201
|
Park Y. Endocrine regulation of insect diuresis in the early postgenomic era1This review is part of a virtual symposium on recent advances in understanding a variety of complex regulatory processes in insect physiology and endocrinology, including development, metabolism, cold hardiness, food intake and digestion, and diuresis, through the use of omics technologies in the postgenomic era. CAN J ZOOL 2012. [DOI: 10.1139/z2012-013] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Diuresis, the removal of excess metabolic waste through production of primary urine while maintaining homeostasis, is an important biological process that is tightly regulated by endocrine factors. Several hormonal components that act as diuretic or antidiuretic factors in insects have been identified in the last few decades. Physiological mechanisms responsible for ion and water transport across biological membranes have been intensively studied. The large amount of data rapidly accumulating in the genomics era has led to an increased dependence on reverse genetic and physiological approaches, first identifying candidate genes and subsequently deriving functions. In many cases, the reverse approaches have been highly successful, especially in studies of the receptors for diuretic factors, which are mainly G-protein-coupled receptors. This review summarizes research on insect diuretic and antidiuretic endocrine factors, and their receptors. Emphases of the review are given to the genomics of ligands and their receptors, as well as to their implications for evolution and function.
Collapse
Affiliation(s)
- Yoonseong Park
- Department of Entomology, 123 Waters Hall, Kansas State University, Manhattan, KS 66506, USA
| |
Collapse
|
202
|
Veenstra JA, Rombauts S, Grbić M. In silico cloning of genes encoding neuropeptides, neurohormones and their putative G-protein coupled receptors in a spider mite. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2012; 42:277-95. [PMID: 22214827 DOI: 10.1016/j.ibmb.2011.12.009] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2011] [Revised: 12/17/2011] [Accepted: 12/18/2011] [Indexed: 05/11/2023]
Abstract
The genome of the spider mite was prospected for the presence of genes coding neuropeptides, neurohormones and their putative G-protein coupled receptors. Fifty one candidate genes were found to encode neuropeptides or neurohormones. These include all known insect neuropeptides and neurohormones, with the exception of sulfakinin, corazonin, neuroparsin and PTTH. True orthologs of adipokinetic hormone (AKH) were neither found, but there are three genes encoding peptides similar in structure to both AKH and the AKH-corazonin-related peptide. We were also unable to identify the precursors for pigment dispersing factor (PDF) or the recently discovered trissin. However, the spider mite probably does have such genes, as we found their putative receptors. A novel arthropod neuropeptide gene was identified that shows similarity to previously described molluscan neuropeptide genes and was called EFLamide. A total of 65 putative neuropeptide GPCR genes were also identified, of these 58 belong to the A-family and 7 to the B-family. Phylogenetic analysis showed that 50 of them are closely related to insect GPCRs, which allowed the identification of their putative ligand in 39 cases with varying degrees of certainty. Other spider mite GPCRs however have no identifiable orthologs in the genomes of the four holometabolous insect species best analyzed. Whereas some of the latter have orthologs in hemimetabolous insect species, crustaceans or ticks, for others such arthropod homologs are currently unknown.
Collapse
Affiliation(s)
- Jan A Veenstra
- Université Bordeaux, Avenue des Facultés, INCIA UMR 5287 CNRS, 33405 Talence Cedex, France.
| | | | | |
Collapse
|
203
|
Boerjan B, Cardoen D, Verdonck R, Caers J, Schoofs L. Insect omics research coming of age1This review is part of a virtual symposium on recent advances in understanding a variety of complex regulatory processes in insect physiology and endocrinology, including development, metabolism, cold hardiness, food intake and digestion, and diuresis, through the use of omics technologies in the postgenomic era. CAN J ZOOL 2012. [DOI: 10.1139/z2012-010] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
As more and more insect genomes are fully sequenced and annotated, omics technologies, including transcriptomic, proteomic, peptidomics, and metobolomic profiling, as well as bioinformatics, can be used to exploit this huge amount of sequence information for the study of different biological aspects of insect model organisms. Omics experiments are an elegant way to deliver candidate genes, the function of which can be further explored by genetic tools for functional inactivation or overexpression of the genes of interest. Such tools include mainly RNA interference and are currently being developed in diverse insect species. In this manuscript, we have reviewed how omics technologies were integrated and applied in insect biology.
Collapse
Affiliation(s)
- Bart Boerjan
- Research Group of Functional Genomics and Proteomics, KU Leuven, Naamsestraat 59, B-3000 Leuven, Belgium
| | - Dries Cardoen
- Research Group of Functional Genomics and Proteomics, KU Leuven, Naamsestraat 59, B-3000 Leuven, Belgium
- Laboratory of Entomology, KU Leuven, Naamsestraat 59, B-3000 Leuven, Belgium
| | - Rik Verdonck
- Research Group of Molecular Developmental Physiology and Signal Transduction, KU Leuven, Naamsestraat 59, B-3000 Leuven, Belgium
| | - Jelle Caers
- Research Group of Functional Genomics and Proteomics, KU Leuven, Naamsestraat 59, B-3000 Leuven, Belgium
| | - Liliane Schoofs
- Research Group of Functional Genomics and Proteomics, KU Leuven, Naamsestraat 59, B-3000 Leuven, Belgium
| |
Collapse
|
204
|
Menschaert G, Hayakawa E, Schoofs L, Van Criekinge W, Baggerman G. Spectral Clustering in Peptidomics Studies Allows Homology Searching and Modification Profiling: HomClus, a Versatile Tool. J Proteome Res 2012; 11:2774-85. [DOI: 10.1021/pr201114m] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Gerben Menschaert
- Faculty of Bioscience Engineering,
Laboratory for Bioinformatics and Computational Genomics, Ghent University, Ghent, Belgium
- Prometa, Interfaculty Center for Proteomics
and Metabolomics, K.U. Leuven, Leuven,
Belgium
| | - Eisuke Hayakawa
- Prometa, Interfaculty Center for Proteomics
and Metabolomics, K.U. Leuven, Leuven,
Belgium
- Research Group of
Functional Genomics and Proteomics, K.U. Leuven, 3000 Leuven, Belgium
| | - Liliane Schoofs
- Research Group of
Functional Genomics and Proteomics, K.U. Leuven, 3000 Leuven, Belgium
| | - Wim Van Criekinge
- Faculty of Bioscience Engineering,
Laboratory for Bioinformatics and Computational Genomics, Ghent University, Ghent, Belgium
| | - Geert Baggerman
- VITO Nv, 2400 Mol, Belgium
- CFP, Center for Proteomics, 2020 Antwerpen, Belgium
| |
Collapse
|
205
|
Van Hiel MB, Vandersmissen HP, Van Loy T, Vanden Broeck J. An evolutionary comparison of leucine-rich repeat containing G protein-coupled receptors reveals a novel LGR subtype. Peptides 2012; 34:193-200. [PMID: 22100731 DOI: 10.1016/j.peptides.2011.11.004] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2011] [Revised: 11/03/2011] [Accepted: 11/03/2011] [Indexed: 10/15/2022]
Abstract
Leucine-rich repeat containing G protein-coupled receptors or LGRs are receptors with important functions in development and reproduction. Belonging to this evolutionarily conserved group of receptors are the well-studied glycoprotein hormone receptors and relaxin receptors in mammals, as well as the bursicon receptor, which triggers cuticle hardening and tanning in freshly enclosed insects. In this study, the numerous LGR sequences in different animal phyla are analyzed and compared. Based on these data a phylogenetic tree was generated. This information sheds new light on structural and evolutionary aspects regarding this receptor group. Apart from vertebrates and insects, LGRs are also present in early chordates (Urochordata, Cephalochordata and Hyperoartia) and other arthropods (Arachnida and Branchiopoda) as well as in Mollusca, Echinodermata, Hemichordata, Nematoda, and even in ancient animal life forms, such as Cnidaria and Placozoa. Three distinct types of LGR exist, distinguishable by their number of leucine-rich repeats (LRRs), their type-specific hinge region and the presence or absence of an LDLa motif. Type C LGRs containing only one LDLa (C1 subtype) appear to be present in nearly all animal phyla. We here describe a second subtype, C2, containing multiple LDLa motifs, which was discovered in echinoderms, mollusks and in one insect species (Pediculus humanis corporis). In addition, eight putative LGRs can be predicted from the genome data of the placozoan species Trichoplax adhaerens. They may represent an ancient form of the LGRs, however, more genomic data will be required to confirm this hypothesis.
Collapse
Affiliation(s)
- Matthias B Van Hiel
- Zoological Institute of the Katholieke Universiteit Leuven, Leuven, Belgium.
| | | | | | | |
Collapse
|
206
|
Predel R, Russell WK, Russell DH, Suh CPC, Nachman RJ. Neuropeptides of the cotton fleahopper, Pseudatomoscelis seriatus (Reuter). Peptides 2012; 34:39-43. [PMID: 22015271 DOI: 10.1016/j.peptides.2011.10.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2011] [Revised: 10/05/2011] [Accepted: 10/05/2011] [Indexed: 10/16/2022]
Abstract
The cotton fleahopper, Pseudatomoscelis seriatus (Reuter), is an economically important pest of cotton, and increasing concerns over resistance, detrimental effects on beneficial insects and safety issues associated with traditional insecticide applications have led to an interest in research on novel, alternative strategies for control. One such approach requires a more basic understanding of the neurohormonal system that regulates important physiological properties of the fleahopper; e.g. the expression of specific messenger molecules such as neuropeptides. Therefore we performed a peptidomic study of neural tissues from the fleahopper which led to the first identification of the sequences of native peptide hormones. These peptide hormones include the following neuropeptides: corazonin, short neuropeptide F (sNPF), myosuppressin, CAPA-pyrokinin and CAPA-PVK peptides. The CAPA-pyrokinin, sNPF, and CAPA-PVK peptides represent novel sequences. A comparison of fleahopper neuropeptides with those of related heteropteran species indicates that they are quite different. The sNPF of P. seriatus shows, among others, a novel substitution of Leu with Phe within the C-terminal region; a modification that sets it apart from the known sNPFs of not only other Heteroptera but of other arthropod species as well. The identity of the neuropeptides native to the fleahopper can aid in the potential development of biostable, bioavailable mimetic agonists and antagonists capable of disrupting the physiological functions that these neuropeptides regulate.
Collapse
Affiliation(s)
- Reinhard Predel
- Southern Plains Agricultural Research Center, USDA, College Station, TX 77845, USA.
| | | | | | | | | |
Collapse
|
207
|
Overend G, Cabrero P, Guo AX, Sebastian S, Cundall M, Armstrong H, Mertens I, Schoofs L, Dow JAT, Davies SA. The receptor guanylate cyclase Gyc76C and a peptide ligand, NPLP1-VQQ, modulate the innate immune IMD pathway in response to salt stress. Peptides 2012; 34:209-18. [PMID: 21893139 DOI: 10.1016/j.peptides.2011.08.019] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2011] [Revised: 08/20/2011] [Accepted: 08/22/2011] [Indexed: 11/16/2022]
Abstract
Receptorguanylate cyclases (rGCs) modulate diverse physiological processes including mammalian cardiovascular function and insect eclosion. The Drosophila genome encodes several receptor and receptor-like GCs, but no ligand for any Drosophila rGC has yet been identified. By screening peptide libraries in Drosophila S2 cells, the Drosophila peptide NPLP1-VQQ (NLGALKSSPVHGVQQ) was shown to be a ligand for the rGC, Gyc76C (CG42636, previously CG8742, l(3)76BDl, DrGC-1). In the adult fly, expression of Gyc76C is highest in immune and stress-sensing epithelial tissues, including Malpighian tubules and midgut; and NPLP1-VQQ stimulates fluid transport and increases cGMP content in tubules. cGMP signaling is known to modulate the activity of the IMD innate immune pathway in tubules via activation and nuclear translocation of the NF-kB orthologue, Relish, resulting in increased anti-microbial peptide (AMP) gene expression; and so NPLP1-VQQ might act in immune/stress responses. Indeed, NPLP1-VQQ induces nuclear translocation of Relish in intact tubules and increases expression of the anti-microbial peptide gene, diptericin. Targeted Gyc76C RNAi to tubule principal cells inhibited both NPLP1-VQQ-induced Relish translocation and diptericin expression. Relish translocation and increased AMP gene expression also occurs in tubules in response to dietary salt stress. Gyc76C also modulates organismal survival to salt stress - ablation of Gyc76C expression in only tubule principal cells prevents Relish translocation, reduces diptericin expression, and reduces organismal survival in response to salt stress. Thus, the principal-cell localized NPLP1-VQQ/Gyc76C cGMP pathway acts to signal environmental (salt) stress to the whole organism.
Collapse
Affiliation(s)
- Gayle Overend
- Institute of Molecular, Cell and Systems Biology, University of Glasgow, Glasgow, Scotland, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
208
|
CRF-like diuretic hormone negatively affects both feeding and reproduction in the desert locust, Schistocerca gregaria. PLoS One 2012; 7:e31425. [PMID: 22363645 PMCID: PMC3282710 DOI: 10.1371/journal.pone.0031425] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2011] [Accepted: 01/07/2012] [Indexed: 11/19/2022] Open
Abstract
Diuretic hormones (DH) related to the vertebrate Corticotropin Releasing Factor (CRF) have been identified in diverse insect species. In the migratory locust, Locusta migratoria, the CRF-like DH (CRF/DH) is localized in the same neurosecretory cells as the Ovary Maturating Parsin (OMP), a neurohormone that stimulates oocyte growth, vitellogenesis and hemolymph ecdysteroid levels in adult female locusts. In this study, we investigated whether CRF-like DH can influence feeding and reproduction in the desert locust, Schistocerca gregaria. We identified two highly similar S. gregaria CRF-like DH precursor cDNAs, each of which also encodes an OMP isoform. Alignment with other insect CRF-like DH precursors shows relatively high conservation of the CRF/DH sequence while the precursor region corresponding to OMP is not well conserved. Quantitative real-time RT-PCR revealed that the precursor transcripts mainly occur in the central nervous system and their highest expression level was observed in the brain. Injection of locust CRF/DH caused a significantly reduced food intake, while RNAi knockdown stimulated food intake. Therefore, our data indicate that CRF-like DH induces satiety. Furthermore, injection of CRF/DH in adult females retarded oocyte growth and caused lower ecdysteroid titers in hemolymph and ovaries, while RNAi knockdown resulted in opposite effects. The observed effects of CRF/DH may be part of a wider repertoire of neurohormonal activities, constituting an integrating control system that affects food intake and excretion, as well as anabolic processes like oocyte growth and ecdysteroidogenesis, following a meal. Our discussion about the functional relationship between CRF/DH and OMP led to the hypothesis that OMP may possibly act as a monitoring peptide that can elicit negative feedback effects.
Collapse
|
209
|
Sha K, Conner WC, Choi DY, Park JH. Characterization, expression, and evolutionary aspects of Corazonin neuropeptide and its receptor from the House Fly, Musca domestica (Diptera: Muscidae). Gene 2012; 497:191-9. [PMID: 22326268 DOI: 10.1016/j.gene.2012.01.052] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2011] [Revised: 12/16/2011] [Accepted: 01/21/2012] [Indexed: 10/14/2022]
Abstract
In this article, we characterized structure and expression of genes encoding the neuropeptide Corazonin (MdCrz) and its putative receptor (MdCrzR) in the House Fly, Musca domestica. The MdCrz gene contains two introns, one within the 5' untranslated region and the other within the open reading frame. The 150-amino-acid precursor consists of an N-terminal signal peptide, and mature Crz followed by Crz-associated peptide (CAP). The CAP region is highly diverged from those of other insect precursors, whereas the mature Crz is identical in other dipteran members. In situ hybridization and immunohistochemistry consistently found a group of three MdCrz-producing neurons in the dorso-lateral protocerebrum, and eight pairs of bi-lateral neurons in the ventral nerve cord in the larvae. In adults, the expression was found exclusively in a cluster of five to seven neurons per brain lobe. Comparable expression patterns observed in other dipteran species suggest conserved regulatory mechanisms of Crz expression and functions during the course of evolution. MdCrzR deduced from the full-length cDNA sequence is a 655-amino acid polypeptide that contains seven trans-membrane (TM) domains and other motifs that are characteristics of Class-A G-protein coupled receptors. Although the TMs and loops between the TMs are conserved in other CrzRs, N-terminal extracellular domain is quite dissimilar. Tissue-specific RT-PCR revealed a high level of MdCrzR expression in the larval salivary glands and a moderate level in the CNS. In adults, the receptor was expressed both in the head and body, suggesting multifunctionality of the Crz signaling system.
Collapse
Affiliation(s)
- Kai Sha
- Department of Biochemistry, University of Tennessee, Knoxville, TN 37996, USA
| | | | | | | |
Collapse
|
210
|
Caers J, Verlinden H, Zels S, Vandersmissen HP, Vuerinckx K, Schoofs L. More than two decades of research on insect neuropeptide GPCRs: an overview. Front Endocrinol (Lausanne) 2012; 3:151. [PMID: 23226142 PMCID: PMC3510462 DOI: 10.3389/fendo.2012.00151] [Citation(s) in RCA: 131] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Accepted: 11/14/2012] [Indexed: 11/30/2022] Open
Abstract
This review focuses on the state of the art on neuropeptide receptors in insects. Most of these receptors are G protein-coupled receptors (GPCRs) and are involved in the regulation of virtually all physiological processes during an insect's life. More than 20 years ago a milestone in invertebrate endocrinology was achieved with the characterization of the first insect neuropeptide receptor, i.e., the Drosophila tachykinin-like receptor. However, it took until the release of the Drosophila genome in 2000 that research on neuropeptide receptors boosted. In the last decade a plethora of genomic information of other insect species also became available, leading to a better insight in the functions and evolution of the neuropeptide signaling systems and their intracellular pathways. It became clear that some of these systems are conserved among all insect species, indicating that they fulfill crucial roles in their physiological processes. Meanwhile, other signaling systems seem to be lost in several insect orders or species, suggesting that their actions were superfluous in those insects, or that other neuropeptides have taken over their functions. It is striking that the deorphanization of neuropeptide GPCRs gets much attention, but the subsequent unraveling of the intracellular pathways they elicit, or their physiological functions are often hardly examined. Especially in insects besides Drosophila this information is scarce if not absent. And although great progress made in characterizing neuropeptide signaling systems, even in Drosophila several predicted neuropeptide receptors remain orphan, awaiting for their endogenous ligand to be determined. The present review gives a précis of the insect neuropeptide receptor research of the last two decades. But it has to be emphasized that the work done so far is only the tip of the iceberg and our comprehensive understanding of these important signaling systems will still increase substantially in the coming years.
Collapse
Affiliation(s)
| | | | | | | | | | - Liliane Schoofs
- *Correspondence: Liliane Schoofs, Department of Biology, Research Group of Functional Genomics and Proteomics, Naamsestraat 59, KU Leuven, 3000 Leuven, Belgium. e-mail:
| |
Collapse
|
211
|
Colgan TJ, Carolan JC, Bridgett SJ, Sumner S, Blaxter ML, Brown MJ. Polyphenism in social insects: insights from a transcriptome-wide analysis of gene expression in the life stages of the key pollinator, Bombus terrestris. BMC Genomics 2011; 12:623. [PMID: 22185240 PMCID: PMC3276680 DOI: 10.1186/1471-2164-12-623] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2011] [Accepted: 12/20/2011] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Understanding polyphenism, the ability of a single genome to express multiple morphologically and behaviourally distinct phenotypes, is an important goal for evolutionary and developmental biology. Polyphenism has been key to the evolution of the Hymenoptera, and particularly the social Hymenoptera where the genome of a single species regulates distinct larval stages, sexual dimorphism and physical castes within the female sex. Transcriptomic analyses of social Hymenoptera will therefore provide unique insights into how changes in gene expression underlie such complexity. Here we describe gene expression in individual specimens of the pre-adult stages, sexes and castes of the key pollinator, the buff-tailed bumblebee Bombus terrestris. RESULTS cDNA was prepared from mRNA from five life cycle stages (one larva, one pupa, one male, one gyne and two workers) and a total of 1,610,742 expressed sequence tags (ESTs) were generated using Roche 454 technology, substantially increasing the sequence data available for this important species. Overlapping ESTs were assembled into 36,354 B. terrestris putative transcripts, and functionally annotated. A preliminary assessment of differences in gene expression across non-replicated specimens from the pre-adult stages, castes and sexes was performed using R-STAT analysis. Individual samples from the life cycle stages of the bumblebee differed in the expression of a wide array of genes, including genes involved in amino acid storage, metabolism, immunity and olfaction. CONCLUSIONS Detailed analyses of immune and olfaction gene expression across phenotypes demonstrated how transcriptomic analyses can inform our understanding of processes central to the biology of B. terrestris and the social Hymenoptera in general. For example, examination of immunity-related genes identified high conservation of important immunity pathway components across individual specimens from the life cycle stages while olfactory-related genes exhibited differential expression with a wider repertoire of gene expression within adults, especially sexuals, in comparison to immature stages. As there is an absence of replication across the samples, the results of this study are preliminary but provide a number of candidate genes which may be related to distinct phenotypic stage expression. This comprehensive transcriptome catalogue will provide an important gene discovery resource for directed programmes in ecology, evolution and conservation of a key pollinator.
Collapse
Affiliation(s)
- Thomas J Colgan
- Department of Zoology, School of Natural Sciences, Trinity College Dublin, Dublin 2, Ireland.
| | | | | | | | | | | |
Collapse
|
212
|
Shi Y, Huang H, Deng X, He X, Yang J, Yang H, Shi L, Mei L, Gao J, Zhou N. Identification and functional characterization of two orphan G-protein-coupled receptors for adipokinetic hormones from silkworm Bombyx mori. J Biol Chem 2011; 286:42390-42402. [PMID: 22009754 PMCID: PMC3234951 DOI: 10.1074/jbc.m111.275602] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2011] [Revised: 09/29/2011] [Indexed: 11/06/2022] Open
Abstract
Adipokinetic hormones (AKHs) are the best studied insect neuropeptides with the function of mobilizing lipids and carbohydrates during energy-expensive activities and modulating fundamental physiological processes, such as sugar homeostasis, lipid metabolism, and reproduction. Three distinct cDNAs encoding the prepro-Bombyx AKH1-3 have been cloned and confirmed by mass spectrometric methods. Our previous research suggested the Bombyx AKH receptor is activated by AKH1 and AKH2 with high affinity but by AKH3 with quite low affinity. In this study, using stable functional expression of the receptors in HEK293 cells, we have now identified AKH3 as a specific ligand for two orphan G-protein-coupled receptors, and we therefore named them AKHR2a and AKHR2b, respectively. We demonstrated that both AKHR2a and AKHR2b were activated by AKH3 at high affinity and by AKH1 and AKH2 at low affinity, leading to an increase of intracellular cAMP levels and activation of ERK1/2 and receptor internalization, but they were not activated by Bombyx corazonin. Conversely, the Bombyx corazonin receptor was activated by corazonin but not by AKH1-3. Quantitative RT-PCR revealed that AKHR2a and AKHR2b were both highly expressed in the testis but were also detected at low levels in other tissues. These results will lead to a better understanding of the AKH/AKHR system in the regulation of fundamental physiological processes.
Collapse
Affiliation(s)
- Ying Shi
- Institute of Biochemistry, College of Life Sciences, Zijingang Campus, Zhejiang University, Hangzhou, Zhejiang, 310058
| | - Haishan Huang
- Zhejiang Provincial Key Laboratory for Model Organisms, School of Life Sciences, Wenzhou Medical College, Wenzhou, Zhejiang, 325035
| | - Xiaoyan Deng
- Institute of Biochemistry, College of Life Sciences, Zijingang Campus, Zhejiang University, Hangzhou, Zhejiang, 310058
| | - Xiaobai He
- Institute of Biochemistry, College of Life Sciences, Zijingang Campus, Zhejiang University, Hangzhou, Zhejiang, 310058
| | - Jingwen Yang
- College of Animal Sciences, Zijingang Campus, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Huipeng Yang
- Institute of Biochemistry, College of Life Sciences, Zijingang Campus, Zhejiang University, Hangzhou, Zhejiang, 310058
| | - Liangen Shi
- College of Animal Sciences, Zijingang Campus, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Lijuan Mei
- Institute of Biochemistry, College of Life Sciences, Zijingang Campus, Zhejiang University, Hangzhou, Zhejiang, 310058; Zhejiang Provincial Key Laboratory for Model Organisms, School of Life Sciences, Wenzhou Medical College, Wenzhou, Zhejiang, 325035
| | - Jimin Gao
- Zhejiang Provincial Key Laboratory for Model Organisms, School of Life Sciences, Wenzhou Medical College, Wenzhou, Zhejiang, 325035.
| | - Naiming Zhou
- Institute of Biochemistry, College of Life Sciences, Zijingang Campus, Zhejiang University, Hangzhou, Zhejiang, 310058.
| |
Collapse
|
213
|
Wang Y, Zhu S. The defensin gene family expansion in the tick Ixodes scapularis. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2011; 35:1128-1134. [PMID: 21540051 DOI: 10.1016/j.dci.2011.03.030] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2010] [Revised: 03/17/2011] [Accepted: 03/17/2011] [Indexed: 05/27/2023]
Abstract
Ixodid ticks transmit a variety of pathogens by blood feeding. Here, we report computational identification of two multigene families of defensin-like peptides (DLPs) in the Ixodes scapularis genome, one corresponding to scapularisin and the other named scasin. Members in the scapularisin family share high sequence similarity to some antibacterial ancient invertebrate-type defensins (AITDs) isolated from primitive insects, arachnids, bivalvia, and fungi whereas scasins represent a novel family of DLPs identified by their overall acidic molecular surface and low sequence similarity to any known defensins. Codon-substitution models support neutral evolution in scapularisins but strong positive selection signal was found throughout the molecules of scasins. The synthetic γ-core region of scapularisin-20 exhibits a wide-spectrum of antimicrobial activity at micromolar concentrations. The finding of extensive gene expansion of DLPs in a vector arachnida may be valuable in the understanding of its role in pathogen transmission.
Collapse
Affiliation(s)
- Yanbing Wang
- Group of Animal Innate Immunity, State Key Laboratory of Integrated Management of Pest Insects & Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, PR China
| | | |
Collapse
|
214
|
Sheng Z, Xu J, Bai H, Zhu F, Palli SR. Juvenile hormone regulates vitellogenin gene expression through insulin-like peptide signaling pathway in the red flour beetle, Tribolium castaneum. J Biol Chem 2011; 286:41924-41936. [PMID: 22002054 DOI: 10.1074/jbc.m111.269845] [Citation(s) in RCA: 147] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Our recent studies identified juvenile hormone (JH) and nutrition as the two key signals that regulate vitellogenin (Vg) gene expression in the red flour beetle, Tribolium castaneum. Juvenile hormone regulation of Vg synthesis has been known for a long time in several insects, but the mechanism of JH action is not known. Experiments were conducted to determine the mechanism of action of these two signals in regulation of Vg gene expression. Injection of bovine insulin or FOXO double-stranded RNA into the previtellogenic, starved, or JH-deficient female adults increased Vg mRNA and protein levels, thereby implicating the pivotal role for insulin-like peptide signaling in the regulation of Vg gene expression and possible cross-talk between JH and insulin-like peptide signaling pathways. Reduction in JH synthesis or its action by RNAi-mediated silencing of genes coding for acid methyltransferase or methoprene-tolerant decreased expression of genes coding for insulin-like peptides (ILPs) and influenced FOXO subcellular localization, resulting in the down-regulation of Vg gene expression. Furthermore, JH application to previtellogenic female beetles induced the expression of genes coding for ILP2 and ILP3, and induced Vg gene expression. FOXO protein expressed in baculovirus system binds to FOXO response element present in the Vg gene promoter. These data suggest that JH functions through insulin-like peptide signaling pathway to regulate Vg gene expression.
Collapse
Affiliation(s)
- Zhentao Sheng
- Department of Entomology, College of Agriculture, University of Kentucky, Lexington, Kentucky 40546
| | - Jingjing Xu
- Department of Entomology, College of Agriculture, University of Kentucky, Lexington, Kentucky 40546
| | - Hua Bai
- Department of Entomology, College of Agriculture, University of Kentucky, Lexington, Kentucky 40546
| | - Fang Zhu
- Department of Entomology, College of Agriculture, University of Kentucky, Lexington, Kentucky 40546
| | - Subba R Palli
- Department of Entomology, College of Agriculture, University of Kentucky, Lexington, Kentucky 40546.
| |
Collapse
|
215
|
Aslam AFM, Kiya T, Mita K, Iwami M. Identification of novel bombyxin genes from the genome of the silkmoth Bombyx mori and analysis of their expression. Zoolog Sci 2011; 28:609-16. [PMID: 21801003 DOI: 10.2108/zsj.28.609] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Insulin family peptide members play key roles in regulating growth, metabolism, and reproduction. Bombyxin is an insulin-related peptide of the silkmoth Bombyx mori. We analyzed the full genome of B. mori and identified five novel bombyxin families, V to Z. We characterized the genomic organization and chromosomal location of the novel bombyxin family genes. In contrast to previously identified bombyxin genes, bombyxin-V and -Z genes had intervening introns at almost the same positions as vertebrate insulin genes. We performed reverse transcription-polymerase chain reaction and in situ hybridization in different tissues and developmental stages to observe their temporal and spatial expression patterns. The newly identified bombyxin genes were expressed in diverse tissues: bombyxin-V, -W, and -Y mRNAs were expressed in the brain and bombyxin-X mRNA in fat bodies. Bombyxin-Y gene was expressed in both brain and ovary of larval stages. High level of bombyxin-Z gene expression in the follicular cells may suggest its function in reproduction. The presence of a short C-peptide domain and an extended A chain domain, and high expression of bombyxin-X gene in the fat body cells during non-feeding stages suggest its insulin-like growth factor-like function. These results suggest that the bombyxin genes originated from a common ancestral gene, similar to the vertebrate insulin gene, and evolved into a diverse gene family with multiple functions.
Collapse
Affiliation(s)
- Abu F M Aslam
- Division of Life Sciences, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | | | | | | |
Collapse
|
216
|
Vuerinckx K, Verlinden H, Lindemans M, Broeck JV, Huybrechts R. Characterization of an allatotropin-like peptide receptor in the red flour beetle, Tribolium castaneum. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2011; 41:815-822. [PMID: 21742031 DOI: 10.1016/j.ibmb.2011.06.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2010] [Revised: 02/09/2011] [Accepted: 06/06/2011] [Indexed: 05/31/2023]
Abstract
Following a reverse pharmacology approach, we identified an allatotropin-like peptide receptor in Tribolium castaneum. Allatotropins are multifunctional neuropeptides initially isolated from the tabacco hornworm, Manduca sexta. They have been shown to be myoactive, to be cardio-acceleratory, to inhibit active ion transport, to stimulate juvenile hormone production and release and to be involved in the photic entrainment of the circadian clock. A tissue distribution analysis of the T. castaneum allatotropin-like peptide receptor by means of qRT-PCR revealed a prominent sexual dimorphism, the transcript levels being significantly higher in the male fat body and reproductive system. The endogenous ligand of the receptor, Trica-ATL, is able to increase the frequency and tonus of contractions in the gut and in the reproductive tract of mature red flour beetles.
Collapse
Affiliation(s)
- Kristel Vuerinckx
- Insect Physiology and Molecular Ethology, KU Leuven, Naamsestraat 59, B-3000 Leuven, Belgium
| | | | | | | | | |
Collapse
|
217
|
Horodyski FM, Verlinden H, Filkin N, Vandersmissen HP, Fleury C, Reynolds SE, Kai ZP, Broeck JV. Isolation and functional characterization of an allatotropin receptor from Manduca sexta. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2011; 41:804-814. [PMID: 21699978 DOI: 10.1016/j.ibmb.2011.06.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2010] [Revised: 06/01/2011] [Accepted: 06/06/2011] [Indexed: 05/31/2023]
Abstract
Manduca sexta allatotropin (Manse-AT) is a multifunctional neuropeptide whose actions include the stimulation of juvenile hormone biosynthesis, myotropic stimulation, cardioacceleratory functions, and inhibition of active ion transport. Manse-AT is a member of a structurally related peptide family that is widely found in insects and also in other invertebrates. Its precise role depends on the insect species and developmental stage. In some lepidopteran insects including M. sexta, structurally-related AT-like (ATL) peptides can be derived from alternatively spliced mRNAs transcribed from the AT gene. We have isolated a cDNA for an AT receptor (ATR) from M. sexta by a PCR-based approach using the sequence of the ATR from Bombyx mori. The sequence of the M. sexta ATR is similar to several G protein-coupled receptors from other insect species and to the mammalian orexin receptor. We demonstrate that the M. sexta ATR expressed in vertebrate cell lines is activated in a dose-responsive manner by Manse-AT and each Manse-ATL peptide in the rank order ATL-I > ATL-II > ATL-III > AT, and functional analysis in multiple cell lines suggest that the receptor is coupled through elevated levels of Ca(2+) and cAMP. In feeding larvae, Manse-ATR mRNA is present at highest levels in the Malpighian tubules, followed by the midgut, hindgut, testes, and corpora allata, consistent with its action on multiple target tissues. In the adult corpora cardiaca--corpora allata complex, Manse-ATR mRNA is present at relatively low levels in both sexes.
Collapse
Affiliation(s)
- Frank M Horodyski
- Department of Biomedical Sciences, College of Osteopathic Medicine, Ohio University, Athens, OH, USA.
| | | | | | | | | | | | | | | |
Collapse
|
218
|
Dircksen H, Neupert S, Predel R, Verleyen P, Huybrechts J, Strauss J, Hauser F, Stafflinger E, Schneider M, Pauwels K, Schoofs L, Grimmelikhuijzen CJP. Genomics, transcriptomics, and peptidomics of Daphnia pulex neuropeptides and protein hormones. J Proteome Res 2011; 10:4478-504. [PMID: 21830762 DOI: 10.1021/pr200284e] [Citation(s) in RCA: 141] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
We report 43 novel genes in the water flea Daphnia pulex encoding 73 predicted neuropeptide and protein hormones as partly confirmed by RT-PCR. MALDI-TOF mass spectrometry identified 40 neuropeptides by mass matches and 30 neuropeptides by fragmentation sequencing. Single genes encode adipokinetic hormone, allatostatin-A, allatostatin-B, allatotropin, Ala(7)-CCAP, CCHamide, Arg(7)-corazonin, DENamides, CRF-like (DH52) and calcitonin-like (DH31) diuretic hormones, two ecdysis-triggering hormones, two FIRFamides, one insulin, two alternative splice forms of ion transport peptide (ITP), myosuppressin, neuroparsin, two neuropeptide-F splice forms, three periviscerokinins (but no pyrokinins), pigment dispersing hormone, proctolin, Met(4)-proctolin, short neuropeptide-F, three RYamides, SIFamide, two sulfakinins, and three tachykinins. There are two genes for a preprohormone containing orcomyotropin-like peptides and orcokinins, two genes for N-terminally elongated ITPs, two genes (clustered) for eclosion hormones, two genes (clustered) for bursicons alpha, beta, and two genes (clustered) for glycoproteins GPA2, GPB5, three genes for different allatostatins-C (two of them clustered) and three genes for IGF-related peptides. Detailed comparisons of genes or their products with those from insects and decapod crustaceans revealed that the D. pulex peptides are often closer related to their insect than to their decapod crustacean homologues, confirming that branchiopods, to which Daphnia belongs, are the ancestor group of insects.
Collapse
|
219
|
Li B, Beeman RW, Park Y. Functions of duplicated genes encoding CCAP receptors in the red flour beetle, Tribolium castaneum. JOURNAL OF INSECT PHYSIOLOGY 2011; 57:1190-1197. [PMID: 21708161 DOI: 10.1016/j.jinsphys.2011.05.011] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2011] [Revised: 05/11/2011] [Accepted: 05/17/2011] [Indexed: 05/31/2023]
Abstract
Crustacean cardioactive peptide (CCAP) is a nonapeptide originally isolated from the shore crab, Carcinus maenas, based on its cardioacceleratory activity. This peptide is highly conserved in insects and other arthropods. In insects CCAP also has an essential role in ecdysis behavior. We previously identified two homologous genes, ccapr-1 and ccapr-2, encoding putative CCAP receptors in the red flour beetle, Tribolium castaneum. In contrast, some insects, including Drosophila melanogaster, carry only one gene encoding a CCAP receptor. Phylogenetic analysis of putative CCAP receptor orthologs reveals a number of independent gene duplications in several insect lineages. In this study, we confirmed that CCAP activates both putative T. castaneum receptors in a heterologous expression system. RNA interference (RNAi) of ccapr-1 and ccapr-2 revealed that ccapr-2 is essential for eclosion behavior in T. castaneum, while RNAi for ccapr-1 did not result in any abnormal phenotype. In vivo cardioacceleratory activity of exogenously applied CCAP was abolished by RNAi of ccapr-2, but not by that of ccapr-1. Thus, only ccapr-2 mediates the cardioacceleratory function, ccapr-1 having apparently lost both functions for eclosion behavior and for cardioacceleration since the recent gene duplication event.
Collapse
Affiliation(s)
- Bin Li
- Department of Entomology, Waters Hall, Kansas State University, Manhattan, KS 66506, USA
| | | | | |
Collapse
|
220
|
Sterkel M, Urlaub H, Rivera-Pomar R, Ons S. Functional Proteomics of Neuropeptidome Dynamics during the Feeding Process of Rhodnius prolixus. J Proteome Res 2011; 10:3363-71. [DOI: 10.1021/pr2001012] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Marcos Sterkel
- Laboratorio de Genética y Genómica Funcional, Centro Regional de Estudios Genómicos, Universidad Nacional de La Plata, Buenos Aires, Argentina
| | - Henning Urlaub
- Bioanalytical Mass Spectrometry Laboratory, Department of Cellular Biochemistry, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Rolando Rivera-Pomar
- Laboratorio de Genética y Genómica Funcional, Centro Regional de Estudios Genómicos, Universidad Nacional de La Plata, Buenos Aires, Argentina
- Departamento de Ciencias Básicas y Experimentales, Universidad Nacional del Noroeste de la Provincia de Buenos Aires, Pergamino, Argentina
| | - Sheila Ons
- Laboratorio de Genética y Genómica Funcional, Centro Regional de Estudios Genómicos, Universidad Nacional de La Plata, Buenos Aires, Argentina
| |
Collapse
|
221
|
Nässel DR, Wegener C. A comparative review of short and long neuropeptide F signaling in invertebrates: Any similarities to vertebrate neuropeptide Y signaling? Peptides 2011; 32:1335-55. [PMID: 21440021 DOI: 10.1016/j.peptides.2011.03.013] [Citation(s) in RCA: 198] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2011] [Revised: 03/10/2011] [Accepted: 03/10/2011] [Indexed: 10/18/2022]
Abstract
Neuropeptides referred to as neuropeptide F (NPF) and short neuropeptide F (sNPF) have been identified in numerous invertebrate species. Sequence information has expanded tremendously due to recent genome sequencing and EST projects. Analysis of sequences of the peptides and prepropeptides strongly suggest that NPFs and sNPFs are not closely related. However, the NPFs are likely to be ancestrally related to the vertebrate family of neuropeptide Y (NPY) peptides. Peptide diversification may have been accomplished by different mechanisms in NPFs and sNPFs; in the former by gene duplications followed by diversification and in the sNPFs by internal duplications resulting in paracopies of peptides. We discuss the distribution and functions of NPFs and their receptors in several model invertebrates. Signaling with sNPF, however, has been investigated mainly in insects, especially in Drosophila. Both in invertebrates and in mammals NPF/NPY play roles in feeding, metabolism, reproduction and stress responses. Several other NPF functions have been studied in Drosophila that may be shared with mammals. In Drosophila sNPFs are widely distributed in numerous neurons of the CNS and some gut endocrines and their functions may be truly pleiotropic. Peptide distribution and experiments suggest roles of sNPF in feeding and growth, stress responses, modulation of locomotion and olfactory inputs, hormone release, as well as learning and memory. Available data indicate that NPF and sNPF signaling systems are distinct and not likely to play redundant roles.
Collapse
Affiliation(s)
- Dick R Nässel
- Department of Zoology, Stockholm University, S-10691 Stockholm, Sweden.
| | | |
Collapse
|
222
|
Christie AE. Crustacean neuroendocrine systems and their signaling agents. Cell Tissue Res 2011; 345:41-67. [PMID: 21597913 DOI: 10.1007/s00441-011-1183-9] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2011] [Accepted: 04/20/2011] [Indexed: 11/24/2022]
Abstract
Decapod crustaceans have long served as important models for the study of neuroendocrine signaling. For example, the process of neurosecretion was first formally demonstrated by using a member of this order. In this review, the major decapod neuroendocrine organs are described, as are their phylogenetic conservation and neurochemistry. In addition, recent advances in crustacean neurohormone discovery and tissue mapping are discussed, as are several recent advances in our understanding of hormonal control in this group of animals.
Collapse
Affiliation(s)
- Andrew E Christie
- Neuroscience Program, John W. and Jean C. Boylan Center for Cellular and Molecular Physiology, Mount Desert Island Biological Laboratory, Old Bar Harbor Road, Salisbury Cove, ME 04672, USA.
| |
Collapse
|
223
|
Parthasarathy R, Palli SR. Molecular analysis of nutritional and hormonal regulation of female reproduction in the red flour beetle, Tribolium castaneum. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2011; 41:294-305. [PMID: 21288489 PMCID: PMC3066291 DOI: 10.1016/j.ibmb.2011.01.006] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2010] [Revised: 01/17/2011] [Accepted: 01/20/2011] [Indexed: 05/24/2023]
Abstract
Female reproduction includes maturation of oocytes and the synthesis of yolk proteins (vitellogenin, Vg) in the fat body and their deposition into the oocytes. Our recent studies showed that juvenile hormone (JH) regulates Vg synthesis and 20-hydroxyecdysone (20E) regulates oocyte maturation in the red flour beetle (Tribolium castaneum). Here, we report on the role of nutritional signaling on vitellogenesis and oogenesis. Comparison of gene expression between fed and starved beetles by microarray analysis showed the up-regulation of genes involved in energy homeostasis and down-regulation of genes involved in egg production in the starved beetles. The RNA interference (RNAi) aided knock-down in the expression of genes involved in insulin and TOR signaling pathways showed that both these signaling pathways play key roles in Vg synthesis and oocyte maturation. Starvation of female beetles resulted in a block in Vg synthesis but not in the progression of primary oocyte development to the resting stage. Feeding after starvation induced Vg synthesis and the progression of primary oocytes from the resting stage to the mature stage. However, in the beetles where JH or 20E synthesis or action was blocked by RNAi, both Vg synthesis and oocyte maturation were affected suggesting that both these hormones (JH and 20E) and nutritional signaling and their cross-talk regulate vitellogenesis and oogenesis.
Collapse
Affiliation(s)
| | - Subba R. Palli
- Corresponding Author: Phone: 859 257 4962, Fax: 859 323 1120,
| |
Collapse
|
224
|
Te Brugge V, Paluzzi JP, Schooley DA, Orchard I. Identification of the elusive peptidergic diuretic hormone in the blood-feeding bug Rhodnius prolixus: a CRF-related peptide. ACTA ACUST UNITED AC 2011; 214:371-81. [PMID: 21228196 DOI: 10.1242/jeb.046292] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Probing of a host and ingestion of a blood-meal in a fifth instar Rhodnius prolixus results in a cascade of tightly integrated events. The huge blood-meal is pumped into the anterior midgut during feeding, then modified by diuresis and stored until it is digested. While serotonin is known to be a diuretic hormone in R. prolixus, a peptidergic factor(s) was also known to play a role in diuresis. In the present study we employed molecular techniques and mass spectrometry to determine the sequence of a native CRF-like peptide from R. prolixus (Rhopr DH). In addition, we confirmed the distribution and localization of Rhopr DH using in situ hybridization and immunohistochemistry, and demonstrated its potent biological activity on both the anterior midgut and Malpighian tubules.
Collapse
Affiliation(s)
- Victoria Te Brugge
- Department of Biology, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, ON, Canada, L5L 1C6.
| | | | | | | |
Collapse
|
225
|
Veenstra JA. Neuropeptide evolution: neurohormones and neuropeptides predicted from the genomes of Capitella teleta and Helobdella robusta. Gen Comp Endocrinol 2011; 171:160-75. [PMID: 21241702 DOI: 10.1016/j.ygcen.2011.01.005] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2010] [Revised: 01/04/2011] [Accepted: 01/10/2011] [Indexed: 11/20/2022]
Abstract
Genes encoding neurohormones and neuropeptide precursors were identified in the genomes of two annelids, the leech Helobdella robusta and the polychaete worm Capitella teleta. Although no neuropeptides have been identified from these two species and relatively few neuropeptides from annelids in general, 43 and 35 such genes were found in Capitella and Helobdella, respectively. The predicted peptidomes of these two species are similar to one another and also similar to those of mollusks, particular in the case of Capitella. Helobdella seems to have less neuropeptide genes than Capitella and it lacks the glycoprotein hormones bursicon and GPA2/GPB5; in both cases the genes coding the two subunits as well as the genes coding their receptors are absent from its genome. In Helobdella several neuropeptide genes are duplicated, thus it has five NPY genes, including one pseudogene, as well as four genes coding Wwamides (allatostatin B). Genes coding achatin, allatotropin, allatostatin C, conopressin, FFamide, FLamide, FMRFamide, GGRFamide, GnRH, myomodulin, NPY, pedal peptides, RGWamide (a likely APGWamide homolog), RXDLamide, VR(F/I)amide, WWamide were found in both species, while genes coding cerebrin, elevenin, GGNG, LFRWamide, LRFYamide, luqin, lymnokinin and tachykinin were only found in Capitella.
Collapse
Affiliation(s)
- Jan A Veenstra
- Université de Bordeaux, INCIA UMR 5287 CNRS, 33400 Talence, France.
| |
Collapse
|
226
|
Badisco L, Huybrechts J, Simonet G, Verlinden H, Marchal E, Huybrechts R, Schoofs L, De Loof A, Vanden Broeck J. Transcriptome analysis of the desert locust central nervous system: production and annotation of a Schistocerca gregaria EST database. PLoS One 2011; 6:e17274. [PMID: 21445293 PMCID: PMC3061863 DOI: 10.1371/journal.pone.0017274] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2010] [Accepted: 01/28/2011] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND The desert locust (Schistocerca gregaria) displays a fascinating type of phenotypic plasticity, designated as 'phase polyphenism'. Depending on environmental conditions, one genome can be translated into two highly divergent phenotypes, termed the solitarious and gregarious (swarming) phase. Although many of the underlying molecular events remain elusive, the central nervous system (CNS) is expected to play a crucial role in the phase transition process. Locusts have also proven to be interesting model organisms in a physiological and neurobiological research context. However, molecular studies in locusts are hampered by the fact that genome/transcriptome sequence information available for this branch of insects is still limited. METHODOLOGY We have generated 34,672 raw expressed sequence tags (EST) from the CNS of desert locusts in both phases. These ESTs were assembled in 12,709 unique transcript sequences and nearly 4,000 sequences were functionally annotated. Moreover, the obtained S. gregaria EST information is highly complementary to the existing orthopteran transcriptomic data. Since many novel transcripts encode neuronal signaling and signal transduction components, this paper includes an overview of these sequences. Furthermore, several transcripts being differentially represented in solitarious and gregarious locusts were retrieved from this EST database. The findings highlight the involvement of the CNS in the phase transition process and indicate that this novel annotated database may also add to the emerging knowledge of concomitant neuronal signaling and neuroplasticity events. CONCLUSIONS In summary, we met the need for novel sequence data from desert locust CNS. To our knowledge, we hereby also present the first insect EST database that is derived from the complete CNS. The obtained S. gregaria EST data constitute an important new source of information that will be instrumental in further unraveling the molecular principles of phase polyphenism, in further establishing locusts as valuable research model organisms and in molecular evolutionary and comparative entomology.
Collapse
Affiliation(s)
- Liesbeth Badisco
- Department of Animal Physiology and Neurobiology, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Jurgen Huybrechts
- Department of Animal Physiology and Neurobiology, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Gert Simonet
- Department of Animal Physiology and Neurobiology, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Heleen Verlinden
- Department of Animal Physiology and Neurobiology, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Elisabeth Marchal
- Department of Animal Physiology and Neurobiology, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Roger Huybrechts
- Department of Animal Physiology and Neurobiology, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Liliane Schoofs
- Department of Animal Physiology and Neurobiology, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Arnold De Loof
- Department of Animal Physiology and Neurobiology, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Jozef Vanden Broeck
- Department of Animal Physiology and Neurobiology, Katholieke Universiteit Leuven, Leuven, Belgium
| |
Collapse
|
227
|
New physiological activities of myosuppressin, sulfakinin and NVP-like peptide in Zophobas atratus beetle. J Comp Physiol B 2011; 181:721-30. [PMID: 21409564 PMCID: PMC3140940 DOI: 10.1007/s00360-011-0563-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2010] [Revised: 02/17/2011] [Accepted: 02/23/2011] [Indexed: 12/01/2022]
Abstract
Three neuropeptides Zopat-MS-2 (pEDVDHVFLRFa), Zopat-SK-1 (pETSDDYGHLRFa) and Zopat-NVPL-4trunc. (GRWGGFA), recently isolated from the neuroendocrine system of the Zophobas atratus beetle, were tested for their myotropic and hyperglycaemic activities in this species. These peptides exerted differentiated dose-dependent and tissue specific physiological effects. Zopat-MS-2 inhibited contractions of the isolated heart, ejaculatory duct, oviduct and hindgut of adult beetles and induced bimodal effects in the heart contractile activity of pupae in vivo. It also increased the haemolymph free sugar level in larvae of this species, apart from myotropic activity. Zopat-SK-1 showed myostimulatory action on the isolated hindgut of the adult beetles, but it decreased contractions of the heart, ejaculatory duct and oviduct. Injections of this peptide at a dose of 2 μg also caused delayed cardioinhibitory effects on the heartbeat of the pupae. Together with the ability to increase free sugar level in the haemolymph of larvae these were new physiological activities of sulfakinins in insects. Zopat-NVPL-4trunc. inhibited the muscle contractions of the two organs: hindgut and ejaculatory duct but it was inactive on the oviduct and the heart of the adult beetles. This peptide also increased free sugar level concentration in the haemolymph of Z. atratus larvae. These physiological actions are the first biological activities discovered for this group of the insect peptides. The present work showed pleiotropic activity of three neuropeptides and indicates that the visceral muscle contractions and the haemolymph sugar homeostasis in Z. atratus are regulated by complex mechanisms.
Collapse
|
228
|
Iga M, Smagghe G. Relationship between larval-pupal metamorphosis and transcript expression of insulin-like peptide and insulin receptor in Spodoptera littoralis. Peptides 2011; 32:531-8. [PMID: 21056070 DOI: 10.1016/j.peptides.2010.10.033] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2010] [Revised: 10/26/2010] [Accepted: 10/26/2010] [Indexed: 01/26/2023]
Abstract
Insulin-like peptides (ILPs) affect a wide variety of biological events, such as metabolism, lifespan, growth and reproduction. Two ILPs (Spoli-ILP1 and Spoli-ILP2) were identified in the cotton leafworm, Spodoptera littoralis, while the functions and developmental characters are not fully understood. In the present study, we identified the partial sequence of a putative S. littoralis insulin receptor (Spoli-InR) and investigated the stage (age)- and tissue-dependent expression profile of Spoli-InR in addition to Spoli-ILPs during the last larval development and larval-pupal metamorphosis. Spoli-ILP1 and Spoli-ILP2 were specifically expressed in the brain, and their gene expressions were gradually decreased in concert with larval-pupal development. On the other hand, Spoli-InR was expressed in all the selected tissues (brain, testis, fat body, Malpighian tubules, prothoracic glands and midgut), though the gene expression pattern was different among the tissues. Interestingly, the transcript expression pattern of Spoli-InR in the fat body seemed to relate with larval-pupal development. In a parallel experiment, the juvenile hormone mimetic methoprene was able to prolong the larval period when applied before the commitment peak of ecdysteroids titer in the hemolymph, and in this case the expression of Spoli-ILPs and Spoli-InR was affected. These results demonstrated first a relationship between transcript expression of Spoli-ILPs and larval-pupal development, and second they suggested the effect of ILPs may be controlled by not only Spoli-ILPs expression but also Spoli-InR expression.
Collapse
Affiliation(s)
- Masatoshi Iga
- Laboratory of Agrozoology, Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, B-9000 Ghent, Belgium
| | | |
Collapse
|
229
|
Coast GM, Schooley DA. Toward a consensus nomenclature for insect neuropeptides and peptide hormones. Peptides 2011; 32:620-31. [PMID: 21093513 DOI: 10.1016/j.peptides.2010.11.006] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2010] [Revised: 11/09/2010] [Accepted: 11/09/2010] [Indexed: 11/30/2022]
Abstract
The nomenclature currently in use for insect neuropeptide and peptide hormone families is reviewed and suggestions are made as to how it can be rationalized. Based upon this review, a number of conventions are advanced as a guide to a more rationale nomenclature. The scheme that is put forward builds upon the binomial nomenclature scheme proposed by Raina and Gäde in 1988, when just over 20 insect neuropeptides had been identified. Known neuropeptides and peptide hormones are assigned to 32 structurally distinct families, frequently with overlapping functions. The names given to these families are those that are currently in use, and describe a biological function, homology to known invertebrate/vertebrate peptides, or a conserved structural motif. Interspecific isoforms are identified using a five-letter code to indicate genus and species names, and intraspecific isoforms are identified by Roman or Arabic numerals, with the latter used to signify the order in which sequences are encoded on a prepropeptide. The proposed scheme is sufficiently flexible to allow the incorporation of novel peptides, and could be extended to other arthropods and non-arthropod invertebrates.
Collapse
Affiliation(s)
- Geoffrey M Coast
- School of Biological and Chemical Sciences, Birkbeck (University of London), Malet Street, London WC1E 7HX, UK.
| | | |
Collapse
|
230
|
Audsley N, Matthews HJ, Down RE, Weaver RJ. Neuropeptides associated with the central nervous system of the cabbage root fly, Delia radicum (L). Peptides 2011; 32:434-40. [PMID: 20869420 DOI: 10.1016/j.peptides.2010.08.028] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2010] [Revised: 08/16/2010] [Accepted: 08/16/2010] [Indexed: 11/23/2022]
Abstract
The peptidome of the central nervous system of adult cabbage root fly, Delia radicum (L) was investigated using matrix assisted laser desorption ionization time of flight mass spectrometry (MALDI-TOF MS). Over twenty neuropeptides were identified from three different tissue sources, the combined brain/suboesophageal ganglion (SOG), the retrocerebral complex, and the thoracic-abdominal ganglion (TAG). A number of peptides were identified in all three tissues, including allatostatins, short neuropeptide F-like peptides, corazonin, a pyrokinin, and a myosuppressin. Adipokinetic hormone was restricted to the retrocerebral complex. Other peptides, including FMRFamides and sulfakinins were detected only in the brain/SOG and TAG. Some peptides, notably myoinhibitory peptides and tachykinins, which have been identified in other fly species, were not detected in any tissue sample. This study has structurally characterized for the first time, the neuropeptides from adult D. radicum.
Collapse
Affiliation(s)
- Neil Audsley
- The Food and Environment Research Agency, Sand Hutton, York, YO41 1LZ, UK.
| | | | | | | |
Collapse
|
231
|
Sellami A, Agricola HJ, Veenstra JA. Neuroendocrine cells in Drosophila melanogaster producing GPA2/GPB5, a hormone with homology to LH, FSH and TSH. Gen Comp Endocrinol 2011; 170:582-8. [PMID: 21118692 DOI: 10.1016/j.ygcen.2010.11.015] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2010] [Revised: 10/13/2010] [Accepted: 11/18/2010] [Indexed: 10/18/2022]
Abstract
Thyrostimulin is a dimer hormone formed from glycoprotein A2 (GPA2) and glycoprotein B5 (GPB5) that activates the TSH receptor in vertebrates. A Drosophila GPA2/GPB5 homolog has recently been characterized. Cells producing this novel hormone were localized by in situ hybridization using both the GPA2 and GPB5 DNA sequences and by making transgenic flies in which the GPB5 promoter drives the expression of gal4. Endocrine cells producing GPA2/GPB5 were found in the abdominal neuromeres and are different from the endocrine cells producing crustacean cardioactive peptide or those making leucokinin. They are also not immunoreactive to antisera to the CRF- or calcitonin-like diuretic hormones. Their axons leave the central nervous system through the segmental nerves and project to the periphery were they likely release GPA2/GPB5 into the hemolymph. As has been described for the leucokinin endocrine cells their axons run over the surface of the abdominal musculature, however, the projection patterns of the leucokinin and GPA2/GPB5 neuroendocrine cells are not identical. The chances of adult eclosion of insects from which the GPA2/GPB5 cells have been genetically ablated or have been made to express GPB5-RNAi are severely compromised, demonstrating the physiological importance of the cells producing this hormone. As the receptor for GPA2/GPB5 stimulates the production of cyclic AMP (cAMP) and is highly expressed in the hindgut, where cAMP stimulates water reabsorption in locusts, it is suggested that GPA2/GPB5 may be an insect anti-diuretic hormone.
Collapse
Affiliation(s)
- Azza Sellami
- Université de Bordeaux, CNIC UMR 5228 CNRS, 33400 Talence, France
| | | | | |
Collapse
|
232
|
Ons S, Sterkel M, Diambra L, Urlaub H, Rivera-Pomar R. Neuropeptide precursor gene discovery in the Chagas disease vector Rhodnius prolixus. INSECT MOLECULAR BIOLOGY 2011; 20:29-44. [PMID: 20958806 DOI: 10.1111/j.1365-2583.2010.01050.x] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
We show a straightforward workflow combining homology search in Rhodnius prolixus genome sequence with cloning by rapid amplification of cDNA ends and mass spectrometry. We have identified 32 genes and their transcripts that encode a number of neuropeptide precursors leading to 194 putative peptides. We validated by mass spectrometry 82 of those predicted neuropeptides in the brain of R. prolixus to achieve the first comprehensive genomic, transcriptomic and neuropeptidomic analysis of an insect disease vector. Comparisons of available insect neuropeptide sequences revealed that the R. prolixus genome contains most of the conserved neuropeptides in insects, many of them displaying specific features at the sequence level. Some gene families reported here are identified for the first time in the order Hemiptera, a highly biodiverse group of insects that includes many human, animal and plant disease agents.
Collapse
Affiliation(s)
- S Ons
- Laboratorio de Genética y Genómica Funcional, Centro Regional de Estudios Genómicos, Universidad Nacional de La Plata, Buenos Aires, Argentina
| | | | | | | | | |
Collapse
|
233
|
Lindemans M, Janssen T, Beets I, Temmerman L, Meelkop E, Schoofs L. Gonadotropin-releasing hormone and adipokinetic hormone signaling systems share a common evolutionary origin. Front Endocrinol (Lausanne) 2011; 2:16. [PMID: 22649364 PMCID: PMC3356000 DOI: 10.3389/fendo.2011.00016] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2011] [Accepted: 06/16/2011] [Indexed: 11/13/2022] Open
Abstract
Gonadotropin-releasing hormone (GnRH) is a critical and central hormone that regulates vertebrate reproduction. The high conservation of GnRH signaling within the chordates (deuterostomians) raises the important question as to whether its appearance might date back prior to the divergence of protostomian and deuterostomian lineages, about 700 million years ago. This leads to several important questions regarding the evolution of the GnRH family. Has GnRH been retained in most protostomian lineages? And was regulation of reproduction already a function of ancestral GnRH? The first question can undoubtedly be answered affirmatively since several GnRH-like sequences have been found in wide variety of protostomian and deuterostomian phyla. However, based on their different primary functions in different phyla - which implies a less unanimous answer on the second question - consistency in the nomenclature of this peptide family has been lost. A comparative and phylogenetic approach shows that the ecdysozoan adipokinetic hormones (AKHs), lophotrochozoan GnRHs and chordate GnRHs are structurally related and suggests that they all originate from a common ancestor. This review supports the view that the AKH-GnRH signaling system probably arose very early in metazoan evolution, prior to the divergence of protostomians and deuterostomians.
Collapse
Affiliation(s)
- Marleen Lindemans
- Functional Genomics and Proteomics Research Unit, Katholieke Universiteit LeuvenLeuven, Belgium
| | - Tom Janssen
- Functional Genomics and Proteomics Research Unit, Katholieke Universiteit LeuvenLeuven, Belgium
| | - Isabel Beets
- Functional Genomics and Proteomics Research Unit, Katholieke Universiteit LeuvenLeuven, Belgium
| | - Liesbet Temmerman
- Functional Genomics and Proteomics Research Unit, Katholieke Universiteit LeuvenLeuven, Belgium
| | - Ellen Meelkop
- Functional Genomics and Proteomics Research Unit, Katholieke Universiteit LeuvenLeuven, Belgium
| | - Liliane Schoofs
- Functional Genomics and Proteomics Research Unit, Katholieke Universiteit LeuvenLeuven, Belgium
- *Correspondence: Liliane Schoofs, Functional Genomics and Proteomics Research Unit, Zoological Institute, Katholieke Universiteit Leuven, Naamsestraat 59, B-3000 Leuven, Belgium. e-mail:
| |
Collapse
|
234
|
Orchard I, Lee DH, da Silva R, Lange AB. The Proctolin Gene and Biological Effects of Proctolin in the Blood-Feeding Bug, Rhodnius prolixus. Front Endocrinol (Lausanne) 2011; 2:59. [PMID: 22654816 PMCID: PMC3356076 DOI: 10.3389/fendo.2011.00059] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2011] [Accepted: 10/04/2011] [Indexed: 11/20/2022] Open
Abstract
We have reinvestigated the possible presence or absence of the pentapeptide proctolin in Rhodnius prolixus and report here the cloning of the proctolin cDNA. The transcript is expressed in the central nervous system (CNS) and some peripheral tissues. The proctolin prepropeptide encodes a single copy of proctolin along with a possible proctolin-precursor-associated peptide. We have biochemically identified proctolin in CNS extracts and shown its distribution using proctolin-like immunoreactivity. Immunostained processes are found on the salivary glands, female and male reproductive tissues, and heart and associated alary muscles. Proctolin-like immunoreactive bipolar neurons are found on the lateral margins of the common oviduct and bursa. Proctolin is biologically active on R. prolixus tissues, stimulating increases in contraction of anterior midgut and hindgut muscles, and increasing heartbeat frequency. Contrary to the previous suggestion that proctolin is absent from R. prolixus, proctolin is indeed present and biologically active in this medically important bug.
Collapse
Affiliation(s)
- Ian Orchard
- Department of Biology, University of Toronto MississaugaMississauga, ON, Canada
- *Correspondence: Ian Orchard, Department of Biology, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, ON, Canada L5L 1C6. e-mail:
| | - Do Hee Lee
- Department of Biology, University of Toronto MississaugaMississauga, ON, Canada
| | - Rosa da Silva
- Department of Biology, University of Toronto MississaugaMississauga, ON, Canada
| | - Angela B. Lange
- Department of Biology, University of Toronto MississaugaMississauga, ON, Canada
| |
Collapse
|
235
|
Meelkop E, Temmerman L, Schoofs L, Janssen T. Signalling through pigment dispersing hormone-like peptides in invertebrates. Prog Neurobiol 2010; 93:125-47. [PMID: 21040756 DOI: 10.1016/j.pneurobio.2010.10.004] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2010] [Revised: 10/19/2010] [Accepted: 10/21/2010] [Indexed: 12/19/2022]
Abstract
During recent decades, several research teams engaged in unraveling the molecular structure and the physiological significance of pigment dispersing hormone-like peptides, particularly with respect to colour change and biological rhythms. In this review, we first summarise the entire history of pigment dispersing hormone-like peptide research, thus providing a stepping stone for those who are curious about this growing area of interest. Next, we try to bring order in the plethora of experimental data on the molecular structure of the various peptides and receptors and also discuss immunolocalization, time-related expression and suggested functions in crustaceans, insects and nematodes. In addition, a brief comparison with the vertebrate system is made.
Collapse
Affiliation(s)
- E Meelkop
- Laboratory of Functional Genomics and Proteomics, Zoological Institute, K.U. Leuven, Naamsestraat 59, B-3000 Leuven, Belgium
| | | | | | | |
Collapse
|
236
|
Hauser F, Neupert S, Williamson M, Predel R, Tanaka Y, Grimmelikhuijzen CJP. Genomics and peptidomics of neuropeptides and protein hormones present in the parasitic wasp Nasonia vitripennis. J Proteome Res 2010; 9:5296-310. [PMID: 20695486 DOI: 10.1021/pr100570j] [Citation(s) in RCA: 130] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Neuropeptides and protein hormones constitute a very important group of signaling molecules, regulating central physiological processes such as reproduction, development, and behavior. Using a bioinformatics approach, we screened the recently sequenced genome of the parasitic wasp, Nasonia vitripennis, for the presence of these signaling molecules and annotated 30 precursor genes encoding 51 different mature neuropeptides or protein hormones. Twenty-four of the predicted mature Nasonia neuropeptides could be experimentally confirmed by mass spectrometry. We also discovered a completely novel neuropeptide gene in Nasonia, coding for peptides containing the C-terminal sequence RYamide. This gene has orthologs in nearly all arthropods with a sequenced genome, and its expression in mosquitoes was confirmed by mass spectrometry. No precursor could be identified for N-terminally extended FMRFamides, even though their putative G protein coupled receptor (GPCR) is present in the Nasonia genome. Neither the precursor nor the putative receptor could be identified for allatostatin-B, capa, the glycoprotein hormones GPA2/GPB5, kinin, proctolin, sex peptide, and sulfakinin, arguing that these signaling systems are truly absent in the wasp. Also, antidiuretic factors, allatotropin, and NPLP-like precursors are missing in Nasonia, but here the receptors have not been identified in any insect, so far. Nasonia (Hymenoptera) has the lowest number of neuropeptide precursor genes compared to Drosophila melanogaster, Aedes aegypti (both Diptera), Bombyx mori (Lepidoptera), Tribolium castaneum (Coleoptera), Apis mellifera (Hymenoptera), and Acyrthosiphon pisum (Hemiptera). This lower number of neuropeptide genes might be related to Nasonia's parasitic life.
Collapse
Affiliation(s)
- Frank Hauser
- Center for Functional and Comparative Insect Genomics, Department of Biology, University of Copenhagen, Copenhagen, Denmark.
| | | | | | | | | | | |
Collapse
|
237
|
Collins JJ, Hou X, Romanova EV, Lambrus BG, Miller CM, Saberi A, Sweedler JV, Newmark PA. Genome-wide analyses reveal a role for peptide hormones in planarian germline development. PLoS Biol 2010; 8:e1000509. [PMID: 20967238 PMCID: PMC2953531 DOI: 10.1371/journal.pbio.1000509] [Citation(s) in RCA: 195] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2010] [Accepted: 08/25/2010] [Indexed: 12/02/2022] Open
Abstract
Genomic/peptidomic analyses of the planarian Schmidtea mediterranea identifies >200 neuropeptides and uncovers a conserved neuropeptide required for proper maturation and maintenance of the reproductive system. Bioactive peptides (i.e., neuropeptides or peptide hormones) represent the largest class of cell-cell signaling molecules in metazoans and are potent regulators of neural and physiological function. In vertebrates, peptide hormones play an integral role in endocrine signaling between the brain and the gonads that controls reproductive development, yet few of these molecules have been shown to influence reproductive development in invertebrates. Here, we define a role for peptide hormones in controlling reproductive physiology of the model flatworm, the planarian Schmidtea mediterranea. Based on our observation that defective neuropeptide processing results in defects in reproductive system development, we employed peptidomic and functional genomic approaches to characterize the planarian peptide hormone complement, identifying 51 prohormone genes and validating 142 peptides biochemically. Comprehensive in situ hybridization analyses of prohormone gene expression revealed the unanticipated complexity of the flatworm nervous system and identified a prohormone specifically expressed in the nervous system of sexually reproducing planarians. We show that this member of the neuropeptide Y superfamily is required for the maintenance of mature reproductive organs and differentiated germ cells in the testes. Additionally, comparative analyses of our biochemically validated prohormones with the genomes of the parasitic flatworms Schistosoma mansoni and Schistosoma japonicum identified new schistosome prohormones and validated half of all predicted peptide-encoding genes in these parasites. These studies describe the peptide hormone complement of a flatworm on a genome-wide scale and reveal a previously uncharacterized role for peptide hormones in flatworm reproduction. Furthermore, they suggest new opportunities for using planarians as free-living models for understanding the reproductive biology of flatworm parasites. Flatworms cause diseases affecting hundreds of millions of people, so understanding what influences their reproductive activity is of fundamental importance. Neurally derived signals have been suggested to coordinate sexual reproduction in free-living flatworms, yet the neuroendocrine signaling repertoire has not been characterized comprehensively for any flatworm. Neuropeptides are a large diverse group of cell-cell signaling molecules and play many roles in vertebrate reproductive development; however, little is known about their function in reproductive development among invertebrates. Here we use biochemical and bioinformatic techniques to identify bioactive peptides in the genome of the planarian flatworm Schmidtea mediterranea and identify 51 genes encoding >200 peptides. Analysis of these genes in both sexual and asexual strains of S. mediterranea identified a neuropeptide Y superfamily member as important for the normal development and maintenance of the planarian reproductive system. We suggest that understanding peptide hormone function in planarian reproduction could have practical implications in the treatment of parasitic flatworms.
Collapse
Affiliation(s)
- James J. Collins
- Howard Hughes Medical Institute and Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Xiaowen Hou
- Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Elena V. Romanova
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Bramwell G. Lambrus
- Howard Hughes Medical Institute and Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Claire M. Miller
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Amir Saberi
- Howard Hughes Medical Institute and Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Jonathan V. Sweedler
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Phillip A. Newmark
- Howard Hughes Medical Institute and Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
- * E-mail:
| |
Collapse
|
238
|
Mykles DL, Adams ME, Gäde G, Lange AB, Marco HG, Orchard I. Neuropeptide action in insects and crustaceans. Physiol Biochem Zool 2010; 83:836-46. [PMID: 20550437 PMCID: PMC3844688 DOI: 10.1086/648470] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Physiological processes are regulated by a diverse array of neuropeptides that coordinate organ systems. The neuropeptides, many of which act through G protein-coupled receptors, affect the levels of cyclic nucleotides (cAMP and cGMP) and Ca(2+) in target tissues. In this perspective, their roles in molting, osmoregulation, metabolite utilization, and cardiovascular function are highlighted. In decapod crustaceans, inhibitory neuropeptides (molt-inhibiting hormone and crustacean hyperglycemic hormone) suppress the molting gland through cAMP- and cGMP-mediated signaling. In insects, the complex movements during ecdysis are controlled by ecdysis-triggering hormone and a cascade of downstream neuropeptides. Adipokinetic/hypertrehalosemic/hyperprolinemic hormones mobilize energy stores in response to increased locomotory activity. Crustacean cardioacceleratory (cardioactive) peptide, proctolin, and FMRFamide-related peptides act on the heart, accessory pulsatile organs, and excurrent ostia to control hemolymph distribution to tissues. The osmoregulatory challenge of blood gorging in Rhodnius prolixus requires the coordinated release of serotonin and diuretic and antidiuretic hormones acting on the midgut and Malpighian tubules. These studies illustrate how multiple neuropeptides allow for flexibility in response to physiological challenges.
Collapse
Affiliation(s)
- Donald L Mykles
- Department of Biology, Colorado State University, Fort Collins, CO 80523, USA.
| | | | | | | | | | | |
Collapse
|
239
|
Predel R, Neupert S, Garczynski SF, Crim JW, Brown MR, Russell WK, Kahnt J, Russell DH, Nachman RJ. Neuropeptidomics of the mosquito Aedes aegypti. J Proteome Res 2010; 9:2006-15. [PMID: 20163154 DOI: 10.1021/pr901187p] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Neuropeptidomic data were collected on the mosquito Ae. aegypti, which is considered the most tractable mosquito species for physiological and endocrine studies. The data were solely obtained by direct mass spectrometric profiling, including tandem fragmentation, of selected tissues from single specimens, which yielded a largely complete accounting of the putative bioactive neuropeptides; truncated neuropeptides with low abundance were not counted as mature peptides. Differential processing within the CNS was detected for the CAPA-precursor, and differential post-translational processing (pyroglutamate formation) was detected for AST-C and CAPA-PVK-2. For the first time in insects, we succeeded in the direct mass spectrometric profiling of midgut tissue which yielded a comprehensive and immediate overview of the peptides involved in the endocrine system of the gut. Head peptides which were earlier identified as the most abundant RFamides of Ae. aegypti, were not detected in any part of the CNS or midgut. This study provides a framework for future investigations on mosquito endocrinology and neurobiology. Given the high sequence similarity of neuropeptide precursors identified in other medically important mosquitoes, conclusions regarding the peptidome of Ae. aegypti likely are applicable to these mosquitoes.
Collapse
Affiliation(s)
- Reinhard Predel
- Institute of General Zoology, Friedrich-Schiller-University, Erbertstrasse 1, Jena, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
240
|
Abdel-latief M, Hoffmann KH. Neuropeptide regulators of the juvenile hormone biosynthesis (in vitro) in the beetle, Tenebrio molitor (Coleoptera, Tenebrionidae). ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2010; 74:135-146. [PMID: 20544805 DOI: 10.1002/arch.20359] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
The genome of Tribolium castaneum encodes two allatostatin [AS type B; W(X)(6)Wamide and AS type C; PISCF-OH] and one allatotropin (AT) precursor, but no AS type A (FGLamide) (Tribolium Genome Sequencing Consortium, 2008: Nature 452:949-955). Here we studied the activity (in vitro) of peptides derived from these precursors on the synthesis/release of juvenile hormone (JH) III. The corpora cardiaca-corpora allata (CC-CA) complexes of adult females of another tenebrionid beetle, the mealworm Tenebrio molitor, were used. Incubating the gland complexes in a medium containing Trica-AS B3 peptide, we showed that the peptide has allatostatic function in T. molitor. The activity of the type C AS depended on the age of the test animals and their intrinsic rate of JH III biosynthesis. The Trica-AS C peptide inhibited the JH release from CA of 3-day-old females with a high intrinsic rate of JH synthesis, but activated JH release from the CA of 7-day-old females with a lower intrinsic rate of JH production. The allatotropin peptide (Trica-AT) also activated the JH release from the CA of 7-day-old females in a dose-dependent and reversible manner. Unexpectedly, a type A AS derived from the precursor of the American cockroach Periplaneta americana (Peram-AS A2b) inhibited the JH release from the CA of younger and older females in the concentration range of 10(-8) to 10(-4) M, and the effects were fully reversible in the absence of peptide. These data suggest a complex role of allatoactive neuropeptides in the regulation of JH III biosynthesis in beetles.
Collapse
|
241
|
Abstract
With its recently sequenced genome, the red flour beetle Tribolium castaneum became one of the few model organisms with all the main genetic tools. As a coleoptera, it belongs to the most species-rich order of animals. Tribolium is also a worldwide pest for stored dried foods. Regarding developmental biology, Tribolium offers a complementary model to the highly derived Drosophila. For example, the function of many gap and pair-rule segmentation genes is different in both species. These differences reveal the evolutionary plasticity between two modes of development, with a long germ band in fly and a short one in Tribolium. This beetle allowed the identification of a new type of ecdysone receptor for holometabolous insects. Finally, in the search for the juvenile hormone receptor, a crucial result was obtained with experiments that could be performed only with Tribolium, and not with Drosophila. Tribolium, in association with Drosophila, should help to understand the general rules of development in insects.
Collapse
Affiliation(s)
- François Bonneton
- Université de Lyon, Université Lyon 1, ENS de Lyon, IGFL, CNRS UMR 5242, INRA UMR1237, 46, allée d'Italie, 69364 Lyon Cedex 07, France.
| |
Collapse
|
242
|
Choi MY, Vander Meer RK, Valles SM. Molecular diversity of PBAN family peptides from fire ants. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2010; 74:67-80. [PMID: 20513055 DOI: 10.1002/arch.20356] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
The PBAN/Pyrokinin peptide family is a major neuropeptide family characterized with a common FXPRLamide in the C-termini. These peptides are ubiquitously distributed in the Insecta and are involved in many essential endocrinal functions, e.g., pheromone production. Previous work demonstrated the localization of PBAN in the fire ant central nervous system, and identified a new family of PBAN from the red imported fire ant, Solenopsis invicta. In this study, we identified five more PBAN/Pyrokinin genes from S. geminata, S. richteri, S. pergandii, S. carolinensis, and a hybrid of S. invicta and S. richteri. The gene sequences were used to determine the phylogenetic relationships of these species and hybrid, which compared well to the morphologically defined fire ant subgroup complexes. The putative PBAN and other peptides were determined from the amino acid sequences of the PBAN/pyrokinin genes. We summarized all known insect PBAN family neuropeptides, and for the first time constructed a phylogenetic tree based on the full amino acid sequences translated from representative PBAN cDNAs. The PBAN/pyrokinin gene is well conserved in Insecta and probably extends into the Arthropod phylum; however, translated pre-propeptides may vary and functional diversity may be retained, lost, or modified during the evolutionary process.
Collapse
Affiliation(s)
- Man-Yeon Choi
- United States Department of Agriculture-Agricultural Research Service, Center of Medical, Agricultural and Veterinary Entomology (CMAVE), Gainesville, Florida 32608, USA.
| | | | | |
Collapse
|
243
|
Isolation, expression analysis, and functional characterization of the first antidiuretic hormone receptor in insects. Proc Natl Acad Sci U S A 2010; 107:10290-5. [PMID: 20479227 DOI: 10.1073/pnas.1003666107] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Diuresis following blood-gorging in Rhodnius prolixus is the major process leading to the transmission of Chagas' disease. We have cloned the cDNA of the first receptor known to be involved in an antidiuretic strategy in insects, a strategy that prevents diuresis. This receptor belongs to the insect CAPA receptor family known in other insects to be activated by peptides encoded within the capability gene. We characterize the expression profile in fifth-instars and find expression is localized to the alimentary canal. Highest transcript levels are found in Malpighian tubules and the anterior midgut, which are known targets of the antidiuretic hormone, RhoprCAPA-alpha2. Two transcripts were identified, capa-r1 and capa-r2; however, the latter encodes an atypical G protein-coupled receptor lacking a region ranging between the first and second transmembrane domain. Our heterologous expression assay revealed the expressed capa-r1 receptor is activated by RhoprCAPA-alpha2 (EC(50) = 385nM) but not by RhoprCAPA-alpha1. Structural analogs of the inactive RhoprCAPA-alpha1 were capable of activating the expressed capa-r1 receptor, confirming the importance of the C-terminal consensus sequence common to CAPA-related peptides. In addition, this receptor has some sensitivity to the pyrokinin-related peptide, RhoprCAPA-alphaPK1, but with an efficacy approximately 40-fold less than RhoprCAPA-alpha2. Other peptides belonging to the PRXamide superfamily were inactive on the capa-r1 receptor. Taken together, the neuroendocrinological relevance of this receptor in facilitating the antidiuretic strategy in R. prolixus may make this receptor a useful target for development of agonists or antagonists that could help influence the transmission of Chagas' disease that occurs during diuresis in this medically important insect-disease vector.
Collapse
|
244
|
Veenstra JA. Neurohormones and neuropeptides encoded by the genome of Lottia gigantea, with reference to other mollusks and insects. Gen Comp Endocrinol 2010; 167:86-103. [PMID: 20171220 DOI: 10.1016/j.ygcen.2010.02.010] [Citation(s) in RCA: 165] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2009] [Revised: 02/04/2010] [Accepted: 02/12/2010] [Indexed: 12/23/2022]
Abstract
The Lottia gigantea genome was prospected for the presence of genes coding neuropeptides and neurohormones. Four genes code insulin-related peptides: two genes code molluscan insulin-like growth hormones, one gene an insulin very similar to vertebrate insulin, and the fourth a peptide related to drosophila insulin-like peptide 7. Four other genes encode the cysteine-knot proteins GPA2/GPB5 and bursicon/parabursicon. Another 37 genes code for precursors of the following neuropeptides: achatin, APGWamide, allatostatin C, allatotropin, buccalin (perhaps an allatostatin A homolog), cerebrin, CCAP, conopressin, elevenin (the predicted neuropeptide made by abdominal neuron 11 in Aplysia), egg laying hormone (two genes), enterin, feeding circuit activating neuropeptide (FCAP), FFamide, FMRFamide, GGNG, a GnRH-like peptide, the newly discovered LASGLVamide, LFRFamide, LFRYamide, LRNFVamide, luqin, lymnokinin, myomodulin (two genes), the newly discovered NKY, NPY, pedal peptide (three genes), PKYMDT, pleurin, PXFVamide, small cardioactive peptides, tachykinins (two genes) and WWamide (an allatostatin B homolog). One gene was found to encode FWISamide, while about 20 closely related genes were found to encode WWFamide. These small neuropeptides appear homologous to the NdWFamide, which contains d-Trp; these genes are similar to the Aplysia gene encoding NWFamide. Some of these peptides had not been previously identified from mollusks, such as the predicted hormones similar to Drosophila and vertebrate insulins, bursicon, the putative proctolin homolog PKYMDT and allatostatin C. Together with neuropeptides which are likely homologs of other insect neuropeptides, such as cerebrin and WWamide, this shows that despite significant differences the molluscan and arthropod neuropeptidomes are more similar than generally recognized.
Collapse
Affiliation(s)
- Jan A Veenstra
- Université de Bordeaux, CNRS, CNIC UMR 5228, 33400 Talence, France.
| |
Collapse
|
245
|
Hansen KK, Stafflinger E, Schneider M, Hauser F, Cazzamali G, Williamson M, Kollmann M, Schachtner J, Grimmelikhuijzen CJP. Discovery of a novel insect neuropeptide signaling system closely related to the insect adipokinetic hormone and corazonin hormonal systems. J Biol Chem 2010; 285:10736-47. [PMID: 20068045 PMCID: PMC2856281 DOI: 10.1074/jbc.m109.045369] [Citation(s) in RCA: 123] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2009] [Revised: 12/04/2009] [Indexed: 11/06/2022] Open
Abstract
Neuropeptides and their G protein-coupled receptors (GPCRs) play a central role in the physiology of insects. One large family of insect neuropeptides are the adipokinetic hormones (AKHs), which mobilize lipids and carbohydrates from the insect fat body. Other peptides are the corazonins that are structurally related to the AKHs but represent a different neuropeptide signaling system. We have previously cloned an orphan GPCR from the malaria mosquito Anopheles gambiae that was structurally intermediate between the A. gambiae AKH and corazonin GPCRs. Using functional expression of the receptor in cells in cell culture, we have now identified the ligand for this orphan receptor as being pQVTFSRDWNAamide, a neuropeptide that is structurally intermediate between AKH and corazonin and that we therefore named ACP (AKH/corazonin-related peptide). ACP does not activate the A. gambiae AKH and corazonin receptors and, vice versa, AKH and corazonin do not activate the ACP receptor, showing that the ACP/receptor couple is an independent and so far unknown peptidergic signaling system. Because ACP is structurally intermediate between AKH and corazonin and the ACP receptor between the AKH and corazonin receptors, this is a prominent example of receptor/ligand co-evolution, probably originating from receptor and ligand gene duplications followed by mutations and evolutionary selection, thereby yielding three independent hormonal systems. The ACP signaling system occurs in the mosquitoes A. gambiae, Aedes aegypti, and Culex pipiens (Diptera), the silkworm Bombyx mori (Lepidoptera), the red flour beetle Tribolium castaneum (Coleoptera), the parasitic wasp Nasonia vitripennis (Hymenoptera), and the bug Rhodnius prolixus (Hemiptera). However, the ACP system is not present in 12 Drosophila species (Diptera), the honeybee Apis mellifera (Hymenoptera), the pea aphid Acyrthosiphon pisum (Hemiptera), the body louse Pediculus humanus (Phthiraptera), and the crustacean Daphnia pulex, indicating that it has been lost several times during arthropod evolution. In particular, this frequent loss of hormonal systems is unique for arthropods compared with vertebrates.
Collapse
Affiliation(s)
- Karina K. Hansen
- From the Center for Functional and Comparative Insect Genomics, Department of Biology, University of Copenhagen, DK-2100 Copenhagen, Denmark and
| | - Elisabeth Stafflinger
- From the Center for Functional and Comparative Insect Genomics, Department of Biology, University of Copenhagen, DK-2100 Copenhagen, Denmark and
| | - Martina Schneider
- From the Center for Functional and Comparative Insect Genomics, Department of Biology, University of Copenhagen, DK-2100 Copenhagen, Denmark and
| | - Frank Hauser
- From the Center for Functional and Comparative Insect Genomics, Department of Biology, University of Copenhagen, DK-2100 Copenhagen, Denmark and
| | - Giuseppe Cazzamali
- From the Center for Functional and Comparative Insect Genomics, Department of Biology, University of Copenhagen, DK-2100 Copenhagen, Denmark and
| | - Michael Williamson
- From the Center for Functional and Comparative Insect Genomics, Department of Biology, University of Copenhagen, DK-2100 Copenhagen, Denmark and
| | - Martin Kollmann
- the Department of Animal Physiology, University of Marburg, D-35032 Marburg, Germany
| | - Joachim Schachtner
- the Department of Animal Physiology, University of Marburg, D-35032 Marburg, Germany
| | - Cornelis J. P. Grimmelikhuijzen
- From the Center for Functional and Comparative Insect Genomics, Department of Biology, University of Copenhagen, DK-2100 Copenhagen, Denmark and
| |
Collapse
|
246
|
Abstract
Upon mating, females of many animal species undergo dramatic changes in their behavior. In Drosophila melanogaster, postmating behaviors are triggered by sex peptide (SP), which is produced in the male seminal fluid and transferred to female during copulation. SP modulates female behaviors via sex peptide receptor (SPR) located in a small subset of internal sensory neurons that innervate the female uterus and project to the CNS. Although required for postmating responses only in these female sensory neurons, SPR is expressed broadly in the CNS of both sexes. Moreover, SPR is also encoded in the genomes of insects that lack obvious SP orthologs. These observations suggest that SPR may have additional ligands and functions. Here, we identify myoinhibitory peptides (MIPs) as a second family of SPR ligands that is conserved across a wide range of invertebrate species. MIPs are potent agonists for Drosophila, Aedes, and Aplysia SPRs in vitro, yet are unable to trigger postmating responses in vivo. In contrast to SP, MIPs are not produced in male reproductive organs, and are not required for postmating behaviors in Drosophila females. We conclude that MIPs are evolutionarily conserved ligands for SPR, which are likely to mediate functions other than the regulation of female reproductive behaviors.
Collapse
|
247
|
Coast GM, TeBrugge VA, Nachman RJ, Lopez J, Aldrich JR, Lange A, Orchard I. Neurohormones implicated in the control of Malpighian tubule secretion in plant sucking heteropterans: The stink bugs Acrosternum hilare and Nezara viridula. Peptides 2010; 31:468-73. [PMID: 19772880 DOI: 10.1016/j.peptides.2009.09.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2009] [Revised: 09/11/2009] [Accepted: 09/11/2009] [Indexed: 12/01/2022]
Abstract
Plant sucking heteropteran bugs feed regularly on small amounts of K(+)-rich plant material, in contrast to their hematophagous relatives which imbibe large volumes of Na(+)-rich blood. It was anticipated that this would be reflected in the endocrine control of Malpighian tubule (MT) secretion. To explore this, neuroendocrine factors known to influence MT secretion were tested on MT of the pentatomid plant sucking stink bugs, Acrosternum hilare and Nezara viridula, and the results compared with previously published data from Rhodnius prolixus. Serotonin had no effect on N. viridula MT, although it stimulates secretion by R. prolixus MT >1000-fold, and initiates a rapid diuresis to remove excess salt and water from the blood meal. Kinins had no effect on stink bug MT, but secretion was increased by Zoone-DH, a CRF-like peptide, although the response was a modest 2-3-fold acceleration compared with 1000-fold in R. prolixus. Native CAPA peptides, which have diuretic activity in dipteran flies, had antidiuretic activity in MT of the stink bug (Acrhi/Nezvi-CAPA-1 and -2), as previously shown with Rhopr-CAPA-2 in R. prolixus. The antidiuretic activity of Rhopr-CAPA-2 has been linked with terminating the rapid diuresis, but results with stink bugs suggest it is a general feature of heteropteran MT.
Collapse
Affiliation(s)
- Geoffrey M Coast
- School of Biological and Chemical Sciences, Birkbeck (University of London), Malet Street, London WC1E 7HX, UK.
| | | | | | | | | | | | | |
Collapse
|
248
|
Koehler R, Predel R. CAPA-peptides of praying mantids (Mantodea). Peptides 2010; 31:377-83. [PMID: 19808072 DOI: 10.1016/j.peptides.2009.09.033] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2009] [Revised: 09/24/2009] [Accepted: 09/27/2009] [Indexed: 11/25/2022]
Abstract
Dictyoptera which consist of cockroaches, termites, and praying mantids are among the oldest pterygote insects known. Whereas the localization and sequences of neuropeptides from a number of cockroaches are very well known, nearly nothing is known about the neuropeptides typical of praying mantids. In this study, the neuroanatomy of the median neuroendocrine system in the abdominal ventral nerve cord and the sequences of the CAPA-peptides which are expressed in the respective neuroendocrine cells were analyzed. Altogether, 40 species belonging to different families of Mantodea were included. In contrast to cockroaches, the mantids mostly express two CAPA-periviscerokinins (PVKs), only in Mantis religiosa a third PVK was identified. These PVKs are sequence-related to the PVKs of basal cockroaches (Polyphagidae). In a group of closely related Mantodea (Paramantinae), extended forms of PVK-2 were observed. As shown, these forms are possibly the result of substitutions in the N-terminal cleavage sites of the respective PVKs. No trace of a CAPA-pyrokinin was found in any of the praying mantids.
Collapse
Affiliation(s)
- Rene Koehler
- Institute of Zoology, University of Jena, Erbertstrasse 1, 07743 Jena, Germany.
| | | |
Collapse
|
249
|
Huybrechts J, Bonhomme J, Minoli S, Prunier-Leterme N, Dombrovsky A, Abdel-Latief M, Robichon A, Veenstra JA, Tagu D. Neuropeptide and neurohormone precursors in the pea aphid, Acyrthosiphon pisum. INSECT MOLECULAR BIOLOGY 2010; 19 Suppl 2:87-95. [PMID: 20482642 DOI: 10.1111/j.1365-2583.2009.00951.x] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Aphids respond to environmental changes by developing alternative phenotypes with differing reproductive modes. Parthenogenetic reproduction occurs in spring and summer, whereas decreasing day lengths in autumn provoke the production of sexual forms. Changing environmental signals are relayed by brain neuroendocrine signals to the ovarioles. We combined bioinformatic analyses with brain peptidomics and cDNA analyses to establish a catalogue of pea aphid neuropeptides and neurohormones. 42 genes encoding neuropeptides and neurohormones were identified, of which several were supported by expressed sequence tags and/or peptide mass analyses. Interesting features of the pea aphid peptidome are the absence of genes coding for corazonin, vasopressin and sulfakinin and the presence of 10 different genes coding insulin related peptides, one of which appears to be very abundantly expressed.
Collapse
Affiliation(s)
- J Huybrechts
- Research Group of Functional Genomics and Proteomics, K.U. Leuven, Belgium
| | | | | | | | | | | | | | | | | |
Collapse
|
250
|
Nuss AB, Forschler BT, Crim JW, TeBrugge V, Pohl J, Brown MR. Molecular characterization of neuropeptide F from the eastern subterranean termite Reticulitermes flavipes (Kollar) (Isoptera: Rhinotermitidae). Peptides 2010; 31:419-28. [PMID: 19747517 DOI: 10.1016/j.peptides.2009.09.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2009] [Revised: 09/01/2009] [Accepted: 09/01/2009] [Indexed: 11/22/2022]
Abstract
Neuropeptide F (NPF)-like immunoreactivity was previously found to be abundant in the eastern subterranean termite, Reticulitermes flavipes. Purification of the NPF from a whole body extract of worker termites was accomplished in the current study by HPLC and heterologous radioimmunoassay for an NPF-related peptide, Helicoverpa zea Midgut Peptide-I. A partial amino acid sequence allowed determination of the corresponding cDNA that encoded an open reading frame deduced for authentic R. flavipes NPF (Ref NPF): KPSDPEQLADTLKYLEELDRFYSQVARPRFa. Effects of synthetic NPFs on muscle contractions were investigated for isolated foreguts and hindguts of workers, with Drm NPF inhibiting spontaneous contractions of hindguts. Phylogenetic analysis of invertebrate NPF sequences reveals two separate groupings, with Ref NPF occurring within a clade composed exclusively of arthropods.
Collapse
Affiliation(s)
- Andrew B Nuss
- Department of Entomology, 413 Biological Sciences Building, University of Georgia, Athens, GA 30602-2603, USA.
| | | | | | | | | | | |
Collapse
|