201
|
Steinbiss S, Silva-Franco F, Brunk B, Foth B, Hertz-Fowler C, Berriman M, Otto TD. Companion: a web server for annotation and analysis of parasite genomes. Nucleic Acids Res 2016; 44:W29-34. [PMID: 27105845 PMCID: PMC4987884 DOI: 10.1093/nar/gkw292] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 04/08/2016] [Indexed: 01/25/2023] Open
Abstract
Currently available sequencing technologies enable quick and economical sequencing of many new eukaryotic parasite (apicomplexan or kinetoplastid) species or strains. Compared to SNP calling approaches, de novo assembly of these genomes enables researchers to additionally determine insertion, deletion and recombination events as well as to detect complex sequence diversity, such as that seen in variable multigene families. However, there currently are no automated eukaryotic annotation pipelines offering the required range of results to facilitate such analyses. A suitable pipeline needs to perform evidence-supported gene finding as well as functional annotation and pseudogene detection up to the generation of output ready to be submitted to a public database. Moreover, no current tool includes quick yet informative comparative analyses and a first pass visualization of both annotation and analysis results. To overcome those needs we have developed the Companion web server (http://companion.sanger.ac.uk) providing parasite genome annotation as a service using a reference-based approach. We demonstrate the use and performance of Companion by annotating two Leishmania and Plasmodium genomes as typical parasite cases and evaluate the results compared to manually annotated references.
Collapse
Affiliation(s)
- Sascha Steinbiss
- Parasite Genomics, Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, UK
| | - Fatima Silva-Franco
- Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK
| | - Brian Brunk
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Bernardo Foth
- Parasite Genomics, Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, UK
| | | | - Matthew Berriman
- Parasite Genomics, Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, UK
| | - Thomas D Otto
- Parasite Genomics, Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, UK
| |
Collapse
|
202
|
De Luca PM, Macedo ABB. Cutaneous Leishmaniasis Vaccination: A Matter of Quality. Front Immunol 2016; 7:151. [PMID: 27148270 PMCID: PMC4838622 DOI: 10.3389/fimmu.2016.00151] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 04/07/2016] [Indexed: 11/25/2022] Open
Abstract
There have been exhaustive efforts to develop an efficient vaccine against leishmaniasis. Factors like host and parasite genetic characteristics, virulence, epidemiological scenarios, and, mainly, diverse immune responses triggered by Leishmania species make the achievement of this aim a complex task. It is already clear that the induction of a Th1, pro-inflammatory response, is important in the protection against Leishmania infection. However, many questions must still be answered to fully understand Leishmania immunopathology, especially regarding Leishmania-specific Th1 response induction, regulation, and persistence. A large number of Leishmania antigens able to induce pro-inflammatory response have been selected so far, but none of them demonstrated efficiency in protection assays. A possible explanation is that CD4 T cells display marked heterogeneity at a single-cell level especially regarding the production of Th1-defining cytokines and multifunctionality. It has been established in the literature that Th1 cells undergo a differentiation process, which can generate cells with diverse phenotypes and survival capabilities. Despite that, only a few studies evaluate this heterogenic response and the amount of multifunctional CD4 T cells induced by Leishmania vaccine candidates, missing what can be a crucial point in defining a correlate of protection after vaccination. Moreover, most of the knowledge involving the development of cutaneous leishmaniasis (CL) vaccines comes from the mouse model of infection with Leishmania major, which cannot be fully applied to New World Leishmaniasis. For this reason, the immune response triggered by infection with New World Leishmania species, as well as vaccine candidates, need further studies. In this review, we will reinforce the importance of evaluating the quality of immune response against Leishmania, using a multiparametric analysis in order to understand better this complex host-parasite interaction, discussing the differences in the responses triggered by different New World Leishmania species, as well as the impact on the development of an effective vaccine against CL.
Collapse
Affiliation(s)
- Paula Mello De Luca
- Laboratório de Imunoparasitologia, Instituto Oswaldo Cruz, FIOCRUZ , Rio de Janeiro , Brazil
| | - Amanda Beatriz Barreto Macedo
- Department of Pathology, Division of Microbiology and Immunology, University of Utah School of Medicine , Salt Lake City, UT , USA
| |
Collapse
|
203
|
Tůmová P, Uzlíková M, Jurczyk T, Nohýnková E. Constitutive aneuploidy and genomic instability in the single-celled eukaryote Giardia intestinalis. Microbiologyopen 2016; 5:560-74. [PMID: 27004936 PMCID: PMC4985590 DOI: 10.1002/mbo3.351] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Revised: 02/12/2016] [Accepted: 02/16/2016] [Indexed: 11/23/2022] Open
Abstract
Giardia intestinalis is an important single‐celled human pathogen. Interestingly, this organism has two equal‐sized transcriptionally active nuclei, each considered diploid. By evaluating condensed chromosome numbers and visualizing homologous chromosomes by fluorescent in situ hybridization, we determined that the Giardia cells are constitutively aneuploid. We observed karyotype inter‐and intra‐population heterogeneity in eight cell lines from two clinical isolates, suggesting constant karyotype evolution during in vitro cultivation. High levels of chromosomal instability and frequent mitotic missegregations observed in four cell lines correlated with a proliferative disadvantage and growth retardation. Other cell lines, although derived from the same clinical isolate, revealed a stable yet aneuploid karyotype. We suggest that both chromatid missegregations and structural rearrangements contribute to shaping the Giardia genome, leading to whole‐chromosome aneuploidy, unequal gene distribution, and a genomic divergence of the two nuclei within one cell. Aneuploidy in Giardia is further propagated without p53‐mediated cell cycle arrest and might have been a key mechanism in generating the genetic diversity of this human pathogen.
Collapse
Affiliation(s)
- Pavla Tůmová
- Department of Tropical Medicine, First Faculty of Medicine, Charles University in Prague, Studnickova 7, Praha 2, 12800, Czech Republic
| | - Magdalena Uzlíková
- Department of Tropical Medicine, First Faculty of Medicine, Charles University in Prague, Studnickova 7, Praha 2, 12800, Czech Republic
| | - Tomáš Jurczyk
- Department of Probability and Mathematical Statistics, Faculty of Mathematics and Physics, Charles University in Prague, Praha 2, Czech Republic
| | - Eva Nohýnková
- Department of Tropical Medicine, First Faculty of Medicine, Charles University in Prague, Studnickova 7, Praha 2, 12800, Czech Republic
| |
Collapse
|
204
|
Imamura H, Downing T, Van den Broeck F, Sanders MJ, Rijal S, Sundar S, Mannaert A, Vanaerschot M, Berg M, De Muylder G, Dumetz F, Cuypers B, Maes I, Domagalska M, Decuypere S, Rai K, Uranw S, Bhattarai NR, Khanal B, Prajapati VK, Sharma S, Stark O, Schönian G, De Koning HP, Settimo L, Vanhollebeke B, Roy S, Ostyn B, Boelaert M, Maes L, Berriman M, Dujardin JC, Cotton JA. Evolutionary genomics of epidemic visceral leishmaniasis in the Indian subcontinent. eLife 2016; 5. [PMID: 27003289 PMCID: PMC4811772 DOI: 10.7554/elife.12613] [Citation(s) in RCA: 109] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 02/15/2016] [Indexed: 12/25/2022] Open
Abstract
Leishmania donovani causes visceral leishmaniasis (VL), the second most deadly vector-borne parasitic disease. A recent epidemic in the Indian subcontinent (ISC) caused up to 80% of global VL and over 30,000 deaths per year. Resistance against antimonial drugs has probably been a contributing factor in the persistence of this epidemic. Here we use whole genome sequences from 204 clinical isolates to track the evolution and epidemiology of L. donovani from the ISC. We identify independent radiations that have emerged since a bottleneck coincident with 1960s DDT spraying campaigns. A genetically distinct population frequently resistant to antimonials has a two base-pair insertion in the aquaglyceroporin gene LdAQP1 that prevents the transport of trivalent antimonials. We find evidence of genetic exchange between ISC populations, and show that the mutation in LdAQP1 has spread by recombination. Our results reveal the complexity of L. donovani evolution in the ISC in response to drug treatment. DOI:http://dx.doi.org/10.7554/eLife.12613.001 The parasite Leishmania donovani causes a disease called visceral leishmaniasis that affects many of the world's poorest people. Around half a million new cases develop every year, but health authorities lack safe and effective drugs to treat them. Up to 80% of these cases occur in the Indian subcontinent, where devastating epidemics have occurred in the last decades. One reason these epidemics continue to occur is that the parasites develop genetic mutations allowing them to adapt to and resist the drugs used to kill them. As there are few existing drugs that can kill L. donovani, it is crucial to understand how drug resistance emerges and spreads among parasite populations. Imamura, Downing, Van den Broeck et al. have now investigated the history of visceral leishmaniasis epidemics by characterising the complete genetic sequence – or genome – of 204 L. donovani parasite samples. This revealed that the majority of parasites in the Indian subcontinent first appeared in the nineteenth century, matching the first historical records of visceral leishmaniasis epidemics. The genomes show that most of the parasites are genetically similar and can be clustered into several closely related groups. These groups first appeared in the 1960s following the end of a regional campaign to eradicate malaria. The most common parasite group is particularly resistant to drugs called antimonials, which were the main treatment for leishmaniasis until recently. These parasites have a small genetic change that scrambles most of a protein known to be involved in the uptake of antimonials. Parasites may also be able to develop resistance to drugs through additional mechanisms that allow them to produce many copies of the same gene. These mechanisms could allow the parasites to rapidly adapt to new drugs or changes in the populations it infects. The work of Imamura et al. looks only at parasites isolated from patients then grown in the laboratory, so further research is now needed to explore how variable the Leishmania genome is in both of the parasite’s hosts: humans and sandflies. Imamura et al.’s study reveals how L. donovani has spread throughout the Indian subcontinent in fine detail. The genome data can be used to create simple molecular tools that could form an "early warning system" to track the success of disease control programs and to determine how well the current drugs are working. DOI:http://dx.doi.org/10.7554/eLife.12613.002
Collapse
Affiliation(s)
- Hideo Imamura
- Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Tim Downing
- Wellcome Trust Sanger Institute, Hinxton, United Kingdom.,School of Maths, Applied Maths and Statistics, National University of Ireland Galway, Galway, Ireland
| | | | | | - Suman Rijal
- BP Koirala Institute of Health Sciences, Dharan, Nepal
| | - Shyam Sundar
- Department of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - An Mannaert
- Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Manu Vanaerschot
- Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Maya Berg
- Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Géraldine De Muylder
- Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Franck Dumetz
- Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Bart Cuypers
- Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Ilse Maes
- Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | | | - Saskia Decuypere
- Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium.,Telethon Kids Institute, University of Western Australia, Perth, Australia
| | - Keshav Rai
- BP Koirala Institute of Health Sciences, Dharan, Nepal
| | | | | | | | - Vijay Kumar Prajapati
- Department of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Smriti Sharma
- Department of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Olivia Stark
- Institut für Mikrobiologie und Hygiene, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Gabriele Schönian
- Institut für Mikrobiologie und Hygiene, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Harry P De Koning
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Luca Settimo
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom.,Department of Chemistry and Chemical Biology, Northeastern University, Boston, United States
| | - Benoit Vanhollebeke
- Laboratory of Molecular Parasitology, Université Libre de Bruxelles, Gosselies, Belgium
| | - Syamal Roy
- Department of Infectious Diseases and Immunology, Council of Scientific and Industrial Research, Indian Institute of Chemical Biology, Kolkata, India
| | - Bart Ostyn
- Department of Public Health, Institute of Tropical Medicine, Antwerp, Belgium
| | - Marleen Boelaert
- Department of Public Health, Institute of Tropical Medicine, Antwerp, Belgium
| | - Louis Maes
- Department of Biomedical Sciences, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Antwerp, Belgium
| | | | - Jean-Claude Dujardin
- Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium.,Department of Biomedical Sciences, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Antwerp, Belgium
| | - James A Cotton
- Wellcome Trust Sanger Institute, Hinxton, United Kingdom
| |
Collapse
|
205
|
Stanojcic S, Sollelis L, Kuk N, Crobu L, Balard Y, Schwob E, Bastien P, Pagès M, Sterkers Y. Single-molecule analysis of DNA replication reveals novel features in the divergent eukaryotes Leishmania and Trypanosoma brucei versus mammalian cells. Sci Rep 2016; 6:23142. [PMID: 26976742 PMCID: PMC4791591 DOI: 10.1038/srep23142] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Accepted: 02/17/2016] [Indexed: 01/29/2023] Open
Abstract
Leishmania and Trypanosoma are unicellular parasites that possess markedly original biological features as compared to other eukaryotes. The Leishmania genome displays a constitutive 'mosaic aneuploidy', whereas in Trypanosoma brucei, the megabase-sized chromosomes are diploid. We accurately analysed DNA replication parameters in three Leishmania species and Trypanosoma brucei as well as mouse embryonic fibroblasts (MEF). Active replication origins were visualized at the single molecule level using DNA molecular combing. More than one active origin was found on most DNA fibres, showing that the chromosomes are replicated from multiple origins. Inter-origin distances (IODs) were measured and found very large in trypanosomatids: the mean IOD was 160 kb in T. brucei and 226 kb in L. mexicana. Moreover, the progression of replication forks was faster than in any other eukaryote analyzed so far (mean velocity 1.9 kb/min in T. brucei and 2.4-2.6 kb/min in Leishmania). The estimated total number of active DNA replication origins in trypanosomatids is ~170. Finally, 14.4% of unidirectional replication forks were observed in T. brucei, in contrast to 1.5-1.7% in Leishmania and 4% in MEF cells. The biological significance of these original features is discussed.
Collapse
Affiliation(s)
- Slavica Stanojcic
- University of Montpellier, Faculty of Medicine, Laboratory of Parasitology-Mycology, Montpellier, F34090, France
| | - Lauriane Sollelis
- University of Montpellier, Faculty of Medicine, Laboratory of Parasitology-Mycology, Montpellier, F34090, France
| | - Nada Kuk
- University of Montpellier, Faculty of Medicine, Laboratory of Parasitology-Mycology, Montpellier, F34090, France
| | - Lucien Crobu
- CNRS 5290 - IRD 224 - University of Montpellier (UMR "MiVEGEC"), Montpellier, F34090, France
| | - Yves Balard
- University of Montpellier, Faculty of Medicine, Laboratory of Parasitology-Mycology, Montpellier, F34090, France
| | - Etienne Schwob
- Institute of Molecular Genetics, CNRS UMR5535 &University of Montpellier, Montpellier, F34293, France
| | - Patrick Bastien
- University of Montpellier, Faculty of Medicine, Laboratory of Parasitology-Mycology, Montpellier, F34090, France.,CNRS 5290 - IRD 224 - University of Montpellier (UMR "MiVEGEC"), Montpellier, F34090, France.,University Hospital Centre (CHU), Department of Parasitology-Mycology, Montpellier, F34090, France
| | - Michel Pagès
- CNRS 5290 - IRD 224 - University of Montpellier (UMR "MiVEGEC"), Montpellier, F34090, France
| | - Yvon Sterkers
- University of Montpellier, Faculty of Medicine, Laboratory of Parasitology-Mycology, Montpellier, F34090, France.,CNRS 5290 - IRD 224 - University of Montpellier (UMR "MiVEGEC"), Montpellier, F34090, France.,University Hospital Centre (CHU), Department of Parasitology-Mycology, Montpellier, F34090, France
| |
Collapse
|
206
|
Croft SL. Neglected tropical diseases in the genomics era: re-evaluating the impact of new drugs and mass drug administration. Genome Biol 2016; 17:46. [PMID: 26975569 PMCID: PMC4791878 DOI: 10.1186/s13059-016-0916-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Simon Croft answers Genome Biology's questions on ways to approach neglected tropical diseases in the genomics era, including re-evaluating the impact of new drugs and mass drug administration.
Collapse
Affiliation(s)
- Simon L Croft
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, Keppel Street, London, WC1E 7HT, UK.
| |
Collapse
|
207
|
Singh OP, Singh B, Chakravarty J, Sundar S. Current challenges in treatment options for visceral leishmaniasis in India: a public health perspective. Infect Dis Poverty 2016; 5:19. [PMID: 26951132 PMCID: PMC4782357 DOI: 10.1186/s40249-016-0112-2] [Citation(s) in RCA: 105] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 03/02/2016] [Indexed: 12/31/2022] Open
Abstract
Visceral leishmaniasis (VL) is a serious parasitic disease causing considerable mortality and major disability in the Indian subcontinent. It is most neglected tropical disease, particularly in terms of new drug development for the lack of financial returns. An elimination campaign has been running in India since 2005 that aim to reduce the incidence of VL to below 1 per 10,000 people at sub-district level. One of the major components in this endeavor is reducing transmission through early case detection followed by complete treatment. Substantial progress has been made during the recent years in the area of VL treatment, and the VL elimination initiatives have already saved many lives by deploying them effectively in the endemic areas. However, many challenges remain to be overcome including availability of drugs, cost of treatment (drugs and hospitalization), efficacy, adverse effects, and growing parasite resistance. Therefore, better emphasis on implementation research is urgently needed to determine how best to deliver existing interventions with available anti-leishmanial drugs. It is essential that the new treatment options become truly accessible, not simply available in endemic areas so that they may promote healing and save lives. In this review, we highlight the recent advancement and challenges in current treatment options for VL in disease endemic area, and discuss the possible strategies to improve the therapeutic outcome.
Collapse
Affiliation(s)
- Om Prakash Singh
- Infectious Disease Research Laboratory, Department of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India.
| | - Bhawana Singh
- Infectious Disease Research Laboratory, Department of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India.
| | - Jaya Chakravarty
- Infectious Disease Research Laboratory, Department of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India.
| | - Shyam Sundar
- Infectious Disease Research Laboratory, Department of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India.
| |
Collapse
|
208
|
Shaw CD, Lonchamp J, Downing T, Imamura H, Freeman TM, Cotton JA, Sanders M, Blackburn G, Dujardin JC, Rijal S, Khanal B, Illingworth CJR, Coombs GH, Carter KC. In vitro selection of miltefosine resistance in promastigotes of Leishmania donovani from Nepal: genomic and metabolomic characterization. Mol Microbiol 2016; 99:1134-48. [PMID: 26713880 PMCID: PMC4832254 DOI: 10.1111/mmi.13291] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/26/2015] [Indexed: 12/17/2022]
Abstract
In this study, we followed the genomic, lipidomic and metabolomic changes associated with the selection of miltefosine (MIL) resistance in two clinically derived Leishmania donovani strains with different inherent resistance to antimonial drugs (antimony sensitive strain Sb-S; and antimony resistant Sb-R). MIL-R was easily induced in both strains using the promastigote-stage, but a significant increase in MIL-R in the intracellular amastigote compared to the corresponding wild-type did not occur until promastigotes had adapted to 12.2 μM MIL. A variety of common and strain-specific genetic changes were discovered in MIL-adapted parasites, including deletions at the LdMT transporter gene, single-base mutations and changes in somy. The most obvious lipid changes in MIL-R promastigotes occurred to phosphatidylcholines and lysophosphatidylcholines and results indicate that the Kennedy pathway is involved in MIL resistance. The inherent Sb resistance of the parasite had an impact on the changes that occurred in MIL-R parasites, with more genetic changes occurring in Sb-R compared with Sb-S parasites. Initial interpretation of the changes identified in this study does not support synergies with Sb-R in the mechanisms of MIL resistance, though this requires an enhanced understanding of the parasite's biochemical pathways and how they are genetically regulated to be verified fully.
Collapse
Affiliation(s)
- C D Shaw
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow, G4 0RE, UK
| | - J Lonchamp
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow, G4 0RE, UK
| | - T Downing
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Cambridge, UK
- College of Science, NUI Galway, Galway, Ireland
| | - H Imamura
- Department of Biomedical Sciences, Instituut voor Tropische Geneeskunde Nationalestraat, Antwerpen, Belgium
| | - T M Freeman
- Department of Genetics, University of Cambridge, Cambridge, UK
| | - J A Cotton
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Cambridge, UK
| | - M Sanders
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Cambridge, UK
| | - G Blackburn
- Department of Biomedical Sciences, University of Antwerp, Universiteitsplein 1, Antwerpen, Belgium
- Glasgow Polyomics, University of Glasgow, Glasgow
| | - J C Dujardin
- Department of Biomedical Sciences, Instituut voor Tropische Geneeskunde Nationalestraat, Antwerpen, Belgium
- Department of Biomedical Sciences, University of Antwerp, Universiteitsplein 1, Antwerpen, Belgium
| | - S Rijal
- BP Koirala Institute of Health Sciences, Dharan, Nepal
| | - B Khanal
- BP Koirala Institute of Health Sciences, Dharan, Nepal
| | | | - G H Coombs
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow, G4 0RE, UK
| | - K C Carter
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow, G4 0RE, UK
| |
Collapse
|
209
|
Studies of the Effectiveness of Bisphosphonate and Vanadium-Bisphosphonate Compounds In Vitro against Axenic Leishmania tarentolae. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:9025627. [PMID: 27034744 PMCID: PMC4789522 DOI: 10.1155/2016/9025627] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 12/15/2015] [Accepted: 12/24/2015] [Indexed: 11/19/2022]
Abstract
Leishmaniasis is a disease that is a significant problem for people, especially in tropical regions of the world. Current drug therapies to treat the disease are expensive, not very effective, and/or of significant side effects. A series of alkyl bisphosphonate compounds and one amino bisphosphonate compound, as well as alendronate and zoledronate, were tested as potential agents against Leishmania tarentolae. Also, two polyoxometalates (POMs) with nitrogen-containing bisphosphonate ligands, vanadium/alendronate (V5(Ale)2) and vanadium/zoledronate (V3(Zol)3), were tested against L. tarentolae and compared to the results of the alendronate and zoledronate ligands alone. Of the compounds evaluated in this study, the V5(Ale)2 and V3(Zol)3 complexes were most effective in inhibiting the growth of L. tarentolae. The V5(Ale)2 complex had a larger impact on cell growth than either alendronate or orthovanadate alone, whereas zoledronate itself has a significant effect on cell growth, which may contribute to the activity of the V3(Zol)3 complex.
Collapse
|
210
|
Understanding the importance of conservative hypothetical protein LdBPK_070020 in Leishmania donovani and its role in subsistence of the parasite. Arch Biochem Biophys 2016; 596:10-21. [PMID: 26926257 DOI: 10.1016/j.abb.2016.02.025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 02/10/2016] [Accepted: 02/24/2016] [Indexed: 11/24/2022]
Abstract
The genome of Leishmania donovani, the causative agent of visceral leishmaniasis, codes for approximately 65% of both conserved and non-conserved hypothetical proteins. Studies on 'conserved hypothetical' proteins are expected to reveal not only new and crucial aspects of Leishmania biochemistry, but it could also lead to discovery of novel drug candidates. Conserved hypothetical protein, LdBPK_070020, is a 31.14 kDa protein, encoded by an 810 bp gene. BLAST analysis of LdBPK_070020, performed against NCBI non-redundant database, showed 80-99% similarity with conserved hypothetical proteins of Leishmania belonging to other species. Using homologues recombination method, we have performed gene knockout of LdBPK_070020 and effects of the same were investigated on the parasite. The gene knocked out strain shows significant retardation in growth with respect to wild type. Detailed biochemical studies indicated towards important role of LdBPK_070020 in the parasite survival and growth.
Collapse
|
211
|
Tibayrenc M, Ayala FJ. The population genetics of Trypanosoma cruzi revisited in the light of the predominant clonal evolution model. Acta Trop 2015; 151:156-65. [PMID: 26188332 PMCID: PMC7117470 DOI: 10.1016/j.actatropica.2015.05.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Revised: 05/02/2015] [Accepted: 05/06/2015] [Indexed: 01/18/2023]
Abstract
Comparing the population structure of Trypanosoma cruzi with that of other pathogens, including parasitic protozoa, fungi, bacteria and viruses, shows that the agent of Chagas disease shares typical traits with many other species, related to a predominant clonal evolution (PCE) pattern: statistically significant linkage disequilibrium, overrepresented multilocus genotypes, near-clades (genetic subdivisions somewhat blurred by occasional genetic exchange/hybridization) and "Russian doll" patterns (PCE is observed, not only at the level of the whole species, but also, within the near-clades). Moreover, T. cruzi population structure exhibits linkage with the diversity of several strongly selected genes, with gene expression profiles, and with some major phenotypic traits. We discuss the evolutionary significance of these results, and their implications in terms of applied research (molecular epidemiology/strain typing, analysis of genes of interest, vaccine and drug design, immunological diagnosis) and of experimental evolution. Lastly, we revisit the long-term debate of describing new species within the T. cruzi taxon.
Collapse
|
212
|
Gebhardt M, Ertas B, Falk T, Blödorn-Schlicht N, Metze D, Böer-Auer A. Fast, sensitive and specific diagnosis of infections withLeishmaniaspp. in formalin-fixed, paraffin-embedded skin biopsies by cytochrome b polymerase chain reaction. Br J Dermatol 2015; 173:1239-49. [DOI: 10.1111/bjd.14088] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/10/2015] [Indexed: 11/29/2022]
Affiliation(s)
- M. Gebhardt
- Dermatologikum Hamburg; Stephansplatz 5 20354 Hamburg Germany
| | - B. Ertas
- Dermatologikum Hamburg; Stephansplatz 5 20354 Hamburg Germany
| | - T.M. Falk
- Dermatologikum Hamburg; Stephansplatz 5 20354 Hamburg Germany
| | | | - D. Metze
- Department of Dermatology; Münster University; Von Esmarch Strasse 58 48149 Münster Germany
| | - A. Böer-Auer
- Dermatologikum Hamburg; Stephansplatz 5 20354 Hamburg Germany
| |
Collapse
|
213
|
Hendrickx S, Leemans A, Mondelaers A, Rijal S, Khanal B, Dujardin JC, Delputte P, Cos P, Maes L. Comparative Fitness of a Parent Leishmania donovani Clinical Isolate and Its Experimentally Derived Paromomycin-Resistant Strain. PLoS One 2015; 10:e0140139. [PMID: 26469696 PMCID: PMC4607421 DOI: 10.1371/journal.pone.0140139] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Accepted: 09/22/2015] [Indexed: 11/19/2022] Open
Abstract
Paromomycin has recently been introduced for the treatment of visceral leishmaniasis and emergence of drug resistance can only be appropriately judged upon its long term routine use in the field. Understanding alterations in parasite behavior linked to paromomycin-resistance may be essential to assess the propensity for emergence and spread of resistant strains. A standardized and integrated laboratory approach was adopted to define and assess parasite fitness of both promastigotes and amastigotes using an experimentally induced paromomycin-resistant Leishmania donovani strain and its paromomycin-susceptible parent wild-type clinical isolate. Primary focus was placed on parasite growth and virulence, two major components of parasite fitness. The combination of in vitro and in vivo approaches enabled detailed comparison of wild-type and resistant strains for which no differences could be demonstrated with regard to promastigote growth, metacyclogenesis, in vitro infectivity, multiplication in primary peritoneal mouse macrophages and infectivity for Balb/c mice upon infection with 2 x 107 metacyclic promastigotes. Monitoring of in vitro intracellular amastigote multiplication revealed a consistent decrease in parasite burden over time for both wild-type and resistant parasites, an observation that was subsequently also confirmed in a larger set of L. donovani clinical isolates. Though the impact of these findings should be further explored, the study results suggest that the epidemiological implications of acquired paromomycin-resistance may remain minimal other than the loss of one of the last remaining drugs effective against visceral leishmaniasis.
Collapse
Affiliation(s)
- Sarah Hendrickx
- Laboratory for Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Antwerp, Belgium
| | - Annelies Leemans
- Laboratory for Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Antwerp, Belgium
| | - Annelies Mondelaers
- Laboratory for Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Antwerp, Belgium
| | - Suman Rijal
- BP Koirala Institute of Health Sciences, Dharan, Nepal
| | | | - Jean-Claude Dujardin
- Molecular Parasitology Unit, Institute of Tropical Medicine Antwerp, Antwerp, Belgium
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Peter Delputte
- Laboratory for Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Antwerp, Belgium
| | - Paul Cos
- Laboratory for Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Antwerp, Belgium
| | - Louis Maes
- Laboratory for Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Antwerp, Belgium
- * E-mail:
| |
Collapse
|
214
|
Fiebig M, Kelly S, Gluenz E. Comparative Life Cycle Transcriptomics Revises Leishmania mexicana Genome Annotation and Links a Chromosome Duplication with Parasitism of Vertebrates. PLoS Pathog 2015; 11:e1005186. [PMID: 26452044 PMCID: PMC4599935 DOI: 10.1371/journal.ppat.1005186] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Accepted: 09/03/2015] [Indexed: 02/07/2023] Open
Abstract
Leishmania spp. are protozoan parasites that have two principal life cycle stages: the motile promastigote forms that live in the alimentary tract of the sandfly and the amastigote forms, which are adapted to survive and replicate in the harsh conditions of the phagolysosome of mammalian macrophages. Here, we used Illumina sequencing of poly-A selected RNA to characterise and compare the transcriptomes of L. mexicana promastigotes, axenic amastigotes and intracellular amastigotes. These data allowed the production of the first transcriptome evidence-based annotation of gene models for this species, including genome-wide mapping of trans-splice sites and poly-A addition sites. The revised genome annotation encompassed 9,169 protein-coding genes including 936 novel genes as well as modifications to previously existing gene models. Comparative analysis of gene expression across promastigote and amastigote forms revealed that 3,832 genes are differentially expressed between promastigotes and intracellular amastigotes. A large proportion of genes that were downregulated during differentiation to amastigotes were associated with the function of the motile flagellum. In contrast, those genes that were upregulated included cell surface proteins, transporters, peptidases and many uncharacterized genes, including 293 of the 936 novel genes. Genome-wide distribution analysis of the differentially expressed genes revealed that the tetraploid chromosome 30 is highly enriched for genes that were upregulated in amastigotes, providing the first evidence of a link between this whole chromosome duplication event and adaptation to the vertebrate host in this group. Peptide evidence for 42 proteins encoded by novel transcripts supports the idea of an as yet uncharacterised set of small proteins in Leishmania spp. with possible implications for host-pathogen interactions.
Collapse
Affiliation(s)
- Michael Fiebig
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, United Kingdom
| | - Steven Kelly
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford, United Kingdom
- * E-mail: (SK); (EG)
| | - Eva Gluenz
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, United Kingdom
- * E-mail: (SK); (EG)
| |
Collapse
|
215
|
Mukhopadhyay AG, Dey CS. Two-headed outer- and inner-arm dyneins of Leishmania sp bear conserved IQ-like motifs. Biochem Biophys Rep 2015; 4:283-290. [PMID: 29124215 PMCID: PMC5669419 DOI: 10.1016/j.bbrep.2015.10.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 10/01/2015] [Accepted: 10/06/2015] [Indexed: 11/25/2022] Open
Abstract
Dyneins are high molecular weight microtubule based motor proteins responsible for beating of the flagellum. The flagellum is important for the viability of trypanosomes like Leishmania. However, very little is known about dynein and its role in flagellar motility in such trypanosomatid species. Here, we have identified genes in five species of Leishmania that code for outer-arm dynein (OAD) heavy chains α and β, and inner-arm dynein (IAD) heavy chains 1α and 1β using BLAST and MSA. Our sequence analysis indicates that unlike the three-headed outer-arm dyneins of Chlamydomonas and Tetrahymena, the outer-arm dyneins of the genus Leishmania are two-headed, lacking the γ chain like that of metazoans. N-terminal sequence analysis revealed a conserved IQ-like calmodulin binding motif in the outer-arm α and inner-arm 1α dynein heavy chain in the five species of Leishmania similar to Chlamydomonas reinhardtii outer-arm γ. It was predicted that both motifs were incapable of binding calmodulin. Phosphorylation site prediction revealed conserved serine and threonine residues in outer-arm dynein α and inner-arm 1α as putative phosphorylation sites exclusive to Leishmania but not in Trypanosoma brucei suggesting that regulation of dynein activity might be via phosphorylation of these IQ-like motifs in Leishmania sp. Identified outer and inner-arm dynein heavy chain genes in five Leishmania species. Outer-arm dyneins of the genus Leishmania are two-headed like metazoans. Conserved IQ-like motif present in outer-arm α and inner-arm 1α in Leishmania sp. Conserved serine and threonine residues in dynein arms exclusive to Leishmania sp. Possible regulation of dynein activity via phosphorylation of these IQ-like motifs.
Collapse
|
216
|
Subramanian A, Sarkar RR. Comparison of codon usage bias across Leishmania and Trypanosomatids to understand mRNA secondary structure, relative protein abundance and pathway functions. Genomics 2015; 106:232-41. [DOI: 10.1016/j.ygeno.2015.05.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Revised: 05/27/2015] [Accepted: 05/28/2015] [Indexed: 11/25/2022]
|
217
|
Neglected Tropical Diseases in the Post-Genomic Era. Trends Genet 2015; 31:539-555. [DOI: 10.1016/j.tig.2015.06.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Revised: 06/01/2015] [Accepted: 06/03/2015] [Indexed: 01/22/2023]
|
218
|
Identification, biochemical characterization, and in-vivo expression of the intracellular invertase BfrA from the pathogenic parasite Leishmania major. Carbohydr Res 2015; 415:31-8. [DOI: 10.1016/j.carres.2015.07.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2015] [Revised: 06/12/2015] [Accepted: 07/10/2015] [Indexed: 01/14/2023]
|
219
|
Valdivia HO, Reis-Cunha JL, Rodrigues-Luiz GF, Baptista RP, Baldeviano GC, Gerbasi RV, Dobson DE, Pratlong F, Bastien P, Lescano AG, Beverley SM, Bartholomeu DC. Comparative genomic analysis of Leishmania (Viannia) peruviana and Leishmania (Viannia) braziliensis. BMC Genomics 2015; 16:715. [PMID: 26384787 PMCID: PMC4575464 DOI: 10.1186/s12864-015-1928-z] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 09/09/2015] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND The Leishmania (Viannia) braziliensis complex is responsible for most cases of New World tegumentary leishmaniasis. This complex includes two closely related species but with different geographic distribution and disease phenotypes, L. (V.) peruviana and L. (V.) braziliensis. However, the genetic basis of these differences is not well understood and the status of L. (V.) peruviana as distinct species has been questioned by some. Here we sequenced the genomes of two L. (V.) peruviana isolates (LEM1537 and PAB-4377) using Illumina high throughput sequencing and performed comparative analyses against the L. (V.) braziliensis M2904 reference genome. Comparisons were focused on the detection of Single Nucleotide Polymorphisms (SNPs), insertions and deletions (INDELs), aneuploidy and gene copy number variations. RESULTS We found 94,070 variants shared by both L. (V.) peruviana isolates (144,079 in PAB-4377 and 136,946 in LEM1537) against the L. (V.) braziliensis M2904 reference genome while only 26,853 variants separated both L. (V.) peruviana genomes. Analysis in coding sequences detected 26,750 SNPs and 1,513 indels shared by both L. (V.) peruviana isolates against L. (V.) braziliensis M2904 and revealed two L. (V.) braziliensis pseudogenes that are likely to have coding potential in L. (V.) peruviana. Chromosomal read density and allele frequency profiling showed a heterogeneous pattern of aneuploidy with an overall disomic tendency in both L. (V.) peruviana isolates, in contrast with a trisomic pattern in the L. (V.) braziliensis M2904 reference. Read depth analysis allowed us to detect more than 368 gene expansions and 14 expanded gene arrays in L. (V.) peruviana, and the likely absence of expanded amastin gene arrays. CONCLUSIONS The greater numbers of interspecific SNP/indel differences between L. (V.) peruviana and L. (V.) braziliensis and the presence of different gene and chromosome copy number variations support the classification of both organisms as closely related but distinct species. The extensive nucleotide polymorphisms and differences in gene and chromosome copy numbers in L. (V.) peruviana suggests the possibility that these may contribute to some of the unique features of its biology, including a lower pathology and lack of mucosal development.
Collapse
Affiliation(s)
- Hugo O Valdivia
- Laboratório de Imunologia e Genômica de Parasitos, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil. .,Department of Parasitology, U.S. Naval Medical Research Unit No. 6, Lima, Peru.
| | - João L Reis-Cunha
- Laboratório de Imunologia e Genômica de Parasitos, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.
| | - Gabriela F Rodrigues-Luiz
- Laboratório de Imunologia e Genômica de Parasitos, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.
| | - Rodrigo P Baptista
- Laboratório de Imunologia e Genômica de Parasitos, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.
| | | | - Robert V Gerbasi
- Department of Parasitology, U.S. Naval Medical Research Unit No. 6, Lima, Peru.
| | - Deborah E Dobson
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA.
| | - Francine Pratlong
- Centre Hospitalier Universitaire de Montpellier, Departement de Parasitologie-Mycologie, Centre National de Reference des Leishmanioses, Montpellier, France.
| | - Patrick Bastien
- Centre Hospitalier Universitaire de Montpellier, Departement de Parasitologie-Mycologie, Centre National de Reference des Leishmanioses, Montpellier, France.
| | - Andrés G Lescano
- Department of Parasitology, U.S. Naval Medical Research Unit No. 6, Lima, Peru. .,Universidad Peruana Cayetano Heredia, School of Public Health and Management, Lima, Peru.
| | - Stephen M Beverley
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA.
| | - Daniella C Bartholomeu
- Laboratório de Imunologia e Genômica de Parasitos, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.
| |
Collapse
|
220
|
Westrop GD, Williams RAM, Wang L, Zhang T, Watson DG, Silva AM, Coombs GH. Metabolomic Analyses of Leishmania Reveal Multiple Species Differences and Large Differences in Amino Acid Metabolism. PLoS One 2015; 10:e0136891. [PMID: 26368322 PMCID: PMC4569581 DOI: 10.1371/journal.pone.0136891] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 08/09/2015] [Indexed: 01/09/2023] Open
Abstract
Comparative genomic analyses of Leishmania species have revealed relatively minor heterogeneity amongst recognised housekeeping genes and yet the species cause distinct infections and pathogenesis in their mammalian hosts. To gain greater information on the biochemical variation between species, and insights into possible metabolic mechanisms underpinning visceral and cutaneous leishmaniasis, we have undertaken in this study a comparative analysis of the metabolomes of promastigotes of L. donovani, L. major and L. mexicana. The analysis revealed 64 metabolites with confirmed identity differing 3-fold or more between the cell extracts of species, with 161 putatively identified metabolites differing similarly. Analysis of the media from cultures revealed an at least 3-fold difference in use or excretion of 43 metabolites of confirmed identity and 87 putatively identified metabolites that differed to a similar extent. Strikingly large differences were detected in their extent of amino acid use and metabolism, especially for tryptophan, aspartate, arginine and proline. Major pathways of tryptophan and arginine catabolism were shown to be to indole-3-lactate and arginic acid, respectively, which were excreted. The data presented provide clear evidence on the value of global metabolomic analyses in detecting species-specific metabolic features, thus application of this technology should be a major contributor to gaining greater understanding of how pathogens are adapted to infecting their hosts.
Collapse
Affiliation(s)
- Gareth D. Westrop
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
| | - Roderick A. M. Williams
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
- Institute of Biomedical and Environmental Health Research, University of the West of Scotland, Paisley, United Kingdom
| | - Lijie Wang
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
| | - Tong Zhang
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
| | - David G. Watson
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
| | - Ana Marta Silva
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
- Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | - Graham H. Coombs
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
- * E-mail:
| |
Collapse
|
221
|
Mukherjee B, Paul J, Mukherjee S, Mukhopadhyay R, Das S, Naskar K, Sundar S, Dujardin JC, Saha B, Roy S. Antimony-Resistant Leishmania donovani Exploits miR-466i To Deactivate Host MyD88 for Regulating IL-10/IL-12 Levels during Early Hours of Infection. THE JOURNAL OF IMMUNOLOGY 2015; 195:2731-42. [PMID: 26283478 DOI: 10.4049/jimmunol.1402585] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Accepted: 07/15/2015] [Indexed: 01/29/2023]
Abstract
Infection with antimony-resistant Leishmania donovani (Sb(R)LD) induces aggressive pathology in the mammalian hosts as compared with ones with antimony-sensitive L. donovani (Sb(S)LD) infection. Sb(R)LD, but not Sb(S)LD, interacts with TLR2/TLR6 to induce IL-10 by exploiting p50/c-Rel subunits of NF-κB in infected macrophages (Mϕs). Most of the TLRs exploit the universal adaptor protein MyD88 to activate NF-κB. We now show that infection of Mϕs from MyD88(-/-) mice with Sb(R)LD gave rise to significantly higher intracellular parasite number coupled with elevated IL-10/IL-12 ratio in the culture supernatant as compared with infection in wild type (WT) Mϕs. Τhese attributes were not seen with Sb(S)LD in similar experiments. Further, Sb(R)LD infection upregulated miR-466i, which binds with 3'-untranslated region, leading to the downregulation of MyD88. Infection of MyD88(-/-) Mϕ or IL-12(-/-) Mϕ with Sb(R)LD induced IL-10 surge at 4 h, whereas the same in WT Mϕ started from 12 h. Thus, absence of IL-12 in MyD88(-/-) mice favored early binding of NF-κB subunits to the IL-10 promoter, resulting in IL-10 surge. Infection of MyD88(-/-) mice with Sb(R)LD showed significantly higher organ parasites coupled with ill-defined and immature hepatic granulomas, whereas in WT mice there were less organ parasites and the granulomas were well defined. From the survival kinetics it was observed that Sb(R)LD-infected MyD88(-/-) mice died by 60 d postinfection, whereas the WT mice continued to survive. Our results demonstrate that Sb(R)LD has evolved a unique strategy to evade host antileishmanial immune repertoire by manipulating host MyD88 to its advantage.
Collapse
Affiliation(s)
- Budhaditya Mukherjee
- Department of Infectious Diseases and Immunology, Council of Scientific and Industrial Research, Indian Institute of Chemical Biology, Kolkata 700032, India
| | - Joydeep Paul
- Department of Infectious Diseases and Immunology, Council of Scientific and Industrial Research, Indian Institute of Chemical Biology, Kolkata 700032, India
| | - Sandip Mukherjee
- Department of Infectious Diseases and Immunology, Council of Scientific and Industrial Research, Indian Institute of Chemical Biology, Kolkata 700032, India
| | - Rupkatha Mukhopadhyay
- Department of Infectious Diseases and Immunology, Council of Scientific and Industrial Research, Indian Institute of Chemical Biology, Kolkata 700032, India
| | - Shantanabha Das
- Department of Infectious Diseases and Immunology, Council of Scientific and Industrial Research, Indian Institute of Chemical Biology, Kolkata 700032, India
| | - Kshudiram Naskar
- Department of Infectious Diseases and Immunology, Council of Scientific and Industrial Research, Indian Institute of Chemical Biology, Kolkata 700032, India
| | - Shyam Sundar
- Institute of Medical Sciences, Benaras Hindu University, Varanasi 221005, India
| | - Jean-Claude Dujardin
- Institute of Tropical Medicine, Antwerp 2000, Belgium; University of Antwerp, Antwerp 2000, Belgium; and
| | - Bhaskar Saha
- National Centre for Cell Science, Pune 411007, India
| | - Syamal Roy
- Department of Infectious Diseases and Immunology, Council of Scientific and Industrial Research, Indian Institute of Chemical Biology, Kolkata 700032, India;
| |
Collapse
|
222
|
Hendrickx S, Eberhardt E, Mondelaers A, Rijal S, Bhattarai NR, Dujardin JC, Delputte P, Cos P, Maes L. Lack of correlation between the promastigote back-transformation assay and miltefosine treatment outcome. J Antimicrob Chemother 2015; 70:3023-6. [DOI: 10.1093/jac/dkv237] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2015] [Accepted: 07/09/2015] [Indexed: 12/26/2022] Open
|
223
|
Messenger LA, Miles MA, Bern C. Between a bug and a hard place: Trypanosoma cruzi genetic diversity and the clinical outcomes of Chagas disease. Expert Rev Anti Infect Ther 2015; 13:995-1029. [PMID: 26162928 PMCID: PMC4784490 DOI: 10.1586/14787210.2015.1056158] [Citation(s) in RCA: 134] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Over the last 30 years, concomitant with successful transnational disease control programs across Latin America, Chagas disease has expanded from a neglected, endemic parasitic infection of the rural poor to an urbanized chronic disease, and now a potentially emergent global health problem. Trypanosoma cruzi infection has a highly variable clinical course, ranging from complete absence of symptoms to severe and often fatal cardiovascular and/or gastrointestinal manifestations. To date, few correlates of clinical disease progression have been identified. Elucidating a putative role for T. cruzi strain diversity in Chagas disease pathogenesis is complicated by the scarcity of parasites in clinical specimens and the limitations of our contemporary genotyping techniques. This article systematically reviews the historical literature, given our current understanding of parasite genetic diversity, to evaluate the evidence for any association between T. cruzi genotype and chronic clinical outcome, risk of congenital transmission or reactivation and orally transmitted outbreaks.
Collapse
Affiliation(s)
- Louisa A Messenger
- Department of Pathogen Molecular Biology, Faculty of Infectious Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - Michael A Miles
- Department of Pathogen Molecular Biology, Faculty of Infectious Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - Caryn Bern
- Global Health Sciences, Department of Epidemiology and Biostatistics, School of Medicine, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
224
|
Zaidi A, Singh KP, Anwar S, Suman SS, Equbal A, Singh K, Dikhit MR, Bimal S, Pandey K, Das P, Ali V. Interaction of frataxin, an iron binding protein, with IscU of Fe-S clusters biogenesis pathway and its upregulation in AmpB resistant Leishmania donovani. Biochimie 2015; 115:120-35. [PMID: 26032732 DOI: 10.1016/j.biochi.2015.05.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Accepted: 05/19/2015] [Indexed: 01/10/2023]
Abstract
Leishmania donovani is a unicellular protozoon parasite that causes visceral leishmaniasis (VL), which is a fatal disease if left untreated. Certain Fe-S proteins of the TCA cycle and respiratory chain have been found in the Leishmania parasite but the precise mechanisms for their biogenesis and the maturation of Fe-S clusters remains unknown. Fe-S clusters are ubiquitous cofactors of proteins that perform critical cellular functions. The clusters are biosynthesized by the mitochondrial Iron-Sulphur Cluster (ISC) machinery with core protein components that include the catalytic cysteine desulphurase IscS, the scaffold proteins IscU and IscA, and frataxin as an iron carrier/donor. However, no information regarding frataxin, its regulation, or its role in drug resistance is available for the Leishmania parasite. In this study, we characterized Ld-frataxin to investigate its role in the ISC machinery of L. donovani. We expressed and purified the recombinant Ld-frataxin protein and observed its interaction with Ld-IscU by co-purification and pull-down assay. Furthermore, we observed that the cysteine desulphurase activity of the purified Ld-IscS protein was stimulated in the presence of Ld-frataxin and Ld-IscU, particularly in the presence of iron; neither Ld-frataxin nor Ld-IscU alone had significant effects on Ld-IscS activity. Interestingly, RT-PCR and western blotting showed that Ld-frataxin is upregulated in AmpB-resistant isolates compared to sensitive strains, which may support higher Fe-S protein activity in AmpB-resistant L. donovani. Additionally, Ld-frataxin was localized in the mitochondria, as revealed by digitonin fractionation and indirect immunofluorescence. Thus, our results suggest the role of Ld-frataxin as an iron binding/carrier protein for Fe-S cluster biogenesis that physically interacts with other core components of the ISC machinery within the mitochondria.
Collapse
Affiliation(s)
- Amir Zaidi
- Laboratory of Molecular Biochemistry and Cell Biology, Department of Biochemistry, Rajendra Memorial Research Institute of Medical Sciences (RMRIMS), Agamkuan, Patna 800007, India
| | - Krishn Pratap Singh
- Laboratory of Molecular Biochemistry and Cell Biology, Department of Biochemistry, Rajendra Memorial Research Institute of Medical Sciences (RMRIMS), Agamkuan, Patna 800007, India
| | - Shadab Anwar
- Laboratory of Molecular Biochemistry and Cell Biology, Department of Biochemistry, Rajendra Memorial Research Institute of Medical Sciences (RMRIMS), Agamkuan, Patna 800007, India
| | - Shashi S Suman
- Laboratory of Molecular Biochemistry and Cell Biology, Department of Biochemistry, Rajendra Memorial Research Institute of Medical Sciences (RMRIMS), Agamkuan, Patna 800007, India
| | - Asif Equbal
- Laboratory of Molecular Biochemistry and Cell Biology, Department of Biochemistry, Rajendra Memorial Research Institute of Medical Sciences (RMRIMS), Agamkuan, Patna 800007, India
| | - Kuljit Singh
- Laboratory of Molecular Biochemistry and Cell Biology, Department of Biochemistry, Rajendra Memorial Research Institute of Medical Sciences (RMRIMS), Agamkuan, Patna 800007, India
| | - Manas R Dikhit
- Biomedical Informatic Centre, Rajendra Memorial Research Institute of Medical Sciences (RMRIMS), Agamkuan, Patna, India
| | - Sanjeeva Bimal
- Department of Immunology, Rajendra Memorial Research Institute of Medical Sciences (RMRIMS), Agamkuan, Patna, India
| | - Krishna Pandey
- Department of Clinical Medicine, Rajendra Memorial Research Institute of Medical Sciences (RMRIMS), Agamkuan, Patna, India
| | - Pradeep Das
- Department of Molecular Biology, Rajendra Memorial Research Institute of Medical Sciences (RMRIMS), Agamkuan, Patna, India
| | - Vahab Ali
- Laboratory of Molecular Biochemistry and Cell Biology, Department of Biochemistry, Rajendra Memorial Research Institute of Medical Sciences (RMRIMS), Agamkuan, Patna 800007, India.
| |
Collapse
|
225
|
Abstract
The prokaryotic CRISPR (clustered regularly interspaced short palindromic repeat)-Cas9, an RNA-guided endonuclease, has been shown to mediate efficient genome editing in a wide variety of organisms. In the present study, the CRISPR-Cas9 system has been adapted to Leishmania donovani, a protozoan parasite that causes fatal human visceral leishmaniasis. We introduced the Cas9 nuclease into L. donovani and generated guide RNA (gRNA) expression vectors by using the L. donovani rRNA promoter and the hepatitis delta virus (HDV) ribozyme. It is demonstrated within that L. donovani mainly used homology-directed repair (HDR) and microhomology-mediated end joining (MMEJ) to repair the Cas9 nuclease-created double-strand DNA break (DSB). The nonhomologous end-joining (NHEJ) pathway appears to be absent in L. donovani. With this CRISPR-Cas9 system, it was possible to generate knockouts without selection by insertion of an oligonucleotide donor with stop codons and 25-nucleotide homology arms into the Cas9 cleavage site. Likewise, we disrupted and precisely tagged endogenous genes by inserting a bleomycin drug selection marker and GFP gene into the Cas9 cleavage site. With the use of Hammerhead and HDV ribozymes, a double-gRNA expression vector that further improved gene-targeting efficiency was developed, and it was used to make precise deletion of the 3-kb miltefosine transporter gene (LdMT). In addition, this study identified a novel single point mutation caused by CRISPR-Cas9 in LdMT (M381T) that led to miltefosine resistance, a concern for the only available oral antileishmanial drug. Together, these results demonstrate that the CRISPR-Cas9 system represents an effective genome engineering tool for L. donovani. Leishmania donovani is the causative agent of fatal visceral leishmaniasis. To understand Leishmania infection and pathogenesis and identify new drug targets for control of leishmaniasis, more-efficient ways to manipulate this parasite genome are required. In this study, we have implemented CRISPR-Cas9 genome-editing technology in L. donovani. Both single- and dual-gRNA expression vectors were developed using a strong RNA polymerase I promoter and ribozymes. With this system, it was possible to generate loss-of-function insertion and deletion mutations and introduce drug selection markers and the GFP sequence precisely into the L. donovani genome. These methods greatly improved the ability to manipulate this parasite genome and will help pave the way for high-throughput functional analysis of Leishmania genes. This study further revealed that double-stranded DNA breaks created by CRISPR-Cas9 were repaired by the homology-directed repair (HDR) pathway and microhomology-mediated end joining (MMEJ) in Leishmania.
Collapse
|
226
|
Response to Rougeron et al.: Leishmania population genetics: clonality, selfing and aneuploidy. Trends Parasitol 2015; 31:279-80. [DOI: 10.1016/j.pt.2015.04.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Revised: 03/31/2015] [Accepted: 04/02/2015] [Indexed: 11/18/2022]
|
227
|
Eroglu F, Koltas IS, Alabaz D, Uzun S, Karakas M. Clinical manifestations and genetic variation of Leishmania infantum and Leishmania tropica in Southern Turkey. Exp Parasitol 2015; 154:67-74. [DOI: 10.1016/j.exppara.2015.04.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2014] [Revised: 03/25/2015] [Accepted: 04/19/2015] [Indexed: 10/23/2022]
|
228
|
The Leishmania donovani histidine acid ecto-phosphatase LdMAcP: insight into its structure and function. Biochem J 2015; 467:473-86. [PMID: 25695743 PMCID: PMC4687092 DOI: 10.1042/bj20141371] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Acid ecto-phosphatase activity has been implicated in Leishmania donovani promastigote virulence. In the present study, we report data contributing to the molecular/structural and functional characterization of the L. donovani LdMAcP (L. donovani membrane acid phosphatase), member of the histidine acid phosphatase (HAcP) family. LdMAcP is membrane-anchored and shares high sequence identity with the major secreted L. donovani acid phosphatases (LdSAcPs). Sequence comparison of the LdMAcP orthologues in Leishmania sp. revealed strain polymorphism and species specificity for the L. donovani complex, responsible for visceral leishmaniasis (Khala azar), proposing thus a potential value of LdMAcP as an epidemiological or diagnostic tool. The extracellular orientation of the LdMAcP catalytic domain was confirmed in L. donovani promastigotes, wild-type (wt) and transgenic overexpressing a recombinant LdMAcP–mRFP1 (monomeric RFP1) chimera, as well as in transiently transfected mammalian cells expressing rLdMAcP–His. For the first time it is demonstrated in the present study that LdMAcP confers tartrate resistant acid ecto-phosphatase activity in live L. donovani promastigotes. The latter confirmed the long sought molecular identity of at least one enzyme contributing to this activity. Interestingly, the L. donovani rLdMAcP–mRFP1 promastigotes generated in this study, showed significantly higher infectivity and virulence indexes than control parasites in the infection of J774 mouse macrophages highlighting thereby a role for LdMAcP in the parasite's virulence. Acid ecto-phosphatase activity has been linked to Leishmania donovani virulence. In the present study, we confirm the molecular identity and characterize molecular and functional properties of an enzyme contributing to this activity, the LdMAcP, an L. donovani specific membrane histidine acid phosphatase (HAcP).
Collapse
|
229
|
Abstract
Leishmania is an infectious protozoan parasite related to African and American trypanosomes. All Leishmania species that are pathogenic to humans can cause dermal disease. When one is confronted with cutaneous leishmaniasis, identification of the causative species is relevant in both clinical and epidemiological studies, case management, and control. This review gives an overview of the currently existing and most used assays for species discrimination, with a critical appraisal of the limitations of each technique. The consensus taxonomy for the genus is outlined, including debatable species designations. Finally, a numerical literature analysis is presented that describes which methods are most used in various countries and regions in the world, and for which purposes.
Collapse
Affiliation(s)
- Gert Van der Auwera
- Institute of Tropical Medicine, Department of Biomedical Sciences, Antwerp, Belgium
| | - Jean-Claude Dujardin
- Institute of Tropical Medicine, Department of Biomedical Sciences, Antwerp, Belgium Antwerp University, Department of Biomedical Sciences, Antwerp, Belgium
| |
Collapse
|
230
|
Targeting Ergosterol biosynthesis in Leishmania donovani: essentiality of sterol 14 alpha-demethylase. PLoS Negl Trop Dis 2015; 9:e0003588. [PMID: 25768284 PMCID: PMC4359151 DOI: 10.1371/journal.pntd.0003588] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Accepted: 02/03/2015] [Indexed: 01/14/2023] Open
Abstract
Leishmania protozoan parasites (Trypanosomatidae family) are the causative agents of cutaneous, mucocutaneous and visceral leishmaniasis worldwide. While these diseases are associated with significant morbidity and mortality, there are few adequate treatments available. Sterol 14alpha-demethylase (CYP51) in the parasite sterol biosynthesis pathway has been the focus of considerable interest as a novel drug target in Leishmania. However, its essentiality in Leishmania donovani has yet to be determined. Here, we use a dual biological and pharmacological approach to demonstrate that CYP51 is indispensable in L. donovani. We show via a facilitated knockout approach that chromosomal CYP51 genes can only be knocked out in the presence of episomal complementation and that this episome cannot be lost from the parasite even under negative selection. In addition, we treated wild-type L. donovani and CYP51-deficient strains with 4-aminopyridyl-based inhibitors designed specifically for Trypanosoma cruzi CYP51. While potency was lower than in T. cruzi, these inhibitors had increased efficacy in parasites lacking a CYP51 allele compared to complemented parasites, indicating inhibition of parasite growth via a CYP51-specific mechanism and confirming essentiality of CYP51 in L. donovani. Overall, these results provide support for further development of CYP51 inhibitors for the treatment of visceral leishmaniasis. Visceral leishmaniasis is the second most lethal parasitic infection after malaria. Other forms of leishmaniasis also cause significant morbidity. However, there are few treatments available, and many cause severe side effects or are associated with the development of resistance. A key difference between mammalian cells and Leishmania parasites is the type of sterol in their membranes: while mammalian cell membranes contain cholesterol, Leishmania parasites use ergosterol. There has therefore been considerable interest in developing inhibitors of sterol biosynthesis pathways to target Leishmania parasites. Sterol 14alpha-demethylase (CYP51) is one of the enzymes in the sterol biosynthesis pathway, and the target of significant drug development research in Leishmania. Here we use a double approach to determine whether this gene is essential in Leishmania donovani, the causative agent of visceral leishmaniasis. We demonstrate via gene knockout and drug targeting approaches that loss or inhibition of CYP51 inhibits L. donovani growth. These results validate CYP51 as a drug target in L. donovani and support further work to develop CYP51-directed therapies for visceral leishmaniasis.
Collapse
|
231
|
Peña I, Pilar Manzano M, Cantizani J, Kessler A, Alonso-Padilla J, Bardera AI, Alvarez E, Colmenarejo G, Cotillo I, Roquero I, de Dios-Anton F, Barroso V, Rodriguez A, Gray DW, Navarro M, Kumar V, Sherstnev A, Drewry DH, Brown JR, Fiandor JM, Julio Martin J. New compound sets identified from high throughput phenotypic screening against three kinetoplastid parasites: an open resource. Sci Rep 2015; 5:8771. [PMID: 25740547 PMCID: PMC4350103 DOI: 10.1038/srep08771] [Citation(s) in RCA: 181] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Accepted: 01/28/2015] [Indexed: 12/11/2022] Open
Abstract
Using whole-cell phenotypic assays, the GlaxoSmithKline high-throughput screening (HTS) diversity set of 1.8 million compounds was screened against the three kinetoplastids most relevant to human disease, i.e. Leishmania donovani, Trypanosoma cruzi and Trypanosoma brucei. Secondary confirmatory and orthogonal intracellular anti-parasiticidal assays were conducted, and the potential for non-specific cytotoxicity determined. Hit compounds were chemically clustered and triaged for desirable physicochemical properties. The hypothetical biological target space covered by these diversity sets was investigated through bioinformatics methodologies. Consequently, three anti-kinetoplastid chemical boxes of ~200 compounds each were assembled. Functional analyses of these compounds suggest a wide array of potential modes of action against kinetoplastid kinases, proteases and cytochromes as well as potential host–pathogen targets. This is the first published parallel high throughput screening of a pharma compound collection against kinetoplastids. The compound sets are provided as an open resource for future lead discovery programs, and to address important research questions.
Collapse
Affiliation(s)
- Imanol Peña
- Molecular Discovery Research, Tres Cantos Medicines Development Campus, GlaxoSmithKline, Tres Cantos, Spain
| | - M Pilar Manzano
- Diseases of the Developing World (DDW), Tres Cantos Medicines Development Campus, GlaxoSmithKline, Tres Cantos, Spain
| | - Juan Cantizani
- Diseases of the Developing World (DDW), Tres Cantos Medicines Development Campus, GlaxoSmithKline, Tres Cantos, Spain
| | - Albane Kessler
- Diseases of the Developing World (DDW), Tres Cantos Medicines Development Campus, GlaxoSmithKline, Tres Cantos, Spain
| | - Julio Alonso-Padilla
- Department of Microbiology, Division of Parasitology, New York University School of Medicine, New York, NY, USA
| | - Ana I Bardera
- Molecular Discovery Research, Tres Cantos Medicines Development Campus, GlaxoSmithKline, Tres Cantos, Spain
| | - Emilio Alvarez
- Molecular Discovery Research, Tres Cantos Medicines Development Campus, GlaxoSmithKline, Tres Cantos, Spain
| | - Gonzalo Colmenarejo
- Molecular Discovery Research, Tres Cantos Medicines Development Campus, GlaxoSmithKline, Tres Cantos, Spain
| | - Ignacio Cotillo
- Diseases of the Developing World (DDW), Tres Cantos Medicines Development Campus, GlaxoSmithKline, Tres Cantos, Spain
| | - Irene Roquero
- Molecular Discovery Research, Tres Cantos Medicines Development Campus, GlaxoSmithKline, Tres Cantos, Spain
| | - Francisco de Dios-Anton
- Molecular Discovery Research, Tres Cantos Medicines Development Campus, GlaxoSmithKline, Tres Cantos, Spain
| | - Vanessa Barroso
- Molecular Discovery Research, Tres Cantos Medicines Development Campus, GlaxoSmithKline, Tres Cantos, Spain
| | - Ana Rodriguez
- Department of Microbiology, Division of Parasitology, New York University School of Medicine, New York, NY, USA
| | - David W Gray
- Drug Discovery Unit, Division of Biological Chemistry and Drug Discovery, University of Dundee, Dundee, UK
| | - Miguel Navarro
- Instituto de Parasitología y Biomedicina "López-Neyra" Consejo Superior de Investigaciones Cientificas, Granada, Spain
| | - Vinod Kumar
- Computational Biology, Quantitative Sciences, GlaxoSmithKline, Collegeville, PA, USA
| | - Alexander Sherstnev
- Computational Biology, Quantitative Sciences, GlaxoSmithKline, Medicines Research Center, Stevenage, Hertfordshire, UK
| | - David H Drewry
- Chemical Sciences, Molecular Discovery Research, GlaxoSmithKline, Research Triangle Park, NC, USA
| | - James R Brown
- Computational Biology, Quantitative Sciences, GlaxoSmithKline, Collegeville, PA, USA
| | - Jose M Fiandor
- Diseases of the Developing World (DDW), Tres Cantos Medicines Development Campus, GlaxoSmithKline, Tres Cantos, Spain
| | - J Julio Martin
- Molecular Discovery Research, Tres Cantos Medicines Development Campus, GlaxoSmithKline, Tres Cantos, Spain
| |
Collapse
|
232
|
Modelling the effects of mass drug administration on the molecular epidemiology of schistosomes. ADVANCES IN PARASITOLOGY 2015; 87:293-327. [PMID: 25765198 DOI: 10.1016/bs.apar.2014.12.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
As national governments scale up mass drug administration (MDA) programs aimed to combat neglected tropical diseases (NTDs), novel selection pressures on these parasites increase. To understand how parasite populations are affected by MDA and how to maximize the success of control programmes, it is imperative for epidemiological, molecular and mathematical modelling approaches to be combined. Modelling of parasite population genetic and genomic structure, particularly of the NTDs, has been limited through the availability of only a few molecular markers to date. The landscape of infectious disease research is being dramatically reshaped by next-generation sequencing technologies and our understanding of how repeated selective pressures are shaping parasite populations is radically altering. Genomics can provide high-resolution data on parasite population structure, and identify how loci may contribute to key phenotypes such as virulence and/or drug resistance. We discuss the incorporation of genetic and genomic data, focussing on the recently sequenced Schistosoma spp., into novel mathematical transmission models to inform our understanding of the impact of MDA and other control methods. We summarize what is known to date, the models that exist and how population genetics has given us an understanding of the effects of MDA on the parasites. We consider how genetic and genomic data have the potential to shape future research, highlighting key areas where data are lacking, and how future molecular epidemiology knowledge can aid understanding of transmission dynamics and the effects of MDA, ultimately informing public health policy makers of the best interventions for NTDs.
Collapse
|
233
|
Cantacessi C, Dantas-Torres F, Nolan MJ, Otranto D. The past, present, and future of Leishmania genomics and transcriptomics. Trends Parasitol 2015; 31:100-8. [PMID: 25638444 PMCID: PMC4356521 DOI: 10.1016/j.pt.2014.12.012] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Revised: 12/22/2014] [Accepted: 12/22/2014] [Indexed: 01/31/2023]
Abstract
It has been nearly 10 years since the completion of the first entire genome sequence of a Leishmania parasite. Genomic and transcriptomic analyses have advanced our understanding of the biology of Leishmania, and shed new light on the complex interactions occurring within the parasite-host-vector triangle. Here, we review these advances and examine potential avenues for translation of these discoveries into treatment and control programs. In addition, we argue for a strong need to explore how disease in dogs relates to that in humans, and how an improved understanding in line with the 'One Health' concept may open new avenues for the control of these devastating diseases.
Collapse
Affiliation(s)
- Cinzia Cantacessi
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK.
| | - Filipe Dantas-Torres
- Departamento de Imunologia, Centro de Pesquisas Aggeu Magalhães, Fiocruz-PE, Brazil; Dipartimento di Medicina Veterinaria, Università degli Studi di Bari, Bari, Italy
| | - Matthew J Nolan
- Royal Veterinary College, University of London, North Mymms, UK
| | - Domenico Otranto
- Dipartimento di Medicina Veterinaria, Università degli Studi di Bari, Bari, Italy
| |
Collapse
|
234
|
Llanes A, Restrepo CM, Del Vecchio G, Anguizola FJ, Lleonart R. The genome of Leishmania panamensis: insights into genomics of the L. (Viannia) subgenus. Sci Rep 2015; 5:8550. [PMID: 25707621 PMCID: PMC4338418 DOI: 10.1038/srep08550] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Accepted: 01/26/2015] [Indexed: 12/21/2022] Open
Abstract
Kinetoplastid parasites of the Leishmania genus cause several forms of leishmaniasis. Leishmania species pathogenic to human are separated into two subgenera, Leishmania (Leishmania) and L. (Viannia). Species from the Viannia subgenus cause predominantly cutaneous leishmaniasis in Central and South America, occasionally leading to more severe clinical presentations. Although the genomes of several species of Leishmania have been sequenced to date, only one belongs to this rather different subgenus. Here we explore the unique features of the Viannia subgenus by sequencing and analyzing the genome of L. (Viannia) panamensis. Against a background of conservation in gene content and synteny, we found key differences at the genomic level that may explain the occurrence of molecular processes involving nucleic acid manipulation and differential modification of surface glycoconjugates. These differences may in part explain some phenotypic characteristics of the Viannia parasites, including their increased adaptive capacity and enhanced metastatic ability.
Collapse
Affiliation(s)
- Alejandro Llanes
- 1] Centro de Biología Celular y Molecular de Enfermedades, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), Ciudad del Saber, Panamá, Panamá [2] Facultad de Ciencias de la Salud Dr. William C. Gorgas, Universidad Latina de Panamá, Panamá, Panamá [3] Department of Biotechnology, Acharya Nagarjuna University, Guntur, India
| | - Carlos Mario Restrepo
- 1] Centro de Biología Celular y Molecular de Enfermedades, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), Ciudad del Saber, Panamá, Panamá [2] Department of Biotechnology, Acharya Nagarjuna University, Guntur, India
| | - Gina Del Vecchio
- Facultad de Ciencias de la Salud Dr. William C. Gorgas, Universidad Latina de Panamá, Panamá, Panamá
| | - Franklin José Anguizola
- Facultad de Ciencias de la Salud Dr. William C. Gorgas, Universidad Latina de Panamá, Panamá, Panamá
| | - Ricardo Lleonart
- Centro de Biología Celular y Molecular de Enfermedades, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), Ciudad del Saber, Panamá, Panamá
| |
Collapse
|
235
|
Monte-Neto R, Laffitte MCN, Leprohon P, Reis P, Frézard F, Ouellette M. Intrachromosomal amplification, locus deletion and point mutation in the aquaglyceroporin AQP1 gene in antimony resistant Leishmania (Viannia) guyanensis. PLoS Negl Trop Dis 2015; 9:e0003476. [PMID: 25679388 PMCID: PMC4332685 DOI: 10.1371/journal.pntd.0003476] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Accepted: 12/14/2014] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Antimony resistance complicates the treatment of infections caused by the parasite Leishmania. METHODOLOGY/PRINCIPAL FINDINGS Using next generation sequencing, we sequenced the genome of four independent Leishmania guyanensis antimony-resistant (SbR) mutants and found different chromosomal alterations including aneuploidy, intrachromosomal gene amplification and gene deletion. A segment covering 30 genes on chromosome 19 was amplified intrachromosomally in three of the four mutants. The gene coding for the multidrug resistance associated protein A involved in antimony resistance was also amplified in the four mutants, most likely through chromosomal translocation. All mutants also displayed a reduced accumulation of antimony mainly due to genomic alterations at the level of the subtelomeric region of chromosome 31 harboring the gene coding for the aquaglyceroporin 1 (LgAQP1). Resistance involved the loss of LgAQP1 through subtelomeric deletions in three mutants. Interestingly, the fourth mutant harbored a single G133D point mutation in LgAQP1 whose role in resistance was functionality confirmed through drug sensitivity and antimony accumulation assays. In contrast to the Leishmania subspecies that resort to extrachromosomal amplification, the Viannia strains studied here used intrachromosomal amplification and locus deletion. CONCLUSIONS/SIGNIFICANCE This is the first report of a naturally occurred point mutation in AQP1 in antimony resistant parasites.
Collapse
Affiliation(s)
- Rubens Monte-Neto
- Centre de Recherche en Infectiologie du Centre de Recherche du CHU Québec and Département de Microbiologie, Infectiologie et Immunologie, Faculté de Médecine, Université Laval, Québec, Québec, Canada
| | - Marie-Claude N. Laffitte
- Centre de Recherche en Infectiologie du Centre de Recherche du CHU Québec and Département de Microbiologie, Infectiologie et Immunologie, Faculté de Médecine, Université Laval, Québec, Québec, Canada
| | - Philippe Leprohon
- Centre de Recherche en Infectiologie du Centre de Recherche du CHU Québec and Département de Microbiologie, Infectiologie et Immunologie, Faculté de Médecine, Université Laval, Québec, Québec, Canada
| | - Priscila Reis
- Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brasil
| | - Frédéric Frézard
- Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brasil
| | - Marc Ouellette
- Centre de Recherche en Infectiologie du Centre de Recherche du CHU Québec and Département de Microbiologie, Infectiologie et Immunologie, Faculté de Médecine, Université Laval, Québec, Québec, Canada
- * E-mail:
| |
Collapse
|
236
|
Experimental resistance to drug combinations in Leishmania donovani: metabolic and phenotypic adaptations. Antimicrob Agents Chemother 2015; 59:2242-55. [PMID: 25645828 DOI: 10.1128/aac.04231-14] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Together with vector control, chemotherapy is an essential tool for the control of visceral leishmaniasis (VL), but its efficacy is jeopardized by growing resistance and treatment failure against first-line drugs. To delay the emergence of resistance, the use of drug combinations of existing antileishmanial agents has been tested systematically in clinical trials for the treatment of visceral leishmaniasis (VL). In vitro, Leishmania donovani promastigotes are able to develop experimental resistance to several combinations of different antileishmanial drugs after 10 weeks of drug pressure. Using an untargeted liquid chromatography-mass spectrometry (LC-MS) metabolomics approach, we identified metabolic changes in lines that were experimentally resistant to drug combinations and their respective single-resistant lines. This highlighted both collective metabolic changes (found in all combination therapy-resistant [CTR] lines) and specific ones (found in certain CTR lines). We demonstrated that single-resistant and CTR parasite cell lines show distinct metabolic adaptations, which all converge on the same defensive mechanisms that were experimentally validated: protection against drug-induced and external oxidative stress and changes in membrane fluidity. The membrane fluidity changes were accompanied by changes in drug uptake only in the lines that were resistant against drug combinations with antimonials, and surprisingly, drug accumulation was higher in these lines. Together, these results highlight the importance and the central role of protection against oxidative stress in the different resistant lines. Ultimately, these phenotypic changes might interfere with the mode of action of all drugs that are currently used for the treatment of VL and should be taken into account in drug development.
Collapse
|
237
|
Rougeron V, De Meeûs T, Bañuls AL. A primer for Leishmania population genetic studies. Trends Parasitol 2015; 31:52-9. [PMID: 25592839 DOI: 10.1016/j.pt.2014.12.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Revised: 12/03/2014] [Accepted: 12/06/2014] [Indexed: 02/04/2023]
Abstract
Leishmaniases remain a major public health problem. Despite the development of elaborate experimental techniques and sophisticated statistical tools, how these parasites evolve, adapt themselves to new environmental compartments and hosts, and develop resistance to new drugs remains unclear. Leishmania parasites constitute a complex model from a biological, ecological, and epidemiological point of view but also with respect to their genetics and phylogenetics. With this in view, we seek to outline the criteria, caveats, and confounding factors to be considered for Leishmania population genetic studies. We examine how the taxonomic complexity, heterozygosity, intraspecific and interspecific recombination, aneuploidy, and ameiotic recombination of Leishmania intersect with population genetic studies of this parasite.
Collapse
Affiliation(s)
- V Rougeron
- MIVEGEC (Laboratoire Maladies Infectieuses et Vecteurs: Ecologie, Génétique, Evolution et Contrôle), Centre National de la Recherche Scientifique (CNRS) Unité Mixte de Recherche (UMR) 5290 - Institut de Recherche pour le Développement (IRD) 224 - Universités Montpellier 1 et 2, Montpellier, France; Centre International de Recherches Médicales de Franceville, Franceville, Gabon.
| | - T De Meeûs
- IRD/Centre International de Recherche-Développement sur l'Élevage en zone Subhumide (CIRDES), UMR 177, INTERTRYP IRD-Centre de Coopération Internationale en Recherche Agronomique pour le Développement (CIRAD), CIRDES 01, BP 454 Bobo-Dioulasso 01, Burkina Faso
| | - A-L Bañuls
- MIVEGEC (Laboratoire Maladies Infectieuses et Vecteurs: Ecologie, Génétique, Evolution et Contrôle), Centre National de la Recherche Scientifique (CNRS) Unité Mixte de Recherche (UMR) 5290 - Institut de Recherche pour le Développement (IRD) 224 - Universités Montpellier 1 et 2, Montpellier, France
| |
Collapse
|
238
|
Genome mining offers a new starting point for parasitology research. Parasitol Res 2015; 114:399-409. [PMID: 25563615 DOI: 10.1007/s00436-014-4299-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Accepted: 12/23/2014] [Indexed: 12/11/2022]
Abstract
Parasites including helminthes, protozoa, and medical arthropod vectors are a major cause of global infectious diseases, affecting one-sixth of the world's population, which are responsible for enormous levels of morbidity and mortality important and remain impediments to economic development especially in tropical countries. Prevalent drug resistance, lack of highly effective and practical vaccines, as well as specific and sensitive diagnostic markers are proving to be challenging problems in parasitic disease control in most parts of the world. The impressive progress recently made in genome-wide analysis of parasites of medical importance, including trematodes of Clonorchis sinensis, Opisthorchis viverrini, Schistosoma haematobium, S. japonicum, and S. mansoni; nematodes of Brugia malayi, Loa loa, Necator americanus, Trichinella spiralis, and Trichuris suis; cestodes of Echinococcus granulosus, E. multilocularis, and Taenia solium; protozoa of Babesia bovis, B. microti, Cryptosporidium hominis, Eimeria falciformis, E. histolytica, Giardia intestinalis, Leishmania braziliensis, L. donovani, L. major, Plasmodium falciparum, P. vivax, Trichomonas vaginalis, Trypanosoma brucei and T. cruzi; and medical arthropod vectors of Aedes aegypti, Anopheles darlingi, A. sinensis, and Culex quinquefasciatus, have been systematically covered in this review for a comprehensive understanding of the genetic information contained in nuclear, mitochondrial, kinetoplast, plastid, or endosymbiotic bacterial genomes of parasites, further valuable insight into parasite-host interactions and development of promising novel drug and vaccine candidates and preferable diagnostic tools, thereby underpinning the prevention and control of parasitic diseases.
Collapse
|
239
|
Bringaud F, Rogers M, Ghedin E. Identification and analysis of ingi-related retroposons in the trypanosomatid genomes. Methods Mol Biol 2015; 1201:109-22. [PMID: 25388110 DOI: 10.1007/978-1-4939-1438-8_6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Transposable elements (TE), defined as discrete pieces of DNA that can move from one site to another site in genomes, represent significant components of eukaryotic genomes, including trypanosomatids. Up to 5% of the trypanosomatid genome content is composed of retroposons of the ingi clade, further divided into subclades and subfamilies ranging from short extinct truncated elements (SIDER) to long active elements (ingi). Important differences in ingi-related retroposon content have been reported between trypanosomatid species. For instance, Leishmania spp. have expanded and recycled a whole SIDER family to fulfill an important biological pathway, i.e., regulation of gene expression, while trypanosome genomes are primarily composed of active elements. Here, we present an overview of the computational methods used to identify, annotate, and analyze ingi-related retroposons for providing a comprehensive picture of all these TE families in newly available trypanosomatid genome sequences.
Collapse
Affiliation(s)
- Frédéric Bringaud
- Centre de Résonance Magnétique des Systèmes Biologiques (RMSB), UMR 5536 CNRS, Université de Bordeaux, 146, rue Léo Saignat, 33076, Bordeaux, France,
| | | | | |
Collapse
|
240
|
The selenocysteine tRNA gene in leishmania major is transcribed by both RNA polymerase II and RNA polymerase III. EUKARYOTIC CELL 2014; 14:216-27. [PMID: 25548151 DOI: 10.1128/ec.00239-14] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Eukaryotic tRNAs, transcribed by RNA polymerase III (Pol III), contain boxes A and B as internal promoter elements. One exception is the selenocysteine (Sec) tRNA (tRNA-Sec), whose transcription is directed by an internal box B and three extragenic sequences in vertebrates. Here we report on the transcriptional analysis of the tRNA-Sec gene in the protozoan parasite Leishmania major. This organism has unusual mechanisms of gene expression, including Pol II polycistronic transcription and maturation of mRNAs by trans splicing, a process that attaches a 39-nucleotide miniexon to the 5' end of all the mRNAs. In L. major, tRNA-Sec is encoded by a single gene inserted into a Pol II polycistronic unit, in contrast to most tRNAs, which are clustered at the boundaries of polycistronic units. 5' rapid amplification of cDNA ends and reverse transcription-PCR experiments showed that some tRNA-Sec transcripts contain the miniexon at the 5' end and a poly(A) tail at the 3' end, indicating that the tRNA-Sec gene is polycistronically transcribed by Pol II and processed by trans splicing and polyadenylation, as was recently reported for the tRNA-Sec genes in the related parasite Trypanosoma brucei. However, nuclear run-on assays with RNA polymerase inhibitors and with cells that were previously UV irradiated showed that the tRNA-Sec gene in L. major is also transcribed by Pol III. Thus, our results indicate that RNA polymerase specificity in Leishmania is not absolute in vivo, as has recently been found in other eukaryotes.
Collapse
|
241
|
Laffitte MCN, Genois MM, Mukherjee A, Légaré D, Masson JY, Ouellette M. Formation of linear amplicons with inverted duplications in Leishmania requires the MRE11 nuclease. PLoS Genet 2014; 10:e1004805. [PMID: 25474106 PMCID: PMC4256157 DOI: 10.1371/journal.pgen.1004805] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Accepted: 10/06/2014] [Indexed: 11/22/2022] Open
Abstract
Extrachromosomal DNA amplification is frequent in the protozoan parasite Leishmania selected for drug resistance. The extrachromosomal amplified DNA is either circular or linear, and is formed at the level of direct or inverted homologous repeated sequences that abound in the Leishmania genome. The RAD51 recombinase plays an important role in circular amplicons formation, but the mechanism by which linear amplicons are formed is unknown. We hypothesized that the Leishmania infantum DNA repair protein MRE11 is required for linear amplicons following rearrangements at the level of inverted repeats. The purified LiMRE11 protein showed both DNA binding and exonuclease activities. Inactivation of the LiMRE11 gene led to parasites with enhanced sensitivity to DNA damaging agents. The MRE11−/− parasites had a reduced capacity to form linear amplicons after drug selection, and the reintroduction of an MRE11 allele led to parasites regaining their capacity to generate linear amplicons, but only when MRE11 had an active nuclease activity. These results highlight a novel MRE11-dependent pathway used by Leishmania to amplify portions of its genome to respond to a changing environment. Extrachromosomal DNA amplification is frequent in the human protozoan parasite Leishmania when challenged with drug or other stressful conditions. DNA amplicons, either circular or linear, are formed by recombination between direct or inverted repeats spread throughout the genome of the parasite. The recombinase RAD51 is involved in the formation of circular amplicons, but the mechanism by which linear amplicons are formed is still unknown in this parasite. Studies in other organisms have provided some evidence that a DNA break is required for linear amplifications, and that the DNA repair protein MRE11 can be involved in this process. In this work, we present our biochemical, cellular and molecular characterization of the Leishmania infantum MRE11 orthologue and provide evidence that this nuclease is involved in the formation of linear amplicons in Leishmania. Our results highlight a novel MRE11-dependent pathway used by Leishmania to amplify portions of its genome to respond to a changing environment.
Collapse
Affiliation(s)
| | - Marie-Michelle Genois
- Centre de Recherche en Infectiologie du CHU de Québec, Quebec City, Québec, Canada
- Genome Stability Laboratory, CHU de Quebec Research Center, HDQ Pavillon, Oncology Axis, Quebec City, Québec, Canada
- Department of Molecular Biology, Medical Biochemistry and Pathology, Laval University, Quebec City, Québec, Canada
| | - Angana Mukherjee
- Centre de Recherche en Infectiologie du CHU de Québec, Quebec City, Québec, Canada
| | - Danielle Légaré
- Centre de Recherche en Infectiologie du CHU de Québec, Quebec City, Québec, Canada
| | - Jean-Yves Masson
- Genome Stability Laboratory, CHU de Quebec Research Center, HDQ Pavillon, Oncology Axis, Quebec City, Québec, Canada
- Department of Molecular Biology, Medical Biochemistry and Pathology, Laval University, Quebec City, Québec, Canada
| | - Marc Ouellette
- Centre de Recherche en Infectiologie du CHU de Québec, Quebec City, Québec, Canada
- * E-mail:
| |
Collapse
|
242
|
Pawar H, Kulkarni A, Dixit T, Chaphekar D, Patole MS. A bioinformatics approach to reanalyze the genome annotation of kinetoplastid protozoan parasite Leishmania donovani. Genomics 2014; 104:554-61. [DOI: 10.1016/j.ygeno.2014.09.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Revised: 09/18/2014] [Accepted: 09/19/2014] [Indexed: 10/24/2022]
|
243
|
Hupalo DN, Bradic M, Carlton JM. The impact of genomics on population genetics of parasitic diseases. Curr Opin Microbiol 2014; 23:49-54. [PMID: 25461572 DOI: 10.1016/j.mib.2014.11.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 10/30/2014] [Accepted: 11/03/2014] [Indexed: 10/24/2022]
Abstract
Parasites, defined as eukaryotic microbes and parasitic worms that cause global diseases of human and veterinary importance, span many lineages in the eukaryotic Tree of Life. Historically challenging to study due to their complicated life-cycles and association with impoverished settings, their inherent complexities are now being elucidated by genome sequencing. Over the course of the last decade, projects in large sequencing centers, and increasingly frequently in individual research labs, have sequenced dozens of parasite reference genomes and field isolates from patient populations. This 'tsunami' of genomic data is answering questions about parasite genetic diversity, signatures of evolution orchestrated through anti-parasitic drug and host immune pressure, and the characteristics of populations. This brief review focuses on the state of the art of parasitic protist genomics, how the peculiar genomes of parasites are driving creative methods for their sequencing, and the impact that next-generation sequencing is having on our understanding of parasite population genomics and control of the diseases they cause.
Collapse
Affiliation(s)
- Daniel N Hupalo
- Center for Genomics and Systems Biology, Department of Biology, New York University, 12 Waverly Place, New York, NY 10003, United States
| | - Martina Bradic
- Center for Genomics and Systems Biology, Department of Biology, New York University, 12 Waverly Place, New York, NY 10003, United States
| | - Jane M Carlton
- Center for Genomics and Systems Biology, Department of Biology, New York University, 12 Waverly Place, New York, NY 10003, United States.
| |
Collapse
|
244
|
Cross-species genetic exchange between visceral and cutaneous strains of Leishmania in the sand fly vector. Proc Natl Acad Sci U S A 2014; 111:16808-13. [PMID: 25385616 DOI: 10.1073/pnas.1415109111] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Genetic exchange between Leishmania major strains during their development in the sand fly vector has been experimentally shown. To investigate the possibility of genetic exchange between different Leishmania species, a cutaneous strain of L. major and a visceral strain of Leishmania infantum, each bearing a different drug-resistant marker, were used to coinfect Lutzomyia longipalpis sand flies. Eleven double-drug-resistant progeny clones, each the product of an independent mating event, were generated and submitted to genotype and phenotype analyses. The analysis of multiple allelic markers across the genome suggested that each progeny clone inherited at least one full set of chromosomes from each parent, with loss of heterozygosity at some loci, and uniparental retention of maxicircle kinetoplast DNA. Hybrids with DNA contents of approximately 2n, 3n, and 4n were observed. In vivo studies revealed clear differences in the ability of the hybrids to produce pathology in the skin or to disseminate to and grow in the viscera, suggesting polymorphisms and differential inheritance of the gene(s) controlling these traits. The studies, to our knowledge, represent the first experimental confirmation of cross-species mating in Leishmania, opening the way toward genetic linkage analysis of important traits and providing strong evidence that genetic exchange is responsible for the generation of the mixed-species genotypes observed in natural populations.
Collapse
|
245
|
Comparative in-silico genome analysis of Leishmania (Leishmania) donovani: A step towards its species specificity. Meta Gene 2014; 2:782-98. [PMID: 25606461 PMCID: PMC4287845 DOI: 10.1016/j.mgene.2014.10.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Revised: 09/12/2014] [Accepted: 10/04/2014] [Indexed: 12/24/2022] Open
Abstract
Comparative genome analysis of recently sequenced Leishmania (L.) donovani was unexplored so far. The present study deals with the complete scanning of L. (L.) donovani genome revealing its interspecies variations. 60 distinctly present genes in L. (L.) donovani were identified when the whole genome was compared with Leishmania (L.) infantum. Similarly 72, 159, and 265 species specific genes were identified in L. (L.) donovani when compared to Leishmania (L.) major, Leishmania (L.) mexicana and Leishmania (Viannia) braziliensis respectively. The cross comparison of L. (L.) donovani in parallel with the other sequenced species of leishmanial led to the identification of 55 genes which are highly specific and expressed exclusively in L. (L.) donovani. We found mainly the discrepancies of surface proteins such as amastins, proteases, and peptidases. Also 415 repeat containing proteins in L. (L.) donovani and their differential distribution in other leishmanial species were identified which might have a potential role during pathogenesis. The genes identified can be evaluated as drug targets for anti-leishmanial treatment, exploring the scope for extensive future investigations. Comparative genome analysis identifies 55 species specific L. (L.) donovani genes. Discrepancies of surface proteins such as amastins, proteases, and peptidases are identified in L. (L.) donovani. Apical Membrane Antigen (AMA1) might be a novel factor which helps L. (L.) donovani invasion. Novel A2 and amastin genes in L. (L.) donovani genome are identified. Our study identifies differential gene distribution in L. (L.) donovani with respect to other leishmanial species.
Collapse
|
246
|
Dujardin JC, Mannaert A, Durrant C, Cotton JA. Mosaic aneuploidy in Leishmania: the perspective of whole genome sequencing. Trends Parasitol 2014; 30:554-5. [PMID: 25458156 DOI: 10.1016/j.pt.2014.09.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Revised: 09/23/2014] [Accepted: 09/25/2014] [Indexed: 10/24/2022]
Affiliation(s)
- Jean-Claude Dujardin
- Unit of Molecular Parasitology, Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium; Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium.
| | - An Mannaert
- Unit of Molecular Parasitology, Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Caroline Durrant
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton CB10 1SA, UK
| | - James A Cotton
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton CB10 1SA, UK
| |
Collapse
|
247
|
Screening and characterization of RAPD markers in viscerotropic Leishmania parasites. PLoS One 2014; 9:e109773. [PMID: 25313833 PMCID: PMC4196940 DOI: 10.1371/journal.pone.0109773] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Accepted: 09/02/2014] [Indexed: 11/19/2022] Open
Abstract
Visceral leishmaniasis (VL) is mainly due to the Leishmania donovani complex. VL is endemic in many countries worldwide including East Africa and the Mediterranean region where the epidemiology is complex. Taxonomy of these pathogens is under controversy but there is a correlation between their genetic diversity and geographical origin. With steady increase in genome knowledge, RAPD is still a useful approach to identify and characterize novel DNA markers. Our aim was to identify and characterize polymorphic DNA markers in VL Leishmania parasites in diverse geographic regions using RAPD in order to constitute a pool of PCR targets having the potential to differentiate among the VL parasites. 100 different oligonucleotide decamers having arbitrary DNA sequences were screened for reproducible amplification and a selection of 28 was used to amplify DNA from 12 L. donovani, L. archibaldi and L. infantum strains having diverse origins. A total of 155 bands were amplified of which 60.65% appeared polymorphic. 7 out of 28 primers provided monomorphic patterns. Phenetic analysis allowed clustering the parasites according to their geographical origin. Differentially amplified bands were selected, among them 22 RAPD products were successfully cloned and sequenced. Bioinformatic analysis allowed mapping of the markers and sequences and priming sites analysis. This study was complemented with Southern-blot to confirm assignment of markers to the kDNA. The bioinformatic analysis identified 16 nuclear and 3 minicircle markers. Analysis of these markers highlighted polymorphisms at RAPD priming sites with mainly 5′ end transversions, and presence of inter– and intra– taxonomic complex sequence and microsatellites variations; a bias in transitions over transversions and indels between the different sequences compared is observed, which is however less marked between L. infantum and L. donovani. The study delivers a pool of well-documented polymorphic DNA markers, to develop molecular diagnostics assays to characterize and differentiate VL causing agents.
Collapse
|
248
|
Tschoeke DA, Nunes GL, Jardim R, Lima J, Dumaresq AS, Gomes MR, de Mattos Pereira L, Loureiro DR, Stoco PH, de Matos Guedes HL, de Miranda AB, Ruiz J, Pitaluga A, Silva FP, Probst CM, Dickens NJ, Mottram JC, Grisard EC, Dávila AM. The Comparative Genomics and Phylogenomics of Leishmania amazonensis Parasite. Evol Bioinform Online 2014; 10:131-53. [PMID: 25336895 PMCID: PMC4182287 DOI: 10.4137/ebo.s13759] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2013] [Revised: 02/21/2014] [Accepted: 02/25/2014] [Indexed: 12/20/2022] Open
Abstract
Leishmaniasis is an infectious disease caused by Leishmania species. Leishmania amazonensis is a New World Leishmania species belonging to the Mexicana complex, which is able to cause all types of leishmaniasis infections. The L. amazonensis reference strain MHOM/BR/1973/M2269 was sequenced identifying 8,802 codifying sequences (CDS), most of them of hypothetical function. Comparative analysis using six Leishmania species showed a core set of 7,016 orthologs. L. amazonensis and Leishmania mexicana share the largest number of distinct orthologs, while Leishmania braziliensis presented the largest number of inparalogs. Additionally, phylogenomic analysis confirmed the taxonomic position for L. amazonensis within the “Mexicana complex”, reinforcing understanding of the split of New and Old World Leishmania. Potential non-homologous isofunctional enzymes (NISE) were identified between L. amazonensis and Homo sapiens that could provide new drug targets for development.
Collapse
Affiliation(s)
- Diogo A Tschoeke
- Pólo de Biologia Computacional e Sistemas, Instituto Oswaldo Cruz (Fiocruz/IOC), Rio de Janeiro, RJ, Brazil. ; Laboratório de Biologia Computacional e Sistemas, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, RJ, Brazil
| | - Gisele L Nunes
- Laboratório de Biologia Computacional e Sistemas, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, RJ, Brazil
| | - Rodrigo Jardim
- Pólo de Biologia Computacional e Sistemas, Instituto Oswaldo Cruz (Fiocruz/IOC), Rio de Janeiro, RJ, Brazil. ; Laboratório de Biologia Computacional e Sistemas, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, RJ, Brazil
| | - Joana Lima
- Laboratório de Biologia Computacional e Sistemas, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, RJ, Brazil
| | - Aline Sr Dumaresq
- Laboratório de Biologia Computacional e Sistemas, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, RJ, Brazil
| | - Monete R Gomes
- Laboratório de Biologia Computacional e Sistemas, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, RJ, Brazil
| | - Leandro de Mattos Pereira
- Laboratório de Biologia Computacional e Sistemas, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, RJ, Brazil
| | - Daniel R Loureiro
- Pólo de Biologia Computacional e Sistemas, Instituto Oswaldo Cruz (Fiocruz/IOC), Rio de Janeiro, RJ, Brazil
| | - Patricia H Stoco
- Laboratório de Protozoologia, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Herbert Leonel de Matos Guedes
- Laboratório de Inflamação Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil. ; Wellcome Trust Centre for Molecular Parasitology, Institute of Immunity, Infection and Inflammation, College of MVLS, University of Glasgow, Glasgow, UK
| | - Antonio Basilio de Miranda
- Pólo de Biologia Computacional e Sistemas, Instituto Oswaldo Cruz (Fiocruz/IOC), Rio de Janeiro, RJ, Brazil. ; Laboratório de Biologia Computacional e Sistemas, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, RJ, Brazil
| | - Jeronimo Ruiz
- Pólo de Biologia Computacional e Sistemas, Instituto Oswaldo Cruz (Fiocruz/IOC), Rio de Janeiro, RJ, Brazil. ; Instituto René Rachou (Fiocruz/IRR), Belo Horizonte, MG, Brazil
| | - André Pitaluga
- Laboratório de Biologia Molecular de Parasitas e Vetores, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, RJ, Brazil
| | - Floriano P Silva
- Pólo de Biologia Computacional e Sistemas, Instituto Oswaldo Cruz (Fiocruz/IOC), Rio de Janeiro, RJ, Brazil. ; Laboratório de Bioquímica de Proteínas e Peptídeos, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, RJ, Brazil
| | - Christian M Probst
- Pólo de Biologia Computacional e Sistemas, Instituto Oswaldo Cruz (Fiocruz/IOC), Rio de Janeiro, RJ, Brazil. ; Instituto Carlos Chagas (Fiocruz/ICC), Curitiba, PR, Brazil
| | - Nicholas J Dickens
- Wellcome Trust Centre for Molecular Parasitology, Institute of Immunity, Infection and Inflammation, College of MVLS, University of Glasgow, Glasgow, UK
| | - Jeremy C Mottram
- Wellcome Trust Centre for Molecular Parasitology, Institute of Immunity, Infection and Inflammation, College of MVLS, University of Glasgow, Glasgow, UK
| | - Edmundo C Grisard
- Laboratório de Protozoologia, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Alberto Mr Dávila
- Pólo de Biologia Computacional e Sistemas, Instituto Oswaldo Cruz (Fiocruz/IOC), Rio de Janeiro, RJ, Brazil. ; Laboratório de Biologia Computacional e Sistemas, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
249
|
Leprohon P, Fernandez-Prada C, Gazanion É, Monte-Neto R, Ouellette M. Drug resistance analysis by next generation sequencing in Leishmania. INTERNATIONAL JOURNAL FOR PARASITOLOGY-DRUGS AND DRUG RESISTANCE 2014; 5:26-35. [PMID: 25941624 PMCID: PMC4412915 DOI: 10.1016/j.ijpddr.2014.09.005] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Revised: 09/04/2014] [Accepted: 09/08/2014] [Indexed: 12/30/2022]
Abstract
WGS revealed the complexity of resistance which is often polyclonal in Leishmania. An impressive variation in chromosome copy numbers exist between Leishmania species. The genotype heterogeneity complicates the analysis of resistance in field isolates.
The use of next generation sequencing has the power to expedite the identification of drug resistance determinants and biomarkers and was applied successfully to drug resistance studies in Leishmania. This allowed the identification of modulation in gene expression, gene dosage alterations, changes in chromosome copy numbers and single nucleotide polymorphisms that correlated with resistance in Leishmania strains derived from the laboratory and from the field. An impressive heterogeneity at the population level was also observed, individual clones within populations often differing in both genotypes and phenotypes, hence complicating the elucidation of resistance mechanisms. This review summarizes the most recent highlights that whole genome sequencing brought to our understanding of Leishmania drug resistance and likely new directions.
Collapse
Affiliation(s)
- Philippe Leprohon
- Centre de Recherche en Infectiologie, Centre de Recherche du CHU de Québec, 2705 Laurier Blvd., Québec G1V 4G2, Canada
| | - Christopher Fernandez-Prada
- Centre de Recherche en Infectiologie, Centre de Recherche du CHU de Québec, 2705 Laurier Blvd., Québec G1V 4G2, Canada
| | - Élodie Gazanion
- Centre de Recherche en Infectiologie, Centre de Recherche du CHU de Québec, 2705 Laurier Blvd., Québec G1V 4G2, Canada
| | - Rubens Monte-Neto
- Centre de Recherche en Infectiologie, Centre de Recherche du CHU de Québec, 2705 Laurier Blvd., Québec G1V 4G2, Canada
| | - Marc Ouellette
- Centre de Recherche en Infectiologie, Centre de Recherche du CHU de Québec, 2705 Laurier Blvd., Québec G1V 4G2, Canada
| |
Collapse
|
250
|
Stoco PH, Wagner G, Talavera-Lopez C, Gerber A, Zaha A, Thompson CE, Bartholomeu DC, Lückemeyer DD, Bahia D, Loreto E, Prestes EB, Lima FM, Rodrigues-Luiz G, Vallejo GA, Filho JFDS, Schenkman S, Monteiro KM, Tyler KM, de Almeida LGP, Ortiz MF, Chiurillo MA, de Moraes MH, Cunha ODL, Mendonça-Neto R, Silva R, Teixeira SMR, Murta SMF, Sincero TCM, Mendes TADO, Urmenyi TP, Silva VG, DaRocha WD, Andersson B, Romanha ÁJ, Steindel M, de Vasconcelos ATR, Grisard EC. Genome of the avirulent human-infective trypanosome--Trypanosoma rangeli. PLoS Negl Trop Dis 2014; 8:e3176. [PMID: 25233456 PMCID: PMC4169256 DOI: 10.1371/journal.pntd.0003176] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2013] [Accepted: 08/08/2014] [Indexed: 11/25/2022] Open
Abstract
Background Trypanosoma rangeli is a hemoflagellate protozoan parasite infecting humans and other wild and domestic mammals across Central and South America. It does not cause human disease, but it can be mistaken for the etiologic agent of Chagas disease, Trypanosoma cruzi. We have sequenced the T. rangeli genome to provide new tools for elucidating the distinct and intriguing biology of this species and the key pathways related to interaction with its arthropod and mammalian hosts. Methodology/Principal Findings The T. rangeli haploid genome is ∼24 Mb in length, and is the smallest and least repetitive trypanosomatid genome sequenced thus far. This parasite genome has shorter subtelomeric sequences compared to those of T. cruzi and T. brucei; displays intraspecific karyotype variability and lacks minichromosomes. Of the predicted 7,613 protein coding sequences, functional annotations could be determined for 2,415, while 5,043 are hypothetical proteins, some with evidence of protein expression. 7,101 genes (93%) are shared with other trypanosomatids that infect humans. An ortholog of the dcl2 gene involved in the T. brucei RNAi pathway was found in T. rangeli, but the RNAi machinery is non-functional since the other genes in this pathway are pseudogenized. T. rangeli is highly susceptible to oxidative stress, a phenotype that may be explained by a smaller number of anti-oxidant defense enzymes and heat-shock proteins. Conclusions/Significance Phylogenetic comparison of nuclear and mitochondrial genes indicates that T. rangeli and T. cruzi are equidistant from T. brucei. In addition to revealing new aspects of trypanosome co-evolution within the vertebrate and invertebrate hosts, comparative genomic analysis with pathogenic trypanosomatids provides valuable new information that can be further explored with the aim of developing better diagnostic tools and/or therapeutic targets. Comparative genomics is a powerful tool that affords detailed study of the genetic and evolutionary basis for aspects of lifecycles and pathologies caused by phylogenetically related pathogens. The reference genome sequences of three trypanosomatids, T. brucei, T. cruzi and L. major, and subsequent addition of multiple Leishmania and Trypanosoma genomes has provided data upon which large-scale investigations delineating the complex systems biology of these human parasites has been built. Here, we compare the annotated genome sequence of T. rangeli strain SC-58 to available genomic sequence and annotation data from related species. We provide analysis of gene content, genome architecture and key characteristics associated with the biology of this non-pathogenic trypanosome. Moreover, we report striking new genomic features of T. rangeli compared with its closest relative, T. cruzi, such as (1) considerably less amplification on the gene copy number within multigene virulence factor families such as MASPs, trans-sialidases and mucins; (2) a reduced repertoire of genes encoding anti-oxidant defense enzymes; and (3) the presence of vestigial orthologs of the RNAi machinery, which are insufficient to constitute a functional pathway. Overall, the genome of T. rangeli provides for a much better understanding of the identity, evolution, regulation and function of trypanosome virulence determinants for both mammalian host and insect vector.
Collapse
Affiliation(s)
- Patrícia Hermes Stoco
- Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil
- * E-mail: (PHS); (ECG)
| | - Glauber Wagner
- Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil
- Universidade do Oeste de Santa Catarina, Joaçaba, Santa Catarina, Brazil
| | - Carlos Talavera-Lopez
- Department of Cell and Molecular Biology, Science for Life Laboratory, Karolinska Institutet, Stockholm, Sweden
| | - Alexandra Gerber
- Laboratório Nacional de Computação Científica, Petrópolis, Rio de Janeiro, Brazil
| | - Arnaldo Zaha
- Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | | | | | | | - Diana Bahia
- Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
- Universidade Federal de São Paulo - Escola Paulista de Medicina, São Paulo, São Paulo, Brazil
| | - Elgion Loreto
- Universidade Federal de Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
| | | | - Fábio Mitsuo Lima
- Universidade Federal de São Paulo - Escola Paulista de Medicina, São Paulo, São Paulo, Brazil
| | | | | | | | - Sérgio Schenkman
- Universidade Federal de São Paulo - Escola Paulista de Medicina, São Paulo, São Paulo, Brazil
| | | | - Kevin Morris Tyler
- Biomedical Research Centre, School of Medicine, Health Policy and Practice, University of East Anglia, Norwich, United Kingdom
| | | | - Mauro Freitas Ortiz
- Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Miguel Angel Chiurillo
- Universidade Federal de São Paulo - Escola Paulista de Medicina, São Paulo, São Paulo, Brazil
- Universidad Centroccidental Lisandro Alvarado, Barquisimeto, Venezuela
| | | | | | | | - Rosane Silva
- Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | | | | | - Turán Peter Urmenyi
- Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | - Björn Andersson
- Department of Cell and Molecular Biology, Science for Life Laboratory, Karolinska Institutet, Stockholm, Sweden
| | - Álvaro José Romanha
- Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Mário Steindel
- Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | | | - Edmundo Carlos Grisard
- Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil
- * E-mail: (PHS); (ECG)
| |
Collapse
|