201
|
Campbell TL, De Silva EK, Olszewski KL, Elemento O, Llinás M. Identification and genome-wide prediction of DNA binding specificities for the ApiAP2 family of regulators from the malaria parasite. PLoS Pathog 2010; 6:e1001165. [PMID: 21060817 PMCID: PMC2965767 DOI: 10.1371/journal.ppat.1001165] [Citation(s) in RCA: 182] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2010] [Accepted: 09/27/2010] [Indexed: 11/18/2022] Open
Abstract
The molecular mechanisms underlying transcriptional regulation in apicomplexan parasites remain poorly understood. Recently, the Apicomplexan AP2 (ApiAP2) family of DNA binding proteins was identified as a major class of transcriptional regulators that are found across all Apicomplexa. To gain insight into the regulatory role of these proteins in the malaria parasite, we have comprehensively surveyed the DNA-binding specificities of all 27 members of the ApiAP2 protein family from Plasmodium falciparum revealing unique binding preferences for the majority of these DNA binding proteins. In addition to high affinity primary motif interactions, we also observe interactions with secondary motifs. The ability of a number of ApiAP2 proteins to bind multiple, distinct motifs significantly increases the potential complexity of the transcriptional regulatory networks governed by the ApiAP2 family. Using these newly identified sequence motifs, we infer the trans-factors associated with previously reported plasmodial cis-elements and provide evidence that ApiAP2 proteins modulate key regulatory decisions at all stages of parasite development. Our results offer a detailed view of ApiAP2 DNA binding specificity and take the first step toward inferring comprehensive gene regulatory networks for P. falciparum.
Collapse
Affiliation(s)
- Tracey L. Campbell
- Department of Molecular Biology & Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, United States of America
| | - Erandi K. De Silva
- Department of Molecular Biology & Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, United States of America
| | - Kellen L. Olszewski
- Department of Molecular Biology & Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, United States of America
| | - Olivier Elemento
- Institute for Computational Medicine, Weill Cornell Medical College, New York, New York, United States of America
| | - Manuel Llinás
- Department of Molecular Biology & Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, United States of America
- * E-mail:
| |
Collapse
|
202
|
Lahav T, Sivam D, Volpin H, Ronen M, Tsigankov P, Green A, Holland N, Kuzyk M, Borchers C, Zilberstein D, Myler PJ. Multiple levels of gene regulation mediate differentiation of the intracellular pathogen Leishmania. FASEB J 2010; 25:515-25. [PMID: 20952481 DOI: 10.1096/fj.10-157529] [Citation(s) in RCA: 122] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
For many years, mRNA abundance has been used as the surrogate measure of gene expression in biological systems. However, recent genome-scale analyses in both bacteria and eukaryotes have revealed that mRNA levels correlate with steady-state protein abundance for only 50-70% of genes, indicating that translation and post-translation processes also play important roles in determining gene expression. What is not yet clear is whether dynamic processes such as cell cycle progression, differentiation, or response to environmental changes change the relationship between mRNA and protein abundance. Here, we describe a systems approach to interrogate promastigote-to-amastigote differentiation in the obligatory intracellular parasitic protozoan Leishmania donovani. Our results indicate that regulation of mRNA levels plays a major role early in the differentiation process, while translation and post-translational regulation are more important in the latter part. In addition, it appears that the differentiation signal causes a transient global increase in the rate of protein synthesis, which is subsequently down-regulated by phosphorylation of α-subunit of translation initiation factor 2. Thus, Leishmania dynamically changes the relationship between mRNA and protein abundance as it adapts to new environmental circumstances. It is likely that similar mechanisms play a more important role than previously recognized in regulation of gene expression in other organisms.
Collapse
Affiliation(s)
- T Lahav
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
203
|
Shuaibu MN, Kikuchi M, Cherif MS, Helegbe GK, Yanagi T, Hirayama K. Selection and identification of malaria vaccine target molecule using bioinformatics and DNA vaccination. Vaccine 2010; 28:6868-75. [PMID: 20709002 DOI: 10.1016/j.vaccine.2010.08.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2010] [Revised: 07/21/2010] [Accepted: 08/02/2010] [Indexed: 11/24/2022]
Abstract
Following a genome-wide search for a blood stage malaria DNA-based vaccine using web-based bioinformatic tools, 29 genes from the annotated Plasmodium yoelii genome sequence (www.PlasmoDB.org and www.tigr.org) were identified as encoding GPI-anchored proteins. Target genes were those with orthologues in P. falciparum, containing an N-terminal signal sequence containing hydrophobic amino acid stretch and signal P criteria, a transmembrane-like domain and GPI anchor motif. Focusing on the blood stage, we extracted mRNA from pRBCs, PCR-amplified 22 out of the 29 selected genes, and eventually cloned nine of these into a DNA vaccine plasmid, pVAX 200-DEST. Biojector-mediated delivery of the nine DNA vaccines was conducted using ShimaJET to C57BL/6 mice at a dose of 4 μg/mouse three times at an interval of 3 weeks. Two weeks after the second booster, immunized mice were challenged with P. y. yoelii 17XL-parasitized RBCs and the level of parasitaemia, protection and survival was assessed. Immunization with one gene (PY03470) resulted in 2-4 days of delayed onset and level of parasitaemia and was associated with increased survival compared to non-immunized mice. Antibody production was, however, low following DNA vaccination, as determined by immunofluorescence assay. Recombinant protein from this gene, GPI8p transamidase-related protein (rPyTAM) in PBS or emulsified with GERBU adjuvant was also used to immunize another set of C57BL/6 mice with 10-20 μg/mouse three times at 3-week interval. Higher antibody response was obtained as determined by ELISA with similar protective effects as observed after DNA vaccination.
Collapse
Affiliation(s)
- M N Shuaibu
- Department of Immunogenetics, Institute of Tropical Medicine (NEKKEN), Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
| | | | | | | | | | | |
Collapse
|
204
|
Dixit A, Singh PK, Sharma GP, Malhotra P, Sharma P. PfSRPK1, a novel splicing-related kinase from Plasmodium falciparum. J Biol Chem 2010; 285:38315-23. [PMID: 20870716 DOI: 10.1074/jbc.m110.119255] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Even though it is increasingly evident that post-transcriptional events like mRNA processing and splicing may regulate gene expression and proteome diversity of malaria parasite Plasmodium, molecular mechanisms that regulate events like mRNA splicing in malaria parasite are poorly understood. Protein kinases control a wide variety of cellular events in almost all eukaryotes, including modulation of mRNA splicing, transport, and stability. We have identified a novel splicing-related protein kinase from Plasmodium falciparum, PfSRPK1. PfSRPK1 when incubated with parasite nuclear extracts inhibited RNA splicing, suggesting that it may control mRNA splicing in the parasite. PfSR1, a putative splicing factor from P. falciparum, was identified as a substrate of PfSRPK1. PfSR1 interacts with RNA and PfSRPK1 modulates its RNA binding. Early in the parasite development, PfSRPK1 and PfSR1 are present in the nucleus. These studies provide useful insights into the function of two potentially key components of P. falciparum mRNA splicing machinery.
Collapse
Affiliation(s)
- Aparna Dixit
- Eukaryotic Gene Expression Laboratory, National Institute of Immunology, New Delhi 110067, India
| | | | | | | | | |
Collapse
|
205
|
Abstract
The Plasmodium parasite, the causative agent of malaria, is an excellent model for immunomic-based approaches to vaccine development. The Plasmodium parasite has a complex life cycle with multiple stages and stage-specific expression of ∼5300 putative proteins. No malaria vaccine has yet been licensed. Many believe that an effective vaccine will need to target several antigens and multiple stages, and will require the generation of both antibody and cellular immune responses. Vaccine efforts to date have been stage-specific and based on only a very limited number of proteins representing <0.5% of the genome. The recent availability of comprehensive genomic, proteomic and transcriptomic datasets from human and selected non-human primate and rodent malarias provide a foundation to exploit for vaccine development. This information can be mined to identify promising vaccine candidate antigens, by proteome-wide screening of antibody and T cell reactivity using specimens from individuals exposed to malaria and technology platforms such as protein arrays, high throughput protein production and epitope prediction algorithms. Such antigens could be incorporated into a rational vaccine development process that targets specific stages of the Plasmodium parasite life cycle with immune responses implicated in parasite elimination and control. Immunomic approaches which enable the selection of the best possible targets by prioritising antigens according to clinically relevant criteria may overcome the problem of poorly immunogenic, poorly protective vaccines that has plagued malaria vaccine developers for the past 25 years. Herein, current progress and perspectives regarding Plasmodium immunomics are reviewed.
Collapse
Affiliation(s)
- Denise L Doolan
- Division of Immunology, Queensland Institute of Medical Research, The Bancroft Centre, 300 Herston Road, P.O. Royal Brisbane Hospital, Brisbane, QLD 4029, Australia.
| |
Collapse
|
206
|
Chruściel M, Zięcik AJ, Andronowska A. Expression of the vascular endothelial growth factor (VEGF-A) and its receptors in the umbilical cord in the course of pregnancy in the pig. Reprod Domest Anim 2010; 46:434-43. [PMID: 20825582 DOI: 10.1111/j.1439-0531.2010.01686.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The umbilical cord (UC) and the placenta are important organs through which respiratory gases, nutrients, wastes and biologically active substances are exchanged between the maternal and the foetal system. A rapid placental vascularization observed in the second half of pig pregnancy is positively correlated with the mRNA expression of the vascular endothelial growth factor (VEGF). Based on these findings, we hypothesized that VEGF may have a stimulatory effect in the dynamically growing UC. To further understand the role of the VEGF-VEGFR system during UC development, mRNA and protein expression as well as the cellular localization of VEGF-A, VEGFR-1 and VEGFR-2 in UC were examined on days 40, 60, 75 and 90 of pregnancy and after physiological delivery in the pig (day 114 of pregnancy). Real Time RT-PCR analysis showed an increase in the mRNA levels of VEGF120 and VEGF164 from day 90 of pregnancy. VEGFR-1 mRNA expression was significantly increased on day 75 of pregnancy. No significant changes in VEGFR-2 mRNA expression were detected. In turn, western blot analysis revealed an increase in VEGF-A protein expression on day 40, compared to the later days of pregnancy. A rapid increase in the VEGFR-1 protein level was noted on day 75 and 90 of gestation. No significant changes in VEGFR-2 protein expression were detected on any of the analysed days of pregnancy. Immunohistochemical staining enabled detection of VEGF-VEGFR system, in endothelial and tunica media cells of the umbilical vessels and in allantoic duct and amniotic epithelium on all analysed days of pregnancy. Positive reactions for VEGF-A and VEGFR-1, but not VEGFR-2, were also observed in myofibroblasts. In conclusion, this data shows that members of the VEGF-VEGFR system are temporally and spatially well localized for playing key roles during umbilical cord formation and its intensive growth observed after day 75 of pregnancy.
Collapse
Affiliation(s)
- M Chruściel
- Institute of Animal Reproduction and Food Research of Polish Academy of Sciences, Olsztyn, Poland
| | | | | |
Collapse
|
207
|
Huthmacher C, Hoppe A, Bulik S, Holzhütter HG. Antimalarial drug targets in Plasmodium falciparum predicted by stage-specific metabolic network analysis. BMC SYSTEMS BIOLOGY 2010; 4:120. [PMID: 20807400 PMCID: PMC2941759 DOI: 10.1186/1752-0509-4-120] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2009] [Accepted: 08/31/2010] [Indexed: 12/20/2022]
Abstract
BACKGROUND Despite enormous efforts to combat malaria the disease still afflicts up to half a billion people each year of which more than one million die. Currently no approved vaccine is available and resistances to antimalarials are widely spread. Hence, new antimalarial drugs are urgently needed. RESULTS Here, we present a computational analysis of the metabolism of Plasmodium falciparum, the deadliest malaria pathogen. We assembled a compartmentalized metabolic model and predicted life cycle stage specific metabolism with the help of a flux balance approach that integrates gene expression data. Predicted metabolite exchanges between parasite and host were found to be in good accordance with experimental findings when the parasite's metabolic network was embedded into that of its host (erythrocyte). Knock-out simulations identified 307 indispensable metabolic reactions within the parasite. 35 out of 57 experimentally demonstrated essential enzymes were recovered and another 16 enzymes, if additionally the assumption was made that nutrient uptake from the host cell is limited and all reactions catalyzed by the inhibited enzyme are blocked. This predicted set of putative drug targets, shown to be enriched with true targets by a factor of at least 2.75, was further analyzed with respect to homology to human enzymes, functional similarity to therapeutic targets in other organisms and their predicted potency for prophylaxis and disease treatment. CONCLUSIONS The results suggest that the set of essential enzymes predicted by our flux balance approach represents a promising starting point for further drug development.
Collapse
Affiliation(s)
- Carola Huthmacher
- Institute of Biochemistry, Charité, Monbijoustraße 2, 10117 Berlin, Germany
| | - Andreas Hoppe
- Institute of Biochemistry, Charité, Monbijoustraße 2, 10117 Berlin, Germany
| | - Sascha Bulik
- Institute of Biochemistry, Charité, Monbijoustraße 2, 10117 Berlin, Germany
| | | |
Collapse
|
208
|
Tedder PMR, Bradford JR, Needham CJ, McConkey GA, Bulpitt AJ, Westhead DR. Gene function prediction using semantic similarity clustering and enrichment analysis in the malaria parasite Plasmodium falciparum. ACTA ACUST UNITED AC 2010; 26:2431-7. [PMID: 20693320 DOI: 10.1093/bioinformatics/btq450] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
MOTIVATION Functional genomics data provides a rich source of information that can be used in the annotation of the thousands of genes of unknown function found in most sequenced genomes. However, previous gene function prediction programs are mostly produced for relatively well-annotated organisms that often have a large amount of functional genomics data. Here, we present a novel method for predicting gene function that uses clustering of genes by semantic similarity, a naïve Bayes classifier and 'enrichment analysis' to predict gene function for a genome that is less well annotated but does has a severe effect on human health, that of the malaria parasite Plasmodium falciparum. RESULTS Predictions for the molecular function, biological process and cellular component of P.falciparum genes were created from eight different datasets with a combined prediction also being produced. The high-confidence predictions produced by the combined prediction were compared to those produced by a simple K-nearest neighbour classifier approach and were shown to improve accuracy and coverage. Finally, two case studies are described, which investigate two biological processes in more detail, that of translation initiation and invasion of the host cell. AVAILABILITY Predictions produced are available at http://www.bioinformatics.leeds.ac.uk/∼bio5pmrt/PAGODA.
Collapse
Affiliation(s)
- Philip M R Tedder
- Institute of Molecular and Cellular Biology, University of Leeds, Leeds, UK
| | | | | | | | | | | |
Collapse
|
209
|
Hughes KR, Philip N, Lucas Starnes G, Taylor S, Waters AP. From cradle to grave: RNA biology in malaria parasites. WILEY INTERDISCIPLINARY REVIEWS-RNA 2010; 1:287-303. [DOI: 10.1002/wrna.30] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Katie R. Hughes
- Division of Infection and Immunity, Faculty of Biomedical Life Sciences, Glasgow Biomedical Research Centre, University of Glasgow, 120 University Place, Glasgow G12 8TA, Scotland, UK
- Wellcome Centre for Molecular Parasitology, Glasgow Biomedical Research Centre, University of Glasgow, 120 University Place, Glasgow G12 8TA, Scotland, UK
| | - Nisha Philip
- Division of Infection and Immunity, Faculty of Biomedical Life Sciences, Glasgow Biomedical Research Centre, University of Glasgow, 120 University Place, Glasgow G12 8TA, Scotland, UK
- Wellcome Centre for Molecular Parasitology, Glasgow Biomedical Research Centre, University of Glasgow, 120 University Place, Glasgow G12 8TA, Scotland, UK
| | - G. Lucas Starnes
- Division of Infection and Immunity, Faculty of Biomedical Life Sciences, Glasgow Biomedical Research Centre, University of Glasgow, 120 University Place, Glasgow G12 8TA, Scotland, UK
- Wellcome Centre for Molecular Parasitology, Glasgow Biomedical Research Centre, University of Glasgow, 120 University Place, Glasgow G12 8TA, Scotland, UK
| | - Sonya Taylor
- Division of Infection and Immunity, Faculty of Biomedical Life Sciences, Glasgow Biomedical Research Centre, University of Glasgow, 120 University Place, Glasgow G12 8TA, Scotland, UK
- Wellcome Centre for Molecular Parasitology, Glasgow Biomedical Research Centre, University of Glasgow, 120 University Place, Glasgow G12 8TA, Scotland, UK
| | - Andrew P. Waters
- Division of Infection and Immunity, Faculty of Biomedical Life Sciences, Glasgow Biomedical Research Centre, University of Glasgow, 120 University Place, Glasgow G12 8TA, Scotland, UK
- Wellcome Centre for Molecular Parasitology, Glasgow Biomedical Research Centre, University of Glasgow, 120 University Place, Glasgow G12 8TA, Scotland, UK
| |
Collapse
|
210
|
Merozoite surface proteins of the malaria parasite: The MSP1 complex and the MSP7 family. Int J Parasitol 2010; 40:1155-61. [PMID: 20451527 DOI: 10.1016/j.ijpara.2010.04.008] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2010] [Revised: 04/22/2010] [Accepted: 04/26/2010] [Indexed: 11/21/2022]
|
211
|
Prusty D, Dar A, Priya R, Sharma A, Dana S, Choudhury NR, Rao NS, Dhar SK. Single-stranded DNA binding protein from human malarial parasite Plasmodium falciparum is encoded in the nucleus and targeted to the apicoplast. Nucleic Acids Res 2010; 38:7037-53. [PMID: 20571080 PMCID: PMC2978346 DOI: 10.1093/nar/gkq565] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Apicoplast, an essential organelle of human malaria parasite Plasmodium falciparum contains a ∼35 kb circular genome and is a possible target for therapy. Proteins required for the replication and maintenance of the apicoplast DNA are not clearly known. Here we report the presence of single-stranded DNA binding protein (SSB) in P falciparum. PfSSB is targeted to the apicoplast and it binds to apicoplast DNA. A strong ssDNA binding activity specific to SSB was also detected in P. falciparum lysate. Both the recombinant and endogenous proteins form tetramers and the homology modelling shows the presence of an oligosaccharide/oligonucleotide-binding fold responsible for ssDNA binding. Additionally, we used SSB as a tool to track the mechanism of delayed death phenomena shown by apicoplast targeted drugs ciprofloxacin and tetracycline. We find that the transport of PfSSB is severely affected during the second life cycle following drug treatment. Moreover, the translation of PfSSB protein and not the transcription of PfSSB seem to be down-regulated specifically during second life cycle although there is no considerable change in protein expression profile between drug-treated and untreated parasites. These results suggest dual control of translocation and translation of apicoplast targeted proteins behind the delayed death phenomena.
Collapse
Affiliation(s)
- Dhaneswar Prusty
- Special Centre for Molecular Medicine, School of Physical Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | | | | | | | | | | | | | | |
Collapse
|
212
|
Jemmely NY, Niang M, Preiser PR. Small variant surface antigens and Plasmodium evasion of immunity. Future Microbiol 2010; 5:663-82. [PMID: 20353305 DOI: 10.2217/fmb.10.21] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Antigenic variation at the Plasmodium-infected erythrocyte surface plays a critical role in malaria disease severity and host immune evasion. Our current understanding of the role of Plasmodium variant surface antigens in antigenic variation and immune evasion is largely limited to the extensive work carried out on the Plasmodium falciparum var gene family. Although homologues of var genes are not present in other malaria species, small variant gene families comprising the rif and stevor genes in P. falciparum and the pir genes in Plasmodium vivax, Plasmodium knowlesi and the rodent malaria Plasmodium chabaudi, Plasmodium berghei and Plasmodium yoelii also show features suggesting a role in antigenic variation and immune evasion. In this article, we highlight our current understanding of these variant antigens and provide insights on the mechanisms developed by malaria parasites to effectively avoid the host immune response and establish chronic infection.
Collapse
Affiliation(s)
- Noelle Yvonne Jemmely
- Nanyang Technological University, School of Biological Sciences, 60 Nanyang Drive, Singapore 637551, Singapore.
| | | | | |
Collapse
|
213
|
Wang H, Wang Q, Pape UJ, Shen B, Huang J, Wu B, Li X. Systematic investigation of global coordination among mRNA and protein in cellular society. BMC Genomics 2010; 11:364. [PMID: 20529381 PMCID: PMC2900266 DOI: 10.1186/1471-2164-11-364] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2009] [Accepted: 06/09/2010] [Indexed: 01/02/2023] Open
Abstract
Background Cell functions depend on molecules organized in the cellular society. Two basic components are mRNA molecules and proteins. The interactions within and between those two components are crucial for carrying out sophisticated cell functions. The interplay can be analyzed by comparing expression levels of mRNA and proteins. This is critical for understanding the molecular interactions, (post-) transcriptional regulations and conservation of co-expression between mRNAs and proteins. By using high-throughput transcriptome and proteome data, this study aims to systematically investigate the general picture of such expression correlations. We analyze four groups of correlations: (i) transcript levels of different genes, (ii) protein levels of different genes, (iii) mRNA levels with protein levels of different genes and (iv) mRNA levels with protein levels of same genes. This helps to obtain global insights into the stability and variability of co-expression and correlation of mRNA and protein levels. Results Analysis of the simultaneous co-expression of mRNAs and proteins yields mainly weak correlations. Therefore we introduce the concept of time-delayed co-expression patterns. Based on a time-course dataset, we obtain a high fraction of time-delayed correlations. In group (i), 67% of different transcripts are significantly correlated. At the protein level (ii), 68% of different proteins are significantly correlated. Comparison of the different molecular levels results in a 74% fraction of correlated transcript and protein levels of different genes (iii) and 56% for the same genes (iv). Furthermore, a higher fraction of protein levels (simultaneously 20% and short time-delayed 29%) is correlated than at the transcript level (10% and 18% respectively). Analysis of the dynamics of the correlation shows that correlation at the transcript level is largely passed to the protein level. In contrast, specific co-expression patterns are changed in multiple ways. Conclusions Our analysis reveals that the regulation of transcription and translation contains a time-delayed component. The correlation at the protein level is more synchronous or delayed by shorter time than those at the transcript level. This supports the hypothesis that a higher degree of direct physical interactions require a higher synchronicity between the interacting partners. The conservation of correlation between the transcript level (i) and the protein level (ii) sheds light on the processes underlying transcription, translation and regulation. A future investigation of the conditions of conservation will give comprehensive insights in the complexity of the regulatory mechanisms.
Collapse
Affiliation(s)
- Haiyun Wang
- School of Life Science and Technology, Tongji University, Shanghai 200092, China.
| | | | | | | | | | | | | |
Collapse
|
214
|
Systematic genetic analysis of the Plasmodium falciparum MSP7-like family reveals differences in protein expression, location, and importance in asexual growth of the blood-stage parasite. EUKARYOTIC CELL 2010; 9:1064-74. [PMID: 20472690 DOI: 10.1128/ec.00048-10] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Proteins located on Plasmodium falciparum merozoites, the invasive form of the parasite's asexual blood stage, are of considerable interest in vaccine research. Merozoite surface protein 7 (MSP7) forms a complex with MSP1 and is encoded by a member of a multigene family located on chromosome 13. The family codes for MSP7 and five MSP7-related proteins (MSRPs). In the present study, we have investigated the expression and the effect of msrp gene deletion at the asexual blood stage. In addition to msp7, msrp2, msrp3, and msrp5 are transcribed, and mRNA was easily detected by hybridization analysis, whereas mRNA for msrp1 and msrp4 could be detected only by reverse transcription (RT)-PCR. Notwithstanding evidence of transcription, antibodies to recombinant MSRPs failed to detect specific proteins, except for antibodies to MSRP2. Sequential proteolytic cleavages of MSRP2 resulted in 28- and 25-kDa forms. However, MSRP2 was absent from merozoites; the 25-kDa MSRP2 protein (MSRP2(25)) was soluble and secreted upon merozoite egress. The msrp genes were deleted by targeted disruption in the 3D7 line, leading to ablation of full-length transcripts. MSRP deletion mutants had no detectable phenotype, with growth and invasion characteristics comparable to those of the parental parasite; only the deletion of MSP7 led to a detectable growth phenotype. Thus, within this family some of the genes are transcribed at a significant level in asexual blood stages, but the corresponding proteins may or may not be detectable. Interactions of the expressed proteins with the merozoite also differ. These results highlight the potential for unexpected differences of protein expression levels within gene families.
Collapse
|
215
|
Smith DP, Kitner JB, Norbeck AD, Clauss TR, Lipton MS, Schwalbach MS, Steindler L, Nicora CD, Smith RD, Giovannoni SJ. Transcriptional and translational regulatory responses to iron limitation in the globally distributed marine bacterium Candidatus pelagibacter ubique. PLoS One 2010; 5:e10487. [PMID: 20463970 PMCID: PMC2864753 DOI: 10.1371/journal.pone.0010487] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2010] [Accepted: 04/11/2010] [Indexed: 11/19/2022] Open
Abstract
Iron is recognized as an important micronutrient that limits microbial plankton productivity over vast regions of the oceans. We investigated the gene expression responses of Candidatus Pelagibacter ubique cultures to iron limitation in natural seawater media supplemented with a siderophore to chelate iron. Microarray data indicated transcription of the periplasmic iron binding protein sfuC increased by 16-fold, and iron transporter subunits, iron-sulfur center assembly genes, and the putative ferroxidase rubrerythrin transcripts increased to a lesser extent. Quantitative peptide mass spectrometry revealed that sfuC protein abundance increased 27-fold, despite an average decrease of 59% across the global proteome. Thus, we propose sfuC as a marker gene for indicating iron limitation in marine metatranscriptomic and metaproteomic ecological surveys. The marked proteome reduction was not directly correlated to changes in the transcriptome, implicating post-transcriptional regulatory mechanisms as modulators of protein expression. Two RNA-binding proteins, CspE and CspL, correlated well with iron availability, suggesting that they may contribute to the observed differences between the transcriptome and proteome. We propose a model in which the RNA-binding activity of CspE and CspL selectively enables protein synthesis of the iron acquisition protein SfuC during transient growth-limiting episodes of iron scarcity.
Collapse
Affiliation(s)
- Daniel P. Smith
- Molecular and Cellular Biology Program, Oregon State University, Corvallis, Oregon, United States of America
| | - Joshua B. Kitner
- Department of Microbiology, Oregon State University, Corvallis, Oregon, United States of America
| | - Angela D. Norbeck
- Biological and Computational Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, United States of America
| | - Therese R. Clauss
- Biological and Computational Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, United States of America
| | - Mary S. Lipton
- Biological and Computational Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, United States of America
| | - Michael S. Schwalbach
- Department of Microbiology, Oregon State University, Corvallis, Oregon, United States of America
| | - Laura Steindler
- Department of Microbiology, Oregon State University, Corvallis, Oregon, United States of America
| | - Carrie D. Nicora
- Biological and Computational Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, United States of America
| | - Richard D. Smith
- Biological and Computational Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, United States of America
| | - Stephen J. Giovannoni
- Department of Microbiology, Oregon State University, Corvallis, Oregon, United States of America
- * E-mail:
| |
Collapse
|
216
|
Becker JVW, Mtwisha L, Crampton BG, Stoychev S, van Brummelen AC, Reeksting S, Louw AI, Birkholtz LM, Mancama DT. Plasmodium falciparum spermidine synthase inhibition results in unique perturbation-specific effects observed on transcript, protein and metabolite levels. BMC Genomics 2010; 11:235. [PMID: 20385001 PMCID: PMC2867828 DOI: 10.1186/1471-2164-11-235] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2009] [Accepted: 04/12/2010] [Indexed: 12/02/2022] Open
Abstract
Background Plasmodium falciparum, the causative agent of severe human malaria, has evolved to become resistant to previously successful antimalarial chemotherapies, most notably chloroquine and the antifolates. The prevalence of resistant strains has necessitated the discovery and development of new chemical entities with novel modes-of-action. Although much effort has been invested in the creation of analogues based on existing drugs and the screening of chemical and natural compound libraries, a crucial shortcoming in current Plasmodial drug discovery efforts remains the lack of an extensive set of novel, validated drug targets. A requirement of these targets (or the pathways in which they function) is that they prove essential for parasite survival. The polyamine biosynthetic pathway, responsible for the metabolism of highly abundant amines crucial for parasite growth, proliferation and differentiation, is currently under investigation as an antimalarial target. Chemotherapeutic strategies targeting this pathway have been successfully utilized for the treatment of Trypanosomes causing West African sleeping sickness. In order to further evaluate polyamine depletion as possible antimalarial intervention, the consequences of inhibiting P. falciparum spermidine synthase (PfSpdSyn) were examined on a morphological, transcriptomic, proteomic and metabolic level. Results Morphological analysis of P. falciparum 3D7 following application of the PfSpdSyn inhibitor cyclohexylamine confirmed that parasite development was completely arrested at the early trophozoite stage. This is in contrast to untreated parasites which progressed to late trophozoites at comparable time points. Global gene expression analyses confirmed a transcriptional arrest in the parasite. Several of the differentially expressed genes mapped to the polyamine biosynthetic and associated metabolic pathways. Differential expression of corresponding parasite proteins involved in polyamine biosynthesis was also observed. Most notably, uridine phosphorylase, adenosine deaminase, lysine decarboxylase (LDC) and S-adenosylmethionine synthetase were differentially expressed at the transcript and/or protein level. Several genes in associated metabolic pathways (purine metabolism and various methyltransferases) were also affected. The specific nature of the perturbation was additionally reflected by changes in polyamine metabolite levels. Conclusions This study details the malaria parasite's response to PfSpdSyn inhibition on the transcriptomic, proteomic and metabolic levels. The results corroborate and significantly expand previous functional genomics studies relating to polyamine depletion in this parasite. Moreover, they confirm the role of transcriptional regulation in P. falciparum, particularly in this pathway. The findings promote this essential pathway as a target for antimalarial chemotherapeutic intervention strategies.
Collapse
|
217
|
Malaria gametocytogenesis. Mol Biochem Parasitol 2010; 172:57-65. [PMID: 20381542 PMCID: PMC2880792 DOI: 10.1016/j.molbiopara.2010.03.019] [Citation(s) in RCA: 163] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2010] [Revised: 03/29/2010] [Accepted: 03/30/2010] [Indexed: 02/07/2023]
Abstract
Male and female gametocytes are the components of the malaria parasite life cycle which are taken up from an infected host bloodstream by mosquitoes and thus mediate disease transmission. These gamete precursors are morphologically and functionally quite distinct from their asexual blood stage counterparts and this is reflected in their distinct patterns of gene expression, cellular development and metabolism. Recent transcriptome, proteome and reverse genetic studies have added valuable information to that obtained from traditional studies. However, we still have no answer to the fundamental question regarding sexual development: 'what triggers gametocytogenesis'? In the current climate of eradication/elimination, tackling transmission by killing gametocytes has an important place on the agenda because most antimalarial drugs, whilst killing asexual blood stage parasites, have no effect on the transmissible stages.
Collapse
|
218
|
Westenberger SJ, McClean CM, Chattopadhyay R, Dharia NV, Carlton JM, Barnwell JW, Collins WE, Hoffman SL, Zhou Y, Vinetz JM, Winzeler EA. A systems-based analysis of Plasmodium vivax lifecycle transcription from human to mosquito. PLoS Negl Trop Dis 2010; 4:e653. [PMID: 20386602 PMCID: PMC2850316 DOI: 10.1371/journal.pntd.0000653] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2009] [Accepted: 03/01/2010] [Indexed: 11/18/2022] Open
Abstract
Background Up to 40% of the world's population is at risk for Plasmodium vivax malaria, a disease that imposes a major public health and economic burden on endemic countries. Because P. vivax produces latent liver forms, eradication of P. vivax malaria is more challenging than it is for P. falciparum. Genetic analysis of P. vivax is exceptionally difficult due to limitations of in vitro culture. To overcome the barriers to traditional molecular biology in P. vivax, we examined parasite transcriptional changes in samples from infected patients and mosquitoes in order to characterize gene function, define regulatory sequences and reveal new potential vaccine candidate genes. Principal Findings We observed dramatic changes in transcript levels for various genes at different lifecycle stages, indicating that development is partially regulated through modulation of mRNA levels. Our data show that genes involved in common biological processes or molecular machinery are co-expressed. We identified DNA sequence motifs upstream of co-expressed genes that are conserved across Plasmodium species that are likely binding sites of proteins that regulate stage-specific transcription. Despite their capacity to form hypnozoites we found that P. vivax sporozoites show stage-specific expression of the same genes needed for hepatocyte invasion and liver stage development in other Plasmodium species. We show that many of the predicted exported proteins and members of multigene families show highly coordinated transcription as well. Conclusions We conclude that high-quality gene expression data can be readily obtained directly from patient samples and that many of the same uncharacterized genes that are upregulated in different P. vivax lifecycle stages are also upregulated in similar stages in other Plasmodium species. We also provide numerous examples of how systems biology is a powerful method for determining the likely function of genes in pathogens that are neglected due to experimental intractability. Most of the 250 million malaria cases outside of Africa are caused by the parasite Plasmodium vivax. Although drugs can be used to treat P. vivax malaria, drug resistance is spreading and there is no available vaccine. Because this species cannot be readily grown in the laboratory there are added challenges to understanding the function of the many hypothetical genes in the genome. We isolated transcriptional messages from parasites growing in human blood and in mosquitoes, labeled the messages and measured how their levels for different parasite growth conditions. The data for 5,419 parasite genes shows extensive changes as the parasite moves between human and mosquito and reveals highly expressed genes whose proteins might represent new therapeutic targets for experimental vaccines. We discover sets of genes that are likely to play a role in the earliest stages of hepatocyte infection. We find intriguing differences in the expression patterns of different blood stage parasites that may be related to host-response status.
Collapse
Affiliation(s)
- Scott J. Westenberger
- Department of Cell Biology ICND 202, The Scripps Research Institute, La Jolla, California, United States of America
| | - Colleen M. McClean
- Division of Infectious Diseases, Department of Medicine, University of California San Diego School of Medicine, La Jolla, California, United States of America
| | | | - Neekesh V. Dharia
- Department of Cell Biology ICND 202, The Scripps Research Institute, La Jolla, California, United States of America
| | - Jane M. Carlton
- Department of Medical Parasitology, New York University Langone Medical Center, New York, New York, United States of America
| | - John W. Barnwell
- Centers for Disease Control and Prevention, Division of Parasitic Diseases, Atlanta, Georgia, United States of America
| | - William E. Collins
- Centers for Disease Control and Prevention, Division of Parasitic Diseases, Atlanta, Georgia, United States of America
| | | | - Yingyao Zhou
- Genomics Institute of the Novartis Research Foundation, San Diego, California, United States of America
| | - Joseph M. Vinetz
- Division of Infectious Diseases, Department of Medicine, University of California San Diego School of Medicine, La Jolla, California, United States of America
| | - Elizabeth A. Winzeler
- Department of Cell Biology ICND 202, The Scripps Research Institute, La Jolla, California, United States of America
- * E-mail:
| |
Collapse
|
219
|
Hajduch M, Hearne LB, Miernyk JA, Casteel JE, Joshi T, Agrawal GK, Song Z, Zhou M, Xu D, Thelen JJ. Systems analysis of seed filling in Arabidopsis: using general linear modeling to assess concordance of transcript and protein expression. PLANT PHYSIOLOGY 2010; 152:2078-87. [PMID: 20118269 PMCID: PMC2850034 DOI: 10.1104/pp.109.152413] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2009] [Accepted: 01/26/2010] [Indexed: 05/18/2023]
Abstract
Previous systems analyses in plants have focused on a single developmental stage or time point, although it is often important to additionally consider time-index changes. During seed development a cascade of events occurs within a relatively brief time scale. We have collected protein and transcript expression data from five sequential stages of Arabidopsis (Arabidopsis thaliana) seed development encompassing the period of reserve polymer accumulation. Protein expression profiling employed two-dimensional gel electrophoresis coupled with tandem mass spectrometry, while transcript profiling used oligonucleotide microarrays. Analyses in biological triplicate yielded robust expression information for 523 proteins and 22,746 genes across the five developmental stages, and established 319 protein/transcript pairs for subsequent pattern analysis. General linear modeling was used to evaluate the protein/transcript expression patterns. Overall, application of this statistical assessment technique showed concurrence for a slight majority (56%) of expression pairs. Many specific examples of discordant protein/transcript expression patterns were detected, suggesting that this approach will be useful in revealing examples of posttranscriptional regulation.
Collapse
|
220
|
Miao J, Li J, Fan Q, Li X, Li X, Cui L. The Puf-family RNA-binding protein PfPuf2 regulates sexual development and sex differentiation in the malaria parasite Plasmodium falciparum. J Cell Sci 2010; 123:1039-49. [PMID: 20197405 DOI: 10.1242/jcs.059824] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Translation regulation plays an important role during gametocytogenesis in the malaria parasite, a process that is obligatory for the transmission of the parasite through mosquito vectors. In this study we determined the function of PfPuf2, a member of the Puf family of translational repressors, in gametocytogenesis of Plasmodium falciparum. Tagging of the endogenous PfPuf2 protein with green fluorescent protein showed that PfPuf2 was expressed in both male and female gametocytes, and the protein was localized in the cytoplasm of the parasite. Targeted disruption of the PfPuf2 gene did not affect asexual growth of the parasite, but promoted the formation of gametocytes and differentiation of male gametocytes. Complementation studies were performed to confirm that the resultant phenotypic changes were due to disruption of the PfPuf2 gene. Episomal expression of PfPuf2 under its cognate promoter almost restored the gametocytogenesis rate in a PfPuf2 disruptant to the level of the wild-type parasite. It also partially restored the effect of PfPuf2 disruption on male-female sex ratio. In addition, episomal overexpression of PfPuf2 under its cognate promoter but with a higher concentration of the selection drug or under the constitutive hsp86 promoter in both the PfPuf2-disruptant and wild-type 3D7 lines, further dramatically reduced gametocytogenesis rates and sex ratios. These findings suggest that in this early branch of eukaryotes the function of PfPuf2 is consistent with the ancestral function of suppressing differentiation proposed for Puf-family proteins.
Collapse
Affiliation(s)
- Jun Miao
- Department of Entomology, The Pennsylvania State University, University Park, PA 16802, USA
| | | | | | | | | | | |
Collapse
|
221
|
Regulation of gene expression in protozoa parasites. J Biomed Biotechnol 2010; 2010:726045. [PMID: 20204171 PMCID: PMC2830571 DOI: 10.1155/2010/726045] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2009] [Revised: 11/10/2009] [Accepted: 01/08/2010] [Indexed: 12/25/2022] Open
Abstract
Infections with protozoa parasites are associated with high burdens of morbidity and mortality across the developing world. Despite extensive efforts to control the transmission of these parasites, the spread of populations resistant to drugs and the lack of effective vaccines against them contribute to their persistence as major public health problems. Parasites should perform a strict control on the expression of genes involved in their pathogenicity, differentiation, immune evasion, or drug resistance, and the comprehension of the mechanisms implicated in that control could help to develop novel therapeutic strategies. However, until now these mechanisms are poorly understood in protozoa. Recent investigations into gene expression in protozoa parasites suggest that they possess many of the canonical machineries employed by higher eukaryotes for the control of gene expression at transcriptional, posttranscriptional, and epigenetic levels, but they also contain exclusive mechanisms. Here, we review the current understanding about the regulation of gene expression in Plasmodium sp., Trypanosomatids, Entamoeba histolytica and Trichomonas vaginalis.
Collapse
|
222
|
Gopalakrishnan AM, López-Estraño C. Role of cis-regulatory elements on the ring-specific hrp3 promoter in the human parasite Plasmodium falciparum. Parasitol Res 2010; 106:833-45. [PMID: 20127361 DOI: 10.1007/s00436-010-1738-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2009] [Accepted: 01/04/2010] [Indexed: 11/30/2022]
Abstract
Identification of promoter elements responsible for regulation of gene expression has been hampered by the AT richness of P. falciparum intergenic regions. Nested deletions of histidine-rich protein 3 (hrp3) promoter suggested the presence of a multipartite ring-specific element. Linker scanning (LS) of this ring-specific promoter showed that the alteration of several promoter regions decreased the luciferase activity compared to the wild-type configuration, indicating that these regions played a role in gene expression. No homology was observed by comparison of putative regulatory elements of other genes identified by bioinformatic analysis with the hrp3 enhancer, implying a different mechanism of gene regulation by the hrp3 promoter. LS and deletion analysis of the 5' untranslated region (UTR) of the hrp3 suggested that this region contains elements which interact with promoter elements to regulate gene expression. Analysis of the intron in the UTR region suggested that this region does not play a role in stage specificity in the hrp3 promoter. Together, our results indicate the presence of multiple mechanisms of gene regulation in the parasite.
Collapse
|
223
|
PlasmoPredict: a gene function prediction website for Plasmodium falciparum. Trends Parasitol 2010; 26:107-10. [PMID: 20089451 DOI: 10.1016/j.pt.2009.12.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2009] [Revised: 12/16/2009] [Accepted: 12/18/2009] [Indexed: 12/19/2022]
Abstract
The genome sequence of the malaria parasite Plasmodium falciparum was published in 2002 and revealed that approximately 60% of its genes could not be assigned a function. Eight years later the majority of P. falciparum proteins are still of unknown function. We therefore present PlasmoPredict, an easy-to-use online gene function prediction tool that integrates a wide range of functional genomics data for P. falciparum to aid in the annotation of these genes.
Collapse
|
224
|
Bischoff E, Vaquero C. In silico and biological survey of transcription-associated proteins implicated in the transcriptional machinery during the erythrocytic development of Plasmodium falciparum. BMC Genomics 2010; 11:34. [PMID: 20078850 PMCID: PMC2821373 DOI: 10.1186/1471-2164-11-34] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2009] [Accepted: 01/15/2010] [Indexed: 11/12/2022] Open
Abstract
Background Malaria is the most important parasitic disease in the world with approximately two million people dying every year, mostly due to Plasmodium falciparum infection. During its complex life cycle in the Anopheles vector and human host, the parasite requires the coordinated and modulated expression of diverse sets of genes involved in epigenetic, transcriptional and post-transcriptional regulation. However, despite the availability of the complete sequence of the Plasmodium falciparum genome, we are still quite ignorant about Plasmodium mechanisms of transcriptional gene regulation. This is due to the poor prediction of nuclear proteins, cognate DNA motifs and structures involved in transcription. Results A comprehensive directory of proteins reported to be potentially involved in Plasmodium transcriptional machinery was built from all in silico reports and databanks. The transcription-associated proteins were clustered in three main sets of factors: general transcription factors, chromatin-related proteins (structuring, remodelling and histone modifying enzymes), and specific transcription factors. Only a few of these factors have been molecularly analysed. Furthermore, from transcriptome and proteome data we modelled expression patterns of transcripts and corresponding proteins during the intra-erythrocytic cycle. Finally, an interactome of these proteins based either on in silico or on 2-yeast-hybrid experimental approaches is discussed. Conclusion This is the first attempt to build a comprehensive directory of potential transcription-associated proteins in Plasmodium. In addition, all complete transcriptome, proteome and interactome raw data were re-analysed, compared and discussed for a better comprehension of the complex biological processes of Plasmodium falciparum transcriptional regulation during the erythrocytic development.
Collapse
Affiliation(s)
- Emmanuel Bischoff
- Institut Pasteur, Unité d'Immunologie Moléculaire des Parasites, CNRS URA 2581, 25-28 rue du Dr Roux, 75724, Paris cedex 15, France.
| | | |
Collapse
|
225
|
Ponts N, Harris EY, Prudhomme J, Wick I, Eckhardt-Ludka C, Hicks GR, Hardiman G, Lonardi S, Le Roch KG. Nucleosome landscape and control of transcription in the human malaria parasite. Genome Res 2010; 20:228-38. [PMID: 20054063 DOI: 10.1101/gr.101063.109] [Citation(s) in RCA: 118] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
In eukaryotic cells, chromatin reorganizes within promoters of active genes to allow the transcription machinery and various transcription factors to access DNA. In this model, promoter-specific transcription factors bind DNA to initiate the production of mRNA in a tightly regulated manner. In the case of the human malaria parasite, Plasmodium falciparum, specific transcription factors are apparently underrepresented with regards to the size of the genome, and mechanisms underlying transcriptional regulation are controversial. Here, we investigate the modulation of DNA accessibility by chromatin remodeling during the parasite infection cycle. We have generated genome-wide maps of nucleosome occupancy across the parasite erythrocytic cycle using two complementary assays--the formaldehyde-assisted isolation of regulatory elements to extract protein-free DNA (FAIRE) and the MNase-mediated purification of mononucleosomes to extract histone-bound DNA (MAINE), both techniques being coupled to high-throughput sequencing. We show that chromatin architecture undergoes drastic upheavals throughout the parasite's cycle, contrasting with targeted chromatin reorganization usually observed in eukaryotes. Chromatin loosens after the invasion of the red blood cell and then repacks prior to the next cycle. Changes in nucleosome occupancy within promoter regions follow this genome-wide pattern, with a few exceptions such as the var genes involved in virulence and genes expressed at early stages of the cycle. We postulate that chromatin structure and nucleosome turnover control massive transcription during the erythrocytic cycle. Our results demonstrate that the processes driving gene expression in Plasmodium challenge the classical eukaryotic model of transcriptional regulation occurring mostly at the transcription initiation level.
Collapse
Affiliation(s)
- Nadia Ponts
- Department of Cell Biology and Neuroscience, University of California, Riverside, California 92521, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
226
|
Arike L, Nahku R, Borrisova M, Adamberg K, Vilu R. Identification and relative quantification of proteins in Escherichia coli proteome by "up-front" collision-induced dissociation. EUROPEAN JOURNAL OF MASS SPECTROMETRY (CHICHESTER, ENGLAND) 2010; 16:227-235. [PMID: 20212332 DOI: 10.1255/ejms.1068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
A method for identifying and quantifying proteins with relatively low-cost orthogonal acceleration time-of- flight mass spectrometry (oa-ToF-MS) was tested. Escherichia coli (E. coli) K12 MG1655 cell lysate was separated by 1D gel-electrophoresis; fractions were digested and separated fast and reproducibly by ultra-performance liquid chromatography (UPLC). Peptides were identified using oa-ToF-MS to measure exact masses of parent ions and the fragment ions generated by up-front collision-induced dissociation. Fragmentation of all compounds was achieved by rapidly cycling between high- and low values of energy applied to ions. More than 100 proteins from E. coli K12 proteome were identified and relatively quantified. Results were found to correlate with transcriptome data determined by DNA microarrays.
Collapse
Affiliation(s)
- Liisa Arike
- Competence Centre of Food and Fermentation Technologies, 12618 Tallinn, Estonia.
| | | | | | | | | |
Collapse
|
227
|
Titanji VPK, Amambua-Ngwa A, Anong DN, Mbandi SK, Tangie E, Tening I, Yengo R. Isolation and expression of UB05, a Plasmodium falciparum antigen recognised by antibodies from semi-immune adults in a high transmission endemic area of the Cameroonian rainforest. Clin Chem Lab Med 2009; 47:1147-58. [PMID: 19728857 DOI: 10.1515/cclm.2009.255] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Antibodies in adults living in malaria endemic areas that target specific parasite antigens are implicated in protective immunity to infection and disease. This study aimed to identify, isolate and characterise targets of protective immunity in malaria. A Plasmodium falciparum antigen termed UB05 (Genbank Accession Number DQ235690: PlasmoDB PF10_ 0372) that had been isolated by immunoscreening with semi-immune sera was studied. METHODS Polymerase chain reaction, sequencing and bioinformatics were used to analyse the UB05 gene. A specific mouse anti-UB05 antibody was used in parasite reinvasion growth/inhibition assays and in immunoflourescence to localise the antigen. In a cross-sectional study, enzyme linked immunosorbent assay was used to study immunoglobulin G (IgG) responses to the antigen. RESULTS The gene revealed significant homologies with gene sequences from Plasmodia and other apicomplexan parasites and had two alleles in the wild P. falciparum isolates. The antigen is expressed by schizonts and segmented merozoites. Mouse antibodies against it marginally inhibit in vitro invasion of erythrocytes by P. falciparum. The IgG responses to UB05 were found to be significantly lower (p<0.05) in the sera of children (2-5 years) compared with adults (>18 years), with or without parasitaemia. However, parasitaemia correlated inversely (r=0.7- 0.75) with serum anti-UB05 IgG concentrations. Furthermore, anti-UB05 IgG concentrations were lower in the sera of febrile patients (body temperature >37.5 degrees C) than their non-febrile counterparts regardless of parasitaemia status. CONCLUSIONS These results are compatible with a role for UB05 in the development of immunity and as a marker of protective immunity to malaria.
Collapse
|
228
|
de Sousa Abreu R, Penalva LO, Marcotte EM, Vogel C. Global signatures of protein and mRNA expression levels. MOLECULAR BIOSYSTEMS 2009; 5:1512-26. [PMID: 20023718 DOI: 10.1039/b908315d] [Citation(s) in RCA: 599] [Impact Index Per Article: 37.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Cellular states are determined by differential expression of the cell's proteins. The relationship between protein and mRNA expression levels informs about the combined outcomes of translation and protein degradation which are, in addition to transcription and mRNA stability, essential contributors to gene expression regulation. This review summarizes the state of knowledge about large-scale measurements of absolute protein and mRNA expression levels, and the degree of correlation between the two parameters. We summarize the information that can be derived from comparison of protein and mRNA expression levels and discuss how corresponding sequence characteristics suggest modes of regulation.
Collapse
Affiliation(s)
- Raquel de Sousa Abreu
- Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, TX, USA
| | | | | | | |
Collapse
|
229
|
Bullen HE, Tonkin CJ, O'Donnell RA, Tham WH, Papenfuss AT, Gould S, Cowman AF, Crabb BS, Gilson PR. A novel family of Apicomplexan glideosome-associated proteins with an inner membrane-anchoring role. J Biol Chem 2009; 284:25353-63. [PMID: 19561073 PMCID: PMC2757237 DOI: 10.1074/jbc.m109.036772] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2009] [Indexed: 11/06/2022] Open
Abstract
The phylum Apicomplexa are a group of obligate intracellular parasites responsible for a wide range of important diseases. Central to the lifecycle of these unicellular parasites is their ability to migrate through animal tissue and invade target host cells. Apicomplexan movement is generated by a unique system of gliding motility in which substrate adhesins and invasion-related proteins are pulled across the plasma membrane by an underlying actin-myosin motor. The myosins of this motor are inserted into a dual membrane layer called the inner membrane complex (IMC) that is sandwiched between the plasma membrane and an underlying cytoskeletal basket. Central to our understanding of gliding motility is the characterization of proteins residing within the IMC, but to date only a few proteins are known. We report here a novel family of six-pass transmembrane proteins, termed the GAPM family, which are highly conserved and specific to Apicomplexa. In Plasmodium falciparum and Toxoplasma gondii the GAPMs localize to the IMC where they form highly SDS-resistant oligomeric complexes. The GAPMs co-purify with the cytoskeletal alveolin proteins and also to some degree with the actin-myosin motor itself. Hence, these proteins are strong candidates for an IMC-anchoring role, either directly or indirectly tethering the motor to the cytoskeleton.
Collapse
Affiliation(s)
- Hayley E. Bullen
- From the Macfarlane Burnet Institute for Medical Research & Public Health, 85 Commercial Road, Melbourne, Victoria 3004
- the Department of Medical Biology, The University of Melbourne, Parkville, Victoria 3010
- the Infection and Immunity Division, and
| | | | | | | | - Anthony T. Papenfuss
- the Bioinformatics Division, The Walter & Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3050, and
| | - Sven Gould
- the School of Botany, The University of Melbourne, Parkville, Victoria 3050, Australia
| | | | - Brendan S. Crabb
- From the Macfarlane Burnet Institute for Medical Research & Public Health, 85 Commercial Road, Melbourne, Victoria 3004
| | - Paul R. Gilson
- From the Macfarlane Burnet Institute for Medical Research & Public Health, 85 Commercial Road, Melbourne, Victoria 3004
| |
Collapse
|
230
|
Chung DWD, Ponts N, Cervantes S, Le Roch KG. Post-translational modifications in Plasmodium: more than you think! Mol Biochem Parasitol 2009; 168:123-34. [PMID: 19666057 DOI: 10.1016/j.molbiopara.2009.08.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2009] [Revised: 07/10/2009] [Accepted: 08/03/2009] [Indexed: 12/21/2022]
Abstract
Recent evidences indicate that transcription in Plasmodium may be hard-wired and rigid, deviating from the classical model of transcriptional gene regulation. Thus, it is important that other regulatory pathways be investigated as a comprehensive effort to curb the deadly malarial parasite. Research in post-translational modifications in Plasmodium is an emerging field that may provide new venues for drug discovery and potential new insights into how parasitic protozoans regulate their life cycle. Here, we discuss the recent findings of post-translational modifications in Plasmodium.
Collapse
Affiliation(s)
- Duk-Won Doug Chung
- Department of Cell Biology and Neuroscience, University of California, Riverside, 900 University Avenue, Riverside, CA 92521, USA
| | | | | | | |
Collapse
|
231
|
Abstract
SUMMARYIt is difficult to recapture the excitement of recent research into the malaria parasites.Plasmodiumhas shown itself to be a most elegant, resourceful and downright devious cell. To reveal any of its manifold secrets is a hard-won privilege. The thrill of this intellectual endeavour, however, has to be tempered by the realism that we have made unremarkable progress in attacking malaria in the field, where it remains almost as omnipresent as it ever was in the 19th and 20th centuries, and both the parasite and vector have become more difficult to control than ever before. This personal view looks back at the significant progress made, and forward to the challenges of the future, focusing on work on sexual development.
Collapse
|
232
|
Bhowmick IP, Kumar N, Sharma S, Coppens I, Jarori GK. Plasmodium falciparum enolase: stage-specific expression and sub-cellular localization. Malar J 2009; 8:179. [PMID: 19642995 PMCID: PMC2794028 DOI: 10.1186/1475-2875-8-179] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2009] [Accepted: 07/30/2009] [Indexed: 11/13/2022] Open
Abstract
Background In an earlier study, it was observed that the vaccination with Plasmodium falciparum enolase can confer partial protection against malaria in mice. Evidence has also build up to indicate that enolases may perform several non-glycolytic functions in pathogens. Investigating the stage-specific expression and sub-cellular localization of a protein may provide insights into its moonlighting functions. Methods Sub-cellular localization of P. falciparum enolase was examined using immunofluorescence assay, immuno-gold electron microscopy and western blotting. Results Enolase protein was detected at every stage in parasite life cycle examined. In asexual stages, enolase was predominantly (≥85–90%) present in soluble fraction, while in sexual stages it was mostly associated with particulate fraction. Apart from cytosol, enolase was found to be associated with nucleus, food vacuole, cytoskeleton and plasma membrane. Conclusion Diverse localization of enolase suggests that apart from catalyzing the conversion of 2-phosphoglycericacid into phosphoenolpyruvate in glycolysis, enolase may be involved in a host of other biological functions. For instance, enolase localized on the merozoite surface may be involved in red blood cell invasion; vacuolar enolase may be involved in food vacuole formation and/or development; nuclear enolase may play a role in transcription.
Collapse
Affiliation(s)
- Ipsita Pal Bhowmick
- Department of Biological Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Mumbai-400005, India.
| | | | | | | | | |
Collapse
|
233
|
Akide-Ndunge OB, Tambini E, Giribaldi G, McMillan PJ, Müller S, Arese P, Turrini F. Co-ordinated stage-dependent enhancement of Plasmodium falciparum antioxidant enzymes and heat shock protein expression in parasites growing in oxidatively stressed or G6PD-deficient red blood cells. Malar J 2009; 8:113. [PMID: 19480682 PMCID: PMC2696464 DOI: 10.1186/1475-2875-8-113] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2008] [Accepted: 05/29/2009] [Indexed: 11/10/2022] Open
Abstract
Background Plasmodium falciparum-parasitized red blood cells (RBCs) are equipped with protective antioxidant enzymes and heat shock proteins (HSPs). The latter are only considered to protect against thermal stress. Important issues are poorly explored: first, it is insufficiently known how both systems are expressed in relation to the parasite developmental stage; secondly, it is unknown whether P. falciparum HSPs are redox-responsive, in view of redox sensitivity of HSP in eukaryotic cells; thirdly, it is poorly known how the antioxidant defense machinery would respond to increased oxidative stress or inhibited antioxidant defense. Those issues are interesting as several antimalarials increase the oxidative stress or block antioxidant defense in the parasitized RBC. In addition, numerous inhibitors of HSPs are currently developed for cancer therapy and might be tested as anti-malarials. Thus, the joint disruption of the parasite antioxidant enzymes/HSP system would interfere with parasite growth and open new perspectives for anti-malaria therapy. Methods Stage-dependent mRNA expression of ten representative P. falciparum antioxidant enzymes and hsp60/70–2/70–3/75/90 was studied by quantitative real-time RT-PCR in parasites growing in normal RBCs, in RBCs oxidatively-stressed by moderate H2O2 generation and in G6PD-deficient RBCs. Protein expression of antioxidant enzymes was assayed by Western blotting. The pentosephosphate-pathway flux was measured in isolated parasites after Sendai-virus lysis of RBC membrane. Results In parasites growing in normal RBCs, mRNA expression of antioxidant enzymes and HSPs displayed co-ordinated stage-dependent modulation, being low at ring, highest at early trophozoite and again very low at schizont stage. Additional exogenous oxidative stress or growth in antioxidant blunted G6PD-deficient RBCs indicated remarkable flexibility of both systems, manifested by enhanced, co-ordinated mRNA expression of antioxidant enzymes and HSPs. Protein expression of antioxidant enzymes was also increased in oxidatively-stressed trophozoites. Conclusion Results indicated that mRNA expression of parasite antioxidant enzymes and HSPs was co-ordinated and stage-dependent. Secondly, both systems were redox-responsive and showed remarkably increased and co-ordinated expression in oxidatively-stressed parasites and in parasites growing in antioxidant blunted G6PD-deficient RBCs. Lastly, as important anti-malarials either increase oxidant stress or impair antioxidant defense, results may encourage the inclusion of anti-HSP molecules in anti-malarial combined drugs.
Collapse
Affiliation(s)
- Oscar Bate Akide-Ndunge
- Department of Genetics, Biology and Biochemistry, University of Torino Medical School, Torino, Italy.
| | | | | | | | | | | | | |
Collapse
|
234
|
Morahan BJ, Sallmann GB, Huestis R, Dubljevic V, Waller KL. Plasmodium falciparum: genetic and immunogenic characterisation of the rhoptry neck protein PfRON4. Exp Parasitol 2009; 122:280-8. [PMID: 19442663 DOI: 10.1016/j.exppara.2009.04.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2009] [Revised: 04/07/2009] [Accepted: 04/29/2009] [Indexed: 11/16/2022]
Abstract
The Apicomplexan parasites Toxoplasma and Plasmodium, respectively, cause toxoplasmosis and malaria in humans and although they invade different host cells they share largely conserved invasion mechanisms. Plasmodium falciparum merozoite invasion of red blood cells results from a series of co-ordinated events that comprise attachment of the merozoite, its re-orientation, release of the contents of the invasion-related apical organelles (the rhoptries and micronemes) followed by active propulsion of the merozoite into the cell via an actin-myosin motor. During this process, a tight junction between the parasite and red blood cell plasma membranes is formed and recent studies have identified rhoptry neck proteins, including PfRON4, that are specifically associated with the tight junction during invasion. Here, we report the structure of the gene that encodes PfRON4 and its apparent limited diversity amongst geographically diverse P. falciparum isolates. We also report that PfRON4 protein sequences elicit immunogenic responses in natural human malaria infections.
Collapse
Affiliation(s)
- Belinda J Morahan
- Department of Microbiology, Monash University, Clayton, Vic. 3800, Australia
| | | | | | | | | |
Collapse
|
235
|
Ishino T, Boisson B, Orito Y, Lacroix C, Bischoff E, Loussert C, Janse C, Ménard R, Yuda M, Baldacci P. LISP1 is important for the egress of Plasmodium berghei parasites from liver cells. Cell Microbiol 2009; 11:1329-39. [PMID: 19438514 PMCID: PMC2774474 DOI: 10.1111/j.1462-5822.2009.01333.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Most Apicomplexa are obligatory intracellular parasites that multiply inside a so-called parasitophorous vacuole (PV) formed upon parasite entry into the host cell. Plasmodium, the agent of malaria and the Apicomplexa most deadly to humans, multiplies in both hepatocytes and erythrocytes in the mammalian host. Although much has been learned on how Apicomplexa parasites invade host cells inside a PV, little is known of how they rupture the PV membrane and egress host cells. Here, we characterize a Plasmodium protein, called LISP1 (liver-specific protein 1), which is specifically involved in parasite egress from hepatocytes. LISP1 is expressed late during parasite development inside hepatocytes and locates at the PV membrane. Intracellular parasites deficient in LISP1 develop into hepatic merozoites, which display normal infectivity to erythrocytes. However, LISP1-deficient liver-stage parasites do not rupture the membrane of the PV and remain trapped inside hepatocytes. LISP1 is the first Plasmodium protein shown by gene targeting to be involved in the lysis of the PV membrane.
Collapse
Affiliation(s)
- Tomoko Ishino
- Institut Pasteur, Biologie et Génétique du Paludisme, 75724 Paris cedex 15, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
236
|
Teng R, Junankar PR, Bubb WA, Rae C, Mercier P, Kirk K. Metabolite profiling of the intraerythrocytic malaria parasite Plasmodium falciparum by (1)H NMR spectroscopy. NMR IN BIOMEDICINE 2009; 22:292-302. [PMID: 19021153 DOI: 10.1002/nbm.1323] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
NMR spectroscopy was used to identify and quantify compounds in extracts prepared from mature trophozoite-stage Plasmodium falciparum parasites isolated by saponin-permeabilisation of the host erythrocyte. One-dimensional (1)H NMR spectroscopy and four two-dimensional NMR techniques were used to identify more than 50 metabolites. The intracellular concentrations of over 40 metabolites were estimated from the (1)H NMR spectra of extracts prepared by four extraction methods: perchloric acid, methanol/water, methanol/chloroform/water, and methanol alone. The metabolites quantified included: the majority of the biological alpha-amino acids; 4-aminobutyric acid; mono-, di- and tri-carboxylic acids; nucleotides; polyamines; myo-inositol; and phosphocholine and phosphoethanolamine. The parasites also contained a significant concentration (up to 12 mM) of the exogenous buffering agent, HEPES. Although the metabolite profiles obtained with each extraction method were broadly similar, perchloric acid was found to have significant advantages over the other extraction media.
Collapse
Affiliation(s)
- Rongwei Teng
- Biochemistry and Molecular Biology, The Australian National University, Canberra, ACT, Australia
| | | | | | | | | | | |
Collapse
|
237
|
Patterns of gene-specific and total transcriptional activity during the Plasmodium falciparum intraerythrocytic developmental cycle. EUKARYOTIC CELL 2009; 8:327-38. [PMID: 19151330 DOI: 10.1128/ec.00340-08] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The relationships among gene regulatory mechanisms in the malaria parasite Plasmodium falciparum throughout its asexual intraerythrocytic developmental cycle (IDC) remain poorly understood. To investigate the level and nature of transcriptional activity and its role in controlling gene expression during the IDC, we performed nuclear run-on on whole-transcriptome samples from time points throughout the IDC and found a peak in RNA polymerase II-dependent transcriptional activity related to both the number of nuclei per parasite and variable transcriptional activity per nucleus over time. These differential total transcriptional activity levels allowed the calculation of the absolute transcriptional activities of individual genes from gene-specific nuclear run-on hybridization data. For half of the genes analyzed, sense-strand transcriptional activity peaked at the same time point as total activity. The antisense strands of several genes were substantially transcribed. Comparison of the transcriptional activity of the sense strand of each gene to its steady-state RNA abundance across the time points assayed revealed both correlations and discrepancies, implying transcriptional and posttranscriptional regulation, respectively. Our results demonstrate that such comparisons can effectively indicate gene regulatory mechanisms in P. falciparum and suggest that genes with diverse transcriptional activity levels and patterns combine to produce total transcriptional activity levels tied to parasite development during the IDC.
Collapse
|
238
|
Iengar P, Joshi NV. Identification of putative regulatory motifs in the upstream regions of co-expressed functional groups of genes in Plasmodium falciparum. BMC Genomics 2009; 10:18. [PMID: 19144114 PMCID: PMC2662883 DOI: 10.1186/1471-2164-10-18] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2008] [Accepted: 01/13/2009] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Regulation of gene expression in Plasmodium falciparum (Pf) remains poorly understood. While over half the genes are estimated to be regulated at the transcriptional level, few regulatory motifs and transcription regulators have been found. RESULTS The study seeks to identify putative regulatory motifs in the upstream regions of 13 functional groups of genes expressed in the intraerythrocytic developmental cycle of Pf. Three motif-discovery programs were used for the purpose, and motifs were searched for only on the gene coding strand. Four motifs -- the 'G-rich', the 'C-rich', the 'TGTG' and the 'CACA' motifs -- were identified, and zero to all four of these occur in the 13 sets of upstream regions. The 'CACA motif' was absent in functional groups expressed during the ring to early trophozoite transition. For functional groups expressed in each transition, the motifs tended to be similar. Upstream motifs in some functional groups showed 'positional conservation' by occurring at similar positions relative to the translational start site (TLS); this increases their significance as regulatory motifs. In the ribonucleotide synthesis, mitochondrial, proteasome and organellar translation machinery genes, G-rich, C-rich, CACA and TGTG motifs, respectively, occur with striking positional conservation. In the organellar translation machinery group, G-rich motifs occur close to the TLS. The same motifs were sometimes identified for multiple functional groups; differences in location and abundance of the motifs appear to ensure different modes of action. CONCLUSION The identification of positionally conserved over-represented upstream motifs throws light on putative regulatory elements for transcription in Pf.
Collapse
Affiliation(s)
- Prathima Iengar
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India.
| | | |
Collapse
|
239
|
Doolan DL, Mu Y, Unal B, Sundaresh S, Hirst S, Valdez C, Randall A, Molina D, Liang X, Freilich DA, Oloo JA, Blair PL, Aguiar JC, Baldi P, Davies DH, Felgner PL. Profiling humoral immune responses to P. falciparum infection with protein microarrays. Proteomics 2009; 8:4680-94. [PMID: 18937256 DOI: 10.1002/pmic.200800194] [Citation(s) in RCA: 203] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
A complete description of the serological response following exposure of humans to complex pathogens is lacking and approaches suitable for accomplishing this are limited. Here we report, using malaria as a model, a method which elucidates the profile of antibodies that develop after natural or experimental infection or after vaccination with attenuated organisms, and which identifies immunoreactive antigens of interest for vaccine development or other applications. Expression vectors encoding 250 Plasmodium falciparum (Pf) proteins were generated by PCR/recombination cloning; the proteins were individually expressed with >90% efficiency in Escherichia coli cell-free in vitro transcription and translation reactions, and printed directly without purification onto microarray slides. The protein microarrays were probed with human sera from one of four groups which differed in immune status: sterile immunity or no immunity against experimental challenge following vaccination with radiation-attenuated Pf sporozoites, partial immunity acquired by natural exposure, and no previous exposure to Pf. Overall, 72 highly reactive Pf antigens were identified. Proteomic features associated with immunoreactivity were identified. Importantly, antibody profiles were distinct for each donor group. Information obtained from such analyses will facilitate identifying antigens for vaccine development, dissecting the molecular basis of immunity, monitoring the outcome of whole-organism vaccine trials, and identifying immune correlates of protection.
Collapse
|
240
|
A large-scale analysis of tissue-specific pathology and gene expression of human disease genes and complexes. Proc Natl Acad Sci U S A 2008; 105:20870-5. [PMID: 19104045 DOI: 10.1073/pnas.0810772105] [Citation(s) in RCA: 229] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Heritable diseases are caused by germ-line mutations that, despite tissuewide presence, often lead to tissue-specific pathology. Here, we make a systematic analysis of the link between tissue-specific gene expression and pathological manifestations in many human diseases and cancers. Diseases were systematically mapped to tissues they affect from disease-relevant literature in PubMed to create a disease-tissue covariation matrix of high-confidence associations of >1,000 diseases to 73 tissues. By retrieving >2,000 known disease genes, and generating 1,500 disease-associated protein complexes, we analyzed the differential expression of a gene or complex involved in a particular disease in the tissues affected by the disease, compared with nonaffected tissues. When this analysis is scaled to all diseases in our dataset, there is a significant tendency for disease genes and complexes to be overexpressed in the normal tissues where defects cause pathology. In contrast, cancer genes and complexes were not overexpressed in the tissues from which the tumors emanate. We specifically identified a complex involved in XY sex reversal that is testis-specific and down-regulated in ovaries. We also identified complexes in Parkinson disease, cardiomyopathies, and muscular dystrophy syndromes that are similarly tissue specific. Our method represents a conceptual scaffold for organism-spanning analyses and reveals an extensive list of tissue-specific draft molecular pathways, both known and unexpected, that might be disrupted in disease.
Collapse
|
241
|
Foth BJ, Zhang N, Mok S, Preiser PR, Bozdech Z. Quantitative protein expression profiling reveals extensive post-transcriptional regulation and post-translational modifications in schizont-stage malaria parasites. Genome Biol 2008; 9:R177. [PMID: 19091060 PMCID: PMC2646281 DOI: 10.1186/gb-2008-9-12-r177] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2008] [Revised: 12/01/2008] [Accepted: 12/17/2008] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Malaria is a one of the most important infectious diseases and is caused by parasitic protozoa of the genus Plasmodium. Previously, quantitative characterization of the P. falciparum transcriptome demonstrated that the strictly controlled progression of these parasites through their intra-erythrocytic developmental cycle is accompanied by a continuous cascade of gene expression. Although such analyses have proven immensely useful, the correlations between abundance of transcripts and their cognate proteins remain poorly characterized. RESULTS Here, we present a quantitative time-course analysis of relative protein abundance for schizont-stage parasites (34 to 46 hours after invasion) based on two-dimensional differential gel electrophoresis of protein samples labeled with fluorescent dyes. For this purpose we analyzed parasite samples taken at 4-hour intervals from a tightly synchronized culture and established more than 500 individual protein abundance profiles with high temporal resolution and quantitative reproducibility. Approximately half of all profiles exhibit a significant change in abundance and 12% display an expression peak during the observed 12-hour time interval. Intriguingly, identification of 54 protein spots by mass spectrometry revealed that 58% of the corresponding proteins--including actin-I, enolase, eukaryotic initiation factor (eIF)4A, eIF5A, and several heat shock proteins--are represented by more than one isoform, presumably caused by post-translational modifications, with the various isoforms of a given protein frequently showing different expression patterns. Furthermore, comparisons with transcriptome data generated from the same parasite samples reveal evidence of significant post-transcriptional gene expression regulation. CONCLUSIONS Together, our data indicate that both post-transcriptional and post-translational events are widespread and of presumably great biological significance during the intra-erythrocytic development of P. falciparum.
Collapse
Affiliation(s)
- Bernardo J Foth
- School of Biological Sciences, Nanyang Technological University, Nanyang Drive, 637551 Singapore.
| | | | | | | | | |
Collapse
|
242
|
van Brummelen AC, Olszewski KL, Wilinski D, Llinás M, Louw AI, Birkholtz LM. Co-inhibition of Plasmodium falciparum S-adenosylmethionine decarboxylase/ornithine decarboxylase reveals perturbation-specific compensatory mechanisms by transcriptome, proteome, and metabolome analyses. J Biol Chem 2008; 284:4635-46. [PMID: 19073607 DOI: 10.1074/jbc.m807085200] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Polyamines are ubiquitous components of all living cells, and their depletion usually causes cytostasis, a strategy employed for treatment of West African trypanosomiasis. To evaluate polyamine depletion as an anti-malarial strategy, cytostasis caused by the co-inhibition of S-adenosylmethionine decarboxylase/ornithine decarboxylase in Plasmodium falciparum was studied with a comprehensive transcriptome, proteome, and metabolome investigation. Highly synchronized cultures were sampled just before and during cytostasis, and a novel zero time point definition was used to enable interpretation of results in lieu of the developmentally regulated control of gene expression in P. falciparum. Transcriptome analysis revealed the occurrence of a generalized transcriptional arrest just prior to the growth arrest due to polyamine depletion. However, the abundance of 538 transcripts was differentially affected and included three perturbation-specific compensatory transcriptional responses as follows: the increased abundance of the transcripts for lysine decarboxylase and ornithine aminotransferase and the decreased abundance of that for S-adenosylmethionine synthetase. Moreover, the latter two compensatory mechanisms were confirmed on both protein and metabolite levels confirming their biological relevance. In contrast with previous reports, the results provide evidence that P. falciparum responds to alleviate the detrimental effects of polyamine depletion via regulation of its transcriptome and subsequently the proteome and metabolome.
Collapse
Affiliation(s)
- Anna C van Brummelen
- Department of Biochemistry, University of Pretoria, Pretoria, Gauteng 0002, South Africa
| | | | | | | | | | | |
Collapse
|
243
|
Horrocks P, Wong E, Russell K, Emes RD. Control of gene expression in Plasmodium falciparum - ten years on. Mol Biochem Parasitol 2008; 164:9-25. [PMID: 19110008 DOI: 10.1016/j.molbiopara.2008.11.010] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2008] [Revised: 11/25/2008] [Accepted: 11/26/2008] [Indexed: 01/24/2023]
Abstract
Ten years ago this journal published a review with an almost identical title detailing how the then recent introduction of transfection technology had advanced our understanding of the molecular control of transcriptional processes in Plasmodium falciparum, particularly in terms of promoter structure and function. In the succeeding years, sequencing of several Plasmodium spp. genomes and application of high throughput global postgenomic technologies have proven as significant, if not more, as has the ability to genetically manipulate these parasites in dissecting the molecular control of gene expression. Here we aim to review our current understanding of the control of gene expression in P. falciparum, including evidence available from other Plasmodium spp. and apicomplexan parasites. Specifically, however, we will address the current polarised debate regarding the level at which control is mediated, and attempt to identify some of the challenges this field faces in the next 10 years.
Collapse
Affiliation(s)
- Paul Horrocks
- Institute for Science and Technology in Medicine, Keele University, Staffordshire ST5 5BG, United Kingdom.
| | | | | | | |
Collapse
|
244
|
Improved prediction of malaria degradomes by supervised learning with SVM and profile kernel. Genetica 2008; 136:189-209. [PMID: 19057851 DOI: 10.1007/s10709-008-9336-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2008] [Accepted: 11/17/2008] [Indexed: 10/21/2022]
Abstract
The spread of drug resistance through malaria parasite populations calls for the development of new therapeutic strategies. However, the seemingly promising genomics-driven target identification paradigm is hampered by the weak annotation coverage. To identify potentially important yet uncharacterized proteins, we apply support vector machines using profile kernels, a supervised discriminative machine learning technique for remote homology detection, as a complement to the traditional alignment based algorithms. In this study, we focus on the prediction of proteases, which have long been considered attractive drug targets because of their indispensable roles in parasite development and infection. Our analysis demonstrates that an abundant and complex repertoire is conserved in five Plasmodium parasite species. Several putative proteases may be important components in networks that mediate cellular processes, including hemoglobin digestion, invasion, trafficking, cell cycle fate, and signal transduction. This catalog of proteases provides a short list of targets for functional characterization and rational inhibitor design.
Collapse
|
245
|
Proteomic profiling of Plasmodium sporozoite maturation identifies new proteins essential for parasite development and infectivity. PLoS Pathog 2008; 4:e1000195. [PMID: 18974882 PMCID: PMC2570797 DOI: 10.1371/journal.ppat.1000195] [Citation(s) in RCA: 167] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2008] [Accepted: 10/09/2008] [Indexed: 12/12/2022] Open
Abstract
Plasmodium falciparum sporozoites that develop and mature inside an Anopheles mosquito initiate a malaria infection in humans. Here we report the first proteomic comparison of different parasite stages from the mosquito—early and late oocysts containing midgut sporozoites, and the mature, infectious salivary gland sporozoites. Despite the morphological similarity between midgut and salivary gland sporozoites, their proteomes are markedly different, in agreement with their increase in hepatocyte infectivity. The different sporozoite proteomes contain a large number of stage specific proteins whose annotation suggest an involvement in sporozoite maturation, motility, infection of the human host and associated metabolic adjustments. Analyses of proteins identified in the P. falciparum sporozoite proteomes by orthologous gene disruption in the rodent malaria parasite, P. berghei, revealed three previously uncharacterized Plasmodium proteins that appear to be essential for sporozoite development at distinct points of maturation in the mosquito. This study sheds light on the development and maturation of the malaria parasite in an Anopheles mosquito and also identifies proteins that may be essential for sporozoite infectivity to humans. Human malaria is caused by Plasmodium falciparum, a unicellular protozoan parasite that is transmitted by Anopheles mosquitoes. An infectious mosquito injects saliva containing sporozoite forms of the parasite and these then migrate from the skin to the liver, where they establish an infection. Many intervention strategies are currently focused on preventing the establishment of infection by sporozoites. Clearly, an understanding of the biology of the sporozoite is essential for developing new intervention strategies. Sporozoites are produced within the oocyst, located on the outside wall of the mosquito midgut, and migrate after release from the oocysts to the salivary glands where they are stored as mature infectious forms. Comparison of the proteomes of sporozoites derived from either the oocyst or from the salivary gland reveals remarkable differences in the protein content of these stages despite their similar morphology. The changes in protein content reflect the very specific preparations the sporozoites make in order to establish an infection of the liver. Analysis of the function of several previously uncharacterized, conserved proteins revealed proteins essential for sporozoite development at distinct points of their maturation.
Collapse
|
246
|
Le Roch KG, Johnson JR, Ahiboh H, Chung DWD, Prudhomme J, Plouffe D, Henson K, Zhou Y, Witola W, Yates JR, Mamoun CB, Winzeler EA, Vial H. A systematic approach to understand the mechanism of action of the bisthiazolium compound T4 on the human malaria parasite, Plasmodium falciparum. BMC Genomics 2008; 9:513. [PMID: 18973684 PMCID: PMC2596145 DOI: 10.1186/1471-2164-9-513] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2008] [Accepted: 10/30/2008] [Indexed: 11/25/2022] Open
Abstract
Background In recent years, a major increase in the occurrence of drug resistant falciparum malaria has been reported. Choline analogs, such as the bisthiazolium T4, represent a novel class of compounds with strong potency against drug sensitive and resistant P. falciparum clones. Although T4 and its analogs are presumed to target the parasite's lipid metabolism, their exact mechanism of action remains unknown. Here we have employed transcriptome and proteome profiling analyses to characterize the global response of P. falciparum to T4 during the intraerythrocytic cycle of this parasite. Results No significant transcriptional changes were detected immediately after addition of T4 despite the drug's effect on the parasite metabolism. Using the Ontology-based Pattern Identification (OPI) algorithm with an increased T4 incubation time, we demonstrated cell cycle arrest and a general induction of genes involved in gametocytogenesis. Proteomic analysis revealed a significant decrease in the level of the choline/ethanolamine-phosphotransferase (PfCEPT), a key enzyme involved in the final step of synthesis of phosphatidylcholine (PC). This effect was further supported by metabolic studies, which showed a major alteration in the synthesis of PC from choline and ethanolamine by the compound. Conclusion Our studies demonstrate that the bisthiazolium compound T4 inhibits the pathways of synthesis of phosphatidylcholine from choline and ethanolamine in P. falciparum, and provide evidence for post-transcriptional regulations of parasite metabolism in response to external stimuli.
Collapse
Affiliation(s)
- Karine G Le Roch
- Department of Cell Biology and Neuroscience, University of California, Riverside, 900 University Avenue, Riverside, CA 92521, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
247
|
van Schaijk BCL, Janse CJ, van Gemert GJ, van Dijk MR, Gego A, Franetich JF, van de Vegte-Bolmer M, Yalaoui S, Silvie O, Hoffman SL, Waters AP, Mazier D, Sauerwein RW, Khan SM. Gene disruption of Plasmodium falciparum p52 results in attenuation of malaria liver stage development in cultured primary human hepatocytes. PLoS One 2008; 3:e3549. [PMID: 18958160 PMCID: PMC2568858 DOI: 10.1371/journal.pone.0003549] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2008] [Accepted: 10/07/2008] [Indexed: 11/19/2022] Open
Abstract
Difficulties with inducing sterile and long lasting protective immunity against malaria with subunit vaccines has renewed interest in vaccinations with attenuated Plasmodium parasites. Immunizations with sporozoites that are attenuated by radiation (RAS) can induce strong protective immunity both in humans and rodent models of malaria. Recently, in rodent parasites it has been shown that through the deletion of a single gene, sporozoites can also become attenuated in liver stage development and, importantly, immunization with these sporozoites results in immune responses identical to RAS. The promise of vaccination using these genetically attenuated sporozoites (GAS) depends on translating the results in rodent malaria models to human malaria. In this study, we perform the first essential step in this transition by disrupting, p52, in P. falciparum an ortholog of the rodent parasite gene, p36p, which we had previously shown can confer long lasting protective immunity in mice. These P. falciparum P52 deficient sporozoites demonstrate gliding motility, cell traversal and an invasion rate into primary human hepatocytes in vitro that is comparable to wild type sporozoites. However, inside the host hepatocyte development is arrested very soon after invasion. This study reveals, for the first time, that disrupting the equivalent gene in both P. falciparum and rodent malaria Plasmodium species generates parasites that become similarly arrested during liver stage development and these results pave the way for further development of GAS for human use.
Collapse
Affiliation(s)
- Ben C. L. van Schaijk
- Department of Medical Microbiology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Chris J. Janse
- Department of Parasitology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Geert-Jan van Gemert
- Department of Medical Microbiology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Melissa R. van Dijk
- Department of Parasitology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Audrey Gego
- INSERM, U511, Paris, France
- Université Pierre et Marie Curie-Paris6, UMR S511 Paris, France
| | | | - Marga van de Vegte-Bolmer
- Department of Medical Microbiology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Samir Yalaoui
- INSERM, U511, Paris, France
- Université Pierre et Marie Curie-Paris6, UMR S511 Paris, France
| | - Olivier Silvie
- INSERM, U511, Paris, France
- Université Pierre et Marie Curie-Paris6, UMR S511 Paris, France
| | | | - Andrew P. Waters
- Department of Parasitology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Dominique Mazier
- INSERM, U511, Paris, France
- Université Pierre et Marie Curie-Paris6, UMR S511 Paris, France
- AP-HP, Groupe hospitalier Pitié-Salpêtrière, Service Parasitologie-Mycologie, Paris, France
| | - Robert W. Sauerwein
- Department of Medical Microbiology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Shahid M. Khan
- Department of Parasitology, Leiden University Medical Centre, Leiden, The Netherlands
- * E-mail:
| |
Collapse
|
248
|
Ménard R, Heussler V, Yuda M, Nussenzweig V. Plasmodium pre-erythrocytic stages: what's new? Trends Parasitol 2008; 24:564-9. [PMID: 18929511 DOI: 10.1016/j.pt.2008.08.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2008] [Revised: 08/14/2008] [Accepted: 08/20/2008] [Indexed: 10/21/2022]
Abstract
The pre-erythrocytic (PE) phase of malaria infection, which extends from injection of sporozoites into the skin to the release of the first generation of merozoites, has traditionally been the 'black box' of the Plasmodium life cycle. However, since the advent of parasite transfection technology 13 years ago, our understanding of the PE phase in cellular and molecular terms has dramatically improved. Here, we review and comment on the major developments in the field in the past five years. Progress has been made in many diverse areas, including identifying and characterizing new proteins of interest, imaging parasites in vivo, understanding better the cell biology of hepatocyte infection and developing new vaccines against PE stages of the parasite.
Collapse
Affiliation(s)
- Robert Ménard
- Institut Pasteur, Unité de Biologie et Génétique du Paludisme, 75724 Paris cedex 15, France.
| | | | | | | |
Collapse
|
249
|
Bréhélin L, Dufayard JF, Gascuel O. PlasmoDraft: a database of Plasmodium falciparum gene function predictions based on postgenomic data. BMC Bioinformatics 2008; 9:440. [PMID: 18925948 PMCID: PMC2605471 DOI: 10.1186/1471-2105-9-440] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2008] [Accepted: 10/16/2008] [Indexed: 11/10/2022] Open
Abstract
Background Of the 5 484 predicted proteins of Plasmodium falciparum, the main causative agent of malaria, about 60% do not have sufficient sequence similarity with proteins in other organisms to warrant provision of functional assignments. Non-homology methods are thus needed to obtain functional clues for these uncharacterized genes. Results We present PlasmoDraft , a database of Gene Ontology (GO) annotation predictions for P. falciparum genes based on postgenomic data. Predictions of PlasmoDraft are achieved with a Guilt By Association method named Gonna. This involves (1) a predictor that proposes GO annotations for a gene based on the similarity of its profile (measured with transcriptome, proteome or interactome data) with genes already annotated by GeneDB; (2) a procedure that estimates the confidence of the predictions achieved with each data source; (3) a procedure that combines all data sources to provide a global summary and confidence estimate of the predictions. Gonna has been applied to all P. falciparum genes using most publicly available transcriptome, proteome and interactome data sources. Gonna provides predictions for numerous genes without any annotations. For example, 2 434 genes without any annotations in the Biological Process ontology are associated with specific GO terms (e.g. Rosetting, Antigenic variation), and among these, 841 have confidence values above 50%. In the Cellular Component and Molecular Function ontologies, 1 905 and 1 540 uncharacterized genes are associated with specific GO terms, respectively (740 and 329 with confidence value above 50%). Conclusion All predictions along with their confidence values have been compiled in PlasmoDraft, which thus provides an extensive database of GO annotation predictions that can be achieved with these data sources. The database can be accessed in different ways. A global view allows for a quick inspection of the GO terms that are predicted with high confidence, depending on the various data sources. A gene view and a GO term view allow for the search of potential GO terms attached to a given gene, and genes that potentially belong to a given GO term.
Collapse
Affiliation(s)
- Laurent Bréhélin
- Projet Méthodes et Algorithmes pour la Bioinformatique, LIRMM, Univ, Montpellier 2, CNRS, 161 rue Ada, 34392 MONTPELLIER, France.
| | | | | |
Collapse
|
250
|
Abstract
For many pathogens the availability of genome sequence, permitting genome-dependent methods of research, can partially substitute for powerful forward genetic methods (genome-independent) that have advanced model organism research for decades. In 2002 the genome sequence of Plasmodium falciparum, the parasite causing the most severe type of human malaria, was completed, eliminating many of the barriers to performing state-of-the-art molecular biological research on malaria parasites. Although new, licensed therapies may not yet have resulted from genome-dependent experiments, they have produced a wealth of new observations about the basic biology of malaria parasites, and it is likely that these will eventually lead to new therapeutic approaches. This review will focus on the basic research discoveries that have depended, in part, on the availability of the Plasmodium genome sequences.
Collapse
Affiliation(s)
- Elizabeth Ann Winzeler
- Genomics Institute of the Novartis Research Foundation, San Diego, California and The Department of Cell Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA.
| |
Collapse
|