201
|
Sharpless NE, Kannan K, Xu J, Bosenberg MW, Chin L. Both products of the mouse Ink4a/Arf locus suppress melanoma formation in vivo. Oncogene 2003; 22:5055-9. [PMID: 12902988 DOI: 10.1038/sj.onc.1206809] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Deletion of the INK4a/ARF locus at 9p21 is detected with high frequency in human melanoma. Within a short genomic distance, this locus encodes several proteins with established tumor-suppressor roles in a broad spectrum of cancer types. Several lines of evidence support the view that p16INK4a and p19ARF exert the tumor-suppressor activities of this locus, although their relative importance in specific cancer types such as melanoma has been less rigorously documented on the genetic level. Here, we exploit a well-defined mouse model of RAS-induced melanomas to examine the impact of germline p16INK4a or p19ARF nullizygosity on melanoma formation. We demonstrate that loss of either Ink4a/Arf product can cooperate with RAS activation to produce clinically indistinguishable melanomas. In line with the common phenotypic end point, we further show that RAS+ p16INK4a-/- melanomas sustain somatic inactivation of p19ARF-p53 and, correspondingly, that RAS+ p19ARF-/- melanomas experience high-frequency loss of p16INK4a. These genetic studies provide definitive proof that p16INK4a and p19ARF cooperate to suppress the development of melanoma in vivo.
Collapse
Affiliation(s)
- Norman Edward Sharpless
- Department of Medical Oncology, Dana-Farber Cancer Institute, 44 Binney Street (M413), Boston, MA 02115, USA
| | | | | | | | | |
Collapse
|
202
|
Abstract
Therapeutic resistance and proclivity for metastasis are hallmarks of malignant melanoma. Genetic, epidemiological and genomic investigations are uncovering the spectrum of stereotypical mutations that are associated with melanoma and how these mutations relate to risk factors such as ultraviolet exposure. The ability to validate the pathogenetic relevance of these mutations in the mouse, coupled with advances in rational drug design, has generated optimism for the development of effective prevention programmes, diagnostic measures and targeted therapeutics in the near future.
Collapse
Affiliation(s)
- Lynda Chin
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02115, USA.
| |
Collapse
|
203
|
Eskandarpour M, Hashemi J, Kanter L, Ringborg U, Platz A, Hansson J. Frequency of UV-inducible NRAS mutations in melanomas of patients with germline CDKN2A mutations. J Natl Cancer Inst 2003; 95:790-8. [PMID: 12783933 DOI: 10.1093/jnci/95.11.790] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Germline alterations in cyclin-dependent kinase inhibitor 2A (CDKN2A) are important genetic factors in familial predisposition to melanoma. Activating mutations of the NRAS proto-oncogene are among the most common somatic genetic alterations in cutaneous malignant melanomas. We investigated the occurrence of NRAS mutations in melanomas and dysplastic nevi in individuals with germline CDKN2A mutations. METHODS Genomic DNA was extracted from 39 biopsy samples (including primary melanomas, metastatic melanomas, and dysplastic nevi) from 25 patients in six Swedish families with a hereditary predisposition to melanoma who carried germline CDKN2A mutations. DNA was also extracted from 10 biopsy samples from patients with sporadic melanomas. NRAS was analyzed using polymerase chain reaction, single-strand conformation polymorphism analysis, and nucleotide sequence analysis. Differences in NRAS mutation frequency between hereditary and sporadic melanomas were analyzed by the chi-square test. All statistical tests were two-sided. RESULTS Activating mutations in NRAS codon 61, all of which were either CAA(Gln)-AAA(Lys) or CAA(Gln)-CGA(Arg) mutations, were found in 95% (20/21) of primary hereditary melanomas but in only 10% (1/10) of sporadic melanomas (P<.001). Multiple activating NRAS mutations were detected in tumor cells from different regions of individual primary melanomas in nine patients. Activating mutations that were detected in the primary melanomas of these patients were also retained in their metastases. NRAS mutations at sites other than codon 61 were also present in the primary melanomas, indicating genetic instability of this locus. NRAS codon 61 mutations were also detected in dysplastic nevi and in an in situ melanoma, suggesting a role for such mutations during early melanoma development. CONCLUSIONS The high frequency of NRAS codon 61 mutations detected in these hereditary melanomas may be the result of a hypermutability phenotype associated with a hereditary predisposition for melanoma development in patients with germline CDKN2A mutations.
Collapse
Affiliation(s)
- Malihe Eskandarpour
- Department of Oncology-Pathology, Cancer Center Karolinska, Karolinska Hospital and Karolinska Institute, Stockholm, Sweden
| | | | | | | | | | | |
Collapse
|
204
|
Abstract
Phosphatase and tensin homolog deleted in from chromosome ten (PTEN), initially also known as mutated in multiple advanced cancers or TGF-beta-regulated and epithelia cell-enriched phosphatase, is a tumor suppressor gene that is mutated in a large fraction of human melanomas. A broad variety of human cancers carry PTEN alterations, including glioblastomas, endometrial, breast, thyroid and prostate cancers. The PTEN protein has at least two biochemical functions: it has both lipid phosphatase and protein phosphatase activity. The lipid phosphatase activity of PTEN decreases intracellular PtdIns(3,4,5)P(3) level and downstream Akt activity. Cell-cycle progression is arrested at G1/S, mediated at least partially through the upregulation of the cyclin-dependent kinase inhibitor p27. In addition, agonist-induced apoptosis is mediated by PTEN, through the upregulation of proapoptotic machinery involving caspases and BID, and the downregulation of antiapoptotic proteins such as Bcl2. The protein phosphatase activity of PTEN is apparently less central to its involvement in tumorigenesis. It is involved in the inhibition of focal adhesion formation, cell spreading and migration, as well as the inhibition of growth factor-stimulated MAPK signaling. Therefore, the combined effects of the loss of PTEN lipid and protein phosphatase activity may result in aberrant cell growth and escape from apoptosis, as well as abnormal cell spreading and migration. In melanoma, PTEN loss has been mostly observed as a late event, although a dose-dependent loss of PTEN protein and function has been implicated in early stages of tumorigenesis as well. In addition, loss of PTEN and oncogenic activation of RAS seem to occur in a reciprocal fashion, both of which could cooperate with CDKN2A loss in contribution to melanoma tumorigenesis.
Collapse
Affiliation(s)
- Heng Wu
- Department of Hematology/Oncology, Massachusetts General Hospital, GRJ1021, 55 Fruit Street, Boston, MA 02114, USA
| | | | | |
Collapse
|
205
|
Abstract
Transformation of normal melanocytes into melanoma cells is accomplished by the activation of growth stimulatory pathways, typically leading to cellular proliferation, and the inactivation of apoptotic and tumor suppressor pathways. Small molecule inhibitors of proteins in the growth stimulatory pathways are under active investigation, and their application to melanoma patients would represent a new treatment strategy to inhibit cell proliferation or induce cell death. We provide a general overview of the mechanisms of oncogene activation and the functions of oncogenes. Lastly, we review oncogenic events in melanoma.
Collapse
Affiliation(s)
- David Polsky
- Department of Dermatology, New York University Medical Center, 550 First Avenue, New York, NY 10016, USA.
| | | |
Collapse
|
206
|
Abstract
Inactivation of the INK4a/ARF (or CDKN2a) locus is a common and critical genetic event in the development of human and mouse melanoma. This locus engages the Rb and p53 tumor suppressor pathways through its capacity to encode two distinct gene products, p16(INK4a) and p14(ARF). This review highlights the body of evidence supporting a role for both p16(INK4a) and p14(ARF) in the suppression of melanoma, and speculates as to why this locus is preferentially targeted in this tumor type. In addition, the potential importance of these two pathways in mediating UV-induced melanoma genesis will be addressed via genetic and molecular evidence in the mouse.
Collapse
Affiliation(s)
- E Sharpless
- Departments of Medicine and Genetics, The Lineberger Comprehensive Cancer Center, The University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | | |
Collapse
|
207
|
Abstract
Melanoma is the most aggressive form of skin cancer and is notoriously resistant to all current modalities of cancer therapy. A large set of genetic, functional and biochemical studies suggest that melanoma cells become 'bullet proof' against a variety of chemotherapeutic drugs by exploiting their intrinsic resistance to apoptosis and by reprogramming their proliferation and survival pathways during melanoma progression. In recent years, the identification of molecules involved in the regulation and execution of apoptosis, and their alteration in melanoma, have provided new insights into the molecular basis for melanoma chemoresistance. With this knowledge in hand, the challenge is now to devise strategies potent enough to compensate or bypass these cell death defects and improve the actual poor prognosis of patients at late stages of the disease.
Collapse
Affiliation(s)
- María S Soengas
- Department of Dermatology, University of Michigan Comprehensive Cancer Center, Ann Arbor, MI 28109, USA.
| | | |
Collapse
|
208
|
Abstract
During the process of oncogenic transformation, melanoma cells escape from normal growth-control mechanisms and acquire the ability to invade surrounding tissues and organs. The Ras/Raf/MEK/ERK pathway is a major pathway involved in the control of growth signals, cell survival and invasion. Melanomas are known to harbour activating mutations of both Ras and BRAF, suggesting that the downstream effector ERK may be playing a major role in the oncogenic behaviour of these tumours. The past few years have seen a growth in the understanding of the role of ERK and the MAP kinase pathway in melanoma. The aim of the current review is to assess the role of ERK in melanoma behaviour and to determine whether modulation of these kinases could offer new therapeutic opportunities.
Collapse
Affiliation(s)
- Keiran S M Smalley
- Section of Medicine, Institute of Cancer Research, London, United Kingdom.
| |
Collapse
|
209
|
Abstract
Apoptosis and senescence are cellular failsafe programmes that counteract excessive mitogenic signalling from activated oncogenes. Cancellation of apoptosis or senescence is therefore a prerequisite for tumour formation, and the ability of the cancer cell to disrupt these processes can be considered its 'lifeline'. Ironically, the efficacy of anticancer agents also depends on the activation of apoptosis or an acutely inducible form of cellular senescence. Understanding how the 'lifelines' of the cancer cell interfere with treatment sensitivity is of crucial importance for developing safer and more effective treatment strategies.
Collapse
Affiliation(s)
- Clemens A Schmitt
- Max-Delbrück-Center for Molecular Medicine and Charité/Campus Virchow-Hospital, Department of Hematology/Oncology, Humboldt University, 13353 Berlin, Germany.
| |
Collapse
|
210
|
Abstract
Cutaneous malignant melanoma (CMM) is a life-threatening cancer that can have a poor prognosis with high metastatic potential. Its incidence is rapidly increasing worldwide. Its molecular alterations involve multiple pathways, including those related to p53. Since 1981, more than 380 papers containing the terms 'p53 and melanoma' as key words in the Abstract have been published in the literature. However, in spite of these extensive investigations, a review of p53 and associated genes in CMM is still lacking. To remedy this issue, this review seeks to provide a brief overview of p53 and discuss the genes targeted along its related pathways.
Collapse
Affiliation(s)
- M R Hussein
- Department of Pathology, Faculty of Medicine, Assuit Univeristy, Assuit, Egypt
| | | | | |
Collapse
|
211
|
Abstract
Many cancers are the pathological consequence of environmentally initiated disruptions to cellular genetic control mechanisms. For most cancers the relevant environmental carcinogens have not been identified, but one major exception is cutaneous malignant melanoma, for which the primary environmental agent is solar ultraviolet (UV) radiation. Hence, melanomagenesis represents a potential model of detrimental gene-environment interaction. Although the underlying genetic basis of melanoma is currently being elucidated, fundamental questions concerning UV and the mechanisms by which it operates remain unanswered. Significant progress has recently been made in creating UV-responsive, genetically tractable mouse models of melanoma that accurately recapitulate human disease. These models are providing novel insights into how the genome and environment interact in vivo.
Collapse
Affiliation(s)
- Glenn Merlino
- Laboratory of Molecular Biology, National Cancer Institute, Building 37, Room 5002, Bethesda, MD 20892-4264, USA.
| | | |
Collapse
|
212
|
Kannan K, Sharpless NE, Xu J, O'Hagan RC, Bosenberg M, Chin L. Components of the Rb pathway are critical targets of UV mutagenesis in a murine melanoma model. Proc Natl Acad Sci U S A 2003; 100:1221-5. [PMID: 12538879 PMCID: PMC298754 DOI: 10.1073/pnas.0336397100] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2002] [Indexed: 01/17/2023] Open
Abstract
Epidemiological studies support a link between melanoma risk and UV exposure early in life, yet the molecular targets of UV's mutagenic actions are not known. By using well characterized murine models of melanoma, we provide genetic and molecular evidence that identifies components of the Rb pathway as the principal targets of UV mutagenesis in murine melanoma development. In a melanoma model driven by H-RAS activation and loss of p19(ARF) function, UV exposure resulted in a marked acceleration in melanoma genesis, with nearly half of these tumors harboring amplification of cyclin-dependent kinase (cdk) 6, whereas none of the melanomas arising in the absence of UV treatment possessed cdk6 amplification. Moreover, UV-induced melanomas showed a strict reciprocal relationship between cdk6 amplification and p16(INK4a) loss, which is consistent with the actions of UV along the Rb pathway. Most significantly, UV exposure had no impact on the kinetics of melanoma driven by H-RAS activation and p16(INK4a) deficiency. Together, these molecular and genetic data identify components of the Rb pathway as critical biological targets of UV-induced mutagenesis in the development of murine melanoma in vivo.
Collapse
Affiliation(s)
- Karuppiah Kannan
- Department of Medical Oncology, Dana-Farber Cancer Institute, Brigham and Women's Hospital, Boston, MA 02115, USA
| | | | | | | | | | | |
Collapse
|
213
|
Noonan FP, Dudek J, Merlino G, De Fabo EC. Animal models of melanoma: an HGF/SF transgenic mouse model may facilitate experimental access to UV initiating events. PIGMENT CELL RESEARCH 2003; 16:16-25. [PMID: 12519121 DOI: 10.1034/j.1600-0749.2003.00014.x] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Cutaneous malignant melanoma, the most lethal of the skin cancers, known for its intractability to current therapies, continues to increase in incidence, providing a significant public health challenge. There is a consensus that skin cancer is initiated by sunlight exposure. For non-melanoma skin cancer there is substantial evidence that chronic exposure to the ultraviolet B radiation (UVB) (280-320 nm) portion of the sunlight spectrum is responsible. Experimentally, UVB is mutagenic and chronic UVB exposure can cause non-melanoma skin cancer in laboratory animals. Non-melanoma tumors in animals and in humans show characteristic UVB signature lesions in the tumor suppressor p53 and/or in the patched (PTCH) gene. An action spectrum or wavelength dependence for squamous cell carcinoma in the mouse shows a major peak of efficacy in the UVB. For malignant melanoma, however, the situation is unclear and the critical direct target(s) of sunlight in initiating melanoma and even the wavelengths responsible are as yet unidentified. This lack of information is in major part a result of a paucity of animal models for melanoma which recapitulate the role of sunlight in initiating this disease. The epidemiology of melanoma differs significantly from non-melanoma skin cancer. Intense sporadic sunlight exposure in childhood, probably exacerbated by additional adult exposure, is associated with elevated melanoma risk. Melanoma is also a disease of gene-environment interactions with underlying genetic factors playing a significant role. These major differences indicate that extrapolation from information for non-melanoma skin cancer to melanoma is unlikely to be useful. We summarize in this review the experimental information available on the role of UV radiation in melanoma and give an overview of animal melanoma models. A new model derived by neonatal UV irradiation of hepatocyte growth factor/scatter factor (HGF/SF) transgenic mice is described which recapitulates the etiology, the histopathology and molecular pathogenesis of human disease. It is anticipated that the HGF/SF transgenic model will provide a means to access the mechanism(s) by which sunlight initiates this lethal disease and provide an appropriate vehicle for derivation of appropriate therapeutic and preventive strategies.
Collapse
Affiliation(s)
- Frances P Noonan
- Laboratory of Photobiology and Photoimmunology, Department of Environmental and Occupational Health, School of Public Health and Health Services, The George Washington University School of Medicine, Washington, DC, USA.
| | | | | | | |
Collapse
|
214
|
Abstract
Apoptosis and premature senescence, an acutely inducible terminal cell-cycle arrest, are known to be the ultimate cellular defense programs that counteract oncogenic transformation. Thus, activated oncogenes may sensitize cells to other stimuli that also recruit these programs. Recent evidence demonstrates that both apoptosis and premature senescence respond to drugs and can therefore contribute to the outcome of cancer therapy. However, manifest malignancies may have acquired mutations that compromise these programs at different levels, and hence may become chemoresistant to varying degrees as a result of defects in either or both programs.
Collapse
Affiliation(s)
- Soyoung Lee
- Max-Delbrück-Center for Molecular Medicine and Charité/Campus, Virchow-Hospital, Department of Hematology/Oncology, Humboldt-University, D-13353 Berlin, Germany
| | | |
Collapse
|
215
|
Abstract
Pancreatic ductal adenocarcinoma is an aggressive and devastating disease, which is characterized by invasiveness, rapid progression and profound resistance to treatment. Advances in pathological classification and cancer genetics have improved our descriptive understanding of this disease; however, important aspects of pancreatic cancer biology remain poorly understood. What is the pathogenic role of specific gene mutations? What is the cell of origin? And how does the stroma contribute to tumorigenesis? A better understanding of pancreatic cancer biology should lead the way to more effective treatments.
Collapse
Affiliation(s)
- Nabeel Bardeesy
- Department of Adult Oncology, Dana-Farber Cancer Institute and Departments of Medicine and Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
216
|
Abstract
While a genome-centric paradigm in human cancer development was useful for the understanding of some malignancies such as leukemias, causative molecular defects intrinsic to melanocytes have not been defined in the majority of human melanomas. Recent work, however, has shown that regulatory signals governing melanocytic cell growth and differentiation may originate from the surrounding host cells either directly through physical contact or indirectly through soluble factors and extracellular matrix molecules. In this review, we present experimental systems useful for dissecting melanoma-host interactions and highlight evidence that the tumor microenvironment contributes to the oncogenic process. Thus, melanomagenesis is not merely an act of a single outlaw but a conspiracy orchestrated by multiple partners in the neighborhood who come into play in a precise spatiotemporal order. Defining intercellular molecular dialogues in human skin promises to provide key information for the development of novel treatment strategies that target the functional unit of stroma and tumor.
Collapse
Affiliation(s)
- Mei-Yu Hsu
- The Wistar Institute, 3601 Spruce Street, Philadelphia, PA 19104-4283, USA
| | | | | |
Collapse
|
217
|
Abstract
Cutaneous cancers represent a major public health concern due to the very high incidence, associated medical costs, substantial mortality, and cosmetic deformities associated with treatment. Considerable progress in basic research has provided new insights into the underlying genetic basis of the major human cutaneous cancers, malignant melanoma, basal cell carcinoma, and squamous cell carcinoma. In turn, these genetic insights have illuminated biochemical pathways that promise to provide new approaches to the prevention and treatment of cutaneous neoplasms. This review will detail the evolving genetic information and indicate how this information is being used to refine experimental models that serve to both define the biochemistry of cancer pathogenesis and test novel approaches to cancer therapy. Combined with preventive measures to reduce exposure to sunlight, these advances are likely to reduce this major public health burden in the coming decade.
Collapse
Affiliation(s)
- Andrzej Dlugosz
- Department of Dermatology and Comprehensive Cancer Center, University of Michigan School of Medicine, Ann Arbor, Michigan, USA
| | | | | |
Collapse
|
218
|
Herlyn M, Padarathsingh M, Chin L, Hendrix M, Becker D, Nelson M, DeClerck Y, McCarthy J, Mohla S. New approaches to the biology of melanoma: a workshop of the National Institutes of Health Pathology B Study Section. THE AMERICAN JOURNAL OF PATHOLOGY 2002; 161:1949-57. [PMID: 12414540 PMCID: PMC1850774 DOI: 10.1016/s0002-9440(10)64470-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/19/2002] [Indexed: 01/06/2023]
|
219
|
Chan J, Robinson ES, Yeh IT, McCarrey JR. Absence of ras gene mutations in UV-induced malignant melanomas correlates with a dermal origin of melanocytes in Monodelphis domestica. Cancer Lett 2002; 184:73-80. [PMID: 12104050 DOI: 10.1016/s0304-3835(01)00783-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The South American opossum, Monodelphis domestica, has been used as a model system to study ultraviolet (UV)-induced genetic alterations that lead to the development of melanoma. Suckling young of Monodelphis exposed to multiple doses of UVB radiation can develop benign or malignant melanomas later as adults. Point mutations predominantly at codon 61 of the N-ras gene have been found in melanomas from sun-exposed body sites in humans. To determine if similar mutations are associated with UV-induced melanoma in Monodelphis, the nucleotide sequence of a Monodelphis N-ras cDNA was determined, and the occurrence of ras mutations in melanomas from UV-irradiated opossums was investigated. Single-strand conformation polymorphism analysis revealed no mutations in either the Monodelphis N-ras or H-ras genes in any of 24 primary malignant melanoma samples analyzed in this study. The disparate association of ras mutations with melanoma in humans and Monodelphis may be explained by differences in nucleotide sequence at codon 61 of the N-ras gene as well as differences in skin architecture between the two species. These results support the contention that a mutationally activated N-ras gene contributes to the vertical growth phase, which is specific to the progression of malignant melanoma in humans.
Collapse
Affiliation(s)
- Jeannie Chan
- Department of Genetics, Southwest Foundation for Biomedical Research, San Antonio, TX 78227, USA.
| | | | | | | |
Collapse
|
220
|
Abstract
Because of subtle differences between mouse and human skin, mice have traditionally not been an ideal model to study melanoma development. Understanding of the molecular mechanisms of melanoma predisposition, however, has been greatly improved by modeling various pathway defects in the mouse. This review analyzes the latest developments in mouse models of melanoma, and summarizes what these may indicate about the development of this neoplasm in humans. Mutations of genes involved in human melanoma have been recapitulated with some unexpected results, particularly with respect to the role of the two transcripts (Ink4a and Arf) encoded by the Cdkn2a locus. Both the Ink4a/pRb and Arf/p53 pathways are involved in melanoma development in mice, and possible mechanisms of cross-talk between the two pathways are discussed. We also know from mouse models that Ras/mitogen-activated protein kinase pathway activation is very important in melanoma development, either through direct activation of Ras (e.g., Hras G12V), or via activation of Ras-effector pathways by other oncogenes (e.g., Ret, Hgf/Sf). Ras can cooperate with the Arf/p53 pathway, and probably the Ink4a/Rb pathway, to induce melanoma. These three growth regulation pathways (Ink4a/pRb, Arf/p53, and Ras/mitogen-activated protein kinase) seem to represent three major "axes" of melanoma development in mice. Finally, we summarize experiments using genetically modified mice that have given indications of the intensity and timing of ultraviolet radiation exposure that may be most responsible for melanoma development.
Collapse
Affiliation(s)
- Graeme J Walker
- Queensland Cancer Fund Research Unit, Joint Experimental Oncology Program, Queensland Institute of Medical Research, Post Office Royal Brisbane Hospital, Brisbane, 4029, QLD, Australia
| | | |
Collapse
|
221
|
Jamal S, Schneider RJ. UV-induction of keratinocyte endothelin-1 downregulates E-cadherin in melanocytes and melanoma cells. J Clin Invest 2002. [DOI: 10.1172/jci0213729] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
222
|
Jamal S, Schneider RJ. UV-induction of keratinocyte endothelin-1 downregulates E-cadherin in melanocytes and melanoma cells. J Clin Invest 2002; 110:443-52. [PMID: 12189238 PMCID: PMC150409 DOI: 10.1172/jci13729] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Endothelin-1 (ET-1), a peptide that is secreted by keratinocytes in the skin in response to ultraviolet irradiation, is a ligand for the endothelin-B (ET(B)) receptor. Blockade of this receptor inhibits melanoma cell growth and induces cell death in vivo and in vitro. Additionally, ET(B) is a melanoma progression marker. These findings suggest that the ET-1/ET(B) receptor pathway contributes to melanoma development or progression. Here, we demonstrate that activation of the ET-1/ET(B) pathway downregulates E-cadherin and associated catenin proteins in human melanocytes and melanoma cells. E-cadherin is an established suppressor of melanoma cell invasion in vitro and in vivo. Downregulation of E-cadherin by ET-1/ET(B) involves the downstream activation of caspase-8 but not of distal, executioner caspases, and does not lead to apoptosis. ET-1 also induces a transient association between caspase-8 and E-cadherin:beta-catenin complexes. Hence, activation of the ET-1/ET(B) pathway promotes molecular events known to promote melanoma invasion.
Collapse
Affiliation(s)
- Sumayah Jamal
- The Ronald O. Perelman Department of Dermatology, and. The Department of Microbiology, New York University School of Medicine, New York, New York 10016, USA.
| | | |
Collapse
|
223
|
Cohen-Solal KA, Crespo-Carbone SM, Namkoong J, Mackason KR, Roberts KG, Reuhl KR, Chen S. Progressive appearance of pigmentation in amelanotic melanoma lesions. PIGMENT CELL RESEARCH 2002; 15:282-9. [PMID: 12100494 DOI: 10.1034/j.1600-0749.2002.02024.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
We previously described a transgenic mouse line (TG-3) that spontaneously develops pigmented cutaneous melanoma. The generation of several albino mice that developed amelanotic melanoma has also been reported. In this report, we describe an unanticipated result with crosses between C57BL/6-c2j and TG-3 mice. C57BL/6-c2j has the same genetic background as TG-3 (C57BL/6), except for a single base mutation (nucleotide 291) in the tyrosinase locus, resulting in albino coat colour. Only albino F2 mice generated from (TG-3 x C57BL/6-c2j) F1s were selected for further studies. Mice that contained the transgene showed a very high incidence of tumor development as early as 4-6 weeks of age. Raised amelanotic tumors developed on the ear pinnae and perianal region in young F2 albino mice, similar phenotypes as those described earlier for the other albino inbred strains. However, with time, these amelanotic tumors not only increased in size, but unexpectedly developed foci of dark pigmentation. DNA sequence analysis on reverse transcriptase-polymerase chain reactions (RT-PCRs) of tyrosinase mRNA showed that the original tyrosinase mutation was still present in the tumors, indicating that no reversion at this nucleotide had occurred in the tumors. Two different tyrosinase activity assays were used and tyrosinase activity was detected in most tumor samples. Furthermore, Western blot analysis demonstrated various levels of tyrosinase protein in ear tumor samples. These results suggest that tyrosinase and/or melanin are not directly involved in the establishment of melanoma, but that late events occurring within the tumors may generate some tyrosinase activity and production of melanin.
Collapse
Affiliation(s)
- Karine A Cohen-Solal
- Susan Lehman Cullman Laboratory for Cancer Research, Department of Chemical Biology, Rutgers, the State University of New Jersey, Piscataway, NJ 08854, USA
| | | | | | | | | | | | | |
Collapse
|
224
|
Abstract
The life history of cancer cells encompasses a series of genetic missteps in which normal cells are progressively transformed into tumor cells that invade surrounding tissues and become malignant. Most prominent among the regulators disrupted in cancer cells are two tumor suppressors, the retinoblastoma protein (RB) and the p53 transcription factor. Here, we discuss interconnecting signaling pathways controlled by RB and p53, attempting to explain their potentially universal involvement in the etiology of cancer. Pinpointing the various ways by which the functions of RB and p53 are subverted in individual tumors should provide a rational basis for developing more refined tumor-specific therapies.
Collapse
Affiliation(s)
- Charles J Sherr
- Howard Hughes Medical Institute, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA.
| | | |
Collapse
|
225
|
Koenig A, Bianco SR, Fosmire S, Wojcieszyn J, Modiano JF. Expression and significance of p53, rb, p21/waf-1, p16/ink-4a, and PTEN tumor suppressors in canine melanoma. Vet Pathol 2002; 39:458-72. [PMID: 12126149 DOI: 10.1354/vp.39-4-458] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The role of tumor suppressor genes in the pathogenesis of canine melanoma is incompletely understood. The genes encoding the tumor suppressors p53, Rb, p21 (waf-1), p16 (ink-4a), and PTEN have been postulated to contribute to the pathogenesis of melanoma in humans and experimental animal models. To assess whether inactivation of these genes similarly contributes to the origin and progression of canine melanoma, we examined their expression in seven distinct canine melanoma cell lines and in 31 retrospective samples (representing 29 dogs) of spontaneous canine melanoma. Various patterns suggestive of loss of tumor suppressor function emerged in these cell lines. The most frequently observed abnormality was loss or significant reduction of p16 expression in six of seven cell lines and in 21 of 26 tumor samples. Loss or significant reduction of PTEN expression was seen in four of seven cell lines and in 13 of 27 tumor samples. Although p53 was detectable in all the cell lines and in 24 of 30 tumors, exclusion of p53 from the nuclear compartment was observed in each of the cell lines and in 18 of 25 tumor samples. These results indicate that loss of function of these tumor suppressor proteins is a common occurrence that may contribute to the origin of canine melanoma. In our sample population, abnormalities in the expression or localization of one or more tumor suppressor proteins occurred with similar frequency in malignant and benign tumors; thus, additional work is necessary to determine how these proteins may impact disease progression and response to therapy.
Collapse
Affiliation(s)
- A Koenig
- Department of Small Animal Medicine and Surgery, College of Veterinary Medicine, Texas A & M University, College Station, USA
| | | | | | | | | |
Collapse
|
226
|
Herzig M, Christofori G. Recent advances in cancer research: mouse models of tumorigenesis. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1602:97-113. [PMID: 12020798 DOI: 10.1016/s0304-419x(02)00039-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Over the past 20 years, cancer research has gained major insights into the complexity of tumor development, in particular into the molecular mechanisms that underlie the progressive transformation of normal cells into highly malignant derivatives. It is estimated that the transformation of a normal cell to a malignant tumor cell is dependent upon a small number of genetic alterations, estimated to be within the range of four to seven rate-limiting events. Critical events in the evolution of neoplastic disease include the loss of proliferative control, the failure to undergo programmed cell death (apoptosis), the onset of neoangiogenesis, tissue remodeling, invasion of tumor cells into surrounding tissue and, finally, metastatic dissemination of tumor cells to distant organs. In patients, the molecular analysis of these multiple steps is hampered by the unavailability of tumor biopsies from all tumor stages. In contrast, mouse models of tumorigenesis allow the reproducible isolation of all tumor stages, including normal tissue, which are then amenable to pathological, genetic and biochemical analyses and, hence, have been instrumental in investigating cancer-related genes and their role in carcinogenesis. In this review, we discuss mouse tumor models that have contributed substantially to the identification and characterization of novel tumor pathways. In particular, we focus on transgenic and knockout mouse models that closely mimic human cancer and thus can be used as model systems for cancer research.
Collapse
|
227
|
Smalley KSM, Eisen TG. Farnesyl thiosalicylic acid inhibits the growth of melanoma cells through a combination of cytostatic and pro-apoptotic effects. Int J Cancer 2002; 98:514-22. [PMID: 11920610 DOI: 10.1002/ijc.10213] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Novel classes of drug that interfere with the signalling of the small G-protein Ras, the so-called Ras antagonists, are showing much promise as novel anti-cancer agents. In this study, we demonstrate that the novel Ras antagonist farnesylthiosalicylic acid (FTS) inhibits the growth of Colo 853 melanoma cells through a combination of cytostatic and pro-apoptotic effects. Furthermore, these phenomena are seen under conditions of cell attachment and in the presence of serum. Treatment of Colo 853 cells with FTS led to time-dependent inhibition of constitutive Akt, retinoblastoma protein (pRB) and ERK activity, with a concurrent loss of Akt expression. Inhibition of Akt and ERK activity induces apoptosis in other human cancer cell lines. Here it is demonstrated that inhibition of Akt, or ERK and Akt in combination, leads to cell cycle arrest but not apoptosis in melanoma cells. FTS treatment was also found to upregulate activity of the stress-activated p38 MAP kinase. Inhibition of p38 MAP kinase, using the selective inhibitor SB 203580, followed by FTS treatment, significantly increased the proportion of apoptotic cells after 72 hr, possibly suggesting a modulatory role for p38 MAP kinase in FTS-induced melanoma cell apoptosis.
Collapse
|
228
|
Albanese C, Hulit J, Sakamaki T, Pestell RG. Recent advances in inducible expression in transgenic mice. Semin Cell Dev Biol 2002; 13:129-41. [PMID: 12240598 DOI: 10.1016/s1084-9521(02)00021-6] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
In order to accurately analyze gene function in transgenic mice, as well as to generate credible murine models of human diseases, the ability to regulate temporal- and spatial-specific expression of target genes is absolutely critical. Pioneering work in inducible transgenics, begun in the 1980s and continuing to the present, has led to the development of a variety of different inducible systems dedicated to this goal, the shared basis of which is the accurate conditional expression of a given transgene. Recent advances in inducible transgene expression in mice are discussed.
Collapse
Affiliation(s)
- Chris Albanese
- Department of Developmental and Molecular Biology, The Albert Einstein Cancer Center, Division of Hormone-Dependent Tumor Biology, Albert Einstein College of Medicine, Bronkx, NY 10461, USA.
| | | | | | | |
Collapse
|
229
|
You MJ, Castrillon DH, Bastian BC, O'Hagan RC, Bosenberg MW, Parsons R, Chin L, DePinho RA. Genetic analysis of Pten and Ink4a/Arf interactions in the suppression of tumorigenesis in mice. Proc Natl Acad Sci U S A 2002; 99:1455-60. [PMID: 11818530 PMCID: PMC122212 DOI: 10.1073/pnas.022632099] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Dual inactivation of PTEN and INK4a/ARF tumor suppressor genes is a common feature observed in a broad spectrum of human cancer types. To validate functional collaboration between these genes in tumor suppression, we examined the biological consequences of Pten and/or Ink4a/Arf deficiency in cells and mice. Relative to single mutant controls, Ink4a/Arf-/-Pten+/- mouse embryonic fibroblast cultures exhibited faster rates of growth in reduced serum, grew to higher saturation densities, produced more colonies upon low density seeding, and showed increased susceptibility to transformation by oncogenic H-Ras. Ink4a/Arf deficiency reduced tumor-free survival and shortened the latency of neoplasias associated with Pten heterozygosity, specifically pheochromocytoma, prostatic intraepithelial neoplasia, and endometrial hyperplasia. Compound mutant mice also exhibited an expanded spectrum of tumor types including melanoma and squamous cell carcinoma. Functional synergy between Ink4a/Arf and Pten manifested most prominently in the development of pheochromocytoma, prompting an analysis of genes and loci implicated in this rare human neoplasm. The classical pheochromocytoma genes Ret, Vhl, and Nf-1 remained intact, a finding consistent with the intersection of these genes with pathways engaged by Pten and Ink4a/Arf. Notably, conventional and array-comparative genomic hybridization revealed frequent loss of distal mouse chromosome 4 in a region syntenic to human chromosome 1p that is implicated in human pheochromocytoma. This study provides genetic evidence of collaboration between Pten and Ink4a/Arf in constraining the growth and oncogenic transformation of cultured cells and in suppressing a wide spectrum of tumors in vivo.
Collapse
Affiliation(s)
- Mingjian James You
- Department of Adult Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | | | | | |
Collapse
|
230
|
Tsai KY, MacPherson D, Rubinson DA, Crowley D, Jacks T. ARF is not required for apoptosis in Rb mutant mouse embryos. Curr Biol 2002; 12:159-63. [PMID: 11818069 DOI: 10.1016/s0960-9822(01)00659-5] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The retinoblastoma (RB) tumor suppressor gene occupies central roles in cell cycle control and tumor suppression. Homozygous mutant (Rb(-/-)) embryos die at E13.5-E15.5, exhibiting extensive apoptosis and inappropriate S phase entry in the central and peripheral nervous systems, liver, and ocular lens. Mice simultaneously mutant for Rb and other genes can be generated to assess the requirement for these genes in cell cycle control and apoptosis. Using such analysis, E2f-1, E2f-3, p53, and Id2 have been identified as important regulators of cell cycle control and apoptosis in Rb(-/-) embryos. Because unrestrained E2F activity in the absence of Rb function contributes to p53-dependent apoptosis in many systems, we wished to identify genes linking deregulated E2F activity to p53 activation and subsequent apoptosis. As a transcriptional target of E2F-1, a regulator of p53, and an important mediator of apoptosis, ARF was a strong candidate for such a role, especially since it can be upregulated in the absence of Rb. From the analysis of Rb/ARF compound mutants we demonstrate that ARF is not an obligatory link between Rb inactivation and p53-dependent apoptosis.
Collapse
Affiliation(s)
- Kenneth Y Tsai
- MIT Department of Biology and Center for Cancer Research, Cambridge, MA 02139, USA
| | | | | | | | | |
Collapse
|
231
|
Abstract
The development of cancer requires multiple genetic alterations perturbing distinct cellular pathways. In human cancers, these alterations often arise owing to mutations in tumor-suppressor genes whose normal function is to either inhibit the proliferation, apoptosis, or differentiation of cells, or maintain their genomic integrity. Mouse models for tumor suppressors frequently provide definitive evidence for the antitumorigenic functions of these genes. In addition, animal models permit the identification of previously unsuspected roles of these genes in development and differentiation. The availability of null and tissue-specific mouse mutants for tumor-suppressor genes has greatly facilitated our understanding of the mechanisms leading to cancer. In this review, we describe mouse models for tumor-suppressor genes.
Collapse
Affiliation(s)
- R Hakem
- Amgen Institute, Ontario Cancer Institute and the University of Toronto, Toronto, Ontario, Canada M5G 2C1
| | | |
Collapse
|
232
|
Affiliation(s)
- Graeme J Walker
- Human Genetics Laboratory, Queensland Institute of Medical Research, Royal Brisbane Hospital, Queensland, 4029, Brisbane, Australia
| | | |
Collapse
|
233
|
Abstract
Fishes of the genus Xiphophorus (platyfishes and swordtails) are small, internally fertilizing, livebearing, and derived from freshwater habitats in Mexico, Guatemala, Belize, and Honduras. Scientists have used these fishes in cancer research studies for more than 70 yr. The genus is presently composed of 22 species that are quite divergent in their external morphology. Most cancer studies using Xiphophorus use hybrids, which can be easily produced by artificial insemination. Phenotypic traits, such as macromelanophore pigment patterns, are often drastically altered as a result of lack of gene regulation within hybrid fishes. These fish can develop large exophytic melanomas as a result of upregulated expression of these pigment patterns. Because backcross hybrid fish are susceptible to the development of melanoma and other neoplasms, they can be subjected to potentially deleterious chemical and physical agents. It is thus possible to use gene mapping and cloning methodologies to identify and characterize oncogenes and tumor suppressors implicated in spontaneous or induced neoplasia. This article reviews the history of cancer research using Xiphophorus and recent developments regarding DNA repair capabilities, mapping, and cloning of candidate genes involved in neoplastic phenotypes. The particular genetic complexity of melanoma in these fishes is analyzed and reviewed.
Collapse
Affiliation(s)
- R B Walter
- Department of Chemistry and Biochemistry, Southwest Texas State University (SWTSU), San Marcos, Texas, USA
| | | |
Collapse
|
234
|
Sotomayor MG, Yu H, Antonia S, Sotomayor EM, Pardoll DM. Advances in gene therapy for malignant melanoma. Cancer Control 2002; 9:39-48. [PMID: 11907465 DOI: 10.1177/107327480200900106] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND The recent developments in the field of gene transfer have advanced the use of gene therapy as a novel strategy against a variety of human malignancies. Due to its unique set of characteristics, melanoma represents a suitable target for the clinical translation of the different gene transfer approaches recently developed. The goal of gene therapy targeted to melanoma cells is to introduce "suicide" genes, to transfer tumor suppressor genes, to inactivate aberrant oncogene expression, or to introduce genes encoding immunologically relevant molecules. Gene therapy targeted to the host's immune cells has been developed as an additional strategy to redirect immune responses against melanoma. METHODS The authors reviewed the published gene transfer studies in experimental models, as well as the results of gene therapy clinical trials for patients with melanoma. RESULTS Clinical trials have shown the feasibility and safety of gene therapy against malignant melanoma. Although no major successes have been reported, the positive results observed in some patients support the potential for gene therapy in the management of this disease. CONCLUSIONS Gene therapy of melanoma using current gene transfer approaches is feasible and safe. Better vector technology as well as increased understanding of the "bystander effect" triggered by gene transfer approaches would provide the tools to validate gene therapy as an effective modality of treatment for malignant melanoma.
Collapse
Affiliation(s)
- Maria G Sotomayor
- Cutaneous Oncology Program, H. Lee Moffitt Cancer Center & Research Institute at the University of South Florida, Tampa, USA
| | | | | | | | | |
Collapse
|
235
|
Nakamura M, Tobin DJ, Richards-Smith B, Sundberg JP, Paus R. Mutant laboratory mice with abnormalities in pigmentation: annotated tables. J Dermatol Sci 2002; 28:1-33. [PMID: 11916127 DOI: 10.1016/s0923-1811(01)00158-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Mammalian pigment cell research has recently entered a phase of significantly increased activity due largely to the exploitation of the many mutant mouse stocks that are coming on stream. Numerous transgenic, targeted mutagenesis (so-called 'knockouts'), conditional (so-called 'gene switch') and spontaneous mutant mice develop abnormal coat color phenotypes. The number of mice that exhibit such abnormalities is increasing exponentially as genetic engineering methods become routine. Since defined abnormalities in such mutant mice provide important clues to the as yet often poorly understood functional roles of many gene products, this overview includes a corresponding, annotated table of mutant mice with pigmentation alterations. These range from early developmental defects via a large array of coat color abnormalities to a melanoma metastasis model. This overview should provide helpful pointers to investigators who are looking for mouse models to explore or to compare functional activities of genes of interest and for comparing coat color phenotypes of spontaneous or genetically engineered mouse mutants with novel ones. Secondly, this review includes a table of mouse models of specific human diseases with genetically defined pigmentation abnormalities. In summary, this annotated table should serve as a useful reference for anyone interested in the molecular controls of pigmentation.
Collapse
Affiliation(s)
- Motonobu Nakamura
- Department of Dermatology, University Hospital Eppendorf, University of Hamburg, Germany
| | | | | | | | | |
Collapse
|
236
|
Abstract
As a model system for the understanding of human cancer, the mouse has proved immensely valuable. Indeed, studies of mouse models have helped to define the nature of cancer as a genetic disease and demonstrated the causal role of genetic events found in tumors. As the scientific and medical community's understanding of human cancer becomes more sophisticated, however, limitations and potential weaknesses of existing models are revealed. How valid are these murine models for the understanding and treatment of human cancer? The answer, it appears, depends on the nature of the research requirement. Certain models are better suited for particular applications. Using novel molecular tools and genetic strategies, improved models have recently been described that accurately mimic many aspects of human cancer.
Collapse
Affiliation(s)
- B Hann
- Cancer Research Institute, Mount Zion Comprehensive Cancer Center, University of California at San Francisco, San Francisco, CA 94143-0875, USA
| | | |
Collapse
|
237
|
Inoue K, Zindy F, Randle DH, Rehg JE, Sherr CJ. Dmp1 is haplo-insufficient for tumor suppression and modifies the frequencies of Arf and p53 mutations in Myc-induced lymphomas. Genes Dev 2001; 15:2934-9. [PMID: 11711428 PMCID: PMC312824 DOI: 10.1101/gad.929901] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Loss of Dmp1, an Arf transcriptional activator, leads to spontaneous tumorigenesis in mice, causing death from various forms of cancer by two years of age. Retention and expression of the wild-type Dmp1 allele in tumors arising in Dmp1(+/-) mice demonstrate that Dmp1 can be haplo-insufficient for tumor suppression. The mean latency of E(mu)-Myc-induced B-cell lymphomas is halved on a Dmp1(-/-) or Dmp1(+/-) genetic background. Although p53 mutations or Arf deletion normally occur in approximately 50% of E(mu)-Myc-induced lymphomas, Dmp1 loss obviates selection for such mutations, indicating that Dmp1 is a potent genetic modifier of the Arf-p53 pathway in vivo.
Collapse
Affiliation(s)
- K Inoue
- Department of Tumor Cell Biology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | | | | | | | | |
Collapse
|
238
|
Abstract
The retinoblastoma protein (RB) and p53 transcription factor are regulated by two distinct proteins that are encoded by the INK4a/ARF locus. Genes encoding these four tumour suppressors are disabled, either in whole or in part, in most human cancers. A complex signalling network that interconnects the activities of RB and p53 monitors oncogenic stimuli to provide a cell-autonomous mode of tumour surveillance.
Collapse
Affiliation(s)
- C J Sherr
- Department of Tumor Cell Biology, Howard Hughes Medical Institute, St Jude Children's Research Hospital, 332 North Lauderdale, Memphis, Tennessee 38105, USA.
| |
Collapse
|
239
|
de Gruijl FR, van Kranen HJ, Mullenders LH. UV-induced DNA damage, repair, mutations and oncogenic pathways in skin cancer. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2001; 63:19-27. [PMID: 11684448 DOI: 10.1016/s1011-1344(01)00199-3] [Citation(s) in RCA: 351] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Repair of UV induced DNA damage is of key importance to UV-induced skin carcinogenesis. Specific signal transduction pathways that regulate cell cycling, differentiation and apoptosis are found to be corrupted in skin cancers, e.g., the epidermal growth-stimulating Hedgehog pathway in basal cell carcinomas (BCCs). Mutations in genes coding for proteins in these pathways lead to persistent disturbances that are passed along to daughter cells, e.g., mutations in the gene for the Patched (PTCH) protein in the Hedgehog pathway. Thus far only the point mutations in the P53 gene from squamous cell carcinomas and BCCs, and in PTCH gene from BCC of xeroderma pigmentosum (XP) patients appear to be unambiguously attributable to solar UV radiation. Solar UVB radiation is most effective in causing these point mutations. Other forms of UV-induced genetic changes (e.g., deletions) may, however, contribute to skin carcinogenesis with different wavelength dependencies.
Collapse
Affiliation(s)
- F R de Gruijl
- Department of Dermatology, Sylvius Lab, Leiden Univ. Med. Ctr., Wassenaarseweg 72, NL-2333 AL Leiden, The Netherlands.
| | | | | |
Collapse
|
240
|
Affiliation(s)
- I Palmero
- Department of Immunology and Oncology, National Center of Biotechnology, Madrid E-28049, Spain
| | | |
Collapse
|
241
|
Dunn KJ, Incao A, Watkins-Chow D, Li Y, Pavan WJ. In utero complementation of a neural crest-derived melanocyte defect using cell directed gene transfer. Genesis 2001; 30:70-6. [PMID: 11416866 DOI: 10.1002/gene.1035] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
This study describes an in utero approach for overexpressing genes in a cell-type directed manner. It uses an avian leukosis retroviral expression system coupled with a transgenic mouse line expressing the viral receptor tv-a from a tissue-specific promoter (RCAS-TVA system) (Federspiel et al., 1994, and reviewed in Fisher et al., 1999). A transgenic mouse line was generated expressing tv-a from the Dopachrome tautomerase promoter (DCT-tv-a) in embryonic melanocyte precursors (melanoblasts). RCAS virus encoding beta-galactosidase (RCAS-LacZ) or tyrosinase (RCAS-Tyr) was injected in utero into embryonic day 12.5 albino (tyrosinase inactive) mouse embryos. Animals were analyzed for beta-galactosidase activity or tyrosinase activity (hair pigmentation). RCAS gene expression was detected in 44% and 25% of the transgenic mice, respectively. We demonstrate the RCAS-TVA system coupled with the DCT-tv-a line of mice can be used for in utero infection.
Collapse
Affiliation(s)
- K J Dunn
- Mouse Embryology Section, Genetic Disease Research Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892-4472, USA
| | | | | | | | | |
Collapse
|
242
|
Abstract
The frequent loss of the INK4a/ARF locus, encoding for both p16(INK4a)and p19(ARF)in human melanoma, raises the question as to which INK4a/ARF gene product functions to suppress melanoma-genesis in vivo. Studies in the mouse have shown that activated RAS mutation can cooperate with INK4a(Delta 2/3)deficiency (null for both p16(INK4a)and p19(ARF)) to promote development of melanoma, and these melanomas retain wild-type p53. Given the functional link between p19(ARF)and p53, we have now shown that activated RAS can also cooperate with p53 deficiency to produce melanoma in the mouse. Moreover, genome-wide analysis of RAS-induced p53 mutant melanomas reveals alterations of key components governing RB-regulated G1/S transition, such as c-Myc. These experimental findings suggest that both RB and p53 pathways function to suppress melanocyte transformation in vivo in the mouse.
Collapse
Affiliation(s)
- F C Yang
- Department of Adult Oncology, Dana-Farber Cancer Institute, Harvard Medical School, 44 Binney Street, Mayer 448, Boston, MA 02115, USA
| | | | | |
Collapse
|
243
|
Wang Z, Atencio J, Robinson ES, McCarrey JR. Ultraviolet B-induced melanoma in Monodelphis domestica occurs in the absence of alterations in the structure or expression of the p53 gene. Melanoma Res 2001; 11:239-45. [PMID: 11468512 DOI: 10.1097/00008390-200106000-00005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Monodelphis domestica, a South American opossum, has been established as a mammalian model for sporadic ultraviolet radiation (UVR)-induced melanoma. Using this model system, we investigated the role of changes in the p53 gene in the development of cutaneous melanocyte-derived lesions. Cutaneous melanocytic hyperplasias, benign melanomas and metastatic primary melanomas, plus affected lymph nodes and visceral organs, were screened for mutations in the Monodelphis p53 gene by single-strand conformation polymorphism analysis and direct sequencing. With the exception of a silent point mutation found in a single benign melanocytic hyperplasia sample, no p53 mutations were detected. Furthermore, a relative quantitative reverse transcriptase-polymerase chain reaction approach was used to analyse p53 gene expression at different stages of primary melanoma progression and revealed no substantial changes in p53 mRNA levels. These results suggest that, as in humans, UVR-induced melanoma in the Monodelphis model is initiated and progresses on the basis of predominantly p53-independent molecular pathways.
Collapse
Affiliation(s)
- Z Wang
- Department of Genetics, Southwest Foundation for Biomedical Research, PO Box 760549, San Antonio, TX 78227-5301, USA
| | | | | | | |
Collapse
|
244
|
Abstract
This unit details protocols for in vivo models of subcutaneous growth and pulmonary metastases of B16 melanoma. Therapeutic approaches include the use of B16.GM-CSF and rVVmTRP-1 to induce autoimmune vitiligo and tumor protection. The induction and use of gp 100-specific therapeutic cytotoxic T lymphocytes (CTL) are discussed. Methods are also included for CTL induction, isolation and testing, CTL maintenance, and adoptive transfer. Support protocols detail the testing of mouse sera for presence of MDA-specific antibodies by immunoblotting and ELISA, respectively. Additional sections, including growing B16 melanoma, enumerating pulmonary metastases, and use of recombinant viruses for vaccination, are discussed together with safety concerns.
Collapse
MESH Headings
- Animals
- Cancer Vaccines/immunology
- Cancer Vaccines/therapeutic use
- Cytotoxicity, Immunologic
- Disease Models, Animal
- Granulocyte-Macrophage Colony-Stimulating Factor/immunology
- Granulocyte-Macrophage Colony-Stimulating Factor/therapeutic use
- Humans
- Immunotherapy
- Lung Neoplasms/secondary
- Melanocytes/cytology
- Melanocytes/enzymology
- Melanocytes/immunology
- Melanocytes/metabolism
- Melanoma, Experimental/immunology
- Melanoma, Experimental/pathology
- Melanoma, Experimental/secondary
- Melanoma, Experimental/therapy
- Mice
- T-Lymphocytes, Cytotoxic/immunology
- Vaccines, Synthetic/genetics
- Vaccines, Synthetic/immunology
- Vaccines, Synthetic/virology
Collapse
Affiliation(s)
- W W Overwijk
- National Cancer Institute, NIH, Bethesda, Maryland, USA
| | | |
Collapse
|
245
|
Orjuela M, Orlow I, Dudas M, Ponce-Castañeda MV, Ridaura C, Leal C, Salazar A, Abramson D, Gerald W, Cordon-Cardo C. Alterations of cell cycle regulators affecting the RB pathway in nonfamilial retinoblastoma. Hum Pathol 2001; 32:537-44. [PMID: 11381373 DOI: 10.1053/hupa.2001.24325] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
We undertook the present study to examine alterations affecting the RB pathway in the G1 checkpoint and to determine their potential clinical significance in children affected with nonfamilial retinoblastoma. Using immunohistochemistry, patterns of expression of pRB, p16/INK4A, and E2F1 were analyzed in tissue from a cohort of 86 well-characterized patients with nonfamilial retinoblastoma diagnosed at the "Instituto Nacional de Pediatria" in Mexico City. The relationship of these phenotypes to proliferative index was assessed by analysis of Ki67 antigen expression. pRB expression was found in 11 (13%) cases. Using a hypophosphorylated specific pRB antibody, we observed low levels of underphosphorylated pRB expression in only 1 of 9 evaluable positive cases. These data suggest that the detected pRB products were hyperphosphorylated and thus had decreased functional activity. Increased p16 nuclear expression was found in only 6 tumors. No tumors showed deletions or mobility shifts of the INK4A gene. Undetectable pRB levels were significantly associated with undetectable p16 expression (odds ratio, 10.8; 95% confidence interval, 1.4-81.3; P =.03). All tumors showed nuclear immunoreactivities for E2F1 and Ki67. Increased Ki67 proliferative index was associated with increased staining for E2F1 (r =.44; P =.008) and increasing clinical stage (P =.03). Among children with unilateral disease, the mean Ki67 proliferative index was significantly higher in children with advanced clinical disease (stages 3 and 4) (mean 81.25; SD 6.78) than in those with earlier stage disease (mean 69.50; SD 9.45) (P = 0.001). Among children with bilateral disease, however, the mean proliferative index was not significantly higher for children with advanced clinical stage. When examining all cases together, there was a significant trend toward increasing proliferative index with increasing clinical stage (P =.03). In unilateral tumors, we also found that presence of detectable pRB was associated with a lower percentage of cells expressing E2F1 (46.7% v 70.8%) (P = 0.05), whereas there was no association between presence of pRB and E2F1 among bilateral tumors. We have found that expression of some of the cell cycle markers examined varies according to laterality, suggesting underlying differences in the capacity for cell cycle regulation between these 2 forms of the disease. Differences in capacities for cell cycle regulation may account for some differences in clinical behavior. Thus, the inclusion of molecular markers may become useful adjuncts to clinicopathological staging and subsequent determination of therapy.
Collapse
Affiliation(s)
- M Orjuela
- Department of Pediatrics and School of Public Health, Columbia University, New York, NY 10021, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
246
|
Martelli F, Hamilton T, Silver DP, Sharpless NE, Bardeesy N, Rokas M, DePinho RA, Livingston DM, Grossman SR. p19ARF targets certain E2F species for degradation. Proc Natl Acad Sci U S A 2001; 98:4455-60. [PMID: 11274364 PMCID: PMC31856 DOI: 10.1073/pnas.081061398] [Citation(s) in RCA: 132] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
p19ARF suppresses the growth of cells lacking p53 through an unknown mechanism. p19ARF was found to complex with transcription factors E2F1, -2, and -3. Levels of endogenous or ectopically expressed E2F1, -2, and -3, but not E2F6, were reduced after synthesis of p19ARF, through a mechanism involving increased turnover. p19ARF-induced degradation of E2F1 depended on a functional proteasome, and E2F1 was relocalized to nucleoli when coexpressed with p19ARF. Consistent with reduced levels of E2F1 and E2F3, the proliferation of cells defective for p53 function was suppressed by p19ARF, and the effect was partially reversed by ectopic overexpression of E2F1. These results suggest a broader role for p19ARF as a tumor suppressor, in which targeting of certain E2F species may cooperate with stimulation of the p53 pathway to counteract oncogenic growth signals.
Collapse
Affiliation(s)
- F Martelli
- Department of Cancer Biology and Adult Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
247
|
Camacho-Hübner A, Beermann F. Increased transgene expression by the mouse tyrosinase enhancer is restricted to neural crest-derived pigment cells. Genesis 2001; 29:180-7. [PMID: 11309851 DOI: 10.1002/gene.1022] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In this study, we have addressed the impact of the mouse tyrosinase enhancer on regulated expression from the mouse tyrosinase promoter during embryonic development. Stable and transient transgenic experiments using the reporter gene lacZ reveal that (1) expression is detected in neural crest-derived melanoblasts from E11.5 onward, (2) the enhancer does not increase transgenic expression in optic cup-derived pigment cells of the retinal pigment epithelium (RPE), and (3) expression in the telencephalon is not any longer detected. The importance of the enhancer for expression in pigment cells of the eye was further investigated in adult mice using an attenuated diphtheria toxin A gene. This demonstrated that in presence of the enhancer the transgene expression is specifically targeted to neural crest-derived melanocytes of the choroid and not, or slightly, to the RPE. This suggests that tyrosinase is differentially regulated in the two pigment cell lineages, and that this promoter can be used to target expression preferentially to the neural crest-derived melanocyte lineage.
Collapse
Affiliation(s)
- A Camacho-Hübner
- Swiss Institute for Experimental Cancer Research (ISREC), Epalinges, Switzerland
| | | |
Collapse
|
248
|
Lu Y, Lian H, Sharma P, Schreiber-Agus N, Russell RG, Chin L, van der Horst GT, Bregman DB. Disruption of the Cockayne syndrome B gene impairs spontaneous tumorigenesis in cancer-predisposed Ink4a/ARF knockout mice. Mol Cell Biol 2001; 21:1810-8. [PMID: 11238917 PMCID: PMC86742 DOI: 10.1128/mcb.21.5.1810-1818.2001] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2000] [Accepted: 11/30/2000] [Indexed: 11/20/2022] Open
Abstract
Cells isolated from individuals with Cockayne syndrome (CS) have a defect in transcription-coupled DNA repair, which rapidly corrects certain DNA lesions located on the transcribed strand of active genes. Despite this DNA repair defect, individuals with CS group A (CSA) or group B (CSB) do not exhibit an increased spontaneous or UV-induced cancer rate. In order to investigate the effect of CSB deficiency on spontaneous carcinogenesis, we crossed CSB(-/-) mice with cancer-prone mice lacking the p16(Ink4a)/p19(ARF) tumor suppressor locus. CSB(-/-) mice are sensitive to UV-induced skin cancer but show no increased rate of spontaneous cancer. CSB(-/-) Ink4a/ARF(-/-) mice developed 60% fewer tumors than Ink4a/ARF(-/-) animals and demonstrated a longer tumor-free latency time (260 versus 150 days). Moreover, CSB(-/-) Ink4a/ARF(-/-) mouse embryo fibroblasts (MEFs) exhibited a lower colony formation rate after low-density seeding, a lower rate of H-Ras-induced transformation, slower proliferation, and a lower mRNA synthesis rate than Ink4a/ARF(-/-) MEFs. CSB(-/-) Ink4a/ARF(-/-) MEFs were also more sensitive to UV-induced p53 induction and UV-induced apoptosis than were Ink4a/ARF(-/-) MEFs. In order to investigate whether the apparent antineoplastic effect of CSB gene disruption was caused by sensitization to genotoxin-induced (p53-mediated) apoptosis or by p53-independent sequelae, we also generated p53(-/-) and CSB(-/-) p53(-/-) MEFs. The CSB(-/-) p53(-/-) MEFs demonstrated lower colony formation efficiency, a lower proliferation rate, a lower mRNA synthesis rate, and a higher rate of UV-induced cell death than p53(-/-) MEFs. Collectively, these results indicate that the antineoplastic effect of CSB gene disruption is at least partially p53 independent; it may result from impaired transcription or from apoptosis secondary to environmental or endogenous DNA damage.
Collapse
Affiliation(s)
- Y Lu
- Department of Pathology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | | | | | | | | | | | |
Collapse
|
249
|
Bardeesy N, Bastian BC, Hezel A, Pinkel D, DePinho RA, Chin L. Dual inactivation of RB and p53 pathways in RAS-induced melanomas. Mol Cell Biol 2001; 21:2144-53. [PMID: 11238948 PMCID: PMC86838 DOI: 10.1128/mcb.21.6.2144-2153.2001] [Citation(s) in RCA: 134] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The frequent loss of both INK4a and ARF in melanoma raises the question of which INK4a-ARF gene product functions to suppress melanoma genesis in vivo. Moreover, the high incidence of INK4a-ARF inactivation in transformed melanocytes, along with the lack of p53 mutation, implies a cell type-specific role for INK4a-ARF that may not be complemented by other lesions of the RB and p53 pathways. A mouse model of cutaneous melanoma has been generated previously through the combined effects of INK4a(Delta2/3) deficiency (null for INK4a and ARF) and melanocyte-specific expression of activated RAS (tyrosinase-driven H-RAS(V12G), Tyr-RAS). In this study, we made use of this Tyr-RAS allele to determine whether activated RAS can cooperate with p53 loss in melanoma genesis, whether such melanomas are biologically comparable to those arising in INK4a(Delta2/3-/-) mice, and whether tumor-associated mutations emerge in the p16(INK4a)-RB pathway in such melanomas. Here, we report that p53 inactivation can cooperate with activated RAS to promote the development of cutaneous melanomas that are clinically indistinguishable from those arisen on the INK4a(Delta2/3) null background. Genomewide analysis of RAS-induced p53 mutant melanomas by comparative genomic hybridization and candidate gene surveys revealed alterations of key components governing RB-regulated G(1)/S transition, including c-Myc, cyclin D1, cdc25a, and p21(CIP1). Consistent with the profile of c-Myc dysregulation, the reintroduction of p16(INK4a) profoundly reduced the growth of Tyr-RAS INK4a(Delta2/3-/-) tumor cells but had no effect on tumor cells derived from Tyr-RAS p53(-/-) melanomas. Together, these data validate a role for p53 inactivation in melanomagenesis and suggest that both the RB and p53 pathways function to suppress melanocyte transformation in vivo in the mouse.
Collapse
Affiliation(s)
- N Bardeesy
- Department of Adult Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | |
Collapse
|
250
|
Peeper DS, Dannenberg JH, Douma S, te Riele H, Bernards R. Escape from premature senescence is not sufficient for oncogenic transformation by Ras. Nat Cell Biol 2001; 3:198-203. [PMID: 11175753 DOI: 10.1038/35055110] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Resistance of primary cells to transformation by oncogenic Ras has been attributed to the induction of replicative growth arrest. This irreversible 'fail-safe mechanism' resembles senescence and requires induction by Ras of p19ARF and p53 (refs 3-5). Mutation of either p19ARF or p53 alleviates Ras-induced senescence and facilitates oncogenic transformation by Ras. Here we report that, whereas Rb and p107 are each dispensable for Ras-induced replicative arrest, simultaneous ablation of both genes disrupts Ras-induced senescence and results in unrestrained proliferation. This occurs despite activation by Ras of the p19ARF /p53 pathway, identifying pRb and p107 as essential mediators of Ras-induced antiproliferative p19ARF/p53 signalling. Unexpectedly, in contrast to p19ARF or p53 deficiency, loss of Rb/p107 function does not result in oncogenic transformation by Ras, as Ras-expressing Rb-/-/p107-/- fibroblasts fail to grow anchorage-independently in vitro and are not tumorigenic in vivo. These results demonstrate that in the absence of both Rb and p107 cells are resistant to p19ARF/p53-dependent protection against Ras-induced proliferation, and uncouple escape from Ras-induced premature senescence from oncogenic transformation.
Collapse
Affiliation(s)
- D S Peeper
- Division of Molecular Carcinogenesis and Center for Biomedical Genetics, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | | | | | | | | |
Collapse
|