genes have been implicated in Alzheimer's disease and how they might be able to influence the development of the disease.
Collapse
Affiliation(s)
- L Tilley
- Division of Clinical Chemistry, School of Clinical Laboratory Sciences, Queen's Medical Centre, University of Nottingham, UK
| | | | | |
Collapse
|
225
|
Velez-Pardo C, Jimenez Del Rio M, Lopera F. Familial Alzheimer's disease: oxidative stress, beta-amyloid, presenilins, and cell death. GENERAL PHARMACOLOGY 1998; 31:675-81. [PMID: 9809462 DOI: 10.1016/s0306-3623(98)00189-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
1. The basic etiology of Alzheimer's disease remains unknown, although four genes have so far been involved: beta-amyloid precursor protein, presenilin-1, presenilin-2 and apolipoprotein E genes. 2. The largest familial Alzheimer's disease (FAD) kindred so far reported belong to a point mutation in codon 280 that results in a glutamic acid-to-alanine substitution in presenilin-1 characterized in Antioquia, Colombia. 3. A hypothetical unified molecular mechanism model of cell death in FAD mediated by presenilin-1, beta-amyloid, and oxidative stress is proposed as an attempt to explain the mechanisms of neuronal loss in this neurodegenerative disorder.
Collapse
Affiliation(s)
- C Velez-Pardo
- Department of Neurology, University Hospital, Medellin, Colombia
| | | | | |
Collapse
|
226
|
Mattson MP, Pedersen WA. Effects of amyloid precursor protein derivatives and oxidative stress on basal forebrain cholinergic systems in Alzheimer's disease. Int J Dev Neurosci 1998; 16:737-53. [PMID: 10198821 DOI: 10.1016/s0736-5748(98)00082-3] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The dysfunction and degeneration of cholinergic neuronal circuits in the brain is a prominent feature of Alzheimer's disease. Increasing data suggest that age-related oxidative stress contributes to degenerative changes in basal forebrain cholinergic systems. Experimental studies have shown that oxidative stress, and membrane lipid peroxidation in particular, can disrupt muscarinic cholinergic signaling by impairing coupling of receptors to GTP-binding proteins. Altered proteolytic processing of the beta-amyloid precursor protein (APP) may contribute to impaired cholinergic signaling and neuronal degeneration in at least two ways. First, levels of cytotoxic forms of amyloid beta-peptide (A beta) are increased; A beta damages and kills neurons by inducing membrane lipid peroxidation resulting in impairment of ion-motive ATPases, and glucose and glutamate transporters, thereby rendering neurons vulnerable to excitotoxicity. The latter actions of A beta may be mediated by 4-hydroxynonenal, an aldehydic product of membrane lipid peroxidation that covalently modifies and inactivates the various transporter proteins. Subtoxic levels of A beta can also suppress choline acetyltransferase levels, and may thereby promote dysfunction of intact cholinergic circuits. A second way in which altered APP processing may endanger cholinergic neurons is by reducing levels of a secreted form of APP which has been shown to modulate neuronal excitability, and to protect neurons against excitotoxic, metabolic and oxidative insults. Mutations in presenilin genes, which are causally linked to many cases of early-onset inherited Alzheimer's disease, may increase vulnerability of cholinergic neurons to apoptosis. The underlying mechanism appears to involve perturbed calcium regulation in the endoplasmic reticulum, which promotes loss of cellular calcium homeostasis, mitochondrial dysfunction and oxyradical production. Knowledge of the cellular and molecular underpinnings of dysfunction and degeneration of cholinergic circuits is leading to the development of novel preventative and therapeutic approaches for Alzheimer's disease and related disorders.
Collapse
Affiliation(s)
- M P Mattson
- Sanders-Brown Research Center on Aging, University of Kentucky, Lexington 40536, USA.
| | | |
Collapse
|
227
|
Czech C, Lesort M, Tremp G, Terro F, Blanchard V, Schombert B, Carpentier N, Dreisler S, Bonici B, Takashima A, Moussaoui S, Hugon J, Pradier L. Characterization of human presenilin 1 transgenic rats: increased sensitivity to apoptosis in primary neuronal cultures. Neuroscience 1998; 87:325-36. [PMID: 9740395 DOI: 10.1016/s0306-4522(98)00162-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Mutations in the gene for presenilin 1 are causative for the majority of cases of early onset familial Alzheimer's disease. Yet, the physiological function of presenilin 1 and the pathological mechanisms of the mutations leading to Alzheimer's disease are still unknown. To analyse potential pathological effects of presenilin 1 over-expression, we have generated transgenic rats which express high levels of human presenilin 1 protein in the brain. The over-expression of presenilin 1 leads to saturation of its normal processing and to the appearance of full-length protein in the transgenic rat brain. The transgenic protein is expressed throughout the brain and is predominantly found in neuronal cells. Cultured primary cortical neurons derived from these transgenic rats are significantly more sensitive than non-transgenic controls to apoptosis induced by standard culture conditions and to apoptosis induced by trophic factor withdrawal. Furthermore, the observed apoptosis is directly correlated with the expression of the transgenic protein. The results further emphasize the role of presenilin 1 in apoptotic cell death in native neuronal cultures.
Collapse
Affiliation(s)
- C Czech
- Rhône-Poulenc Rorer S.A., Research and Development, Vitry sur Seine, France
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
228
|
Thibault O, Porter NM, Chen KC, Blalock EM, Kaminker PG, Clodfelter GV, Brewer LD, Landfield PW. Calcium dysregulation in neuronal aging and Alzheimer's disease: history and new directions. Cell Calcium 1998; 24:417-33. [PMID: 10091010 DOI: 10.1016/s0143-4160(98)90064-1] [Citation(s) in RCA: 126] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- O Thibault
- Department of Pharmacology, University of Kentucky Medical Center, Lexington 40536-0084, USA.
| | | | | | | | | | | | | | | |
Collapse
|
229
|
Hölscher C. Possible causes of Alzheimer's disease: amyloid fragments, free radicals, and calcium homeostasis. Neurobiol Dis 1998; 5:129-41. [PMID: 9848086 DOI: 10.1006/nbdi.1998.0193] [Citation(s) in RCA: 78] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Alzheimer's disease (AD) is a form of dementia in which patients develop neurodegeneration and complete loss of cognitive abilities and die prematurely. No treatment is known for this condition. Evidence points toward beta-amyloid as one of the main causes for cytotoxic processes. The cascade of biochemical events that lead to neuronal death appears to be interference with intracellular calcium homeostasis via activation of calcium channels, intracellular calcium stores, and subsequent production of free radicals by calcium-sensitive enzymes. The glutamatergic system seems to be implicated in mediating the toxic processes. Several strategies promise amelioration of neurodegenerative developments as judging from in vitro experiments. Glutamate receptor-selective drugs, antioxidants, inhibitors of nitric oxide synthase, calcium channel antagonists, receptor or enzyme inhibitors, and growth factors promise help. Especially combinations of drugs that act at different levels might prolong patients' health.
Collapse
Affiliation(s)
- C Hölscher
- Department of Human Anatomy and Physiology, University College Dublin, Ireland
| |
Collapse
|
230
|
Murayama M, Tanaka S, Palacino J, Murayama O, Honda T, Sun X, Yasutake K, Nihonmatsu N, Wolozin B, Takashima A. Direct association of presenilin-1 with beta-catenin. FEBS Lett 1998; 433:73-7. [PMID: 9738936 DOI: 10.1016/s0014-5793(98)00886-2] [Citation(s) in RCA: 130] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Families bearing mutations in the presenilin-1 (PSI) gene develop Alzheimer's disease (AD). However, the mechanism through which PS1 causes AD is unclear. The co-immunoprecipitation with PS1 in transfected COS-7 cells indicates that PSI directly interacts with endogenous beta-catenin, and the interaction requires residues 322450 of PSI and 445-676 of beta-catenin. Both proteins are co-localized in the endoplasmic reticulum. Over-expression of PS1 reduces the level of cytoplasmic beta-catenin, and inhibits beta-catenin-T cell factor-regulated transcription. These results indicate that PSI plays a role as inhibitor of the beta-catenin signal, which may be connected with the AD dysfunction.
Collapse
Affiliation(s)
- M Murayama
- Laboratory for Alzheimer's Disease, Brain Science Institute, RIKEN, Saitama, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
231
|
Abstract
Presenilin-1 (PS-1) is localized to chromosome 14 and presenilin-2 (PS-2) to chromosome 1. Mutations in these genes, primarily in PS-1, account for an estimated 60% of early onset familial Alzheimer's disease cases (FAD), while FAD cases account for about 10% of all Alzheimer's disease (AD) cases. The mutations are minor but are 100% penetrant, suggesting that the proteins have acquired a toxic gain in function. The proteins have multiple transmembrane domains and have been reported to be localized to the Golgi apparatus, endoplasmic reticulum, nuclear membranes and cell surface membranes. They are thought to have functions associated with vesicular trafficking, Notch signaling and apoptosis. PS mutants show relative increases in the amount of A beta42/43 compared with A beta40 in plasma, fibroblasts and brain, observations which have been taken as a possible mechanism of their role in AD. In brain, the mRNAs for these two genes are localized primarily in neurons, with the strongest in situ hybridization signals being observed in the hippocampus, cerebellum and cerebral cortex. In AD, signals detected in the hippocampus are weaker than those in normals, while signals in the cerebellum are comparable. Immunohistochemical localization of the proteins is also primarily in neurons, and, at least for PS-1, is reduced in AD affected areas. PS-1 is localized to granular structures which are most abundant in cell bodies and dendrites. The functions of the presenilins are not yet known, but available evidence points to pyramidal neurons as the most logical site for pathological change in AD.
Collapse
Affiliation(s)
- P L McGeer
- Kinsmen Laboratory of Neurological Research, University of British Columbia, Vancouver, Canada
| | | | | |
Collapse
|
232
|
Increased sensitivity to mitochondrial toxin-induced apoptosis in neural cells expressing mutant presenilin-1 is linked to perturbed calcium homeostasis and enhanced oxyradical production. J Neurosci 1998. [PMID: 9614221 DOI: 10.1523/jneurosci.18-12-04439.1998] [Citation(s) in RCA: 153] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Many cases of autosomal dominant early onset Alzheimer's disease (AD) result from mutations in the gene encoding presenilin-1 (PS-1). PS-1 is an integral membrane protein expressed ubiquitously in neurons throughout the brain in which it is located primarily in endoplasmic reticulum (ER). Although the pathogenic mechanism of PS-1 mutations is unknown, recent findings suggest that PS mutations render neurons vulnerable to apoptosis. Because increasing evidence indicates that mitochondrial alterations contribute to neuronal death in AD, we tested the hypothesis that PS-1 mutations sensitize neurons to mitochondrial failure. PC12 cell lines expressing a PS-1 mutation (L286V) exhibited increased sensitivity to apoptosis induced by 3-nitropropionic acid (3-NP) and malonate, inhibitors of succinate dehydrogenase, compared with control cell lines and lines overexpressing wild-type PS-1. The apoptosis-enhancing action of mutant PS-1 was prevented by antioxidants (propyl gallate and glutathione), zVAD-fmk, and cyclosporin A, indicating requirements of reactive oxygen species (ROS), caspases, and mitochondrial permeability transition in the cell death process. 3-NP induced a rapid elevation of [Ca2+]i, which was followed by caspase activation, accumulation of ROS, and decreases in mitochondrial reducing potential and transmembrane potential in cells expressing mutant PS-1. The calcium chelator BAPTA AM and agents that block calcium release from ER and influx through voltage-dependent channels prevented mitochondrial ROS accumulation and membrane depolarization and apoptosis. Our data suggest that by perturbing subcellular calcium homeostasis presenilin mutations sensitize neurons to mitochondria-based forms of apoptosis that involve oxidative stress.
Collapse
|
233
|
Affiliation(s)
- P Desjardins
- Neuroscience Research Unit, CHUM (Campus Saint-Luc), Montreal, Quebec, Canada
| | | |
Collapse
|
234
|
Guo Q, Robinson N, Mattson MP. Secreted beta-amyloid precursor protein counteracts the proapoptotic action of mutant presenilin-1 by activation of NF-kappaB and stabilization of calcium homeostasis. J Biol Chem 1998; 273:12341-51. [PMID: 9575187 DOI: 10.1074/jbc.273.20.12341] [Citation(s) in RCA: 134] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mutations in the presenilin-1 (PS-1) gene account for approximately 50% of the cases of autosomal dominant, early onset, inherited forms of Alzheimer's disease (AD). PS-1 is an integral membrane protein expressed in neurons and is localized primarily in the endoplasmic reticulum (ER). PS-1 mutations may promote neuronal degeneration by altering the processing of the beta-amyloid precursor protein (APP) and/or by engaging apoptotic pathways. Alternative processing of APP in AD may increase production of neurotoxic amyloid beta-peptide (Abeta) and reduce production of the neuroprotective alpha-secretase-derived form of APP (sAPPalpha). In differentiated PC12 cells expressing an AD-linked PS-1 mutation (L286V), sAPPalpha activated the transcription factor NF-kappaB and prevented apoptosis induced by Abeta. Treatment of cells with kappaB decoy DNA blocked the antiapoptotic action of sAPPalpha, demonstrating the requirement for NF-kappaB activation in the cytoprotective action of sAPPalpha. Cells expressing mutant PS-1 exhibited an aberrant pattern of NF-kappaB activity following exposure to Abeta, which was characterized by enhanced early activation of NF-kappaB followed by a prolonged depression of activity. Blockade of NF-kappaB activity in cells expressing mutant PS-1 by kappaB decoy DNA was associated with enhanced Abeta-induced increases of [Ca2+]i and mitochondrial dysfunction. Treatment of cells with sAPPalpha stabilized [Ca2+]i and mitochondrial function and suppressed oxidative stress by a mechanism involving activation of NF-kappaB. Blockade of ER calcium release prevented (and stimulation of ER calcium release by thapsigargin induced) apoptosis in cells expressing mutant PS-1, suggesting a pivotal role for ER calcium release in the proapoptotic action of mutant PS-1. Finally, a role for NF-kappaB in preventing apoptosis induced by ER calcium release was demonstrated by data showing that sAPPalpha prevents thapsigargin-induced apoptosis, an effect blocked by kappaB decoy DNA. We conclude that sAPPalpha stabilizes cellular calcium homeostasis and protects neural cells against the proapoptotic action of mutant PS-1 by a mechanism involving activation of NF-kappaB. The data further suggest that PS-1 mutations result in aberrant NF-kappaB regulation that may render neurons vulnerable to apoptosis.
Collapse
Affiliation(s)
- Q Guo
- Sanders-Brown Research Center on Aging and Department of Anatomy and Neurobiology, University of Kentucky, Lexington, Kentucky 40536, USA
| | | | | |
Collapse
|
235
|
Guo Q, Christakos S, Robinson N, Mattson MP. Calbindin D28k blocks the proapoptotic actions of mutant presenilin 1: reduced oxidative stress and preserved mitochondrial function. Proc Natl Acad Sci U S A 1998; 95:3227-32. [PMID: 9501245 PMCID: PMC19724 DOI: 10.1073/pnas.95.6.3227] [Citation(s) in RCA: 166] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/1997] [Indexed: 02/06/2023] Open
Abstract
Mutations in the presenilin 1 (PS-1) gene account for many cases of early-onset autosomal dominant inherited forms of Alzheimer's disease. Recent findings suggest that PS-1 mutations may sensitize neurons to apoptosis induced by trophic factor withdrawal and exposure to amyloid beta-peptide (Abeta). We now report that overexpression of the calcium-binding protein calbindin D28k prevents apoptosis in cultured neural cells expressing mutant PS-1 (L286V and M146V missense mutations). Elevations of the intracellular Ca2+ concentration and generation of reactive oxygen species induced by Abeta, and potentiated by mutant PS-1, were suppressed in calbindin-overexpressing cells. Impairment of mitochondrial function by Abeta (which preceded apoptosis) was exacerbated by PS-1 mutations and was largely prevented by calbindin. These findings suggest that PS-1 mutations render neurons vulnerable to apoptosis by a mechanism involving destabilization of cellular calcium homeostasis, which leads to oxidative stress and mitochondrial dysfunction.
Collapse
Affiliation(s)
- Q Guo
- Sanders-Brown Research Center on Aging and Department of Anatomy and Neurobiology, University of Kentucky, Lexington, KY 40536, USA
| | | | | | | |
Collapse
|
236
|
Mattson MP. Free radicals, calcium, and the synaptic plasticity-cell death continuum: emerging roles of the transcription factor NF kappa B. INTERNATIONAL REVIEW OF NEUROBIOLOGY 1998; 42:103-68. [PMID: 9476172 DOI: 10.1016/s0074-7742(08)60609-1] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- M P Mattson
- Sanders-Brown Research Center on Aging, University of Kentucky, Lexington 40536, USA
| |
Collapse
|
237
|
Abstract
The genetic associations with the pathological features of AD are diverse: A rapidly growing number of mutations in presenilin 1 and 2 on chromosomes 14 and 1, respectively, are found in many early-onset FAD patients (Lendon et al., 1997). In addition, beta PP mutations are found in a small percentage of early-onset FAD kindreds. The apoE4 allele on chromosome 19 is associated with the presence of the most common form of AD, sporadic AD (Wisniewski & Frangione, 1992; Namba et al., 1991). However, it is clear that other proteins are also involved in the pathogenesis of AD, since some early-onset FAD kindreds do not have linkage to PS1, PS2, apoE, or beta PP, while at least 50% of late-onset AD is unrelated to apoE. Other proteins which have been implicated in the formation of senile plaques, but so far are not known to have any genetic linkage to AD, include proteoglycans (Snow et al., 1987), apoA1 (Wisniewski et al., 1995a), alpha 1-antichymotrypsin (Abraham et al., 1988), HB-GAM (Wisniewski et al., 1996a), complement components (McGeer & Rogers, 1992), acetylcholinesterase (Friede, 1965), and NAC (Ueda et al., 1993). Which of these proteins will be the most important for the etiology of the most common form of AD, late-onset sporadic AD, remains an open question. Three of the genes which are now known to be linked to AD, including PS1, beta PP, and apoE, have been established immunohistochemically and biochemically to be components of senile plaques (see Fig. 1). This raises at least two possibilities: either each of these proteins is part of one pathway with A beta-related amyloid formation as a final causative pathogenic event or amyloid deposition in AD is a reactive process related to dysfunction of a number of different CNS proteins. Whether or not amyloid formation is directly causative in the pathogenesis of AD, current data suggest that new therapeutic approaches which may inhibit the aggregation and/or the conformational change of sA beta to A beta fibrils (Soto et al., 1996) have the greatest likelihood to make a significant impact on controlling amyloid accumulation in AD.
Collapse
Affiliation(s)
- T Wisniewski
- Department of Neurology, New York University Medical Center, New York 10016, USA.
| | | | | |
Collapse
|
238
|
Mattson MP, Guo Q. Cell and molecular neurobiology of presenilins: a role for the endoplasmic reticulum in the pathogenesis of Alzheimer's disease? J Neurosci Res 1997; 50:505-13. [PMID: 9404712 DOI: 10.1002/(sici)1097-4547(19971115)50:4<505::aid-jnr1>3.0.co;2-i] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Mutations in genes encoding presenilin-1 (PS-1) and presenilin-2 (PS-2) cause many cases of autosomal dominant inherited forms of early-onset Alzheimer's disease (AD). PSs are expressed in neurons throughout the nervous system, with differences in abundance among cell populations. PS-1 and PS-2 each have six to eight transmembrane domains and are localized mainly in the endoplasmic reticulum (ER). PSs may interact with cytoskeletal proteins and beta-amyloid precursor protein (APP) in ways consistent with roles in membrane trafficking and APP processing. Expression of mutant PSs in cultured cells and transgenic mice results in increased production of an amyloidogenic-cytotoxic form of amyloid beta-peptide (Abeta). Neural cells expressing mutant PSs exhibit increased sensitivity to apoptosis induced by trophic factor withdrawal and Abeta. The proapoptotic action of mutant PSs involves perturbed calcium release from ER stores and increased levels of oxidative stress. PS mutations may also suppress neurotransmitter synthesis in cholinergic neurons, suggesting a role in regulation of neuronal phenotype. Homology of PSs with the C. elegans gene sel-12 and phenotypic similarities of PS-1 and Notch knockout mice suggest a developmental role for PSs in somitogenesis. Collectively, the emerging data suggest intriguing roles of PSs in neuronal plasticity and cell death and highlight the importance of the ER as a regulatory site involved in the pathogenesis of neuronal degeneration in AD.
Collapse
Affiliation(s)
- M P Mattson
- Sanders-Brown Research Center on Aging and Department of Anatomy and Neurobiology, University of Kentucky, Lexington, USA.
| | | |
Collapse
|
239
|
|
240
|
Gibson GE, Vestling M, Zhang H, Szolosi S, Alkon D, Lannfelt L, Gandy S, Cowburn RF. Abnormalities in Alzheimer's disease fibroblasts bearing the APP670/671 mutation. Neurobiol Aging 1997; 18:573-80. [PMID: 9461055 DOI: 10.1016/s0197-4580(97)00149-8] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Abnormalities in cultured fibroblasts from familial Alzheimer's Disease (FAD) cases uniquely enable the determination of how gene defects alter cell biology in living tissue from affected individuals. The current study focused on measures of calcium regulation and oxidative metabolism in fibroblast lines from controls and FAD individuals with the Swedish APP670/671 mutation. Bombesin-induced elevations in calcium in APP670/671 mutation-bearing lines were reduced by 40% (p < 0.05), a striking contrast to the 100% increase seen in sporadic AD and presenilin-1 (PS1) mutation-bearing cells in previously published studies. The APP670/671 mutation-bearing lines did not exhibit the exaggerated 4-bromo-A23187 releasable pool of calcium following 10 nM bradykinin, the enhanced sensitivity of calcium stores to low concentrations of bradykinin, nor the reduced activity of alpha-ketoglutarate dehydrogenase previously reported in cells from sporadic AD and mutant PS1 FAD. Thus, an altered regulation of internal calcium stores is common to all AD lines, but the calcium pool affected and the polarity of the alteration varies, apparently in association with particular gene mutations. Comparison of signal transduction in cell lines from multiple, genetically characterized AD families will allow testing of the hypothesis that these various pathogenic FAD abnormalities that lead to AD converge at the level of abnormal signal transduction.
Collapse
Affiliation(s)
- G E Gibson
- Cornell University Medical College at Burke Medical Research Institute, White Plains, NY 10605, USA.
| | | | | | | | | | | | | | | |
Collapse
|
241
|
Abstract
Mutations in the genes encoding the presenilins cause the majority of early-onset cases of Alzheimer's disease (AD). The identification of the presenilin genes has provided new opportunities for elucidating the molecular mechanisms underlying the etiology and pathogenesis of AD. Recent progress has been made in attempts to understand the normal and pathological functions of the presenilins, emphasizing the effects of presenilin familial AD mutations on the amyloid beta-protein precursor, the presenilins themselves, and apoptotic cell death.
Collapse
Affiliation(s)
- T W Kim
- Genetics and Aging Unit, Massachusetts General Hospital, Charlestown, Massachusetts 02129, USA.
| | | |
Collapse
|
242
|
Pedersen WA, Guo Q, Hartman BK, Mattson MP. Nerve growth factor-independent reduction in choline acetyltransferase activity in PC12 cells expressing mutant presenilin-1. J Biol Chem 1997; 272:22397-400. [PMID: 9278388 DOI: 10.1074/jbc.272.36.22397] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Mutations in the presenilin genes (PS-1 and PS-2) are linked to early onset familial Alzheimer's disease (AD), but the mechanisms by which these mutations cause the cognitive impairment characteristic of AD are unknown. Basal forebrain cholinergic neurons are involved in learning and memory processes, and reductions in choline acetyl-transferase (ChAT) activity are a characteristic feature of AD brain. We therefore hypothesized that presenilin mutations suppress expression of the cholinergic phenotype. In rat PC12 cells stably transfected with the human PS-1 gene containing the Leu --> Val mutation at codon 286 (L286V), we observed a drastic reduction (>90%) in basal ChAT activity compared with cells transfected with vector alone. By immunocytochemistry, a similar decrease in ChAT protein levels was found in the mutant transfectants. In cells differentiated with nerve growth factor, ChAT activity was again markedly lower in L286V-expressing cells than in control cells. We also observed reductions in ChAT activity in PC12 cells expressing the wild-type human PS-1 gene but to a lesser extent than in L286V-expressing cells. The viability of cells transfected with either the wild-type or the mutant PS-1 gene was not compromised. Our results suggest that PS-1 mutations may contribute to the cognitive impairment in AD by causing a nontoxic suppression of the cholinergic phenotype.
Collapse
Affiliation(s)
- W A Pedersen
- Sanders-Brown Research Center on Aging and the Department of Anatomy and Neurobiology, University of Kentucky, Lexington, Kentucky 40536, USA
| | | | | | | |
Collapse
|
243
|
Kim TW, Pettingell WH, Jung YK, Kovacs DM, Tanzi RE. Alternative cleavage of Alzheimer-associated presenilins during apoptosis by a caspase-3 family protease. Science 1997; 277:373-6. [PMID: 9219695 DOI: 10.1126/science.277.5324.373] [Citation(s) in RCA: 253] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Most cases of early-onset familial Alzheimer's disease (FAD) are caused by mutations in the genes encoding the presenilin 1 (PS1) and PS2 proteins, both of which undergo regulated endoproteolytic processing. During apoptosis, PS1 and PS2 were shown to be cleaved at sites distal to their normal cleavage sites by a caspase-3 family protease. In cells expressing PS2 containing the asparagine-141 FAD mutant, the ratio of alternative to normal PS2 cleavage fragments was increased relative to wild-type PS2-expressing cells, suggesting a potential role for apoptosis-associated cleavage of presenilins in the pathogenesis of Alzheimer's disease.
Collapse
Affiliation(s)
- T W Kim
- Genetics and Aging Unit, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | | | | | | | | |
Collapse
|
244
|
Calcium homeostasis and reactive oxygen species production in cells transformed by mitochondria from individuals with sporadic Alzheimer's disease. J Neurosci 1997. [PMID: 9169522 DOI: 10.1523/jneurosci.17-12-04612.1997] [Citation(s) in RCA: 181] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Alzheimer's disease (AD) is associated with defects in mitochondrial function. Mitochondrial-based disturbances in calcium homeostasis, reactive oxygen species (ROS) generation, and amyloid metabolism have been implicated in the pathophysiology of sporadic AD. The cellular consequences of mitochondrial dysfunction, however, are not known. To examine these consequences, mitochondrially transformed cells (cybrids) were created from AD patients or disease-free controls. Mitochondria from platelets were fused to rho0 cells created by depleting the human neuroblastoma line SH-SY5Y of its mitochondrial DNA (mtDNA). AD cybrids demonstrated a 52% decrease in electron transport chain (ETC) complex IV activity but no difference in complex I activity compared with control cybrids or SH-SY5Y cells. This mitochondrial dysfunction suggests a transferable mtDNA defect associated with AD. ROS generation was elevated in the AD cybrids. AD cybrids also displayed an increased basal cytosolic calcium concentration and enhanced sensitivity to inositol-1,4, 5-triphosphate (InsP3)-mediated release. Furthermore, they recovered more slowly from an elevation in cytosolic calcium induced by the InsP3 agonist carbachol. Mitochondrial calcium buffering plays a major role after this type of perturbation. beta-amyloid (25-35) peptide delayed the initiation of calcium recovery to a carbachol challenge and slowed the recovery rate. Nerve growth factor reduced the carbachol-induced maximum and moderated the recovery kinetics. Succinate increased ETC activity and partially restored the AD cybrid recovery rate. These subtle alterations in calcium homeostasis and ROS generation might lead to increased susceptibility to cell death under circumstances not ordinarily toxic.
Collapse
|
245
|
Alzheimer's presenilin mutation sensitizes neural cells to apoptosis induced by trophic factor withdrawal and amyloid beta-peptide: involvement of calcium and oxyradicals. J Neurosci 1997. [PMID: 9151738 DOI: 10.1523/jneurosci.17-11-04212.1997] [Citation(s) in RCA: 354] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Most autosomal dominant inherited forms of early onset Alzheimer's disease (AD) are caused by mutations in the presenilin-1 (PS-1) gene on chromosome 14. PS-1 is an integral membrane protein with six to nine membrane-spanning domains and is expressed in neurons throughout the brain wherein it is localized mainly in endoplasmic reticulum (ER). The mechanism or mechanisms whereby PS-1 mutations promote neuron degeneration in AD are unknown. Recent findings suggest links among deposition of amyloid beta-peptide (Abeta), oxidative stress, disruption of ion homeostasis, and an apoptotic form of neuron death in AD. We now report that expression of the human PS-1 L286V mutation in PC12 cells increases their susceptibility to apoptosis induced by trophic factor withdrawal and Abeta. Increases in oxidative stress and intracellular calcium levels induced by the apoptotic stimuli were exacerbated greatly in cells expressing the PS-1 mutation, as compared with control cell lines and lines overexpressing wild-type PS-1. The antiapoptotic gene product Bcl-2 prevented apoptosis after NGF withdrawal from differentiated PC12 cells expressing mutant PS-1. Elevations of [Ca2+]i in response to thapsigargin, an inhibitor of the ER Ca2+-ATPase, were increased in cells expressing mutant PS-1, and this adverse effect was abolished in cells expressing Bcl-2. Antioxidants and blockers of calcium influx and release from ER protected cells against the adverse consequences of the PS-1 mutation. By perturbing cellular calcium regulation and promoting oxidative stress, PS-1 mutations may sensitize neurons to apoptotic death in AD.
Collapse
|