201
|
Harris KF, Christensen JB, Radany EH, Imperiale MJ. Novel mechanisms of E2F induction by BK virus large-T antigen: requirement of both the pRb-binding and the J domains. Mol Cell Biol 1998; 18:1746-56. [PMID: 9488491 PMCID: PMC108889 DOI: 10.1128/mcb.18.3.1746] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/1997] [Accepted: 12/15/1997] [Indexed: 02/06/2023] Open
Abstract
E2F activity is regulated in part by the retinoblastoma family of tumor suppressor proteins. Viral oncoproteins, such as simian virus 40 (SV40) large-T antigen (TAg), adenovirus E1A, and human papillomavirus E7, can disrupt the regulation of cellular proliferation by binding to pRb family members and dissociating E2F-pRb family protein complexes. BK virus (BKV), which infects a large percentage of the human population and has been associated with a variety of human tumors, encodes a TAg homologous to SV40 TAg. It has been shown that BKV TAg, when expressed at low levels, does not detectably bind to pRb family members, yet it induces a serum-independent phenotype and causes a decrease in the overall levels of pRb family proteins. The experiments presented in this report show that, despite the lack of TAg-pRb interactions, BKV TAg can induce transcriptionally active E2F and that this induction does in fact require an intact pRb-binding domain as well as an intact J domain. In addition, E2F-pRb family member complexes can be detected in both BKV and SV40 TAg-expressing cells. These results suggest the presence of alternate cellular mechanisms for the release of E2F in addition to the well-established model for TAg-pRb interactions. These results also emphasize a role for BKV TAg in the deregulation of cellular proliferation, which may ultimately contribute to neoplasia.
Collapse
Affiliation(s)
- K F Harris
- Graduate Program in Cellular and Molecular Biology, University of Michigan Medical School, Ann Arbor 48109-0942, USA
| | | | | | | |
Collapse
|
202
|
Zalvide J, Stubdal H, DeCaprio JA. The J domain of simian virus 40 large T antigen is required to functionally inactivate RB family proteins. Mol Cell Biol 1998; 18:1408-15. [PMID: 9488456 PMCID: PMC108854 DOI: 10.1128/mcb.18.3.1408] [Citation(s) in RCA: 131] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/1997] [Accepted: 12/19/1997] [Indexed: 02/06/2023] Open
Abstract
Transformation by simian virus 40 large T antigen (TAg) is dependent on the inactivation of cellular tumor suppressors. Transformation minimally requires the following three domains: (i) a C-terminal domain that mediates binding to p53; (ii) the LXCXE domain (residues 103 to 107), necessary for binding to the retinoblastoma tumor suppressor protein, pRB, and the related p107 and p130; and (iii) an N-terminal domain that is homologous to the J domain of DnaJ molecular chaperone proteins. We have previously demonstrated that the N-terminal J domain of TAg affects the RB-related proteins by perturbing the phosphorylation status of p107 and p130 and promoting the degradation of p130 and that this domain is required for transformation of cells that express either p107 or p130. In this work, we demonstrate that the J domain of TAg is required to inactivate the ability of each member of the pRB family to induce a G1 arrest in Saos-2 cells. Furthermore, the J domain is required to override the repression of E2F activity mediated by p130 and pRB and to disrupt p130-E2F DNA binding complexes. These results imply that while the LXCXE domain serves as a binding site for the RB-related proteins, the J domain plays an important role in inactivating their function.
Collapse
Affiliation(s)
- J Zalvide
- Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | |
Collapse
|
203
|
Abstract
Previously, we found that Rb can actively repress transcription of cell cycle genes by binding and inactivating transcription factors at the promoter. Here, we demonstrate that Rb can also repress transcription of endogenous cell cycle genes containing E2F sites through recruitment of histone deacetylase, which deacetylates histones on the promoter, thereby promoting formation of nucleosomes that inhibit transcription. These two mechanisms of repression by Rb are selective-some promoters and transcription factors are blocked by this recruitment of histone deacetylase, whereas others are resistant to histone deacetylase activity and are repressed directly by inhibition of transcription factors.
Collapse
Affiliation(s)
- R X Luo
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | |
Collapse
|
204
|
Tiemann F, Hinds PW. Induction of DNA synthesis and apoptosis by regulated inactivation of a temperature-sensitive retinoblastoma protein. EMBO J 1998; 17:1040-52. [PMID: 9463382 PMCID: PMC1170453 DOI: 10.1093/emboj/17.4.1040] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The retinoblastoma protein, pRb, controls entry into the S phase of the cell cycle and acts as a tumor suppressor in many tissues. Re-introduction of pRb into tumor cells lacking this protein results in growth arrest, due in part to transcriptional repression of genes required for S phase. Several studies suggest that pRb may also be involved in terminal cell cycle exit as a result of the instigation of senescence or differentiation programs. To understand better these multiple growth-inhibitory properties of pRb, a temperature-sensitive mutant of pRb has been produced. This tspRb induces G1 arrest and morphological changes efficiently at the permissive temperature of 32.5 degrees C, but is weakly functional at 37 degrees C. Consistent with this, tspRb is compromised in nuclear association and E2F regulation at the non-permissive temperature, but regains these properties at 32.5 degrees C. Serial activation and inactivation of tspRb in SAOS-2 cells does not allow proliferation, but rather leads to apoptotic cell death. Transient activation of pRb may kill tumor cells by establishing a conflict between persistent proliferation-inhibitory signals and renewed deregulation of pRb targets such as E2F, and may thus be a more potent means of eliminating these cells than through simple re-introduction of the tumor suppressor gene.
Collapse
Affiliation(s)
- F Tiemann
- Department of Pathology, Harvard Medical School, Boston, MA 02115, USA
| | | |
Collapse
|
205
|
Lee BH, Liu M, Mathews MB. Regulation of the human proliferating cell nuclear antigen promoter by the adenovirus E1A-associated protein p107. J Virol 1998; 72:1138-45. [PMID: 9445010 PMCID: PMC124588 DOI: 10.1128/jvi.72.2.1138-1145.1998] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The adenovirus E1A 243R oncoprotein is capable of transactivating the expression of the human proliferating cell nuclear antigen (PCNA) promoter. Mutational analysis of the E1A 243R protein suggested that both its p300/CBP- and p107-binding regions are required for optimal induction of the PCNA promoter (C. Kannabiran, G. F. Morris, C. Labrie, and M. B. Mathews, J. Virol. 67:425-437, 1993). We show that overexpression of p107 antagonizes the induction of PCNA by E1A 243R in transient expression assays. This inhibition is largely independent of p107's ability to interact with E1A 243R, because p107 mutants unable to bind to E1A 243R retain the ability to repress the E1A-activated PCNA promoter. Electrophoretic mobility shift assays with the PCNA promoter detected the presence of p107 in one of the major DNA-protein complexes, EH1, formed with HeLa cell nuclear extracts. Promoter mutations that disrupt the formation of complex EH1 abrogated p107's ability to reverse E1A 243R-induced PCNA expression. The same mutations characterize a sequence important for the binding of transcription factor RFX1 (C. Labrie, G. F. Morris, and M. B. Mathews, Nucleic Acids Res. 23:3732-3741, 1995), implying that p107 antagonizes E1A 243R-induced PCNA expression through this RFX1-binding site. Our data are suggestive of a novel cooperative mechanism for transactivation of PCNA expression, in which E1A 243R relieves transcriptional repression exerted by p107 on the promoter.
Collapse
Affiliation(s)
- B H Lee
- Cold Spring Harbor Laboratory, New York 11724-2208, USA
| | | | | |
Collapse
|
206
|
Vaishnav YN, Vaishnav MY, Pant V. The molecular and functional characterization of E2F-5 transcription factor. Biochem Biophys Res Commun 1998; 242:586-92. [PMID: 9464260 DOI: 10.1006/bbrc.1997.8010] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The E2F activity plays a critical role in the control of cell cycle and action of tumor suppressor proteins and is also a target of the transforming proteins of small DNA tumor viruses. We describe here molecular cloning and functional characterization of a fifth member of the E2F family of transcription factors. E2F-5 protein is more homologous to E2F-4 (72% amino acid identity) than to E2F-1, E2F-2, and E2F-3 (35% amino acid identity). Based on structural and functional criteria, the E2F family appears to comprise two distinct sub-families, one composed of E2F-1, E2F-2, and E2F-3 and the other composed of E2F-4 and E2F-5, E2F-5 mRNA is expressed in a wide variety of human tissues. The protein is expressed as multiple species ranging in size from 46 to 54 kDa as a result of differential phosphorylation. The expression of a reporter gene containing E2F binding sites in the promoter is transcriptionally activated by E2F-5 in a cooperative manner with the DP-1 protein. The interaction between E2F-5 and DP-1 is demonstrated using a two-hybrid system in mammalian cells. We have also demonstrated the presence of a strong transactivation domain at the carboxy terminus (273-346 amino acid residues) of E2F-5 protein.
Collapse
Affiliation(s)
- Y N Vaishnav
- Virology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India.
| | | | | |
Collapse
|
207
|
Robles SJ, Shiyanov P, Aristodemo GT, Raychaudhuri P, Adami GR. Site-directed mutant p21 proteins defective in both inhibition of E2F-regulated transcription and disruption of E2F-p130-cyclin-cdk2 complexes. DNA Cell Biol 1998; 17:9-18. [PMID: 9468218 DOI: 10.1089/dna.1998.17.9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
P21 is a regulatory protein that can contribute to cell cycle arrest by inhibiting the cyclin-dependent-kinases (cdks). However, the mechanism that links the inhibition of the cdk activities and the cell cycle arrest is not well established. To investigate this, we studied a purified endogenous cellular complex which contained E2F (in the form of E2F-4), p130, cyclin, and cdk2. This complex of E2F-p130-cyclin-cdk2 is found mainly in cycling cells and is postulated to be an intermediate that leads to the activation of E2F. We previously showed that p21 could disrupt this complex leading to the accumulation of an E2F-p130 complex and the inhibition of E2F-regulated transcription. We analyzed a group of p21 mutants including those that harbored changes in cyclin- and cdk2-binding motifs. We show that both the cyclin and cdk2 binding motifs of p21 are crucial for the disruption of this endogenous complex of E2F-p130-cyclin-cdk2. This suggests a model where the ability of p21 to inhibit the function of this complex is dependent on interactions with both cyclin and cdk2 molecules. This was substantiated by studies with intact cells. P21 mutants that are impaired in their ability to disrupt the cellular E2F-p130-cyclin-cdk2 complex are also shown to be maximally impaired in the ability to repress E2F-regulated transcription.
Collapse
Affiliation(s)
- S J Robles
- Department of Oral Medicine and Diagnostic Sciences, College of Dentistry, University of Illinois at Chicago, 60612, USA
| | | | | | | | | |
Collapse
|
208
|
Mulligan GJ, Wong J, Jacks T. p130 is dispensable in peripheral T lymphocytes: evidence for functional compensation by p107 and pRB. Mol Cell Biol 1998; 18:206-20. [PMID: 9418868 PMCID: PMC121478 DOI: 10.1128/mcb.18.1.206] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The proteins encoded by the retinoblastoma gene family, pRB, p107, and p130, have been implicated in the regulation of cellular proliferation, differentiation, and transformation. Because interactions between p130 and E2F transcription factors have been proposed to play a role in the establishment and/or maintenance of quiescence in human peripheral T lymphocytes, we examined lymphoid differentiation and proliferation in p130-deficient mice. We show that p130-/- T cells proliferate normally in culture and exhibit normal cell-mediated immune function in vivo. However, p130-/- T lymphocytes expressed elevated levels of p107, and the characteristic p130-E2F DNA binding complex was replaced by a p107-E2F complex. Adoptive transfer of fetal liver lymphoid progenitors allowed us to circumvent the neonatal lethality associated with loss of p130 and p107 and to analyze the phenotype of p130-/-;p107-/- peripheral T lymphocytes. These cells achieved a quiescent state, exhibited derepression of a subset of E2F target genes, and were hypersensitive to concanavalin A stimulation. Interestingly, a significant portion of the E2F-4 in p130-/-;p107-/- T cells was detected in a complex with pRB and an as-yet-unidentified protein. These findings provide a biochemical basis for functional compensation between pRB family proteins.
Collapse
Affiliation(s)
- G J Mulligan
- Center for Cancer Research, Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge 02139, USA
| | | | | |
Collapse
|
209
|
Sellers WR, Novitch BG, Miyake S, Heith A, Otterson GA, Kaye FJ, Lassar AB, Kaelin WG. Stable binding to E2F is not required for the retinoblastoma protein to activate transcription, promote differentiation, and suppress tumor cell growth. Genes Dev 1998; 12:95-106. [PMID: 9420334 PMCID: PMC316399 DOI: 10.1101/gad.12.1.95] [Citation(s) in RCA: 294] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The retinoblastoma tumor suppressor protein (pRB) can inhibit cell cycle progression and promote differentiation. pRB interacts with a variety of transcription factors, including members of the E2F and C-EBP protein families and MyoD, and can either repress or activate transcription depending on the promoter under study. These biological and biochemical activities of pRB have been mapped previously to a core domain, referred to as the pRB pocket. Using a panel of synthetic pRB pocket mutants, we found that the acute induction of a G1/S block by pRB is linked to its ability to both bind to E2F and to repress transcription. In contrast, these functions were not required for pRB to promote differentiation, which correlated with its ability to activate transcription in concert with fate-determining proteins such as MyoD. All tumor-derived pRB mutants tested to date failed to bind to E2F and did not repress transcription. Despite an inability to bind to E2F, pRB mutants associated with a low risk of retinoblastoma, unlike high-risk mutants, retained the ability to activate transcription and promote differentiation. Thus, the pRB pocket participates in dual tumor suppressor functions, one linked to cell cycle progression and the other to differentiation control, and these functions can be genetically and mechanistically dissociated.
Collapse
Affiliation(s)
- W R Sellers
- The Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | | | |
Collapse
|
210
|
Abstract
Mutations involving the retinoblastoma tumor-suppressor gene (RB-1) have been described in a variety of human neoplasms. In addition, many tumors that retain a wild-type RB-1 allele harbor mutations that indirectly impair the function of the RB-1 gene product (pRB). pRB is a nuclear protein that regulates cell-cycle progression and, in at least certain tissues, differentiation. The former has been linked to its ability to form complexes with members of the E2F transcription factor family. E2F DNA-binding sites have been identified in the regulatory regions of a number of genes involved in cell-cycle progression. pRB-E2F complexes actively repress transcription when bound to these sites. All tumor-derived pRB mutants have lost the ability to bind to E2F. Conversely, activation of E2F-responsive genes is sufficient to overcome a pRB-induced cell-cycle block and, in certain cell types, can lead to transformation. Thus, E2F appears to be a physiologically relevant target of pRB action, and deregulation of E2F-responsive genes is a common, and possibly universal, step in human carcinogenesis.
Collapse
Affiliation(s)
- W G Kaelin
- Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA.
| |
Collapse
|
211
|
Tao Y, Kassatly RF, Cress WD, Horowitz JM. Subunit composition determines E2F DNA-binding site specificity. Mol Cell Biol 1997; 17:6994-7007. [PMID: 9372931 PMCID: PMC232556 DOI: 10.1128/mcb.17.12.6994] [Citation(s) in RCA: 114] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The product of the retinoblastoma (Rb) susceptibility gene, Rb-1, regulates the activity of a wide variety of transcription factors, such as E2F, in a cell cycle-dependent fashion. E2F is a heterodimeric transcription factor composed of two subunits each encoded by one of two related gene families, denoted E2F and DP. Five E2F genes, E2F-1 through E2F-5, and two DP genes, DP-1 and DP-2, have been isolated from mammals, and heterodimeric complexes of these proteins are expressed in most, if not all, vertebrate cells. It is not yet clear whether E2F/DP complexes regulate overlapping and/or specific cellular genes. Moreover, little is known about whether Rb regulates all or a subset of E2F-dependent genes. Using recombinant E2F, DP, and Rb proteins prepared in baculovirus-infected cells and a repetitive immunoprecipitation-PCR procedure (CASTing), we have identified consensus DNA-binding sites for E2F-1/DP-1, E2F-1/DP-2, E2F-4/DP-1, and E2F-4/DP-2 complexes as well as an Rb/E2F-1/DP-1 trimeric complex. Our data indicate that (i) E2F, DP, and Rb proteins each influence the selection of E2F-binding sites; (ii) E2F sites differ with respect to their intrinsic DNA-bending properties; (iii) E2F/DP complexes induce distinct degrees of DNA bending; and (iv) complex-specific E2F sites selected in vitro function distinctly as regulators of cell cycle-dependent transcription in vivo. These data indicate that the specific sequence of an E2F site may determine its role in transcriptional regulation and suggest that Rb/E2F complexes may regulate subsets of E2F-dependent cellular genes.
Collapse
Affiliation(s)
- Y Tao
- Department of Molecular Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | | | |
Collapse
|
212
|
Verona R, Moberg K, Estes S, Starz M, Vernon JP, Lees JA. E2F activity is regulated by cell cycle-dependent changes in subcellular localization. Mol Cell Biol 1997; 17:7268-82. [PMID: 9372959 PMCID: PMC232584 DOI: 10.1128/mcb.17.12.7268] [Citation(s) in RCA: 174] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
E2F directs the cell cycle-dependent expression of genes that induce or regulate the cell division process. In mammalian cells, this transcriptional activity arises from the combined properties of multiple E2F-DP heterodimers. In this study, we show that the transcriptional potential of individual E2F species is dependent upon their nuclear localization. This is a constitutive property of E2F-1, -2, and -3, whereas the nuclear localization of E2F-4 is dependent upon its association with other nuclear factors. We previously showed that E2F-4 accounts for the majority of endogenous E2F species. We now show that the subcellular localization of E2F-4 is regulated in a cell cycle-dependent manner that results in the differential compartmentalization of the various E2F complexes. Consequently, in cycling cells, the majority of the p107-E2F, p130-E2F, and free E2F complexes remain in the cytoplasm. In contrast, almost all of the nuclear E2F activity is generated by pRB-E2F. This complex is present at high levels during G1 but disappears once the cells have passed the restriction point. Surprisingly, dissociation of this complex causes little increase in the levels of nuclear free E2F activity. This observation suggests that the repressive properties of the pRB-E2F complex play a critical role in establishing the temporal regulation of E2F-responsive genes. How the differential subcellular localization of pRB, p107, and p130 contributes to their different biological properties is also discussed.
Collapse
Affiliation(s)
- R Verona
- Center for Cancer Research, Massachusetts Institute of Technology, Cambridge 02139, USA
| | | | | | | | | | | |
Collapse
|
213
|
Zavitz KH, Zipursky SL. Controlling cell proliferation in differentiating tissues: genetic analysis of negative regulators of G1-->S-phase progression. Curr Opin Cell Biol 1997; 9:773-81. [PMID: 9425341 DOI: 10.1016/s0955-0674(97)80077-4] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Withdrawal from the cell cycle as cells begin to differentiate is accomplished by the downregulation of cyclin-dependent kinase activities in G1 phase. Recent analysis of loss-of-function mutations in flies, worms, and mice has provided insight into the roles of various negative regulators of G1 phase in developing organisms.
Collapse
Affiliation(s)
- K H Zavitz
- Department of Biological Chemistry, School of Medicine, University of California at Los Angeles 90095, USA.
| | | |
Collapse
|
214
|
Sang N, Claudio PP, Fu Y, Horikoshi N, Graeven U, Weinmann R, Giordano A. Transforming region of 243R E1A contains two overlapping but distinct transactivation domains. DNA Cell Biol 1997; 16:1321-33. [PMID: 9407004 DOI: 10.1089/dna.1997.16.1321] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Conserved regions 1 and 2 as well as the amino terminus of E1A are required for the transforming activity of the E1A oncoprotein. We show here that the amino terminus of 243R E1A has transactivation activity when brought to a promoter in yeast. Recruitment to a specific promoter is essential. Mutagenesis studies correlated the transactivation function with the extreme amino terminus and the conserved region 1 of E1A. Cotransfection assays in rodent cells confirmed that two overlapping but distinguishable domains, amino acids 1-65 and 37-80, can transactivate independently when targeted to a promoter. We also observed that when recruited to the proliferating cell nuclear antigen (PCNA) promoter, the amino-terminal region was sufficient to transactivate the PCNA promoter. On the other hand, deletion of the amino terminus of E1A resulted in failure to induce PCNA expression. Fusion of VP16 with the amino-terminal-deleted E1A mutant was able to restore the ability to induce the PCNA promoter. We further show that the amino-terminal region also is required for 243R E1A to repress the transactivation mediated by a universal transactivator DBD.VP16 and DBD.E1A. This repression could be specifically relieved by overexpression of TBP but not TFIIB. In addition, we show that the amino terminus of E1A is involved in in vitro interaction with the TATA binding protein (TBP). Thus the amino-terminal transforming region of E1A may regulate cellular gene expression in species that are distant in evolution via a common mechanism, functionally targeting TBP.
Collapse
Affiliation(s)
- N Sang
- Department of Pathology, Anatomy & Cell Biology, Sbarro Institute for Cancer Research and Molecular Medicine, Jefferson Medical College, Philadelphia, PA 19107, USA
| | | | | | | | | | | | | |
Collapse
|
215
|
Onishi T, Zhang W, Cao X, Hruska K. The mitogenic effect of parathyroid hormone is associated with E2F-dependent activation of cyclin-dependent kinase 1 (cdc2) in osteoblast precursors. J Bone Miner Res 1997; 12:1596-605. [PMID: 9333120 DOI: 10.1359/jbmr.1997.12.10.1596] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Injections of parathyroid hormone (PTH) have been reported to stimulate skeletal accretion through increased bone formation in several species, and osteoblast proliferation is a critical component of bone formation. However, the biological mechanisms of PTH-stimulated bone cell proliferation are largely unknown. In this study, we demonstrated that PTH stimulates proliferation of the osteoblast precursor cell line, TE-85, in association with increasing cdc2 protein levels and its kinase activity. cdc2 antisense oligonucleotides blocked PTH-induced DNA synthesis and cell cycle progression. Analysis of the time course of PTH-stimulated cdc2 message levels demonstrated that cdc2 mRNA levels were increased 1.5- to 4-fold between 3-18 h following release from cell synchronization. Transfections of TE-85 cells with a series of cdc2 promoter-luciferase deletion constructs revealed PTH stimulation of the cdc2 promoter. Promoter constructs containing a mutation in the E2F binding site were not stimulated by PTH. Gel mobility shift assays demonstrated increased free E2F levels in TE-85 nuclear extracts in response to PTH. Furthermore, the ratios of hyperphosphorylated to hypophosphorylated forms of Rb protein were increased by PTH treatment. These results demonstrate that PTH-stimulated cdc2 expression was associated with TE-85 cell proliferation and that the mechanism of stimulating cdc2 gene expression involved increasing the levels of free E2F.
Collapse
Affiliation(s)
- T Onishi
- Renal Division, Barnes-Jewish Hospital/Washington University, St. Louis, Missouri 63110, U.S.A
| | | | | | | |
Collapse
|
216
|
Knudsen ES, Wang JY. Dual mechanisms for the inhibition of E2F binding to RB by cyclin-dependent kinase-mediated RB phosphorylation. Mol Cell Biol 1997; 17:5771-83. [PMID: 9315635 PMCID: PMC232425 DOI: 10.1128/mcb.17.10.5771] [Citation(s) in RCA: 223] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The growth suppression function of RB is dependent on its protein binding activity. RB contains at least three distinct protein binding functions: (i) the A/B pocket, which binds proteins with the LXCXE motif; (ii) the C pocket, which binds the c-Abl tyrosine kinase; and (iii) the large A/B pocket, which binds the E2F family of transcription factors. Phosphorylation of RB, which is catalyzed by cyclin-dependent protein kinases, inhibits all three protein binding activities. We have previously shown that LXCXE binding is inactivated by the phosphorylation of two threonines (Thr821 and Thr826), while the C pocket is inhibited by the phosphorylation of two serines (Ser807 and Ser811). In this report, we show that the E2F binding activity of RB is inhibited by two sets of phosphorylation sites acting through distinct mechanisms. Phosphorylation at several of the seven C-terminal sites can inhibit E2F binding. Additionally, phosphorylation of two serine sites in the insert domain can inhibit E2F binding, but this inhibition requires the presence of the RB N-terminal region. RB mutant proteins lacking all seven C-terminal sites and two insert domain serines can block Rat-1 cells in G1. These RB mutants can bind LXCXE proteins, c-Abl, and E2F even after they become phosphorylated at the remaining nonmutated sites. Thus, multiple phosphorylation sites regulate the protein binding activities of RB through different mechanisms, and a constitutive growth suppressor can be generated through the combined mutation of the relevant phosphorylation sites in RB.
Collapse
Affiliation(s)
- E S Knudsen
- Department of Biology and Center for Molecular Genetics, University of California at San Diego, La Jolla 92093-0322, USA
| | | |
Collapse
|
217
|
|
218
|
Smith RC, Wills KN, Antelman D, Perlman H, Truong LN, Krasinski K, Walsh K. Adenoviral constructs encoding phosphorylation-competent full-length and truncated forms of the human retinoblastoma protein inhibit myocyte proliferation and neointima formation. Circulation 1997; 96:1899-905. [PMID: 9323079 DOI: 10.1161/01.cir.96.6.1899] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND The retinoblastoma (Rb) protein is a key cell-cycle regulator that controls entry into the S phase by modulating the activity of the E2F transcription factor. We analyzed the effects of full-length phosphorylation-competent and a mutant truncated form of human Rb for their effects on vascular smooth muscle cell (VSMC) proliferation and neointima formation. METHODS AND RESULTS A number of mutant forms, both phosphorylation competent and incompetent, of human Rb protein were evaluated for their ability to inhibit E2F activity. The results of these assays indicated that a phosphorylation competent, amino-terminal-truncated Rb protein (Rb56) was a particularly potent inhibitor of E2F-mediated transcription relative to the full-length Rb construct (Rb110). Adenoviral constructs containing Rb56 or Rb110 expressed their respective Rb forms in VSMCs, as determined by Western immunoblot analysis, and were similar in their abilities to arrest the cell cycle, as determined by assays of 3H-thymidine incorporation and by flow cytometric analyses. When examined for their effect on neointima formation after balloon injury of the rat carotid artery, both full-length and truncated forms of Rb inhibited formation of this VSMC-derived lesion. CONCLUSIONS These analyses revealed that the maintenance of high levels of phosphorylation-competent human Rb, either full-length or truncated forms, in VSMCs is an effective method of modulating the extent of intimal hyperplasia that occurs after balloon-induced vascular injury.
Collapse
MESH Headings
- Adenoviridae
- Angioplasty, Balloon/adverse effects
- Animals
- Blotting, Western
- Carotid Stenosis/etiology
- Carotid Stenosis/pathology
- Carrier Proteins
- Cell Cycle Proteins/genetics
- Cell Division/drug effects
- Cell Division/physiology
- Cells, Cultured
- DNA-Binding Proteins
- Disease Models, Animal
- E2F Transcription Factors
- Flow Cytometry
- Gene Expression Regulation, Viral
- Genetic Vectors
- Humans
- Hyperplasia
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/injuries
- Mutation/physiology
- Phosphorylation
- Rats
- Recombinant Proteins/pharmacology
- Recurrence
- Retinoblastoma Protein/analysis
- Retinoblastoma Protein/genetics
- Retinoblastoma-Binding Protein 1
- Saphenous Vein/cytology
- Transcription Factor DP1
- Transcription Factors/genetics
- Transcription, Genetic/physiology
- Transfection
- Tunica Intima/injuries
- Tunica Intima/pathology
Collapse
Affiliation(s)
- R C Smith
- Department of Medicine, Tufts University School of Medicine, St. Elizabeth's Medical Center, Boston, Mass 02135, USA
| | | | | | | | | | | | | |
Collapse
|
219
|
Abstract
In eukaryotes, progression of a cell through the cell cycle is partly controlled at the level of transcriptional regulation. Yeast and mammalian cells use similar mechanisms to achieve this regulation. Although gaps still remain, progress has been made recently in connecting the links between the cell's cycle and its transcriptional machinery.
Collapse
Affiliation(s)
- B D Dynlacht
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts 02138, USA
| |
Collapse
|
220
|
Hauser PJ, Agrawal D, Chu B, Pledger WJ. p107 and p130 associated cyclin A has altered substrate specificity. J Biol Chem 1997; 272:22954-9. [PMID: 9278460 DOI: 10.1074/jbc.272.36.22954] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
We demonstrate that p107 and p130 immune complexes exhibit kinase activity. We have tested such immune complexes with four substrates commonly utilized to assay Cdk activity, including all three known members of the retinoblastoma family. Immunodepletion revealed this kinase activity could be abolished by removal of either cyclin A or Cdk2 but was unaffected by removal of Cdk4 or any D-type cyclin. The appearance of p107 associated activity followed the accumulation of p107 protein. In contrast, the kinase activity associated with p130 immune complexes became apparent after mid-G1, coincident with p130 hyperphosphorylation. GST-Rb, GST-p107, and GST-p130 (where GST indicates glutathione S-transferase) were equally suitable substrates in p107 and p130 immune complex kinase assays, yielding activity equal to 25% of the cyclin A activity present. The p107 and p130 associated activity was unable to phosphorylate histone H1, suggesting the p107 and p130 associated cyclin A/Cdk2 may represent a distinct pool with a distinct substrate specificity. The p107 and p130 associated activity was released from the immune complexes upon incubation with ATP and Mg2+ and exhibited the same substrate preference observed with the untreated immune complex. Our data suggest that p107 and p130 recognize, or form by association, a distinct pool of cyclin A/Cdk2 that preferentially phosphorylates retinoblastoma family members.
Collapse
Affiliation(s)
- P J Hauser
- Department of Cell Biology, Vanderbilt University, Nashville, Tennessee 37240, USA
| | | | | | | |
Collapse
|
221
|
Müller H, Moroni MC, Vigo E, Petersen BO, Bartek J, Helin K. Induction of S-phase entry by E2F transcription factors depends on their nuclear localization. Mol Cell Biol 1997; 17:5508-20. [PMID: 9271426 PMCID: PMC232399 DOI: 10.1128/mcb.17.9.5508] [Citation(s) in RCA: 157] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The E2F transcription factors are essential for regulating the correct timing of activation of several genes whose products are implicated in cell proliferation and DNA replication. The E2Fs are targets for negative regulation by the retinoblastoma protein family, which includes pRB, p107, and p130, and they are in a pathway that is frequently found altered in human cancers. There are five members of the E2F family, and they can be divided into two functional subgroups. Whereas, upon overexpression, E2F-1, -2, and -3 induce S phase in quiescent fibroblasts and override G1 arrests mediated by the p16INK4A tumor suppressor protein or neutralizing antibodies to cyclin D1, E2F-4 and -5 do not. Using E2F-1 and E2F-4 as representatives of the two subgroups, we showed here, by constructing a set of chimeric proteins, that the amino terminus of E2F-1 is sufficient to confer S-phase-inducing potential as well as the ability to efficiently transactivate an E2F-responsive promoter to E2F-4. We found that the E2F-1 amino terminus directs chimeric proteins to the nucleus. Surprisingly, a short nuclear localization signal derived from simian virus 40 large T antigen could perfectly substitute for the presence of the E2F-1 amino terminus in these assays. Thus, nuclearly localized E2F-4, when overexpressed, displayed biological activities similar to those of E2F-1. Furthermore, we showed that nuclear localization of endogenous E2F-4 is cell cycle regulated, with E2F-4 being nuclear in the G0 and early G1 phases and mainly cytoplasmic after the pRB family members have become phosphorylated. We propose a novel mechanism for the regulation of E2F-dependent transcription in which E2F-4 regulates transcription only from G0 until mid- to late G1 phase whereas E2F-1 is active in late G1 and S phases, until it is inactivated by cyclin A-dependent kinase in late S phase.
Collapse
Affiliation(s)
- H Müller
- Department of Experimental Oncology, European Institute of Oncology, Milan, Italy
| | | | | | | | | | | |
Collapse
|
222
|
Bandara LR, Girling R, La Thangue NB. Apoptosis induced in mammalian cells by small peptides that functionally antagonize the Rb-regulated E2F transcription factor. Nat Biotechnol 1997; 15:896-901. [PMID: 9306407 DOI: 10.1038/nbt0997-896] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
A variety of studies implicate the E2F transcription factor as a critical regulator of the mammalian cell cycle. The E2F pathway is aberrant in most, if not all, human tumor cells; therefore, therapeutic regimes that modulate E2F activity may provide an approach for reinstating growth control in situations where normal physiological control is lost. To elucidate the role of E2F in the cell cycle and assess its value as a therapeutic target, we have introduced peptides that functionally antagonize E2F DNA binding activity into mammalian cells. Introduction of these peptides into mammalian tumor cells caused the rapid onset of apoptosis, an outcome that correlates with the inactivation of physiological E2F.
Collapse
|
223
|
Alevizopoulos K, Vlach J, Hennecke S, Amati B. Cyclin E and c-Myc promote cell proliferation in the presence of p16INK4a and of hypophosphorylated retinoblastoma family proteins. EMBO J 1997; 16:5322-33. [PMID: 9311992 PMCID: PMC1170164 DOI: 10.1093/emboj/16.17.5322] [Citation(s) in RCA: 172] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Retroviral expression of the cyclin-dependent kinase (CDK) inhibitor p16(INK4a) in rodent fibroblasts induces dephosphorylation of pRb, p107 and p130 and leads to G1 arrest. Prior expression of cyclin E allows S-phase entry and long-term proliferation in the presence of p16. Cyclin E prevents neither the dephosphorylation of pRb family proteins, nor their association with E2F proteins in response to p16. Thus, cyclin E can bypass the p16/pRb growth-inhibitory pathway downstream of pRb activation. Retroviruses expressing E2F-1, -2 or -3 also prevent p16-induced growth arrest but are ineffective against the cyclin E-CDK2 inhibitor p27(Kip1), suggesting that E2F cannot substitute for cyclin E activity. Thus, cyclin E possesses an E2F-independent function required to enter S-phase. However, cyclin E may not simply bypass E2F function in the presence of p16, since it restores expression of E2F-regulated genes such as cyclin A or CDC2. Finally, c-Myc bypasses the p16/pRb pathway with effects indistinguishable from those of cyclin E. We suggest that this effect of Myc is mediated by its action upstream of cyclin E-CDK2, and occurs via the neutralization of p27(Kip1) family proteins, rather than induction of Cdc25A. Our data imply that oncogenic activation of c-Myc, and possibly also of cyclin E, mimics loss of the p16/pRb pathway during oncogenesis.
Collapse
Affiliation(s)
- K Alevizopoulos
- Swiss Institute for Experimental Cancer Research, CH-1066 Epalinges, Switzerland
| | | | | | | |
Collapse
|
224
|
Stubdal H, Zalvide J, Campbell KS, Schweitzer C, Roberts TM, DeCaprio JA. Inactivation of pRB-related proteins p130 and p107 mediated by the J domain of simian virus 40 large T antigen. Mol Cell Biol 1997; 17:4979-90. [PMID: 9271376 PMCID: PMC232349 DOI: 10.1128/mcb.17.9.4979] [Citation(s) in RCA: 152] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Inactivation of the retinoblastoma tumor suppressor protein (pRB) contributes to tumorigenesis in a wide variety of cancers. In contrast, the role of the two pRB-related proteins, p130 and p107, in oncogenic transformation is unclear. The LXCXE domain of simian virus 40 large T antigen (TAg) specifically binds to pRB, p107, and p130. We have previously shown that the N terminus and the LXCXE domain of TAg cooperate to alter the phosphorylation state of p130 and p107. Here, we demonstrate that TAg promotes the degradation of p130 and that the N terminus of TAg is required for this activity. The N terminus of TAg has homology to the J domain of the DnaJ family of molecular chaperone proteins. Mutants with mutations in the J-domain homology region of TAg are defective for altering p130 and p107 phosphorylation and for p130 degradation. A heterologous J-domain from a human DnaJ protein can functionally substitute for the N terminus of TAg in the effect on p107 and p130 phosphorylation and p130 stability. We further demonstrate that the J-domain homology region of TAg confers a growth advantage to wild-type mouse embryo fibroblasts (MEFs) but is dispensable in the case of MEFs lacking both p130 and p107. This indicates that p107 and p130 have overlapping growth-suppressing activities whose inactivation is mediated by the J domain of TAg.
Collapse
Affiliation(s)
- H Stubdal
- Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | |
Collapse
|
225
|
Shiyanov P, Hayes S, Chen N, Pestov DG, Lau LF, Raychaudhuri P. p27Kip1 induces an accumulation of the repressor complexes of E2F and inhibits expression of the E2F-regulated genes. Mol Biol Cell 1997; 8:1815-27. [PMID: 9307976 PMCID: PMC305739 DOI: 10.1091/mbc.8.9.1815] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
p27Kip1 is an inhibitor of the cyclin-dependent kinases and it plays an inhibitory role in the progression of cell cycle through G1 phase. To investigate the mechanism of cell cycle inhibition by p27Kip1, we constructed a cell line that inducibly expresses p27Kip1 upon addition of isopropyl-1-thio-beta-D-galactopyranoside in the culture medium. Isopropyl-1-thio-beta-D-galactopyranoside-induced expression of p27Kip1 in these cells causes a specific reduction in the expression of the E2F-regulated genes such as cyclin E, cyclin A, and dihydrofolate reductase. The reduction in the expression of these genes correlates with the p27Kip1-induced accumulation of the repressor complexes of the E2F family of factors (E2Fs). Our previous studies indicated that p21WAF1 could disrupt the interaction between cyclin/cyclin-dependent kinase 2 (cdk2) and the E2F repressor complexes E2F-p130 and E2F-p107. We show that p27Kip1, like p21WAF1, disrupts cyclin/cdk2-containing complexes of E2F-p130 leading to the accumulation of the E2F-p130 complexes, which is found in growth-arrested cells. In transient transfection assays, expression of p27Kip1 specifically inhibits transcription of a promoter containing E2F-binding sites. Mutants of p27Kip1 harboring changes in the cyclin- and cdk2-binding motifs are deficient in inhibiting transcription from the E2F sites containing reporter gene. Moreover, these mutants of p27Kip1 are also impaired in disrupting the interaction between cyclin/cdk2 and the repressor complexes of E2Fs. Taken together, these observations suggest that p27Kip1 reduces expression of the E2F-regulated genes by generating repressor complexes of E2Fs. Furthermore, the results also demonstrate that p27Kip1 inhibits expression of cyclin A and cyclin E, which are critical for progression through the G1-S phases.
Collapse
Affiliation(s)
- P Shiyanov
- Department of Biochemistry, University of Illinois at Chicago 60612, USA
| | | | | | | | | | | |
Collapse
|
226
|
Sang N, Avantaggiati ML, Giordano A. Roles of p300, pocket proteins, and hTBP in E1A-mediated transcriptional regulation and inhibition of p53 transactivation activity. J Cell Biochem 1997; 66:277-85. [PMID: 9257185 DOI: 10.1002/(sici)1097-4644(19970901)66:3<277::aid-jcb1>3.0.co;2-m] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The conserved region 1 and the extreme N-terminus of adenoviral oncoprotein E1A are essential for transforming activity. They also play roles in the interaction of E1A with p300/CBP and pRb and are involved in both transactivation and repression of host gene expression. It was reported recently that p53-mediated transactivation is specifically repressed by E1A and that p53-induced apoptosis can be protected by pRb. In this report, we investigated the roles of pRb and p300 in the N-terminus of E1A-mediated transcriptional regulation. We demonstrate here that p300 and pRb have no effect on DBD.1-70 transactivation and that overexpression of p300 or pRb failed to relieve the repression by E1A. Repression of p53 transactivation requires both the extreme amino terminus and CR1 but not CR2. This repressive activity of E1A specifically correlates with E1A's ability to bind p300 and TBP. On the other hand, E1A inhibited the transactivation activity of a fusion construct containing the DNA binding domain of yeast Gal4 and the transactivation domain of p53. When p53 was contransfected with E1A, similar inhibition was found in Saos-2 cells that lack endogenous pRb and p53 activity. Introduction of pRb into Saos-2 cells did not affect p53 transcription activity. E1A-mediated repression can be relieved be overexpression of either p300, hTBP, or-TFIIB but cannot be released by overexpression of pocket proteins. Our data suggest that p300/CBP and TBP but not the pocket proteins, pRb, p107, and pRb2/p130 are functional targets of E1A in transcriptional regulation and that p53 transactivation requires the function of the p300/TBP/TFIIB complex, thus delineating a new pathway by which E1A may exert its transforming activity.
Collapse
Affiliation(s)
- N Sang
- Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| | | | | |
Collapse
|
227
|
Mukhopadhyay D, Knebelmann B, Cohen HT, Ananth S, Sukhatme VP. The von Hippel-Lindau tumor suppressor gene product interacts with Sp1 to repress vascular endothelial growth factor promoter activity. Mol Cell Biol 1997; 17:5629-39. [PMID: 9271438 PMCID: PMC232411 DOI: 10.1128/mcb.17.9.5629] [Citation(s) in RCA: 257] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The von Hippel-Lindau tumor suppressor gene (VHL) has a critical role in the pathogenesis of clear-cell renal cell carcinoma (RCC), as VHL mutations have been found in both von Hippel-Lindau disease-associated and sporadic RCCs. Recent studies suggest that vascular endothelial growth factor (VEGF) mRNA is upregulated in RCC- and von Hippel-Lindau disease-associated tumors. We have therefore assessed the effect of the VHL gene product on VEGF expression. VEGF promoter-luciferase constructs were transiently cotransfected with a wild-type VHL (wt-VHL) vector in several cell lines, including 293 embryonic kidney and RCC cell lines. wt-VHL protein inhibited VEGF promoter activity in a dose-dependent manner up to 5- to 10-fold. Deletion analysis defined a 144-bp region of the VEGF promoter necessary for VHL repression. This VHL-responsive element is GC rich and specifically binds the transcription factor Sp1 in crude nuclear extracts. In Drosophila cells, cotransfected VHL represses Sp1-mediated activation but not basal activity of the VEGF promoter. We next demonstrated in coimmunoprecipitates that VHL and Sp1 were part of the same complex and, by using a glutathione-S-transferase-VHL fusion protein and purified Sp1, that VHL and Sp1 directly interact. Furthermore, endogenous VEGF mRNA levels were suppressed in permanent RCC cell lines expressing wt-VHL, and nuclear run-on studies indicated that VHL regulation of VEGF occurs at least partly at the transcriptional level. These observations support a new mechanism for VHL-mediated transcriptional repression via a direct inhibitory action on Sp1 and suggest that loss of Sp1 inhibition may be important in the pathogenesis of von Hippel-Lindau disease and RCC.
Collapse
Affiliation(s)
- D Mukhopadhyay
- Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts 02215, USA
| | | | | | | | | |
Collapse
|
228
|
Bremner R, Du DC, Connolly-Wilson MJ, Bridge P, Ahmad KF, Mostachfi H, Rushlow D, Dunn JM, Gallie BL. Deletion of RB exons 24 and 25 causes low-penetrance retinoblastoma. Am J Hum Genet 1997; 61:556-70. [PMID: 9326321 PMCID: PMC1715941 DOI: 10.1086/515499] [Citation(s) in RCA: 74] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
A deletion in the tumor-suppressor gene, RB, discovered by quantitative multiplex PCR, shows low penetrance (LP), since only 39% of eyes at risk in this family develop retinoblastoma. The 4-kb deletion spanning exons 24 and 25 (delta24-25) is the largest ever observed in an LP retinoblastoma family. Unlike the usual RB mutations, which cause retinoblastoma in 95% of at-risk eyes and yield no detectable protein, the delta24-25 allele transcribed a message splicing exon 23 to exon 26, resulting in a detectable protein (pRBdelta24-25) that lacks 58 amino acids from the C-terminal domain, proving that this domain is essential for suppression of retinoblastoma. Two functions were partially impaired by delta24-25-nuclear localization and repression of E2F-consistent with the idea that LP mutations generate "weak alleles" by reducing but not eliminating essential activities. However, delta24-25 ablated interaction of pRB with MDM2. Since a homozygous LP allele is considered nontumorigenic, the pRB/MDM2 interaction may be semi- or nonessential for suppressing retinoblastoma. Alternatively, some homozygous LP alleles may not cause tumorigenesis because an additional event is required (the "three-hit hypothesis"), or the resulting imbalance in pRB function may cause apoptosis (the "death allele hypothesis"). pRBdelta24-25 was also completely defective in suppressing growth of Saos-2 osteosarcoma cells. Targeting pRBdelta24-25 to the nucleus did not improve Saos-2 growth suppression, suggesting that C-terminal domain functions other than nuclear localization are essential for blocking proliferation in these cells. Since delta24-25 behaves like a null allele in these cells but like an LP allele in the retina, pRB may use different mechanisms to control growth in different cell types.
Collapse
Affiliation(s)
- R Bremner
- Eye Research Institute of Canada, Department of Ophthalmology, University of Toronto, Ontario.
| | | | | | | | | | | | | | | | | |
Collapse
|
229
|
Voit R, Schäfer K, Grummt I. Mechanism of repression of RNA polymerase I transcription by the retinoblastoma protein. Mol Cell Biol 1997; 17:4230-7. [PMID: 9234680 PMCID: PMC232276 DOI: 10.1128/mcb.17.8.4230] [Citation(s) in RCA: 139] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The retinoblastoma susceptibility gene product pRb restricts cellular proliferation by affecting gene expression by all three classes of nuclear RNA polymerases. To elucidate the molecular mechanisms underlying pRb-mediated repression of ribosomal DNA (rDNA) transcription by RNA polymerase I, we have analyzed the effect of pRb in a reconstituted transcription system. We demonstrate that pRb, but not the related protein p107, acts as a transcriptional repressor by interfering with the assembly of transcription initiation complexes. The HMG box-containing transcription factor UBF is the main target for pRb-induced transcriptional repression. UBF and pRb form in vitro complexes involving the C-terminal part of pRb and HMG boxes 1 and 2 of UBF. We show that the interactions between UBF and TIF-IB and between UBF and RNA polymerase I, respectively, are not perturbed by pRb. However, the DNA binding activity of UBF to both synthetic cruciform DNA and the rDNA promoter is severely impaired in the presence of pRb. These studies reveal another mechanism by which pRb suppresses cell proliferation, namely, by direct inhibition of cellular rRNA synthesis.
Collapse
Affiliation(s)
- R Voit
- German Cancer Research Center, Division of Molecular Biology of the Cell II, Heidelberg
| | | | | |
Collapse
|
230
|
Phillips AC, Bates S, Ryan KM, Helin K, Vousden KH. Induction of DNA synthesis and apoptosis are separable functions of E2F-1. Genes Dev 1997; 11:1853-63. [PMID: 9242492 DOI: 10.1101/gad.11.14.1853] [Citation(s) in RCA: 205] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The family of E2F transcription factors have an essential role in mediating cell cycle progression, and recently, one of the E2F protein family, E2F-1, has been shown to participate in the induction of apoptosis. Cooperation between E2F and the p53 tumor suppressor protein in this apoptotic response had led to the suggestion that cell cycle progression induced by E2F-1 expression provides an apoptotic signal when placed in conflict with an arrest to cell cycle progression, such as provided by p53. We show here that although apoptosis is clearly enhanced by p53, E2F-1 can induce significant apoptosis in the absence of p53. Furthermore, this apoptotic function of E2F-1 is separable from the ability to accelerate entry into DNA synthesis. Analysis of E2F-1 mutants indicates that although DNA-binding is required, transcriptional transactivation is not necessary for the induction of apoptosis by E2F-1, suggesting that it may be mediated through alleviation of E2F-dependent transcriptional repression. These results indicate that E2F-1 can show independent cell cycle progression and apoptotic functions, consistent with its putative role as a tumor suppressor.
Collapse
Affiliation(s)
- A C Phillips
- ABL Basic Research Program, National Cancer Institute-Frederick Cancer Research and Development Center (NCI-FCRDC), Maryland 21702, USA
| | | | | | | | | |
Collapse
|
231
|
Woo MS, Sánchez I, Dynlacht BD. p130 and p107 use a conserved domain to inhibit cellular cyclin-dependent kinase activity. Mol Cell Biol 1997; 17:3566-79. [PMID: 9199292 PMCID: PMC232210 DOI: 10.1128/mcb.17.7.3566] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The pRB-related proteins p107 and p130 are thought to suppress growth in part through their associations with two important cell cycle kinases, cyclin A-cdk2 and cyclin E-cdk2, and transcription factor E2F. Although each protein plays a critical role in cell proliferation, the functional consequences of the association among growth suppressor, cyclin-dependent kinase, and transcription factor have remained elusive. In an attempt to understand the biochemical properties of such complexes, we reconstituted each of the p130-cyclin-cdk2 and p107-cyclin-cdk2 complexes found in vivo with purified, recombinant proteins. Strikingly, stoichiometric association of p107 or p130 with either cyclin E-cdk2 or cyclin A-cdk2 negated the activities of these kinases. The results of our experiments suggest that inhibition does not result from substrate competition or loss of cdk2 activation. Kinase inhibitory activity was dependent upon an amino-terminal region of p107 that is highly conserved with p130. Further, a role for this amino-terminal region in growth suppression was uncovered by using p107 mutants unable to bind E2F. To determine whether cellular complexes might display similar regulatory properties, we purified p130-cyclin A-cdk2 complexes from human cells and found that such complexes exist in two forms, one that contains E2F-4-DP-1 and one that lacks the heterodimer. These endogenous complexes behaved like the in vitro-reconstituted complexes, exhibiting low levels of associated kinase activity that could be significantly augmented by dissociation of p130. The results of these experiments suggest a mechanism whereby p130 and p107 suppress growth by inhibiting important cell cycle kinases.
Collapse
|
232
|
Helin K, Holm K, Niebuhr A, Eiberg H, Tommerup N, Hougaard S, Poulsen HS, Spang-Thomsen M, Norgaard P. Loss of the retinoblastoma protein-related p130 protein in small cell lung carcinoma. Proc Natl Acad Sci U S A 1997; 94:6933-8. [PMID: 9192669 PMCID: PMC21262 DOI: 10.1073/pnas.94.13.6933] [Citation(s) in RCA: 94] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The retinoblastoma gene family consists of the tumor suppressor protein pRB and its two relatives p107 and p130. These proteins have been implicated in the regulation of cell cycle progression, in part, through inactivation of members of the E2F transcription factor family. Overexpression of pRB, p107, or p130 leads to growth arrest in the G1 phase of the cell cycle, and this arrest is abolished by complex formation with the adenovirus E1A, human papilloma virus E7, or simian virus 40 T oncoproteins. Inactivation of pRB by gross structural alterations or point mutations in the RB-1 gene has been described in a variety of human tumors, including retinoblastomas, osteosarcomas, and small cell lung carcinomas. Despite the structural and functional similarity between pRB, p107, and p130, alterations in the latter two proteins have not been identified in human tumors. We have screened a panel of 17 small cell lung carcinoma cell lines for the presence of functional p107 and p130 by evaluating their ability to form complexes with E1A in vitro. In the GLC2 small cell lung carcinoma cells no p130 protein was detected. The loss of the p130 protein is the result of a single point mutation within a splice acceptor sequence in the GLC2 genomic DNA. This mutation eliminates exon 2, leading to an in-frame stop codon, and no detectable protein is produced. These data are, to our knowledge, the first to describe the loss of p130 as a consequence of a genetic alteration, suggesting that not only pRB but also the other members of the family may contribute to tumorigenesis, providing a rationale for the observation that the DNA tumor viruses selectively target all the members of the retinoblastoma protein family.
Collapse
Affiliation(s)
- K Helin
- Department of Experimental Oncology, European Institute of Oncology, 20141 Milan, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
233
|
Lill NL, Grossman SR, Ginsberg D, DeCaprio J, Livingston DM. Binding and modulation of p53 by p300/CBP coactivators. Nature 1997; 387:823-7. [PMID: 9194565 DOI: 10.1038/42981] [Citation(s) in RCA: 539] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The adenovirus E1A and SV40 large-T-antigen oncoproteins bind to members of the p300/CBP transcriptional coactivator family. Binding of p300/CBP is implicated in the transforming mechanisms of E1A and T-antigen oncoproteins. A common region of the T antigen is critical for binding both p300/CBP and the tumour suppressor p53, suggesting a link between the functions of p53 and p300. Here we report that p300/CBP binds to p53 in the absence of viral oncoproteins, and that p300 and p53 colocalize within the nucleus and coexist in a stable DNA-binding complex. Consistent with its ability to bind to p300, E1A disrupted functions mediated by p53. It reduced p53-mediated activation of the p21 and bax promoters, and suppressed p53-induced cell-cycle arrest and apoptosis. We conclude that members of the p300/CBP family are transcriptional adaptors for p53, modulating its checkpoint function in the G1 phase of the cell cycle and its induction of apoptosis. Disruption of p300/p53-dependent growth control may be part of the mechanism by which E1A induces cell transformation. These results help to explain how p53 mediates growth and checkpoint control, and how members of the p300/CBP family affect progression from G1 to the S phase of the cell cycle.
Collapse
Affiliation(s)
- N L Lill
- The Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA
| | | | | | | | | |
Collapse
|
234
|
Herwig S, Strauss M. The retinoblastoma protein: a master regulator of cell cycle, differentiation and apoptosis. EUROPEAN JOURNAL OF BIOCHEMISTRY 1997; 246:581-601. [PMID: 9219514 DOI: 10.1111/j.1432-1033.1997.t01-2-00581.x] [Citation(s) in RCA: 176] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The retinoblastoma susceptibility gene is a tumour suppressor and its product retinoblastoma protein (pRb) has been known for 10 years as a repressor of progression towards S phase. Its major activity was supposed to be sequestration or inactivation of the transcription factor E2F which is required for activation of S phase genes. However, within recent years growing evidence has been accumulating for a more general function of pRb at both the transcriptional level and the cellular level. pRb not only regulates the activity of certain protein-encoding genes but also the activity of RNA polymerase pol I and pol III transcription. This protein appears to be the major player in a regulatory circuit in the late G1 phase, the so-called restriction point. Moreover, it is involved in regulating an elusive switch point between cell cycle, differentiation and apoptosis. Here, it seems to cooperate with another major tumour suppressor, p53. Thus, pRb sits at the interface of the most important cell-regulatory processes and therefore deserves close attention by specialists from different fields of research. This review provides an introduction to the complex functions of pRb.
Collapse
Affiliation(s)
- S Herwig
- Max-Planck-Gesellschaft, Humboldt-Universität, Max-Delbrück-Centrum for Molecular Medicine, Berlin-Buch, Germany
| | | |
Collapse
|
235
|
Hurford RK, Cobrinik D, Lee MH, Dyson N. pRB and p107/p130 are required for the regulated expression of different sets of E2F responsive genes. Genes Dev 1997; 11:1447-63. [PMID: 9192872 DOI: 10.1101/gad.11.11.1447] [Citation(s) in RCA: 350] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The activity of the E2F transcription factor is controlled by physical association with the retinoblastoma protein (pRB) and two related proteins, p107 and p130. The pRB family members are thought to control different aspects of E2F activity, but it has been unclear what the respective functions of these proteins might be. To dissect the specific functions of pRB, p107, and p130 we have investigated how the expression of E2F-regulated genes is changed in cultures of primary cells lacking each of these family members. Whereas no changes were found in the expression of E2F-target genes in cells lacking either p107 or p130, deregulated expression of E2F targets was seen in cells lacking pRB and in cells lacking both p107 and p130. Surprisingly, the genes that were disregulated in these two settings were completely different. These findings show that pRB and p107/p130 indeed provide different functions in E2F regulation and identify target genes that are dependent on pRB family proteins for their normal expression.
Collapse
Affiliation(s)
- R K Hurford
- Massachusetts General Hospital Cancer Center, Charlestown 02129, USA
| | | | | | | |
Collapse
|
236
|
Qin XQ, Runkel L, Deck C, DeDios C, Barsoum J. Interferon-beta induces S phase accumulation selectively in human transformed cells. J Interferon Cytokine Res 1997; 17:355-67. [PMID: 9198003 DOI: 10.1089/jir.1997.17.355] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Interferons (IFNs) generally have been characterized as antiproliferative cytokines. The cell cycle arrest in G1/G0 phase induced by type I IFNs, especially IFN-alpha, was recognized as a manifestation of their antiproliferative effects. In this article, we report that the cell cycle block in G1/G0 is observed mainly in certain cell types, such as Daudi Burkitt's lymphoma cells. In a variety of human transformed cells, but not nontransformed primary cells, IFN-beta and IFN-alpha induced a significant increase in the S phase population. The increase appeared to be due to a continued S phase entry and subsequently a failure of S phase cells to transit efficiently into G2 and M phases. The ability of tumor cells to exhibit the S phase effect correlated with proper IFN signaling and loss or inactivation of the normal G1 checkpoint conferred by the retinoblastoma protein (pRB). Overriding the G1 checkpoint switched human nontransformed primary cells from nonresponsive to sensitive to the IFN-induced effect. Therefore, the cell cycle regulatory machinery could function, at least in part, as a determining factor that affects the IFN-induced cell cycle effect. The IFN effect in transformed cells may suggest intriguing prospects for combinatorial therapies for cancer.
Collapse
Affiliation(s)
- X Q Qin
- Biogen, Inc., Cambridge, MA, USA
| | | | | | | | | |
Collapse
|
237
|
Lindeman GJ, Gaubatz S, Livingston DM, Ginsberg D. The subcellular localization of E2F-4 is cell-cycle dependent. Proc Natl Acad Sci U S A 1997; 94:5095-100. [PMID: 9144196 PMCID: PMC24637 DOI: 10.1073/pnas.94.10.5095] [Citation(s) in RCA: 152] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The E2F family of transcription factors plays a crucial role in cell cycle progression. E2F activity is tightly regulated by a number of mechanisms, which include the timely synthesis and degradation of E2F, interaction with retinoblastoma protein family members ("pocket proteins"), association with DP heterodimeric partner proteins, and phosphorylation of the E2F/DP complex. Here we report that another mechanism, subcellular localization, is important for the regulation of E2F activity. Unlike E2F-1, -2, or -3, which are constitutively nuclear, ectopic E2F-4 and -5 were predominantly cytoplasmic. Cotransfection of expression vectors encoding p107, p130, or DP-2, but not DP-1, resulted in the nuclear localization of E2F-4 and -5. Moreover, the transcriptional activity of E2F-4 was markedly enhanced when it was invariably nuclear. Conversely, it was reduced when the protein was excluded from the nucleus, implying that E2F-4 transcription function depends upon its cytological location. In keeping with this, the nuclear/cytoplasmic ratios of endogenous E2F-4 changed as cells exited G0, with high ratios in G0 and early G1 and a progressive increase in cytoplasmic E2F-4 as cells approached S phase. Thus, the subcellular location of E2F-4 is regulated in a cell cycle-dependent manner, providing another potential mechanism for its functional regulation.
Collapse
Affiliation(s)
- G J Lindeman
- Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02115, USA
| | | | | | | |
Collapse
|
238
|
Altered Expression of the Retinoblastoma Tumor-Suppressor Gene in Leukemic Cell Lines Inhibits Induction of Differentiation But Not G1-Accumulation. Blood 1997. [DOI: 10.1182/blood.v89.8.2938] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
The retinoblastoma tumor-suppressor gene, RB, has been implicated in tumor suppression, in regulation of the cell cycle, and in mediating cell differentiation. RB is necessary for hematopoiesis in mice, and aberrant RB-expression is associated with the progress and prognosis of leukemia. We have used antisense oligonucleotides, established clones stably expressing an antisense RB construct, and also established clones over expressing the retinoblastoma protein (pRb) to study the role of RB expression in monocytic differentiation induced by all-trans retinoic acid (ATRA) or 1-α-25-dihyroxycholecalciferol (Vit D3) in the monoblastic cell line U-937 and erythroid differentiation induced by transforming growth factor β1 (TGFβ1) and hemin in the erythroleukemic cell line K562. A reduction in pRb production in antisense RB-transfected U-937 clones was shown. Antisense oligonucleotides as well as expression of the antisense RB construct suppressed differentiation responses to ATRA or Vit D3, as judged by the capability to reduce nitro blue tetrazolium, by the appearance of monocyte-related cell surface antigens and by morphologic criteria. K562 cells showed decreased differentiation response to TGFβ1, but not to hemin, when incubated with antisense oligonucleotides. U-937 antisense RB-transfected cells were also suppressed in their ability to upregulate levels of hypophosphorylated pRb when induced to differentiate. Although U-937 cells incubated with antisense oligonucleotides and clones expressing the antisense RB construct were hampered in their ability to differentiate on incubation with ATRA or Vit D3, the induced G0/G1-accumulation was similar to differentiating control cells treated with ATRA or Vit D3. Intriguingly, U-937 clones overexpressing RB were also inhibited in their differentiation response to ATRA or Vit D3 but not inhibited in their ability to respond with G0/G1 accumulation when induced with these substances. The results indicate that pRb plays a role in induced differentiation of U-937 cells as well as K562 cells involving mechanisms that, at least partially, are distinct from those inducing G1 accumulation.
Collapse
|
239
|
LaBaer J, Garrett MD, Stevenson LF, Slingerland JM, Sandhu C, Chou HS, Fattaey A, Harlow E. New functional activities for the p21 family of CDK inhibitors. Genes Dev 1997; 11:847-62. [PMID: 9106657 DOI: 10.1101/gad.11.7.847] [Citation(s) in RCA: 1047] [Impact Index Per Article: 38.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The association of cdk4 with D-type cyclins to form functional kinase complexes is comparatively inefficient. This has led to the suggestion that assembly might be a regulated step. In this report we demonstrate that the CDK inhibitors p21(CIP), p27(KIP), and p57(KIP2) all promote the association of cdk4 with the D-type cyclins. This effect is specific and does not occur with other cdk inhibitors or cdk-binding proteins. Both in vivo and in vitro, the abundance of assembled cdk4/cyclin D complex increases directly with increasing inhibitor levels. The promotion of assembly is not attributable to a simple cell cycle block and requires the function of both the cdk and cyclin-binding domains. Kinetic studies demonstrate that p21 and p27 lead to a 35- and 80-fold increase in K(a), respectively, mostly because of a decrease in K(off). At low concentrations, p21 promotes the assembly of active kinase complexes, whereas at higher concentrations, it inhibits activity. Moreover, immunodepletion experiments demonstrate that most of the active cdk4-associated kinase activity also associates with p21. To confirm these results in a natural setting, we examine the assembly of endogenous complexes in mammary epithelial cells after release from a G(0) arrest. In agreement with our other data, cyclin D1 and p21 bind concomitantly to cdk4 during the in vivo assembly of cdk4/cyclin D1 complexes. This complex assembly occurs in parallel to an increase in cyclin D1-associated kinase activity. Immunodepletion experiments demonstrate that most of the cellular cyclin D1-associated kinase activity is also p21 associated. Finally, we find that all three CIP/KIP inhibitors target cdk4 and cyclin D1 to the nucleus. We suggest that in addition to their roles as inhibitors, the p21 family of proteins, originally identified as inhibitors, may also have roles as adaptor proteins that assemble and program kinase complexes for specific functions.
Collapse
Affiliation(s)
- J LaBaer
- Massachusetts General Hospital Cancer Center, Charlestown 02129, USA.
| | | | | | | | | | | | | | | |
Collapse
|
240
|
Day ML, Foster RG, Day KC, Zhao X, Humphrey P, Swanson P, Postigo AA, Zhang SH, Dean DC. Cell anchorage regulates apoptosis through the retinoblastoma tumor suppressor/E2F pathway. J Biol Chem 1997; 272:8125-8. [PMID: 9079623 DOI: 10.1074/jbc.272.13.8125] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Epithelial cells are dependent upon adhesion to extracellular matrix for survival. We show that loss of beta1 integrin receptor contact with extracellular matrix signals the inhibition of G1 cyclin-dependent kinase activity. This loss of cyclin-dependent kinase activity leads to accumulation of the hypophosphorylated (active) form of the retinoblastoma tumor suppressor protein (Rb). We present evidence that in epithelial cells deprived of matrix contact, the growth suppression signal elicited by hypophosphorylated Rb opposes stimulatory signals from serum growth factors, leading to a cell cycle conflict that triggers apoptosis. This apoptotic pathway is modulated by Bcl-2 through a novel mechanism that regulates Rb phosphorylation. We present evidence that the Rb-dependent apoptotic pathway functions in vivo in the apoptosis of the prostate glandular epithelium following castration.
Collapse
Affiliation(s)
- M L Day
- Department of Surgery, Division of Urology, and the University of Michigan Comprehensive Cancer Center, University of Michigan, Ann Arbor, Michigan 48109, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
241
|
Nishino Y, Myojin T, Kamata M, Aida Y. Human immunodeficiency virus type 1 Vpr gene product prevents cell proliferation on mouse NIH3T3 cells without the G2 arrest of the cell cycle. Biochem Biophys Res Commun 1997; 232:550-4. [PMID: 9125220 DOI: 10.1006/bbrc.1997.6186] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Human immunodeficiency virus type 1 Vpr is a 96-amino-acid virion-associated protein that arrests cells in the G2 phase of the cell cycle in peripheral blood lymphocytes, HeLa, 293, 293T, A549, Jurkat, CEM, SupT1, CV-1 and COS1 cells. When we transfected Vpr expression vector into mouse NIH3T3 and then cultured it in the presence of G418, NIH3T3 cells were the drug resistant cells yielded. The surviving colonies, however, exhibited a degenerating morphology up to 8 approximately 20-fold smaller than the control vector colonies. In addition, the growth of NIH3T3 cells transiently transfected with Vpr expression vector declined dramatically compared with that of transfectants with control vector, suggesting that Vpr significantly interferes with cell proliferation of NIH3T3 cells. Cell cycle characterization by flow cytometry indicated that expression of Vpr did not induce G2 cessation in NIH3T3. These findings strongly suggest that Vpr has a novel pathway to retard cell growth independently and arrests the G2 phase of the cell cycle.
Collapse
Affiliation(s)
- Y Nishino
- Laboratory of Gene Technology and Safety, Institute of Physical and Chemical Research (RIKEN), Ibaraki, Japan
| | | | | | | |
Collapse
|
242
|
Crawford L, Tommasino M. Oncogenes and antioncogenes in the development of HPV associated tumors. Clin Dermatol 1997; 15:207-15. [PMID: 9167905 DOI: 10.1016/s0738-081x(96)00163-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- L Crawford
- Tumor Virus Group Imperial Cancer Research Fund, London, England
| | | |
Collapse
|
243
|
Connell-Crowley L, Harper JW, Goodrich DW. Cyclin D1/Cdk4 regulates retinoblastoma protein-mediated cell cycle arrest by site-specific phosphorylation. Mol Biol Cell 1997; 8:287-301. [PMID: 9190208 PMCID: PMC276080 DOI: 10.1091/mbc.8.2.287] [Citation(s) in RCA: 318] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The retinoblastoma protein (pRb) inhibits progression through the cell cycle. Although pRb is phosphorylated when G1 cyclin-dependent kinases (Cdks) are active, the mechanisms underlying pRb regulation are unknown. In vitro phosphorylation by cyclin D1/Cdk4 leads to inactivation of pRb in a microinjection-based in vivo cell cycle assay. In contrast, phosphorylation of pRb by Cdk2 or Cdk3 in complexes with A- or E-type cyclins is not sufficient to inactivate pRb function in this assay, despite extensive phosphorylation and conversion to a slowly migrating "hyperphosphorylated form." The differential effects of phosphorylation on pRb function coincide with modification of distinct sets of sites. Serine 795 is phosphorylated efficiently by Cdk4, even in the absence of an intact LXCXE motif in cyclin D, but not by Cdk2 or Cdk3. Mutation of serine 795 to alanine prevents pRb inactivation by Cdk4 phosphorylation in the microinjection assay. This study identifies a residue whose phosphorylation is critical for inactivation of pRb-mediated growth suppression, and it indicates that hyperphosphorylation and inactivation of pRb are not necessarily synonymous.
Collapse
Affiliation(s)
- L Connell-Crowley
- Verna and Marrs McLean Department of Biochemistry, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | |
Collapse
|
244
|
Sala A, Kundu M, Casella I, Engelhard A, Calabretta B, Grasso L, Paggi MG, Giordano A, Watson RJ, Khalili K, Peschle C. Activation of human B-MYB by cyclins. Proc Natl Acad Sci U S A 1997; 94:532-6. [PMID: 9012818 PMCID: PMC19547 DOI: 10.1073/pnas.94.2.532] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
B-MYB expression is associated with cell proliferation and recent studies have suggested that it promotes the S phase of mammalian cells. Based on its homology to the transcription factors c-MYB and A-MYB, B-MYB is thought to be involved in transcriptional regulation; however, its activity is not detectable in several cell lines. It was postulated that B-MYB function may depend on the presence of a cofactor, and recent studies suggested that B-MYB is phosphorylated specifically during S phase in murine fibroblasts. In this report we provide evidence that the product of the human B-myb gene can be activated in vivo by coexpression with cyclin A or cyclin E. Transfection studies showed that B-MYB was a weak transcriptional activator in SAOS-2 cells and was unable to promote their proliferation. In contrast, overexpression of both B-MYB and cyclin A or cyclin E caused a drastic increase in the number of SAOS-2 cells in S phase. Also, overexpression of cyclin A and cyclin E in SAOS-2 cells enhanced the ability of B-MYB, but not c-MYB, to transactivate various promoters, including the cdc2 promoter, the HIV-1-LTR, and the simian virus 40 minimal promoter. A direct role for cyclin-dependent activation of B-MYB was demonstrated using an in vitro transcription assay. These observations suggest that one mechanism by which cyclin A and E may promote the S phase is through modification and activation of B-MYB.
Collapse
Affiliation(s)
- A Sala
- Thomas Jefferson University, Kimmel Cancer Institute, Department of Microbiology-Immunology, Philadelphia, PA, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
245
|
Guo K, Walsh K. Inhibition of myogenesis by multiple cyclin-Cdk complexes. Coordinate regulation of myogenesis and cell cycle activity at the level of E2F. J Biol Chem 1997; 272:791-7. [PMID: 8995365 DOI: 10.1074/jbc.272.2.791] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
During skeletal myogenesis, cell cycle withdrawal accompanies the expression of the contractile phenotype. Here we show that ectopic expression of each D-type cyclin is sufficient to inhibit the transcriptional activation of the muscle-specific creatine kinase (MCK) gene. In contrast, ectopic expression of cyclin A or cyclin E inhibits MCK expression only when they are co-expressed with their catalytic partner cyclin-dependent kinase 2 (Cdk2). For each of these conditions, myogenic transcriptional inhibition is reversed by the ectopic co-expression of the general Cdk inhibitor p21. Inhibition of MCK expression by cyclins or cyclin-Cdk combinations correlates with E2F activation, suggesting that the inhibition is mediated by the overall Rb-kinase activities of the Cdk complexes. In support of this hypothesis, a hyperactive mutant of Rb was found to partially reverse the inhibition of MCK expression by cyclin D1 and by the combination of cyclin A and Cdk2. These data demonstrate that the inhibition of myogenic transcriptional activity is a general feature of overall Cdk activity which is mediated, at least in part, by an pocket protein/E2F-dependent pathway. MCK promoter activity is also inhibited by ectopic E2F1 expression, but this inhibition is not reversed by the co-expression of p21. Analyses of a series of E2F1 mutants revealed that the transcriptional activation, leucine zipper, basic, and cyclin A/Cdk2-binding domains are dispensable, but the helix-loop-helix region is essential for myogenic inhibition. These data demonstrate that myocyte proliferation and differentiation are coordinated at the level of E2F and that these opposing activities are regulated by different E2F domains.
Collapse
Affiliation(s)
- K Guo
- Division of Cardiovascular Research, St. Elizabeth's Medical Center, Tufts University School of Medicine, Boston, Massachusetts 02135, USA
| | | |
Collapse
|
246
|
Ravitz MJ, Wenner CE. Cyclin-dependent kinase regulation during G1 phase and cell cycle regulation by TGF-beta. Adv Cancer Res 1997; 71:165-207. [PMID: 9111866 DOI: 10.1016/s0065-230x(08)60099-8] [Citation(s) in RCA: 110] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The aim of this review is to provide insight into the molecular mechanisms by which transforming growth factor-beta (TGF-beta) modulates cell cycle progression in different cell types. Particular attention is focused on the differences between these mechanisms in cells of epithelial origin and in mesenchymally derived cells. This is important because many transformed epithelial cells lose responsiveness to the growth-inhibitory effects of TGF-beta, thus generating a more fibroblast-like phenotype. Loss of negative growth control, including a lack of response to growth-inhibitory factors, is a common feature of many tumor cells. G1 phase cyclin-dependent kinases (cdks) and their inhibitors (ckis) are central to the pathways that regulate commitment to cellular division in response to positive as well as negative growth effectors. Many checkpoints are deregulated in oncogenesis, and this is often due to alterations in cyclin-cdk complexes. The loss of R-point regulation, in particular, can allow cell growth and division to proceed autonomously of external signals. This may occur due to either the aberrant expression of positive regulators, such as the cyclins and cdks, or the loss of negative regulators, such as the ckis. Beginning with a survey of the role of the cdks in the mammalian cell cycle, the review examines how cdk activity is modulated by cyclin binding, phosphorylation, and ckis, including the Ink4 proteins and the closely related inhibitors p21Cip1 and p27Kip1. Particular attention is paid to the role of p27Kip1 and p21Cip1 in the mechanisms of TGF-beta-induced suppression or stimulation of the cell cycle and how these mechanisms contrast between epithelial cells and cells of mesenchymal origin. Other aspects of TGF-beta signal transduction are discussed, including its effects on cyclin and cdk expression in various cell types, and the downstream targets of cdks and their modulation by TGF-beta and other growth factors are also discussed. These include proteins of the retinoblastoma family, and the related modulation of the transcriptional activity of the E2F family members. Finally, the role of cell cycle regulatory proteins in oncogenesis is review in view of the findings described here.
Collapse
Affiliation(s)
- M J Ravitz
- Department of Biochemistry, Roswell Park Cancer Institute, New York State Department of Health, Buffalo 14263, USA
| | | |
Collapse
|
247
|
Desjardins P, Pilon AA, Hassell JA, Mes-Masson AM. Polyomavirus large T-antigen binds the "pRb related' protein p130 through sequences in conserved region 2. Virus Res 1997; 47:85-90. [PMID: 9037740 DOI: 10.1016/s0168-1702(96)01404-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The transforming potential of DNA tumor viruses derives mainly from the ability of their encoded oncogene products to interact with cellular proteins. Many of these viral oncoproteins share regions of sequence similarity, designated conserved region 1 and 2, which have been implicated in complex formation with pRb, the product of the retinoblastoma tumor suppressor gene, and related p107 and p130 species. It has now been shown that the EIA protein of adenovirus is able to bind to all three pRb-related proteins through sequences in conserved region 1 and 2. We have shown previously that polyomavirus large T-antigen also interacts with pRb and p107 in vitro. The pRb and p107 binding domains reside between residues 141, 158 which include conserved region 2. In the present study, we demonstrate that polyomavirus large T-antigen also interacted with p130 in vitro through the same sequences in conserved region 2.
Collapse
Affiliation(s)
- P Desjardins
- Institute for Molecular Biology and Biotechnology, McMaster University, Hamilton, Ontario, Canada
| | | | | | | |
Collapse
|
248
|
Hateboer G, Kerkhoven RM, Shvarts A, Bernards R, Beijersbergen RL. Degradation of E2F by the ubiquitin-proteasome pathway: regulation by retinoblastoma family proteins and adenovirus transforming proteins. Genes Dev 1996; 10:2960-70. [PMID: 8956997 DOI: 10.1101/gad.10.23.2960] [Citation(s) in RCA: 167] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
E2F transcription factors are key regulators of transcription during the cell cycle. E2F activity is regulated at the level of transcription and DNA binding and by complex formation with the retinoblastoma pocket protein family. We show here that free E2F-1 and E2F-4 transcription factors are unstable and that their degradation is mediated by the ubiquitin-proteasome pathway. Both E2F-1 and E2F-4 are rendered unstable by an epitope in the carboxyl terminus of the proteins, in close proximity to their pocket protein interaction surface. We show that binding of E2F-1 to pRb or E2F-4 to p107 or p130 protects E2Fs from degradation, causing the complexes to be stable. The increased stability of E2F-4 pocket protein complexes may contribute to the maintenance of active transcriptional repression in quiescent cells. Surprisingly, adenovirus transforming proteins, which release pocket protein-E2F complexes, also inhibit breakdown of free E2F. These data reveal an additional level of regulation of E2F transcription factors by targeted proteolysis, which is inhibited by pocket protein binding and adenovirus early region 1 transforming proteins.
Collapse
Affiliation(s)
- G Hateboer
- Division of Molecular Carcinogenesis, Netherlands Cancer Institute, Amsterdam
| | | | | | | | | |
Collapse
|
249
|
Smith EJ, Leone G, DeGregori J, Jakoi L, Nevins JR. The accumulation of an E2F-p130 transcriptional repressor distinguishes a G0 cell state from a G1 cell state. Mol Cell Biol 1996; 16:6965-76. [PMID: 8943352 PMCID: PMC231700 DOI: 10.1128/mcb.16.12.6965] [Citation(s) in RCA: 191] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Previous studies have demonstrated cell cycle-dependent specificities in the interactions of E2F proteins with Rb family members. We now show that the formation of an E2F-p130 complex is unique to cells in a quiescent, G0 state. The E2F-p130 complex does not reform when cells reenter a proliferative state and cycle through G1. The presence of an E2F-p130 complex in quiescent cells coincides with the E2F-mediated repression of transcription of the E2F1 gene, and we show that the E2F sites in the E2F1 promoter are important as cells enter quiescence but play no apparent role in cycling cells. In addition, the decay of the E2F-p130 complex as cells reenter the cell cycle requires the action of G1 cyclin-dependent kinase activity. We conclude that the accumulation of the E2F-p130 complex in quiescent cells provides a negative control of certain key target genes and defines a functional distinction between these G0 cells and cells that exist transiently in G1.
Collapse
Affiliation(s)
- E J Smith
- Department of Genetics, Howard Hughes Medical Institute, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | | | | | |
Collapse
|
250
|
Adams PD, Sellers WR, Sharma SK, Wu AD, Nalin CM, Kaelin WG. Identification of a cyclin-cdk2 recognition motif present in substrates and p21-like cyclin-dependent kinase inhibitors. Mol Cell Biol 1996; 16:6623-33. [PMID: 8943316 PMCID: PMC231664 DOI: 10.1128/mcb.16.12.6623] [Citation(s) in RCA: 291] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Understanding how cyclin-cdk complexes recognize their substrates is a central problem in cell cycle biology. We identified an E2F1-derived eight-residue peptide which blocked the binding of cyclin A and E-cdk2 complexes to E2F1 and p21. Short peptides spanning similar sequences in p107, p130, and p21-like cdk inhibitors likewise bound to cyclin A-cdk2 and cyclin E-cdk2. In addition, these peptides promoted formation of stable cyclin A-cdk2 complexes in vitro but inhibited the phosphorylation of the retinoblastoma protein by cyclin A- but not cyclin B-associated kinases. Mutation of the cyclin-cdk2 binding motifs in p107 and E2F1 likewise prevented their phosphorylation by cyclin A-associated kinases in vitro. The cdk inhibitor p21 was found to contain two functional copies of this recognition motif, as determined by in vitro kinase binding/inhibition assays and in vivo growth suppression assays. Thus, these studies have identified a cyclin A- and E-cdk2 substrate recognition motif. Furthermore, these data suggest that p21-like cdk inhibitors function, at least in part, by blocking the interaction of substrates with cyclin-cdk2 complexes.
Collapse
Affiliation(s)
- P D Adams
- Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts 02118, USA
| | | | | | | | | | | |
Collapse
|