201
|
Kataya ARA, Heidari B, Lillo C. Protein phosphatase 2A regulatory subunits affecting plant innate immunity, energy metabolism, and flowering time--joint functions among B'η subfamily members. PLANT SIGNALING & BEHAVIOR 2015; 10:e1026024. [PMID: 26039486 PMCID: PMC4623507 DOI: 10.1080/15592324.2015.1026024] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Protein phosphatase 2A (PP2A) is a heterotrimeric complex comprising a catalytic, scaffolding, and regulatory subunit. The regulatory subunits are essential for substrate specificity and localization of the complex and are classified into B/B55, B', and B" non-related families in higher plants. In Arabidopsis thaliana, the close paralogs B'η, B'θ, B'γ, and B'ζ were further classified into a subfamily of B' called B'η. Here we present results that consolidate the evidence for a role of the B'η subfamily in regulation of innate immunity, energy metabolism and flowering time. Proliferation of the virulent Pseudomonas syringae in B'θ knockout mutant decreased in comparison with wild type plants. Additionally, B'θ knockout plants were delayed in flowering, and this phenotype was supported by high expression of FLC (FLOWERING LOCUS C). B'ζ knockout seedlings showed growth retardation on sucrose-free medium, indicating a role for B'ζ in energy metabolism. This work provides insight into functions of the B'η subfamily members, highlighting their regulation of shared physiological traits while localizing to distinct cellular compartments.
Collapse
Affiliation(s)
- Amr RA Kataya
- University of Stavanger; Center for Organelle Research; Faculty of Science and Technology; Stavanger, Norway
| | - Behzad Heidari
- University of Stavanger; Center for Organelle Research; Faculty of Science and Technology; Stavanger, Norway
| | - Cathrine Lillo
- University of Stavanger; Center for Organelle Research; Faculty of Science and Technology; Stavanger, Norway
- Correspondence to: Cathrine Lillo;
| |
Collapse
|
202
|
Furniss JJ, Spoel SH. Cullin-RING ubiquitin ligases in salicylic acid-mediated plant immune signaling. FRONTIERS IN PLANT SCIENCE 2015; 6:154. [PMID: 25821454 PMCID: PMC4358073 DOI: 10.3389/fpls.2015.00154] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 02/26/2015] [Indexed: 05/19/2023]
Abstract
Plant immune responses against biotrophic pathogens are regulated by the signaling hormone salicylic acid (SA). SA establishes immunity by regulating a variety of cellular processes, including programmed cell death (PCD) to isolate and kill invading pathogens, and development of systemic acquired resistance (SAR) which provides long-lasting, broad-spectrum resistance throughout the plant. Central to these processes is post-translational modification of SA-regulated signaling proteins by ubiquitination, i.e., the covalent addition of small ubiquitin proteins. Emerging evidence indicates SA-induced protein ubiquitination is largely orchestrated by Cullin-RING ligases (CRLs), which recruit specific substrates for ubiquitination using interchangeable adaptors. Ligation of ubiquitin chains interlinked at lysine 48 leads to substrate degradation by the 26S proteasome. Here we discuss how CRL-mediated degradation of both nucleotide-binding/leucine-rich repeat domain containing immune receptors and SA-induced transcription regulators are critical for functional PCD and SAR responses, respectively. By placing these recent findings in context of knowledge gained in other eukaryotic model species, we highlight potential alternative roles for processive ubiquitination in regulating the activity of SA-mediated immune responses.
Collapse
Affiliation(s)
| | - Steven H. Spoel
- *Correspondence: Steven H. Spoel, Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JR, UK
| |
Collapse
|
203
|
Sharma M, Pandey GK. Expansion and Function of Repeat Domain Proteins During Stress and Development in Plants. FRONTIERS IN PLANT SCIENCE 2015; 6:1218. [PMID: 26793205 PMCID: PMC4707873 DOI: 10.3389/fpls.2015.01218] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 12/17/2015] [Indexed: 05/18/2023]
Abstract
The recurrent repeats having conserved stretches of amino acids exists across all domains of life. Subsequent repetition of single sequence motif and the number and length of the minimal repeating motifs are essential characteristics innate to these proteins. The proteins with tandem peptide repeats are essential for providing surface to mediate protein-protein interactions for fundamental biological functions. Plants are enriched in tandem repeat containing proteins typically distributed into various families. This has been assumed that the occurrence of multigene repeats families in plants enable them to cope up with adverse environmental conditions and allow them to rapidly acclimatize to these conditions. The evolution, structure, and function of repeat proteins have been studied in all kingdoms of life. The presence of repeat proteins is particularly profuse in multicellular organisms in comparison to prokaryotes. The precipitous expansion of repeat proteins in plants is presumed to be through internal tandem duplications. Several repeat protein gene families have been identified in plants. Such as Armadillo (ARM), Ankyrin (ANK), HEAT, Kelch-like repeats, Tetratricopeptide (TPR), Leucine rich repeats (LRR), WD40, and Pentatricopeptide repeats (PPR). The structure and functions of these repeat proteins have been extensively studied in plants suggesting a critical role of these repeating peptides in plant cell physiology, stress and development. In this review, we illustrate the structural, functional, and evolutionary prospects of prolific repeat proteins in plants.
Collapse
|
204
|
Piquerez SJM, Harvey SE, Beynon JL, Ntoukakis V. Improving crop disease resistance: lessons from research on Arabidopsis and tomato. FRONTIERS IN PLANT SCIENCE 2014; 5:671. [PMID: 25520730 PMCID: PMC4253662 DOI: 10.3389/fpls.2014.00671] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Accepted: 11/10/2014] [Indexed: 05/04/2023]
Abstract
One of the great challenges for food security in the 21st century is to improve yield stability through the development of disease-resistant crops. Crop research is often hindered by the lack of molecular tools, growth logistics, generation time and detailed genetic annotations, hence the power of model plant species. Our knowledge of plant immunity today has been largely shaped by the use of models, specifically through the use of mutants. We examine the importance of Arabidopsis and tomato as models in the study of plant immunity and how they help us in revealing a detailed and deep understanding of the various layers contributing to the immune system. Here we describe examples of how knowledge from models can be transferred to economically important crops resulting in new tools to enable and accelerate classical plant breeding. We will also discuss how models, and specifically transcriptomics and effectoromics approaches, have contributed to the identification of core components of the defense response which will be key to future engineering of durable and sustainable disease resistance in plants.
Collapse
Affiliation(s)
| | | | - Jim L. Beynon
- School of Life Sciences, University of WarwickCoventry, UK
| | | |
Collapse
|
205
|
Ger MJ, Louh GY, Lin YH, Feng TY, Huang HE. Ectopically expressed sweet pepper ferredoxin PFLP enhances disease resistance to Pectobacterium carotovorum subsp. carotovorum affected by harpin and protease-mediated hypersensitive response in Arabidopsis. MOLECULAR PLANT PATHOLOGY 2014; 15:892-906. [PMID: 24796566 PMCID: PMC6638834 DOI: 10.1111/mpp.12150] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Plant ferredoxin-like protein (PFLP) is a photosynthesis-type ferredoxin (Fd) found in sweet pepper. It contains an iron-sulphur cluster that receives and delivers electrons between enzymes involved in many fundamental metabolic processes. It has been demonstrated that transgenic plants overexpressing PFLP show a high resistance to many bacterial pathogens, although the mechanism remains unclear. In this investigation, the PFLP gene was transferred into Arabidopsis and its defective derivatives, such as npr1 (nonexpresser of pathogenesis-related gene 1) and eds1 (enhanced disease susceptibility 1) mutants and NAHG-transgenic plants. These transgenic plants were then infected with the soft-rot bacterial pathogen Pectobacterium carotovorum subsp. carotovorum (Erwinia carotovora ssp. carotovora, ECC) to investigate the mechanism behind PFLP-mediated resistance. The results revealed that, instead of showing soft-rot symptoms, ECC activated hypersensitive response (HR)-associated events, such as the accumulation of hydrogen peroxide (H2 O2 ), electrical conductivity leakage and expression of the HR marker genes (ATHSR2 and ATHSR3) in PFLP-transgenic Arabidopsis. This PFLP-mediated resistance could be abolished by inhibitors, such as diphenylene iodonium (DPI), 1-l-trans-epoxysuccinyl-leucylamido-(4-guanidino)-butane (E64) and benzyloxycarbonyl-Val-Ala-Asp-fluoromethylketone (z-VAD-fmk), but not by myriocin and fumonisin. The PFLP-transgenic plants were resistant to ECC, but not to its harpin mutant strain ECCAC5082. In the npr1 mutant and NAHG-transgenic Arabidopsis, but not in the eds1 mutant, overexpression of the PFLP gene increased resistance to ECC. Based on these results, we suggest that transgenic Arabidopsis contains high levels of ectopic PFLP; this may lead to the recognition of the harpin and to the activation of the HR and other resistance mechanisms, and is dependent on the protease-mediated pathway.
Collapse
Affiliation(s)
- Mang-Jye Ger
- Department of Life Science, National University of Kaohsiung, Kaohsiung, 811, Taiwan
| | | | | | | | | |
Collapse
|
206
|
Geng X, Jin L, Shimada M, Kim MG, Mackey D. The phytotoxin coronatine is a multifunctional component of the virulence armament of Pseudomonas syringae. PLANTA 2014; 240:1149-65. [PMID: 25156488 PMCID: PMC4228168 DOI: 10.1007/s00425-014-2151-x] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Accepted: 08/08/2014] [Indexed: 05/20/2023]
Abstract
Plant pathogens deploy an array of virulence factors to suppress host defense and promote pathogenicity. Numerous strains of Pseudomonas syringae produce the phytotoxin coronatine (COR). A major aspect of COR function is its ability to mimic a bioactive jasmonic acid (JA) conjugate and thus target the JA-receptor COR-insensitive 1 (COI1). Biological activities of COR include stimulation of JA-signaling and consequent suppression of SA-dependent defense through antagonistic crosstalk, antagonism of stomatal closure to allow bacterial entry into the interior of plant leaves, contribution to chlorotic symptoms in infected plants, and suppression of plant cell wall defense through perturbation of secondary metabolism. Here, we review the virulence function of COR, including updates on these established activities as well as more recent findings revealing COI1-independent activity of COR and shedding light on cooperative or redundant defense suppression between COR and type III effector proteins.
Collapse
Affiliation(s)
- Xueqing Geng
- Department of Horticulture and Crop Science, Ohio State University, Columbus, OH 43210 USA
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240 People’s Republic of China
| | - Lin Jin
- Department of Horticulture and Crop Science, Ohio State University, Columbus, OH 43210 USA
| | - Mikiko Shimada
- Department of Horticulture and Crop Science, Ohio State University, Columbus, OH 43210 USA
| | - Min Gab Kim
- College of Pharmacy, Research Institute of Pharmaceutical Science, PMBBRC Gyeongsang National University, Jinju daero, Jinju, 660-751 Republic of Korea
| | - David Mackey
- Department of Horticulture and Crop Science, Ohio State University, Columbus, OH 43210 USA
- Department of Molecular Genetics, Ohio State University, Columbus, OH 43210 USA
| |
Collapse
|
207
|
Pel MJC, Wintermans PCA, Cabral A, Robroek BJM, Seidl MF, Bautor J, Parker JE, Van den Ackerveken G, Pieterse CMJ. Functional analysis of Hyaloperonospora arabidopsidis RXLR effectors. PLoS One 2014; 9:e110624. [PMID: 25375163 PMCID: PMC4222755 DOI: 10.1371/journal.pone.0110624] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Accepted: 09/15/2014] [Indexed: 01/01/2023] Open
Abstract
The biotrophic plant pathogen Hyaloperonospora arabidopsidis produces a set of putative effector proteins that contain the conserved RXLR motif. For most of these RXLR proteins the role during infection is unknown. Thirteen RXLR proteins from H. arabidopsidis strain Waco9 were analyzed for sequence similarities and tested for a role in virulence. The thirteen RXLR proteins displayed conserved N-termini and this N-terminal conservation was also found in the 134 predicted RXLR genes from the genome of H. arabidopsidis strain Emoy2. To investigate the effects of single RXLR effector proteins on plant defense responses, thirteen H. arabidopsidis Waco9 RXLR genes were expressed in Arabidopsis thaliana. Subsequently, these plants were screened for altered susceptibility to the oomycetes H. arabidopsidis and Phytophthora capsici, and the bacterial pathogen Pseudomonas syringae. Additionally, the effect of the RXLR proteins on flg22-triggered basal immune responses was assessed. Multifactorial analysis of results collated from all experiments revealed that, except for RXLR20, all RXLR effector proteins tested affected plant immunity. For RXLR9 this was confirmed using a P. syringae ΔCEL-mediated effector delivery system. Together, the results show that many H. arabidopsidis RXLR effectors have small effects on the plant immune response, suggesting that suppression of host immunity by this biotrophic pathogen is likely to be caused by the combined actions of effectors.
Collapse
Affiliation(s)
- Michiel J. C. Pel
- Plant-Microbe Interactions, Department of Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands
- Centre for BioSystems Genomics, Wageningen, The Netherlands
| | - Paul C. A. Wintermans
- Plant-Microbe Interactions, Department of Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Adriana Cabral
- Plant-Microbe Interactions, Department of Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Bjorn J. M. Robroek
- Ecology and Biodiversity, Department of Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Michael F. Seidl
- Centre for BioSystems Genomics, Wageningen, The Netherlands
- Theoretical Biology and Bioinformatics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Jaqueline Bautor
- Department of Plant-Microbe Interactions, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Jane E. Parker
- Department of Plant-Microbe Interactions, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Guido Van den Ackerveken
- Plant-Microbe Interactions, Department of Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands
- Centre for BioSystems Genomics, Wageningen, The Netherlands
| | - Corné M. J. Pieterse
- Plant-Microbe Interactions, Department of Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands
- Centre for BioSystems Genomics, Wageningen, The Netherlands
- * E-mail:
| |
Collapse
|
208
|
Kumar D. Salicylic acid signaling in disease resistance. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2014; 228:127-34. [PMID: 25438793 DOI: 10.1016/j.plantsci.2014.04.014] [Citation(s) in RCA: 150] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Revised: 04/09/2014] [Accepted: 04/17/2014] [Indexed: 05/04/2023]
Abstract
Salicylic acid (SA) is a key plant hormone that mediates host responses against microbial pathogens. Identification and characterization of SA-interacting/binding proteins is a topic which has always excited scientists studying microbial defense response in plants. It is likely that discovery of a true receptor for SA may greatly advance understanding of this important signaling pathway. SABP2 with its high affinity for SA was previously considered to be a SA receptor. Despite a great deal work we may still not have true a receptor for SA. It is also entirely possible that there may be more than one receptor for SA. This scenario is more likely given the diverse role of SA in various physiological processes in plants including, modulation of opening and closing of stomatal aperture, flowering, seedling germination, thermotolerance, photosynthesis, and drought tolerance. Recent identification of NPR3, NPR4 and NPR1 as potential SA receptors and α-ketoglutarate dehydrogenase (KGDHE2), several glutathione S transferases (GSTF) such as SA binding proteins have generated more interest in this field. Some of these SA binding proteins may have direct/indirect role in plant processes other than pathogen defense signaling. Development and use of new techniques with higher specificity to identify SA-interacting proteins have shown great promise and have resulted in the identification of several new SA interactors. This review focuses on SA interaction/binding proteins identified so far and their likely role in mediating plant defenses.
Collapse
Affiliation(s)
- Dhirendra Kumar
- Department of Biological Sciences, East Tennessee State University, Box 70703, Johnson City, TN 37614, USA.
| |
Collapse
|
209
|
Ung H, Moeder W, Yoshioka K. Arabidopsis triphosphate tunnel metalloenzyme2 is a negative regulator of the salicylic acid-mediated feedback amplification loop for defense responses. PLANT PHYSIOLOGY 2014; 166:1009-21. [PMID: 25185123 PMCID: PMC4213072 DOI: 10.1104/pp.114.248757] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The triphosphate tunnel metalloenzyme (TTM) superfamily represents a group of enzymes that is characterized by their ability to hydrolyze a range of tripolyphosphate substrates. Arabidopsis (Arabidopsis thaliana) encodes three TTM genes, AtTTM1, AtTTM2, and AtTTM3. Although AtTTM3 has previously been reported to have tripolyphosphatase activity, recombinantly expressed AtTTM2 unexpectedly exhibited pyrophosphatase activity. AtTTM2 knockout mutant plants exhibit an enhanced hypersensitive response, elevated pathogen resistance against both virulent and avirulent pathogens, and elevated accumulation of salicylic acid (SA) upon infection. In addition, stronger systemic acquired resistance compared with wild-type plants was observed. These enhanced defense responses are dependent on SA, PHYTOALEXIN-DEFICIENT4, and NONEXPRESSOR OF PATHOGENESIS-RELATED GENES1. Despite their enhanced pathogen resistance, ttm2 plants did not display constitutively active defense responses, suggesting that AtTTM2 is not a conventional negative regulator but a negative regulator of the amplification of defense responses. The transcriptional suppression of AtTTM2 by pathogen infection or treatment with SA or the systemic acquired resistance activator benzothiadiazole further supports this notion. Such transcriptional regulation is conserved among TTM2 orthologs in the crop plants soybean (Glycine max) and canola (Brassica napus), suggesting that TTM2 is involved in immunity in a wide variety of plant species. This indicates the possible usage of TTM2 knockout mutants for agricultural applications to generate pathogen-resistant crop plants.
Collapse
Affiliation(s)
- Huoi Ung
- Department of Cell and Systems Biology (H.U., W.M., K.Y.) andCenter for the Analysis of Genome Evolution and Function (K.Y.), University of Toronto, Toronto, Ontario, Canada M5S 3B2
| | - Wolfgang Moeder
- Department of Cell and Systems Biology (H.U., W.M., K.Y.) andCenter for the Analysis of Genome Evolution and Function (K.Y.), University of Toronto, Toronto, Ontario, Canada M5S 3B2
| | - Keiko Yoshioka
- Department of Cell and Systems Biology (H.U., W.M., K.Y.) andCenter for the Analysis of Genome Evolution and Function (K.Y.), University of Toronto, Toronto, Ontario, Canada M5S 3B2
| |
Collapse
|
210
|
Tateda C, Zhang Z, Shrestha J, Jelenska J, Chinchilla D, Greenberg JT. Salicylic acid regulates Arabidopsis microbial pattern receptor kinase levels and signaling. THE PLANT CELL 2014; 26:4171-87. [PMID: 25315322 PMCID: PMC4247590 DOI: 10.1105/tpc.114.131938] [Citation(s) in RCA: 110] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Revised: 09/19/2014] [Accepted: 09/27/2014] [Indexed: 05/18/2023]
Abstract
In Arabidopsis thaliana, responses to pathogen-associated molecular patterns (PAMPs) are mediated by cell surface pattern recognition receptors (PRRs) and include the accumulation of reactive oxygen species, callose deposition in the cell wall, and the generation of the signal molecule salicylic acid (SA). SA acts in a positive feedback loop with ACCELERATED CELL DEATH6 (ACD6), a membrane protein that contributes to immunity. This work shows that PRRs associate with and are part of the ACD6/SA feedback loop. ACD6 positively regulates the abundance of several PRRs and affects the responsiveness of plants to two PAMPs. SA accumulation also causes increased levels of PRRs and potentiates the responsiveness of plants to PAMPs. Finally, SA induces PRR- and ACD6-dependent signaling to induce callose deposition independent of the presence of PAMPs. This PAMP-independent effect of SA causes a transient reduction of PRRs and ACD6-dependent reduced responsiveness to PAMPs. Thus, SA has a dynamic effect on the regulation and function of PRRs. Within a few hours, SA signaling promotes defenses and downregulates PRRs, whereas later (within 24 to 48 h) SA signaling upregulates PRRs, and plants are rendered more responsive to PAMPs. These results implicate multiple modes of signaling for PRRs in response to PAMPs and SA.
Collapse
Affiliation(s)
- Chika Tateda
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, Illinois 60637
| | - Zhongqin Zhang
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, Illinois 60637
| | - Jay Shrestha
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, Illinois 60637
| | - Joanna Jelenska
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, Illinois 60637
| | - Delphine Chinchilla
- Zurich-Basel Plant Science Center, Department of Environmental Sciences, University of Basel, 4056 Basel, Switzerland
| | - Jean T Greenberg
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, Illinois 60637
| |
Collapse
|
211
|
Arabidopsis flowering locus D influences systemic-acquired-resistance- induced expression and histone modifications of WRKY genes. J Biosci 2014; 39:119-26. [PMID: 24499796 DOI: 10.1007/s12038-013-9407-7] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
A plant that is in part infected by a pathogen is more resistant throughout its whole body to subsequent infections--a phenomenon known as systemic acquired resistance (SAR). Mobile signals are synthesized at the site of infection and distributed throughout the plant through vascular tissues. Mechanism of SAR development subsequent to reaching the mobile signal in the distal tissue is largely unknown. Recently we showed that flowering locus D (FLD) gene of Arabidopsis thaliana is required in the distal tissue to activate SAR. FLD codes for a homologue of human-lysine-specific histone demethylase. Here we show that FLD function is required for priming (SAR induced elevated expression during challenge inoculation) of WRKY29 and WRKY6 genes. FLD also differentially influences basal and SAR-induced expression of WRKY38, WRKY65 and WRKY53 genes. In addition, we also show that FLD partly localizes in nucleus and influences histone modifications at the promoters of WRKY29 and WRKY6 genes. The results altogether indicate to the possibility of FLD's involvement in epigenetic regulation of SAR.
Collapse
|
212
|
Yan S, Dong X. Perception of the plant immune signal salicylic acid. CURRENT OPINION IN PLANT BIOLOGY 2014; 20:64-8. [PMID: 24840293 PMCID: PMC4143455 DOI: 10.1016/j.pbi.2014.04.006] [Citation(s) in RCA: 137] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Revised: 03/20/2014] [Accepted: 04/24/2014] [Indexed: 05/18/2023]
Abstract
Salicylic acid (SA) plays a central role in plant innate immunity. The diverse functions of this simple phenolic compound suggest that plants may have multiple SA receptors. Several SA-binding proteins have been identified using biochemical approaches. However, genetic evidence supporting that they are the bona fide SA receptors has not been forthcoming. Mutant screens revealed that NPR1 is a master regulator of SA-mediated responses. Although NPR1 cannot bind SA in a conventional ligand-binding assay, its homologs NPR3 and NPR4 bind SA and function as SA receptors. During pathogen challenge, the SA gradient generated at the infection site is sensed by NPR3 and NPR4, which serve as the adaptors for the Cullin 3-based E3 ubiquitin ligase to regulate NPR1 degradation. Consequently, NPR1 is degraded at the infection site to remove its inhibition on effector-triggered cell death and defense, whereas NPR1 accumulates in neighboring cells to promote cell survival and SA-mediated resistance.
Collapse
Affiliation(s)
- Shunping Yan
- Howard Hughes Medical Institute - Gordon and Betty Moore Foundation, Department of Biology, P.O. Box 90338, Duke University, Durham, NC 27708, USA
| | - Xinnian Dong
- Howard Hughes Medical Institute - Gordon and Betty Moore Foundation, Department of Biology, P.O. Box 90338, Duke University, Durham, NC 27708, USA.
| |
Collapse
|
213
|
Zhang Z, Shrestha J, Tateda C, Greenberg JT. Salicylic acid signaling controls the maturation and localization of the arabidopsis defense protein ACCELERATED CELL DEATH6. MOLECULAR PLANT 2014; 7:1365-1383. [PMID: 24923602 PMCID: PMC4168298 DOI: 10.1093/mp/ssu072] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
ACCELERATED CELL DEATH6 (ACD6) is a multipass membrane protein with an ankyrin domain that acts in a positive feedback loop with the defense signal salicylic acid (SA). This study implemented biochemical approaches to infer changes in ACD6 complexes and localization. In addition to forming endoplasmic reticulum (ER)- and plasma membrane (PM)-localized complexes, ACD6 forms soluble complexes, where it is bound to cytosolic HSP70, ubiquitinated, and degraded via the proteasome. Thus, ACD6 constitutively undergoes ER-associated degradation. During SA signaling, the soluble ACD6 pool decreases, whereas the PM pool increases. Similarly, ACD6-1, an activated version of ACD6 that induces SA, is present at low levels in the soluble fraction and high levels in the PM. However, ACD6 variants with amino acid substitutions in the ankyrin domain form aberrant, inactive complexes, are induced by a SA agonist, but show no PM localization. SA signaling also increases the PM pools of FLAGELLIN SENSING2 (FLS2) and BRI1-ASSOCIATED RECEPTOR KINASE 1 (BAK1). FLS2 forms complexes ACD6; both FLS2 and BAK1 require ACD6 for maximal accumulation at the PM in response to SA signaling. A plausible scenario is that SA increases the efficiency of productive folding and/or complex formation in the ER, such that ACD6, together with FLS2 and BAK1, reaches the cell surface to more effectively promote immune responses.
Collapse
Affiliation(s)
- Zhongqin Zhang
- Department of Molecular Genetics and Cell Biology, University of Chicago, 929 East 57 Street, GCIS W524, Chicago, IL 60637, USA
| | - Jay Shrestha
- Department of Molecular Genetics and Cell Biology, University of Chicago, 929 East 57 Street, GCIS W524, Chicago, IL 60637, USA
| | - Chika Tateda
- Department of Molecular Genetics and Cell Biology, University of Chicago, 929 East 57 Street, GCIS W524, Chicago, IL 60637, USA
| | - Jean T Greenberg
- Department of Molecular Genetics and Cell Biology, University of Chicago, 929 East 57 Street, GCIS W524, Chicago, IL 60637, USA.
| |
Collapse
|
214
|
Huot B, Yao J, Montgomery BL, He SY. Growth-defense tradeoffs in plants: a balancing act to optimize fitness. MOLECULAR PLANT 2014; 7:1267-1287. [PMID: 24777989 PMCID: PMC4168297 DOI: 10.1093/mp/ssu049] [Citation(s) in RCA: 930] [Impact Index Per Article: 84.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Growth-defense tradeoffs are thought to occur in plants due to resource restrictions, which demand prioritization towards either growth or defense, depending on external and internal factors. These tradeoffs have profound implications in agriculture and natural ecosystems, as both processes are vital for plant survival, reproduction, and, ultimately, plant fitness. While many of the molecular mechanisms underlying growth and defense tradeoffs remain to be elucidated, hormone crosstalk has emerged as a major player in regulating tradeoffs needed to achieve a balance. In this review, we cover recent advances in understanding growth-defense tradeoffs in plants as well as what is known regarding the underlying molecular mechanisms. Specifically, we address evidence supporting the growth-defense tradeoff concept, as well as known interactions between defense signaling and growth signaling. Understanding the molecular basis of these tradeoffs in plants should provide a foundation for the development of breeding strategies that optimize the growth-defense balance to maximize crop yield to meet rising global food and biofuel demands.
Collapse
Affiliation(s)
- Bethany Huot
- Department of Energy Plant Research Laboratory, Michigan State University, MI 48824, USA; Cell and Molecular Biology Program, Michigan State University, MI 48824, USA
| | - Jian Yao
- Department of Energy Plant Research Laboratory, Michigan State University, MI 48824, USA
| | - Beronda L Montgomery
- Department of Energy Plant Research Laboratory, Michigan State University, MI 48824, USA; Cell and Molecular Biology Program, Michigan State University, MI 48824, USA; Department of Biochemistry and Molecular Biology, Michigan State University, MI 48824, USA
| | - Sheng Yang He
- Department of Energy Plant Research Laboratory, Michigan State University, MI 48824, USA; Cell and Molecular Biology Program, Michigan State University, MI 48824, USA; Department of Plant Biology, Michigan State University, MI 48824, USA; Howard Hughes Medical Institute-Gordon and Betty Moore Foundation, Michigan State University, MI 48933, USA.
| |
Collapse
|
215
|
Phytochrome regulation of plant immunity in vegetation canopies. J Chem Ecol 2014; 40:848-57. [PMID: 25063023 DOI: 10.1007/s10886-014-0471-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Revised: 06/20/2014] [Accepted: 06/23/2014] [Indexed: 01/05/2023]
Abstract
Plant immunity against pathogens and herbivores is a central determinant of plant fitness in nature and crop yield in agroecosystems. Plant immune responses are orchestrated by two key hormones: jasmonic acid (JA) and salicylic acid (SA). Recent work has demonstrated that for plants of shade-intolerant species, which include the majority of those grown as grain crops, light is a major modulator of defense responses. Light signals that indicate proximity of competitors, such as a low red to far-red (R:FR) ratio, down-regulate the expression of JA- and SA-induced immune responses against pests and pathogens. This down-regulation of defense under low R:FR ratios, which is caused by the photoconversion of the photoreceptor phytochrome B (phyB) to an inactive state, is likely to help the plant to efficiently redirect resources to rapid growth when the competition threat posed by neighboring plants is high. This review is focused on the molecular mechanisms that link phyB with defense signaling. In particular, we discuss novel signaling players that are likely to play a role in the repression of defense responses under low R:FR ratios. A better understanding of the molecular connections between photoreceptors and the hormonal regulation of plant immunity will provide a functional framework to understand the mechanisms used by plants to deal with fundamental resource allocation trade-offs under dynamic conditions of biotic stress.
Collapse
|
216
|
Munch D, Rodriguez E, Bressendorff S, Park OK, Hofius D, Petersen M. Autophagy deficiency leads to accumulation of ubiquitinated proteins, ER stress, and cell death in Arabidopsis. Autophagy 2014; 10:1579-87. [PMID: 25046116 PMCID: PMC4206536 DOI: 10.4161/auto.29406] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Autophagy is a homeostatic degradation and recycling process that is also involved in defense against microbial pathogens and in certain forms of cellular suicide. Autophagy has been proposed to negatively regulate plant immunity-associated cell death related to the hypersensitive response (HR), as older autophagy-deficient mutants are unable to contain this type of cell death 5 to 10 d after infection. Such spreading cell death was found to require NPR1 (nonexpressor of PR genes 1), but surprisingly did not occur in younger atg mutants. In contrast, we find that npr1 mutants are not impaired in rapid programmed cell death activation upon pathogen recognition. Furthermore, our molecular evidence suggests that the NPR1-dependent spreading cell death in older atg mutants may originate from an inability to cope with excessive accumulation of ubiquitinated proteins and ER stress which derive from salicylic acid (SA)-dependent signaling (e.g., systemic acquired resistance). We also demonstrate that both senescence and immunity-related cell death seen in older atg mutants can be recapitulated in younger atg mutants primed with ER stress. We therefore propose that the reduction in SA signaling caused by npr1 loss-of-function is sufficient to alleviate the stress levels accumulated during aging in autophagy deficient cells which would otherwise become insurmountable and lead to uncontrolled cell death.
Collapse
Affiliation(s)
- David Munch
- Department of Biology; Copenhagen University; Copenhagen, Denmark
| | - Eleazar Rodriguez
- Centre for Environmental and Marine Studies (CESAM); Biology Department; University Aveiro; Aveiro, Portugal
| | | | - Ohkmae K Park
- School of Life Sciences and Biotechnology; Korea University; Seoul, Korea
| | - Daniel Hofius
- Department of Plant Biology and Forest Genetics; The Swedish University of Agricultural Sciences and Linnean Center for Plant Biology; Uppsala BioCenter; Uppsala, Sweden
| | - Morten Petersen
- Department of Biology; Copenhagen University; Copenhagen, Denmark
| |
Collapse
|
217
|
Abstract
Plant immunity against pathogens and herbivores is a central determinant of plant fitness in nature and crop yield in agroecosystems. Plant immune responses are orchestrated by two key hormones: jasmonic acid (JA) and salicylic acid (SA). Recent work has demonstrated that for plants of shade-intolerant species, which include the majority of those grown as grain crops, light is a major modulator of defense responses. Light signals that indicate proximity of competitors, such as a low red to far-red (R:FR) ratio, down-regulate the expression of JA- and SA-induced immune responses against pests and pathogens. This down-regulation of defense under low R:FR ratios, which is caused by the photoconversion of the photoreceptor phytochrome B (phyB) to an inactive state, is likely to help the plant to efficiently redirect resources to rapid growth when the competition threat posed by neighboring plants is high. This review is focused on the molecular mechanisms that link phyB with defense signaling. In particular, we discuss novel signaling players that are likely to play a role in the repression of defense responses under low R:FR ratios. A better understanding of the molecular connections between photoreceptors and the hormonal regulation of plant immunity will provide a functional framework to understand the mechanisms used by plants to deal with fundamental resource allocation trade-offs under dynamic conditions of biotic stress.
Collapse
Affiliation(s)
- Javier E Moreno
- Instituto de Agrobiotecnología del Litoral, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional del Litoral, CC 242 Ciudad Universitaria, Santa Fe, Argentina,
| | | |
Collapse
|
218
|
Suzuki H, Takashima Y, Ishiguri F, Yoshizawa N, Yokota S. Proteomic Analysis of Responsive Proteins Induced in Japanese Birch Plantlet Treated with Salicylic Acid. Proteomes 2014; 2:323-340. [PMID: 28250384 PMCID: PMC5302753 DOI: 10.3390/proteomes2030323] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2014] [Revised: 05/26/2014] [Accepted: 06/10/2014] [Indexed: 01/22/2023] Open
Abstract
The present study was performed to unravel the mechanisms of systemic acquired resistance (SAR) establishment and resistance signaling pathways against the canker-rot fungus (Inonotus obliquus strain IO-U1) infection in Japanese birch plantlet No.8. Modulation of protein-profile induced by salicylic acid (SA)-administration was analyzed, and SA-responsive proteins were identified. In total, 5 specifically expressed, 3 significantly increased, and 3 significantly decreased protein spots were identified using liquid chromatography/tandem mass spectrometry (LC/MS/MS) and the sequence tag method. These proteins were malate dehydrogenase, succinate dehydrogenase, phosphoglycerate kinase, diaminopimalate decarboxylase, arginase, chorismate mutase, cyclophilin, aminopeptidase, and unknown function proteins. These proteins are considered to be involved in SAR-establishment mechanisms in the Japanese birch plantlet No 8.
Collapse
Affiliation(s)
- Hiromu Suzuki
- Department of Forest Science, Faculty of Agriculture, Utsunomiya University, 350 Mine-machi, Utsunomiya, Tochigi 321-8505, Japan.
| | - Yuya Takashima
- Department of Forest Science, Faculty of Agriculture, Utsunomiya University, 350 Mine-machi, Utsunomiya, Tochigi 321-8505, Japan.
| | - Futoshi Ishiguri
- Department of Forest Science, Faculty of Agriculture, Utsunomiya University, 350 Mine-machi, Utsunomiya, Tochigi 321-8505, Japan.
| | - Nobuo Yoshizawa
- Department of Forest Science, Faculty of Agriculture, Utsunomiya University, 350 Mine-machi, Utsunomiya, Tochigi 321-8505, Japan
| | - Shinso Yokota
- Department of Forest Science, Faculty of Agriculture, Utsunomiya University, 350 Mine-machi, Utsunomiya, Tochigi 321-8505, Japan.
| |
Collapse
|
219
|
Zhang Y, He Q, Zhao S, Huang L, Hao L. Arabidopsis ein2-1 and npr1-1 response to Al stress. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2014; 93:78-83. [PMID: 24619362 DOI: 10.1007/s00128-014-1249-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Accepted: 03/03/2014] [Indexed: 06/03/2023]
Abstract
An enhanced Al(3+) tolerance has been observed in ethylene insensitive mutant ein2-1 and salicylic acid insensitive mutant npr1-1 of Arabidopsis. However, we found that the tolerant phenotype of ein2-1 and npr1-1 under Al stress was dependent on NPR and EIN function, respectively, because the double mutant ein2-1/npr1-1 displayed more sensitive to Al stress than wild-type plants. We analysed the differential performance between ein2-1/npr1-1 and their respective single mutant in response to Al stress, and found that antioxidant defence rather than malate exudation was the determinant factor.
Collapse
Affiliation(s)
- Yiyan Zhang
- College of Chemistry and Life Sciences, Shenyang Normal University, Shenyang, 110034, People's Republic of China
| | | | | | | | | |
Collapse
|
220
|
Giri MK, Swain S, Gautam JK, Singh S, Singh N, Bhattacharjee L, Nandi AK. The Arabidopsis thaliana At4g13040 gene, a unique member of the AP2/EREBP family, is a positive regulator for salicylic acid accumulation and basal defense against bacterial pathogens. JOURNAL OF PLANT PHYSIOLOGY 2014; 171:860-7. [PMID: 24612849 DOI: 10.1016/j.jplph.2013.12.015] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Revised: 12/17/2013] [Accepted: 12/18/2013] [Indexed: 05/09/2023]
Abstract
The Arabidopsis genome contains a large number of putative transcription factors, containing a DNA binding domain similar to APETALA2/ethylene response element binding protein (AP2/EREBP), for most of which a function is not known. Phylogenetic analysis divides the Apetala 2 (AP2) super-family into 5 major groups: AP2, RAV, ethylene response factor (ERF), dehydration response element binding protein (DREB) and At4g13040. Similar to ERF and DREB, the At4g13040 protein contains only one AP2 domain; however, its structural uniqueness places it into a distinct group. In this article, we report that At4g13040 (referred herein as Apetala 2 family protein involved in SA mediated disease defense 1 - APD1) is an important regulator for SA mediated plant defense. The APD1 gene is upregulated upon pathogen inoculation, exogenous SA application and in the mutant that constitutively activates SA signaling. The T-DNA insertion lines (inserted in the APD1 promoter), which fail to induce expression upon pathogen inoculation, are compromised for resistance against virulent bacterial pathogens and show reduced induction of pathogenesis related 1 gene. Our results suggest that APD1 functions downstream of PAD4 in Arabidopsis and promotes pathogen-induced SA accumulation. Exogenous SA application completely restores the loss-of-resistance phenotype of the apd1 mutant. Thus, APD1 is a positive regulator of disease defense that functions upstream of SA accumulation.
Collapse
Affiliation(s)
- Mrunmay Kumar Giri
- Room #415, School of life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Swadhin Swain
- Room #415, School of life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Janesh Kumar Gautam
- Room #415, School of life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Subaran Singh
- Room #415, School of life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Nidhi Singh
- Room #415, School of life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Lipika Bhattacharjee
- Room #415, School of life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Ashis Kumar Nandi
- Room #415, School of life Sciences, Jawaharlal Nehru University, New Delhi 110067, India.
| |
Collapse
|
221
|
Chern M, Bai W, Ruan D, Oh T, Chen X, Ronald PC. Interaction specificity and coexpression of rice NPR1 homologs 1 and 3 (NH1 and NH3), TGA transcription factors and Negative Regulator of Resistance (NRR) proteins. BMC Genomics 2014; 15:461. [PMID: 24919709 PMCID: PMC4094623 DOI: 10.1186/1471-2164-15-461] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Accepted: 06/03/2014] [Indexed: 11/22/2022] Open
Abstract
Background The nonexpressor of pathogenesis-related genes 1, NPR1 (also known as NIM1 and SAI1), is a key regulator of SA-mediated systemic acquired resistance (SAR) in Arabidopsis. In rice, the NPR1 homolog 1 (NH1) interacts with TGA transcriptional regulators and the Negative Regulator of Resistance (NRR) protein to modulate the SAR response. Though five NPR1 homologs (NHs) have been identified in rice, only NH1 and NH3 enhance immunity when overexpressed. To understand why NH1 and NH3, but not NH2, NH4, or NH5, contribute to the rice immune response, we screened TGA transcription factors and NRR-like proteins for interactions specific to NH1 and NH3. We also examined their co-expression patterns using publicly available microarray data. Results We tested five NHs, four NRR homologs (RHs), and 13 rice TGA proteins for pair-wise protein interactions using yeast two-hybrid (Y2H) and split YFP assays. A survey of 331 inter-family interactions revealed a broad, complex protein interaction network. To investigate preferred interaction partners when all three families of proteins were present, we performed a bridged split YFP assay employing YFPN-fused TGA, YFPC-fused RH, and NH proteins without YFP fusions. We found 64 tertiary interactions mediated by NH family members among the 120 sets we examined. In the yeast two-hybrid assay, each NH protein was capable of interacting with most TGA and RH proteins. In the split YFP assay, NH1 was the most prevalent interactor of TGA and RH proteins, NH3 ranked the second, and NH4 ranked the third. Based on their interaction with TGA proteins, NH proteins can be divided into two subfamilies: NH1, NH2, and NH3 in one family and NH4 and NH5 in the other. In addition to evidence of overlap in interaction partners, co-expression analyses of microarray data suggest a correlation between NH1 and NH3 expression patterns, supporting their common role in rice immunity. However, NH3 is very tightly co-expressed with RH1 and RH2, while NH1 is strongly, inversely co-expressed with RH proteins, representing a difference between NH1 and NH3 expression patterns. Conclusions Our genome-wide surveys reveal that each rice NH protein can partner with many rice TGA and RH proteins and that each NH protein prefers specific interaction partners. NH1 and NH3 are capable of interacting strongly with most rice TGA and RH proteins, whereas NH2, NH4, and NH5 have weaker, limited interaction with TGA and RH proteins in rice cells. We have identified rTGA2.1, rTGA2.2, rTGA2.3, rLG2, TGAL2 and TGAL4 proteins as the preferred partners of NH1 and NH3, but not NH2, NH4, or NH5. These TGA proteins may play an important role in NH1- and NH3-mediated immune responses. In contrast, NH4 and NH5 preferentially interact with TGAL5, TGAL7, TGAL8 and TGAL9, which are predicted to be involved in plant development. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-461) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | | | - Pamela C Ronald
- Department of Plant Pathology and the Genome Center, University of California, Davis, CA 95616, USA.
| |
Collapse
|
222
|
Schenk ST, Hernández-Reyes C, Samans B, Stein E, Neumann C, Schikora M, Reichelt M, Mithöfer A, Becker A, Kogel KH, Schikora A. N-Acyl-Homoserine Lactone Primes Plants for Cell Wall Reinforcement and Induces Resistance to Bacterial Pathogens via the Salicylic Acid/Oxylipin Pathway. THE PLANT CELL 2014; 26:2708-2723. [PMID: 24963057 PMCID: PMC4114961 DOI: 10.1105/tpc.114.126763] [Citation(s) in RCA: 111] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Revised: 05/27/2014] [Accepted: 05/31/2014] [Indexed: 05/18/2023]
Abstract
The ability of plants to monitor their surroundings, for instance the perception of bacteria, is of crucial importance. The perception of microorganism-derived molecules and their effector proteins is the best understood of these monitoring processes. In addition, plants perceive bacterial quorum sensing (QS) molecules used for cell-to-cell communication between bacteria. Here, we propose a mechanism for how N-acyl-homoserine lactones (AHLs), a group of QS molecules, influence host defense and fortify resistance in Arabidopsis thaliana against bacterial pathogens. N-3-oxo-tetradecanoyl-l-homoserine lactone (oxo-C14-HSL) primed plants for enhanced callose deposition, accumulation of phenolic compounds, and lignification of cell walls. Moreover, increased levels of oxylipins and salicylic acid favored closure of stomata in response to Pseudomonas syringae infection. The AHL-induced resistance seems to differ from the systemic acquired and the induced systemic resistances, providing new insight into inter-kingdom communication. Consistent with the observation that short-chain AHLs, unlike oxo-C14-HSL, promote plant growth, treatments with C6-HSL, oxo-C10-HSL, or oxo-C14-HSL resulted in different transcriptional profiles in Arabidopsis. Understanding the priming induced by bacterial QS molecules augments our knowledge of plant reactions to bacteria and suggests strategies for using beneficial bacteria in plant protection.
Collapse
Affiliation(s)
- Sebastian T Schenk
- Institute of Phytopathology and Applied Zoology, IFZ, Justus Liebig University Giessen, 35392 Giessen, Germany
| | - Casandra Hernández-Reyes
- Institute of Phytopathology and Applied Zoology, IFZ, Justus Liebig University Giessen, 35392 Giessen, Germany
| | - Birgit Samans
- Department of Plant Breeding, IFZ, Justus Liebig University Giessen, 35392 Giessen, Germany
| | - Elke Stein
- Institute of Phytopathology and Applied Zoology, IFZ, Justus Liebig University Giessen, 35392 Giessen, Germany
| | - Christina Neumann
- Institute of Phytopathology and Applied Zoology, IFZ, Justus Liebig University Giessen, 35392 Giessen, Germany
| | - Marek Schikora
- Department of Sensor Data and Information Fusion, Fraunhofer FKIE, 53343 Wachtberg, Germany
| | - Michael Reichelt
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany
| | - Axel Mithöfer
- Department of Bioorganic Chemistry, Plant Defense, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany
| | - Annette Becker
- Plant Developmental Biology Group, Institute of Botany, Justus Liebig University Giessen, 35392 Giessen, Germany
| | - Karl-Heinz Kogel
- Institute of Phytopathology and Applied Zoology, IFZ, Justus Liebig University Giessen, 35392 Giessen, Germany
| | - Adam Schikora
- Institute of Phytopathology and Applied Zoology, IFZ, Justus Liebig University Giessen, 35392 Giessen, Germany
| |
Collapse
|
223
|
Apple ring rot-responsive putative microRNAs revealed by high-throughput sequencing in Malus × domestica Borkh. Mol Biol Rep 2014; 41:5273-86. [DOI: 10.1007/s11033-014-3399-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2013] [Accepted: 05/06/2014] [Indexed: 10/25/2022]
|
224
|
Chen CC, Chien WF, Lin NC, Yeh KC. Alternative functions of Arabidopsis Yellow Stripe-Like3: from metal translocation to pathogen defense. PLoS One 2014; 9:e98008. [PMID: 24845074 PMCID: PMC4028246 DOI: 10.1371/journal.pone.0098008] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2013] [Accepted: 04/28/2014] [Indexed: 11/18/2022] Open
Abstract
Yellow stripe-like1 (YSL1) and YSL3 are involved in iron (Fe) and copper (Cu) translocation. Previously, we reported that upregulation of YSL1 and YSL3 under excess Cu caused high accumulation of Cu in the siz1 mutant, impaired in small ubiquitin-like modifier (SUMO) E3 ligase. Interestingly, the siz1 mutant contains high levels of salicylic acid (SA), involved in plant defense against biotrophic pathogens. In this study, we found that YSL1 and YSL3 were upregulated by SA. SA-regulated YSL3 but not YSL1 depended on nonexpressor of PR1 (NPR1). Susceptibility to the pathogen Pseudomonas syringe pv. tomato (Pst) DC3000 was greater for ysl3 than the wild type. Also, during Pst DC3000 infection, YSL3 was positively regulated by SA signaling through NPR1 and the upregulation was enhanced in the coi1 mutant that defective in the jasmonic acid (JA) receptor, coronatine insensitive1. This line of evidence indicates that the regulation of YSL3 is downstream of SA signaling and interplays with JA signaling for involvement in pathogen-induced defense. We provide new insights into the biological function of the metal transporter YSL3 in plant pathogen defense.
Collapse
Affiliation(s)
- Chyi-chuann Chen
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| | - Wei-Fu Chien
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| | - Nai-Chun Lin
- Department of Agricultural Chemistry, National Taiwan University, Taipei, Taiwan
| | - Kuo-Chen Yeh
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
- * E-mail:
| |
Collapse
|
225
|
Luna E, López A, Kooiman J, Ton J. Role of NPR1 and KYP in long-lasting induced resistance by β-aminobutyric acid. FRONTIERS IN PLANT SCIENCE 2014; 5:184. [PMID: 24847342 PMCID: PMC4021125 DOI: 10.3389/fpls.2014.00184] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Accepted: 04/19/2014] [Indexed: 05/18/2023]
Abstract
Priming of defense increases the responsiveness of the plant immune system and can provide broad-spectrum protection against disease. Recent evidence suggests that priming of defense can be inherited epigenetically to following generations. However, the mechanisms of long-lasting defense priming within one generation remains poorly understood. Here, we have investigated the mechanistic basis of long-lasting induced resistance after treatment with β -aminobutyric acid (BABA), an agent that mimics biologically induced resistance phenomena. BABA-induced resistance (BABA-IR) is based on priming of salicylic acid (SA)-dependent and SA-independent defenses. BABA-IR could be detected up to 28 days after treatment of wild-type Arabidopsis. This long-lasting component of the induced resistance response requires the regulatory protein NPR1 and is associated with priming of SA-inducible genes. In contrast, NPR1-independent resistance by BABA was transient and had disappeared by 14 days after treatment. Chromatin immunoprecipitation (ChIP) assays revealed no increased acetylation of histone H3K9 at promoters regions of priming-responsive genes, indicating that this post-translational histone modification is not critical for long-term transcriptional priming. Interestingly, the kyp-6 mutant, which is affected in methyltransferase activity of H3K9, was blocked in long-lasting BABA-IR, indicating a critical requirement of this post-translational histone modification in long-lasting BABA-IR. Considering that KYP suppresses gene transcription through methylation of H3K9 and CpHpG DNA methylation, we propose that KYP enables long-term defense gene priming by silencing suppressor genes of SA/NPR1-dependent genes.
Collapse
Affiliation(s)
- Estrella Luna
- Department of Animal and Plant Sciences, The University of SheffieldSheffield, UK
| | - Ana López
- Department of Animal and Plant Sciences, The University of SheffieldSheffield, UK
| | - Jaap Kooiman
- Department of Animal and Plant Sciences, The University of SheffieldSheffield, UK
- Department of Biology, Utrecht UniversityUtrecht, Netherlands
| | - Jurriaan Ton
- Department of Animal and Plant Sciences, The University of SheffieldSheffield, UK
| |
Collapse
|
226
|
Rallapalli G, Kemen EM, Robert-Seilaniantz A, Segonzac C, Etherington GJ, Sohn KH, MacLean D, Jones JDG. EXPRSS: an Illumina based high-throughput expression-profiling method to reveal transcriptional dynamics. BMC Genomics 2014; 15:341. [PMID: 24884414 PMCID: PMC4035070 DOI: 10.1186/1471-2164-15-341] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Accepted: 03/31/2014] [Indexed: 01/19/2023] Open
Abstract
Background Next Generation Sequencing technologies have facilitated differential gene expression analysis through RNA-seq and Tag-seq methods. RNA-seq has biases associated with transcript lengths, lacks uniform coverage of regions in mRNA and requires 10–20 times more reads than a typical Tag-seq. Most existing Tag-seq methods either have biases or not high throughput due to use of restriction enzymes or enzymatic manipulation of 5’ ends of mRNA or use of RNA ligations. Results We have developed EXpression Profiling through Randomly Sheared cDNA tag Sequencing (EXPRSS) that employs acoustic waves to randomly shear cDNA and generate sequence tags at a relatively defined position (~150-200 bp) from the 3′ end of each mRNA. Implementation of the method was verified through comparative analysis of expression data generated from EXPRSS, NlaIII-DGE and Affymetrix microarray and through qPCR quantification of selected genes. EXPRSS is a strand specific and restriction enzyme independent tag sequencing method that does not require cDNA length-based data transformations. EXPRSS is highly reproducible, is high-throughput and it also reveals alternative polyadenylation and polyadenylated antisense transcripts. It is cost-effective using barcoded multiplexing, avoids the biases of existing SAGE and derivative methods and can reveal polyadenylation position from paired-end sequencing. Conclusions EXPRSS Tag-seq provides sensitive and reliable gene expression data and enables high-throughput expression profiling with relatively simple downstream analysis. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-341) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Jonathan D G Jones
- The Sainsbury Laboratory, Norwich Research Park, Colney, Norwich, UK NR4 7UH.
| |
Collapse
|
227
|
Pant SR, Matsye PD, McNeece BT, Sharma K, Krishnavajhala A, Lawrence GW, Klink VP. Syntaxin 31 functions in Glycine max resistance to the plant parasitic nematode Heterodera glycines. PLANT MOLECULAR BIOLOGY 2014; 85:107-21. [PMID: 24452833 DOI: 10.1007/s11103-014-0172-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2013] [Accepted: 01/08/2014] [Indexed: 05/23/2023]
Abstract
A Glycine max syntaxin 31 homolog (Gm-SYP38) was identified as being expressed in nematode-induced feeding structures known as syncytia undergoing an incompatible interaction with the plant parasitic nematode Heterodera glycines. The observed Gm-SYP38 expression was consistent with prior gene expression analyses that identified the alpha soluble NSF attachment protein (Gm-α-SNAP) resistance gene because homologs of these genes physically interact and function together in other genetic systems. Syntaxin 31 is a protein that resides on the cis face of the Golgi apparatus and binds α-SNAP-like proteins, but has no known role in resistance. Experiments presented here show Gm-α-SNAP overexpression induces Gm-SYP38 transcription. Overexpression of Gm-SYP38 rescues G. max [Williams 82/PI 518671], genetically rhg1 (-/-), by suppressing H. glycines parasitism. In contrast, Gm-SYP38 RNAi in the rhg1 (+/+) genotype G. max [Peking/PI 548402] increases susceptibility. Gm-α-SNAP and Gm-SYP38 overexpression induce the transcriptional activity of the cytoplasmic receptor-like kinase BOTRYTIS INDUCED KINASE 1 (Gm-BIK1-6) which is a family of defense proteins known to anchor to membranes through a 5' MGXXXS/T(R) N-myristoylation sequence. Gm-BIK1-6 had been identified previously by RNA-seq experiments as expressed in syncytia undergoing an incompatible reaction. Gm-BIK1-6 overexpression rescues the resistant phenotype. In contrast, Gm-BIK1-6 RNAi increases parasitism. The analysis demonstrates a role for syntaxin 31-like genes in resistance that until now was not known.
Collapse
Affiliation(s)
- Shankar R Pant
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS, 39762, USA,
| | | | | | | | | | | | | |
Collapse
|
228
|
The root hair assay facilitates the use of genetic and pharmacological tools in order to dissect multiple signalling pathways that lead to programmed cell death. PLoS One 2014; 9:e94898. [PMID: 24755572 PMCID: PMC3995694 DOI: 10.1371/journal.pone.0094898] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Accepted: 03/21/2014] [Indexed: 11/21/2022] Open
Abstract
The activation of programmed cell death (PCD) is often a result of complex signalling pathways whose relationship and intersection are not well understood. We recently described a PCD root hair assay and proposed that it could be used to rapidly screen genetic or pharmacological modulators of PCD. To further assess the applicability of the root hair assay for studying multiple signalling pathways leading to PCD activation we have investigated the crosstalk between salicylic acid, autophagy and apoptosis-like PCD (AL-PCD) in Arabidopsis thaliana. The root hair assay was used to determine rates of AL-PCD induced by a panel of cell death inducing treatments in wild type plants treated with chemical modulators of salicylic acid synthesis or autophagy, and in genetic lines defective in autophagy or salicylic acid signalling. The assay demonstrated that PCD induced by exogenous salicylic acid or fumonisin B1 displayed a requirement for salicylic acid signalling and was partially dependent on the salicylic acid signal transducer NPR1. Autophagy deficiency resulted in an increase in the rates of AL-PCD induced by salicylic acid and fumonisin B1, but not by gibberellic acid or abiotic stress. The phenylalanine ammonia lyase-dependent salicylic acid synthesis pathway contributed only to death induced by salicylic acid and fumonisin B1. 3-Methyladenine, which is commonly used as an inhibitor of autophagy, appeared to influence PCD induction in all treatments suggesting a possible secondary, non-autophagic, effect on a core component of the plant PCD pathway. The results suggest that salicylic acid signalling is negatively regulated by autophagy during salicylic acid and mycotoxin-induced AL-PCD. However, this crosstalk does not appear to be directly involved in PCD induced by gibberellic acid or abiotic stress. This study demonstrates that the root hair assay is an effective tool for relatively rapid investigation of complex signalling pathways leading to the activation of PCD.
Collapse
|
229
|
Matthews BF, Beard H, Brewer E, Kabir S, MacDonald MH, Youssef RM. Arabidopsis genes, AtNPR1, AtTGA2 and AtPR-5, confer partial resistance to soybean cyst nematode (Heterodera glycines) when overexpressed in transgenic soybean roots. BMC PLANT BIOLOGY 2014; 14:96. [PMID: 24739302 PMCID: PMC4021311 DOI: 10.1186/1471-2229-14-96] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Accepted: 03/28/2014] [Indexed: 05/20/2023]
Abstract
BACKGROUND Extensive studies using the model system Arabidopsis thaliana to elucidate plant defense signaling and pathway networks indicate that salicylic acid (SA) is the key hormone triggering the plant defense response against biotrophic and hemi-biotrophic pathogens, while jasmonic acid (JA) and derivatives are critical to the defense response against necrotrophic pathogens. Several reports demonstrate that SA limits nematode reproduction. RESULTS Here we translate knowledge gained from studies using Arabidopsis to soybean. The ability of thirty-one Arabidopsis genes encoding important components of SA and JA synthesis and signaling in conferring resistance to soybean cyst nematode (SCN: Heterodera glycines) are investigated. We demonstrate that overexpression of three of thirty-one Arabidoposis genes in transgenic soybean roots of composite plants decreased the number of cysts formed by SCN to less than 50% of those found on control roots, namely AtNPR1(33%), AtTGA2 (38%), and AtPR-5 (38%). Three additional Arabidopsis genes decreased the number of SCN cysts by 40% or more: AtACBP3 (53% of the control value), AtACD2 (55%), and AtCM-3 (57%). Other genes having less or no effect included AtEDS5 (77%), AtNDR1 (82%), AtEDS1 (107%), and AtPR-1 (80%), as compared to control. Overexpression of AtDND1 greatly increased susceptibility as indicated by a large increase in the number of SCN cysts (175% of control). CONCLUSIONS Knowledge of the pathogen defense system gained from studies of the model system, Arabidopsis, can be directly translated to soybean through direct overexpression of Arabidopsis genes. When the genes, AtNPR1, AtGA2, and AtPR-5, encoding specific components involved in SA regulation, synthesis, and signaling, are overexpressed in soybean roots, resistance to SCN is enhanced. This demonstrates functional compatibility of some Arabidopsis genes with soybean and identifies genes that may be used to engineer resistance to nematodes.
Collapse
Affiliation(s)
- Benjamin F Matthews
- United States Department of Agriculture, Agricultural Research Service, Soybean Genomics and Improvement Laboratory, Beltsville, MD 20705, USA
| | - Hunter Beard
- United States Department of Agriculture, Agricultural Research Service, Soybean Genomics and Improvement Laboratory, Beltsville, MD 20705, USA
| | - Eric Brewer
- United States Department of Agriculture, Agricultural Research Service, Soybean Genomics and Improvement Laboratory, Beltsville, MD 20705, USA
| | - Sara Kabir
- United States Department of Agriculture, Agricultural Research Service, Soybean Genomics and Improvement Laboratory, Beltsville, MD 20705, USA
| | - Margaret H MacDonald
- United States Department of Agriculture, Agricultural Research Service, Soybean Genomics and Improvement Laboratory, Beltsville, MD 20705, USA
| | - Reham M Youssef
- United States Department of Agriculture, Agricultural Research Service, Soybean Genomics and Improvement Laboratory, Beltsville, MD 20705, USA
- Fayoum University, Fayoum, Egypt
| |
Collapse
|
230
|
Ghosh Dasgupta M, George BS, Bhatia A, Sidhu OP. Characterization of Withania somnifera leaf transcriptome and expression analysis of pathogenesis-related genes during salicylic acid signaling. PLoS One 2014; 9:e94803. [PMID: 24739900 PMCID: PMC3989240 DOI: 10.1371/journal.pone.0094803] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Accepted: 03/19/2014] [Indexed: 12/20/2022] Open
Abstract
Withania somnifera (L.) Dunal is a valued medicinal plant with pharmaceutical applications. The present study was undertaken to analyze the salicylic acid induced leaf transcriptome of W. somnifera. A total of 45.6 million reads were generated and the de novo assembly yielded 73,523 transcript contig with average transcript contig length of 1620 bp. A total of 71,062 transcripts were annotated and 53,424 of them were assigned GO terms. Mapping of transcript contigs to biological pathways revealed presence of 182 pathways. Seventeen genes representing 12 pathogenesis-related (PR) families were mined from the transcriptome data and their pattern of expression post 17 and 36 hours of salicylic acid treatment was documented. The analysis revealed significant up-regulation of all families of PR genes by 36 hours post treatment except WsPR10. The relative fold expression of transcripts ranged from 1 fold to 6,532 fold. The two families of peroxidases including the lignin-forming anionic peroxidase (WsL-PRX) and suberization-associated anionic peroxidase (WsS-PRX) recorded maximum expression of 377 fold and 6532 fold respectively, while the expression of WsPR10 was down-regulated by 14 fold. Additionally, the most stable reference gene for normalization of qRT-PCR data was also identified. The effect of SA on the accumulation of major secondary metabolites of W. somnifera including withanoside V, withaferin A and withanolide A was also analyzed and an increase in content of all the three metabolites were detected. This is the first report on expression patterns of PR genes during salicylic acid signaling in W. somnifera.
Collapse
Affiliation(s)
- Modhumita Ghosh Dasgupta
- Division of Plant Biotechnology, Institute of Forest Genetics and Tree Breeding, R.S. Puram, Coimbatore, Tamil Nadu, India
- * E-mail:
| | - Blessan Santhosh George
- Division of Plant Biotechnology, Institute of Forest Genetics and Tree Breeding, R.S. Puram, Coimbatore, Tamil Nadu, India
| | - Anil Bhatia
- CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, Uttar Pradesh, India
| | - Om Prakash Sidhu
- CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, Uttar Pradesh, India
| |
Collapse
|
231
|
Song J, Bent AF. Microbial pathogens trigger host DNA double-strand breaks whose abundance is reduced by plant defense responses. PLoS Pathog 2014; 10:e1004030. [PMID: 24699527 PMCID: PMC3974866 DOI: 10.1371/journal.ppat.1004030] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Accepted: 02/12/2014] [Indexed: 02/08/2023] Open
Abstract
Immune responses and DNA damage repair are two fundamental processes that have been characterized extensively, but the links between them remain largely unknown. We report that multiple bacterial, fungal and oomycete plant pathogen species induce double-strand breaks (DSBs) in host plant DNA. DNA damage detected by histone γ-H2AX abundance or DNA comet assays arose hours before the disease-associated necrosis caused by virulent Pseudomonas syringae pv. tomato. Necrosis-inducing paraquat did not cause detectable DSBs at similar stages after application. Non-pathogenic E. coli and Pseudomonas fluorescens bacteria also did not induce DSBs. Elevation of reactive oxygen species (ROS) is common during plant immune responses, ROS are known DNA damaging agents, and the infection-induced host ROS burst has been implicated as a cause of host DNA damage in animal studies. However, we found that DSB formation in Arabidopsis in response to P. syringae infection still occurs in the absence of the infection-associated oxidative burst mediated by AtrbohD and AtrbohF. Plant MAMP receptor stimulation or application of defense-activating salicylic acid or jasmonic acid failed to induce a detectable level of DSBs in the absence of introduced pathogens, further suggesting that pathogen activities beyond host defense activation cause infection-induced DNA damage. The abundance of infection-induced DSBs was reduced by salicylic acid and NPR1-mediated defenses, and by certain R gene-mediated defenses. Infection-induced formation of γ-H2AX still occurred in Arabidopsis atr/atm double mutants, suggesting the presence of an alternative mediator of pathogen-induced H2AX phosphorylation. In summary, pathogenic microorganisms can induce plant DNA damage. Plant defense mechanisms help to suppress rather than promote this damage, thereby contributing to the maintenance of genome integrity in somatic tissues. Multicellular organisms are continuously exposed to microbes and have developed sophisticated defense mechanisms to counter attack by microbial pathogens. Organisms also encounter many types of DNA damage and have evolved multiple mechanisms to maintain their genomic integrity. Even though these two fundamental responses have been characterized extensively, the relationship between them remains largely unclear. Our study demonstrates that microbial plant pathogens with diverse life styles, including bacteria, oomycete and fungal pathogens, induce double-strand breaks (DSBs) in the genomes of infected host plant cells. DSB induction is apparently a common feature during plant-pathogen interactions. DSBs are the most deleterious form of DNA damage and can lead to chromosomal aberrations and gene mutations. In response to pathogen infection, plant immune responses are activated and contribute to suppressing pathogen-induced DSBs, thereby maintaining better genome integrity and stability. The findings identify important ways that the plant immune and DNA damage repair responses are interconnected. Awareness of the above phenomena may foster future development of disease management approaches that improve crop productivity under biotic stress.
Collapse
Affiliation(s)
- Junqi Song
- Department of Plant Pathology, University of Wisconsin - Madison, Madison, Wisconsin, United States of America
| | - Andrew F. Bent
- Department of Plant Pathology, University of Wisconsin - Madison, Madison, Wisconsin, United States of America
- * E-mail:
| |
Collapse
|
232
|
Molinari S, Fanelli E, Leonetti P. Expression of tomato salicylic acid (SA)-responsive pathogenesis-related genes in Mi-1-mediated and SA-induced resistance to root-knot nematodes. MOLECULAR PLANT PATHOLOGY 2014; 15:255-64. [PMID: 24118790 PMCID: PMC6638815 DOI: 10.1111/mpp.12085] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The expression pattern of pathogenesis-related genes PR-1, PR-2 and PR-5, considered as markers for salicylic acid (SA)-dependent systemic acquired resistance (SAR), was examined in the roots and shoots of tomato plants pre-treated with SA and subsequently infected with root-knot nematodes (RKNs) (Meloidogyne incognita). PR-1 was up-regulated in both roots and shoots of SA-treated plants, whereas the expression of PR-5 was enhanced only in roots. The over-expression of PR-1 in the whole plant occurred as soon as 1 day after SA treatment. Up-regulation of the PR-1 gene was considered to be the main marker of SAR elicitation. One day after treatment, plants were inoculated with active juveniles (J2s) of M. incognita. The number of J2s that entered the roots and started to develop was significantly lower in SA-treated than in untreated plants at 5 and 15 days after inoculation. The expression pattern of PR-1, PR-2 and PR-5 was also examined in the roots and shoots of susceptible and Mi-1-carrying resistant tomato plants infected by RKNs. Nematode infection produced a down-regulation of PR genes in both roots and shoots of SA-treated and untreated plants, and in roots of Mi-carrying resistant plants. Moreover, in resistant infected plants, PR gene expression, in particular PR-1 gene expression, was highly induced in shoots. Thus, nematode infection was demonstrated to elicit SAR in shoots of resistant plants. The data presented in this study show that the repression of host defence SA signalling is associated with the successful development of RKNs, and that SA exogenously added as a soil drench is able to trigger a SAR-like response to RKNs in tomato.
Collapse
Affiliation(s)
- Sergio Molinari
- Institute of Plant Protection (IPP), National Research Council of Italy (CNR), Via G. Amendola 122/D, 70126, Bari, Italy
| | | | | |
Collapse
|
233
|
Hackmann C, Korneli C, Kutyniok M, Köster T, Wiedenlübbert M, Müller C, Staiger D. Salicylic acid-dependent and -independent impact of an RNA-binding protein on plant immunity. PLANT, CELL & ENVIRONMENT 2014; 37:696-706. [PMID: 23961939 DOI: 10.1111/pce.12188] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Revised: 08/09/2013] [Accepted: 08/15/2013] [Indexed: 05/08/2023]
Abstract
Plants overexpressing the RNA-binding protein AtGRP7 (AtGRP7-ox plants) constitutively express the PR-1 (PATHOGENESIS-RELATED-1), PR-2 and PR-5 transcripts associated with salicylic acid (SA)-mediated immunity and show enhanced resistance against Pseudomonas syringae pv. tomato (Pto) DC3000. Here, we investigated whether the function of AtGRP7 in plant immunity depends on SA. Endogenous SA was elevated fivefold in AtGRP7-ox plants. The elevated PR-1, PR-2 and PR-5 levels were eliminated upon expression of the salicylate hydroxylase nahG in AtGRP7-ox plants and elevated PR-1 levels were suppressed by sid (salicylic acid deficient) 2-1 that is impaired in SA biosynthesis. RNA immunoprecipitation showed that AtGRP7 does not bind the PR-1 transcript in vivo, whereas it binds PDF1.2. Constitutive or inducible AtGRP7 overexpression increases PR-1 promoter activity, indicating that AtGRP7 affects PR-1 transcription. In line with this, the effect of AtGRP7 on PR-1 is suppressed by npr (non-expressor of PR genes) 1. Whereas AtGRP7-ox plants restricted growth of Pto DC3000 compared with wild type (wt), sid2-1 AtGRP7-ox plants allowed more growth than AtGRP7-ox plants. Furthermore, we show an enhanced hypersensitive response triggered by avirulent Pto DC3000 (AvrRpt2) in AtGRP7-ox compared with wt. In sid2-1 AtGRP7-ox, an intermediate phenotype was observed. Thus, AtGRP7 has both SA-dependent and SA-independent effects on plant immunity.
Collapse
Affiliation(s)
- Christian Hackmann
- Department of Molecular Cell Physiology, Bielefeld University, Universitätsstraße 25, D-33615, Bielefeld, Germany; Institute for Genome Research and Systems Biology, CeBiTec, Bielefeld University, Universitätsstraße 25, D-33615, Bielefeld, Germany
| | | | | | | | | | | | | |
Collapse
|
234
|
The activated SA and JA signaling pathways have an influence on flg22-triggered oxidative burst and callose deposition. PLoS One 2014; 9:e88951. [PMID: 24586453 PMCID: PMC3934882 DOI: 10.1371/journal.pone.0088951] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Accepted: 01/15/2014] [Indexed: 12/13/2022] Open
Abstract
The first line of defense in plants against pathogens is induced by the recognition of microbe-associated molecular patterns (MAMP). Perception of bacterial flagellin (flg22) by the pattern recognition receptor flagellin-sensing 2 (FLS2) is the best characterized MAMP response, although the underlying molecular mechanisms are not fully understood. Here we studied the relationship between salicylic acid (SA) or jasmonic acid (JA) signaling and FLS2-mediated signaling by monitoring flg22-triggered responses in known SA or JA related mutants of Arabidopsis thaliana (L.) Heynh. The sid2 mutant, impaired in SA biosynthesis, had less basal FLS2 mRNA accumulation than the wild type, which correlated with suppression of early flg22 responses such as ROS production and induction of marker genes, WRKY29 and FRK1. The JA-signaling mutants, jar1 and coi1, exhibited an enhanced flg22-triggered oxidative burst and more callose accumulation than the wild type, and pretreatment with SA or coronatine (COR), a structural mimic of JA-isoleucine, altered these flg22-induced responses. Nonexpressor of pathogenesis-related genes 1 (NPR1) acted downstream of SID2 and required SA-dependent priming for the enhanced flg22-triggered oxidative burst and callose deposition. Activation of JA signaling by COR pretreatment suppressed the flg22-triggered oxidative burst and callose accumulation in a coronatine insensitive 1 (COI1) dependent manner. COR had a negative effect on flg22 responses but only the flg22-triggered oxidative burst depended on SA-JA/COR signaling antagonism. Thus the activated SA and JA signaling pathways have an influence on flg22-triggered oxidative burst and callose deposition. These results may explain how SA and JA signaling are cross talked for regulation of flg22-triggered responses.
Collapse
|
235
|
Khan M, Xu H, Hepworth SR. BLADE-ON-PETIOLE genes: setting boundaries in development and defense. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2014; 215-216:157-71. [PMID: 24388527 DOI: 10.1016/j.plantsci.2013.10.019] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Revised: 10/19/2013] [Accepted: 10/31/2013] [Indexed: 05/19/2023]
Abstract
BLADE-ON-PETIOLE (BOP) genes encode an ancient and conserved subclade of BTB-ankryin transcriptional co-activators, divergent in the NPR1 family of plant defense regulators. Arabidopsis BOP1/2 were originally characterized as regulators of leaf and floral patterning. Recent investigation of BOP activity in a variety of land plants provides a more complete picture of their conserved functions at lateral organ boundaries in the determination of leaf, flower, inflorescence, and root nodule architecture. BOPs exert their function in part through promotion of lateral organ boundary genes including ASYMMETRIC LEAVES2, KNOTTED1-LIKE FROM ARABIDOPSIS6, and ARABIDOPSIS THALIANA HOMEOBOX GENE1 whose products restrict growth, promote differentiation, and antagonize meristem activity in various developmental contexts. Mutually antagonistic interactions between BOP and meristem factors are important in maintaining a border between meristem-organ compartments and in controlling irreversible transitions in cell fate associated with differentiation. We also examine intriguing new evidence for BOP function in plant defense. Comparisons to NPR1 highlight previously unexplored mechanisms for co-ordination of development and defense in land plants.
Collapse
Affiliation(s)
- Madiha Khan
- Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario, Canada K1S 5B6
| | - Huasong Xu
- Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario, Canada K1S 5B6
| | - Shelley R Hepworth
- Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario, Canada K1S 5B6.
| |
Collapse
|
236
|
Naznin HA, Kiyohara D, Kimura M, Miyazawa M, Shimizu M, Hyakumachi M. Systemic resistance induced by volatile organic compounds emitted by plant growth-promoting fungi in Arabidopsis thaliana. PLoS One 2014; 9:e86882. [PMID: 24475190 PMCID: PMC3903595 DOI: 10.1371/journal.pone.0086882] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Accepted: 12/18/2013] [Indexed: 11/19/2022] Open
Abstract
Volatile organic compounds (VOC) were extracted and identified from plant growth-promoting fungi (PGPF), Phoma sp., Cladosporium sp. and Ampelomyces sp., using gas chromatography-mass spectrometry (GC-MS). Among the three VOC extracted, two VOC blends (emitted from Ampelomyces sp. and Cladosporium sp.) significantly reduced disease severity in Arabidopsis plants against Pseudomonas syringae pv. tomato DC3000 (Pst). Subsequently, m-cresol and methyl benzoate (MeBA) were identified as major active volatile compounds from Ampelomyces sp. and Cladosporium sp., respectively, and found to elicit induced systemic resistance (ISR) against the pathogen. Molecular signaling for disease suppression by the VOC were investigated by treating different mutants and transgenic Arabidopsis plants impaired in salicylic acid (SA) or Jasmonic acid (JA)/ethylene (ET) signaling pathways with m-cresol and MeBA followed by challenge inoculation with Pst. Results show that the level of protection was significantly lower when JA/ET-impaired mutants were treated with MeBA, and in SA-, and JA/ET-disrupted mutants after m-cresol treatment, indicating the involvement of these signal transduction pathways in the ISR primed by the volatiles. Analysis of defense-related genes by real-time qRT-PCR showed that both the SA-and JA-signaling pathways combine in the m-cresol signaling of ISR, whereas MeBA is mainly involved in the JA-signaling pathway with partial recruitment of SA-signals. The ET-signaling pathway was not employed in ISR by the volatiles. Therefore, this study identified two novel volatile components capable of eliciting ISR that may be promising candidates in biological control strategy to protect plants from diseases.
Collapse
Affiliation(s)
- Hushna Ara Naznin
- The United Graduate School of Agricultural Sciences, Gifu University, Gifu City, Japan
| | - Daigo Kiyohara
- Laboratory of Plant Pathology, Faculty of Applied Biological Sciences, Gifu University, Gifu City, Japan
| | - Minako Kimura
- Laboratory of Plant Pathology, Faculty of Applied Biological Sciences, Gifu University, Gifu City, Japan
| | - Mitsuo Miyazawa
- Department of Applied Chemistry, Faculty of Science and Engineering, Kinki University, Higashiosaka-shi, Osaka, Japan
| | - Masafumi Shimizu
- Laboratory of Plant Pathology, Faculty of Applied Biological Sciences, Gifu University, Gifu City, Japan
| | - Mitsuro Hyakumachi
- Laboratory of Plant Pathology, Faculty of Applied Biological Sciences, Gifu University, Gifu City, Japan
- * E-mail:
| |
Collapse
|
237
|
Rojas CM, Senthil-Kumar M, Tzin V, Mysore KS. Regulation of primary plant metabolism during plant-pathogen interactions and its contribution to plant defense. FRONTIERS IN PLANT SCIENCE 2014. [PMID: 24575102 DOI: 10.3389/fpls.2014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Plants are constantly exposed to microorganisms in the environment and, as a result, have evolved intricate mechanisms to recognize and defend themselves against potential pathogens. One of these responses is the downregulation of photosynthesis and other processes associated with primary metabolism that are essential for plant growth. It has been suggested that the energy saved by downregulation of primary metabolism is diverted and used for defense responses. However, several studies have shown that upregulation of primary metabolism also occurs during plant-pathogen interactions. We propose that upregulation of primary metabolism modulates signal transduction cascades that lead to plant defense responses. In support of this thought, we here compile evidence from the literature to show that upon exposure to pathogens or elicitors, plants induce several genes associated with primary metabolic pathways, such as those involved in the synthesis or degradation of carbohydrates, amino acids and lipids. In addition, genetic studies have confirmed the involvement of these metabolic pathways in plant defense responses. This review provides a new perspective highlighting the relevance of primary metabolism in regulating plant defense against pathogens with the hope to stimulate further research in this area.
Collapse
Affiliation(s)
- Clemencia M Rojas
- Plant Biology Division, The Samuel Roberts Noble Foundation Ardmore, OK, USA
| | - Muthappa Senthil-Kumar
- Plant Biology Division, The Samuel Roberts Noble Foundation Ardmore, OK, USA ; National Institute of Plant Genome Research, Jawaharlal Nehru University Campus New Delhi, India
| | - Vered Tzin
- Plant Biology Division, The Samuel Roberts Noble Foundation Ardmore, OK, USA ; Boyce Thompson Institute for Plant Research Ithaca, NY, USA
| | - Kirankumar S Mysore
- Plant Biology Division, The Samuel Roberts Noble Foundation Ardmore, OK, USA
| |
Collapse
|
238
|
Rojas CM, Senthil-Kumar M, Tzin V, Mysore KS. Regulation of primary plant metabolism during plant-pathogen interactions and its contribution to plant defense. FRONTIERS IN PLANT SCIENCE 2014; 5:17. [PMID: 24575102 PMCID: PMC3919437 DOI: 10.3389/fpls.2014.00017] [Citation(s) in RCA: 361] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Accepted: 01/15/2014] [Indexed: 05/18/2023]
Abstract
Plants are constantly exposed to microorganisms in the environment and, as a result, have evolved intricate mechanisms to recognize and defend themselves against potential pathogens. One of these responses is the downregulation of photosynthesis and other processes associated with primary metabolism that are essential for plant growth. It has been suggested that the energy saved by downregulation of primary metabolism is diverted and used for defense responses. However, several studies have shown that upregulation of primary metabolism also occurs during plant-pathogen interactions. We propose that upregulation of primary metabolism modulates signal transduction cascades that lead to plant defense responses. In support of this thought, we here compile evidence from the literature to show that upon exposure to pathogens or elicitors, plants induce several genes associated with primary metabolic pathways, such as those involved in the synthesis or degradation of carbohydrates, amino acids and lipids. In addition, genetic studies have confirmed the involvement of these metabolic pathways in plant defense responses. This review provides a new perspective highlighting the relevance of primary metabolism in regulating plant defense against pathogens with the hope to stimulate further research in this area.
Collapse
Affiliation(s)
- Clemencia M. Rojas
- Plant Biology Division, The Samuel Roberts Noble FoundationArdmore, OK, USA
| | - Muthappa Senthil-Kumar
- Plant Biology Division, The Samuel Roberts Noble FoundationArdmore, OK, USA
- National Institute of Plant Genome Research, Jawaharlal Nehru University CampusNew Delhi, India
| | - Vered Tzin
- Plant Biology Division, The Samuel Roberts Noble FoundationArdmore, OK, USA
- Boyce Thompson Institute for Plant ResearchIthaca, NY, USA
| | - Kirankumar S. Mysore
- Plant Biology Division, The Samuel Roberts Noble FoundationArdmore, OK, USA
- *Correspondence: Kirankumar S. Mysore, Plant Biology Division, The Samuel Roberts Noble Foundation, Ardmore, OK 73401, USA e-mail:
| |
Collapse
|
239
|
Pieterse CMJ, Zamioudis C, Berendsen RL, Weller DM, Van Wees SCM, Bakker PAHM. Induced systemic resistance by beneficial microbes. ANNUAL REVIEW OF PHYTOPATHOLOGY 2014; 52:347-75. [PMID: 24906124 DOI: 10.1146/annurev-phyto-082712-102340] [Citation(s) in RCA: 1331] [Impact Index Per Article: 121.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Beneficial microbes in the microbiome of plant roots improve plant health. Induced systemic resistance (ISR) emerged as an important mechanism by which selected plant growth-promoting bacteria and fungi in the rhizosphere prime the whole plant body for enhanced defense against a broad range of pathogens and insect herbivores. A wide variety of root-associated mutualists, including Pseudomonas, Bacillus, Trichoderma, and mycorrhiza species sensitize the plant immune system for enhanced defense without directly activating costly defenses. This review focuses on molecular processes at the interface between plant roots and ISR-eliciting mutualists, and on the progress in our understanding of ISR signaling and systemic defense priming. The central role of the root-specific transcription factor MYB72 in the onset of ISR and the role of phytohormones and defense regulatory proteins in the expression of ISR in aboveground plant parts are highlighted. Finally, the ecological function of ISR-inducing microbes in the root microbiome is discussed.
Collapse
Affiliation(s)
- Corné M J Pieterse
- Plant-Microbe Interactions, Institute of Environmental Biology, Department of Biology, Faculty of Science, Utrecht University, 3508 TB Utrecht, The Netherlands; , , , ,
| | | | | | | | | | | |
Collapse
|
240
|
Abstract
Salicylic acid (SA) has a central role in activating plant resistance to pathogens. SA levels increase in plant tissue following pathogen infection and exogenous SA enhances resistance to a broad range of pathogens. To study the relevance of the SA signaling in the flg22 response, we investigated the responses of SA-related mutants to flg22, a 22-amino acid peptide of the flagellin bacterial protein. We identified SA as an important component of the flg22-triggered oxidative burst, a very early event after flg22 detection, and gene induction, an early event. SA acted partially by enhancing accumulation of FLS2 mRNA. We also provide new evidence that NPR1 play a role in SA-induced priming event that enhances the flg22-triggered oxidative burst, which is correlated with enhancement of the flg22-induced callose deposition. Based on these observations, we conclude that SA signaling is required for early as well as late flg22 responses.
Collapse
Affiliation(s)
- So Young Yi
- Plant Systems Engineering Research Center; Korea Research Institute Bioscience and Biotechnology (KRIBB); Yuseong-gu, Daejeon; Republic of Korea
- Correspondence to: So Young Yi; ; Suk-Yoon Kwon;
| | - Suk-Yoon Kwon
- Plant Systems Engineering Research Center; Korea Research Institute Bioscience and Biotechnology (KRIBB); Yuseong-gu, Daejeon; Republic of Korea
- Correspondence to: So Young Yi; ; Suk-Yoon Kwon;
| |
Collapse
|
241
|
Manohar M, Tian M, Moreau M, Park SW, Choi HW, Fei Z, Friso G, Asif M, Manosalva P, von Dahl CC, Shi K, Ma S, Dinesh-Kumar SP, O'Doherty I, Schroeder FC, van Wijk KJ, Klessig DF. Identification of multiple salicylic acid-binding proteins using two high throughput screens. FRONTIERS IN PLANT SCIENCE 2014; 5:777. [PMID: 25628632 PMCID: PMC4290489 DOI: 10.3389/fpls.2014.00777] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Accepted: 12/15/2014] [Indexed: 05/05/2023]
Abstract
Salicylic acid (SA) is an important hormone involved in many diverse plant processes, including floral induction, stomatal closure, seed germination, adventitious root initiation, and thermogenesis. It also plays critical functions during responses to abiotic and biotic stresses. The role(s) of SA in signaling disease resistance is by far the best studied process, although it is still only partially understood. To obtain insights into how SA carries out its varied functions, particularly in activating disease resistance, two new high throughput screens were developed to identify novel SA-binding proteins (SABPs). The first utilized crosslinking of the photo-reactive SA analog 4-AzidoSA (4AzSA) to proteins in an Arabidopsis leaf extract, followed by immuno-selection with anti-SA antibodies and then mass spectroscopy-based identification. The second utilized photo-affinity crosslinking of 4AzSA to proteins on a protein microarray (PMA) followed by detection with anti-SA antibodies. To determine whether the candidate SABPs (cSABPs) obtained from these screens were true SABPs, recombinantly-produced proteins were generated and tested for SA-inhibitable crosslinking to 4AzSA, which was monitored by immuno-blot analysis, SA-inhibitable binding of the SA derivative 3-aminoethylSA (3AESA), which was detected by a surface plasmon resonance (SPR) assay, or SA-inhibitable binding of [(3)H]SA, which was detected by size exclusion chromatography. Based on our criteria that true SABPs must exhibit SA-binding activity in at least two of these assays, nine new SABPs are identified here; nine others were previously reported. Approximately 80 cSABPs await further assessment. In addition, the conflicting reports on whether NPR1 is an SABP were addressed by showing that it bound SA in all three of the above assays.
Collapse
Affiliation(s)
- Murli Manohar
- Boyce Thompson Institute for Plant Research, Cornell UniversityIthaca, NY, USA
| | - Miaoying Tian
- Boyce Thompson Institute for Plant Research, Cornell UniversityIthaca, NY, USA
| | - Magali Moreau
- Boyce Thompson Institute for Plant Research, Cornell UniversityIthaca, NY, USA
| | - Sang-Wook Park
- Boyce Thompson Institute for Plant Research, Cornell UniversityIthaca, NY, USA
| | - Hyong Woo Choi
- Boyce Thompson Institute for Plant Research, Cornell UniversityIthaca, NY, USA
| | - Zhangjun Fei
- Boyce Thompson Institute for Plant Research, Cornell UniversityIthaca, NY, USA
- Plant, Soil, and Nutrition Laboratory, United States Department of AgricultureIthaca, NY, USA
| | - Giulia Friso
- Department of Plant Biology, Cornell UniversityIthaca, NY, USA
| | - Muhammed Asif
- Boyce Thompson Institute for Plant Research, Cornell UniversityIthaca, NY, USA
| | - Patricia Manosalva
- Boyce Thompson Institute for Plant Research, Cornell UniversityIthaca, NY, USA
| | | | - Kai Shi
- Boyce Thompson Institute for Plant Research, Cornell UniversityIthaca, NY, USA
| | - Shisong Ma
- Department of Plant Biology and Genome Center, University of California, DavisDavis, CA, USA
| | | | - Inish O'Doherty
- Boyce Thompson Institute for Plant Research, Cornell UniversityIthaca, NY, USA
| | - Frank C. Schroeder
- Boyce Thompson Institute for Plant Research, Cornell UniversityIthaca, NY, USA
| | | | - Daniel F. Klessig
- Boyce Thompson Institute for Plant Research, Cornell UniversityIthaca, NY, USA
- *Correspondence: Daniel F. Klessig, Boyce Thompson Institute for Plant Research, Cornell University, 533 Tower Road, Ithaca, NY 14853, USA e-mail:
| |
Collapse
|
242
|
Niranjana SR, Hariprasad P. Understanding the Mechanism Involved in PGPR-Mediated Growth Promotion and Suppression of Biotic and Abiotic Stress in Plants. Fungal Biol 2014. [DOI: 10.1007/978-1-4939-1188-2_3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
243
|
Wang L, Wu J. The essential role of jasmonic acid in plant-herbivore interactions--using the wild tobacco Nicotiana attenuata as a model. J Genet Genomics 2013; 40:597-606. [PMID: 24377866 DOI: 10.1016/j.jgg.2013.10.001] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Revised: 10/15/2013] [Accepted: 10/16/2013] [Indexed: 12/28/2022]
Abstract
The plant hormone jasmonic acid (JA) plays a central role in plant defense against herbivores. Herbivore damage elicits a rapid and transient JA burst in the wounded leaves and JA functions as a signal to mediate the accumulation of various secondary metabolites that confer resistance to herbivores. Nicotiana attenuata is a wild tobacco species that inhabits western North America. More than fifteen years of study and its unique interaction with the specialist herbivore insect Manduca sexta have made this plant one of the best models for studying plant-herbivore interactions. Here we review the recent progress in understanding the elicitation of JA accumulation by herbivore-specific elicitors, the regulation of JA biosynthesis, JA signaling, and the herbivore-defense traits in N. attenuata.
Collapse
Affiliation(s)
- Lei Wang
- Key Laboratory of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Jianqiang Wu
- Key Laboratory of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China.
| |
Collapse
|
244
|
Donze T, Qu F, Twigg P, Morris TJ. Turnip crinkle virus coat protein inhibits the basal immune response to virus invasion in Arabidopsis by binding to the NAC transcription factor TIP. Virology 2013; 449:207-14. [PMID: 24418554 DOI: 10.1016/j.virol.2013.11.018] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Revised: 11/01/2013] [Accepted: 11/10/2013] [Indexed: 10/25/2022]
Abstract
Turnip crinkle virus (TCV) has been shown to interact with a NAC transcription factor, TIP, of Arabidopsis thaliana, via its coat protein (CP). This interaction correlates with the resistance response manifested in TCV-resistant Arabidopsis ecotype Di-17. We report that failure of a mutated CP to interact with TIP triggered the corresponding TCV mutant (R6A) to cause more severe symptoms in the TCV-susceptible ecotype Col-0. We hypothesized that TCV regulates antiviral basal immunity through TIP-CP interaction. Consistent with this hypothesis, we found that the rate of accumulation of R6A was measurably slower than wild-type TCV over the course of an infection. Notably, R6A was able to accumulate at similar rates as wild-type TCV in mutant plants with defects in salicylic acid (SA) signaling. Finally, plants with altered TIP expression provided evidence R6A's inability to evade the basal resistance response was likely associated with loss of ability for CP to bind TIP.
Collapse
Affiliation(s)
- Teresa Donze
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Feng Qu
- Department of Plant Pathology, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, OH 44691, USA
| | - Paul Twigg
- Biology Department, University of Nebraska-Kearney, Kearney, NE 68849, USA
| | - T Jack Morris
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE 68588, USA.
| |
Collapse
|
245
|
Datta R, Sinha R, Chattopadhyay S. Changes in leaf proteome profile of Arabidopsis thaliana in response to salicylic acid. J Biosci 2013; 38:317-28. [PMID: 23660666 DOI: 10.1007/s12038-013-9308-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Salicylic acid (SA) has been implicated in determining the outcome of interactions between many plants and their pathogens. Global changes in response to this phytohormone have been observed at the transcript level, but little is known of how it induces changes in protein abundance. To this end we have investigated the effect of 1 mM SA on soluble proteins of Arabidopsis thaliana leaves by proteomic analysis. An initial study at transcript level has been performed on temporal landscape, which revealed that induction of most of the SA-responsive genes occurs within 3 to 6 h post treatment (HPT) and the expression peaked within 24 HPT. Two-dimensional gel electrophoresis (2-DE) coupled with MALDI-TOF MS/MS analysis has been used to identify differentially expressed proteins and 63 spots have been identified successfully. This comparative proteomic profiling of SA treated leaves versus control leaves demonstrated the changes of many defence related proteins like pathogenesis related protein 10a (PR10a), diseaseresistance- like protein, putative late blight-resistance protein, WRKY4, MYB4, etc. along with gross increase in the rate of energy production, while other general metabolism rate is slightly toned down, presumably signifying a transition from 'normal mode' to 'defence mode'.
Collapse
Affiliation(s)
- Riddhi Datta
- Plant Biology Laboratory, Drug Development/Diagnostics and Biotechnology Division, CSIRIndian Institute of Chemical Biology, Kolkata 700 032, India
| | | | | |
Collapse
|
246
|
Groen SC, Whiteman NK, Bahrami AK, Wilczek AM, Cui J, Russell JA, Cibrian-Jaramillo A, Butler IA, Rana JD, Huang GH, Bush J, Ausubel FM, Pierce NE. Pathogen-triggered ethylene signaling mediates systemic-induced susceptibility to herbivory in Arabidopsis. THE PLANT CELL 2013; 25:4755-66. [PMID: 24285796 PMCID: PMC3875748 DOI: 10.1105/tpc.113.113415] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Revised: 10/13/2013] [Accepted: 10/27/2013] [Indexed: 05/18/2023]
Abstract
Multicellular eukaryotic organisms are attacked by numerous parasites from diverse phyla, often simultaneously or sequentially. An outstanding question in these interactions is how hosts integrate signals induced by the attack of different parasites. We used a model system comprised of the plant host Arabidopsis thaliana, the hemibiotrophic bacterial phytopathogen Pseudomonas syringae, and herbivorous larvae of the moth Trichoplusia ni (cabbage looper) to characterize mechanisms involved in systemic-induced susceptibility (SIS) to T. ni herbivory caused by prior infection by virulent P. syringae. We uncovered a complex multilayered induction mechanism for SIS to herbivory. In this mechanism, antiherbivore defenses that depend on signaling via (1) the jasmonic acid-isoleucine conjugate (JA-Ile) and (2) other octadecanoids are suppressed by microbe-associated molecular pattern-triggered salicylic acid (SA) signaling and infection-triggered ethylene signaling, respectively. SIS to herbivory is, in turn, counteracted by a combination of the bacterial JA-Ile mimic coronatine and type III virulence-associated effectors. Our results show that SIS to herbivory involves more than antagonistic signaling between SA and JA-Ile and provide insight into the unexpectedly complex mechanisms behind a seemingly simple trade-off in plant defense against multiple enemies.
Collapse
Affiliation(s)
- Simon C. Groen
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts 02138
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, United Kingdom
| | - Noah K. Whiteman
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts 02138
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona 85721
| | - Adam K. Bahrami
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts 02138
| | - Amity M. Wilczek
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts 02138
| | - Jianping Cui
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts 02138
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts 02114
| | - Jacob A. Russell
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts 02138
| | | | - Ian A. Butler
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts 02138
| | - Jignasha D. Rana
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts 02138
| | - Guo-Hua Huang
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts 02138
| | - Jenifer Bush
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts 02114
| | - Frederick M. Ausubel
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts 02114
| | - Naomi E. Pierce
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts 02138
- Address correspondence to:
| |
Collapse
|
247
|
Balderas-Hernández VE, Alvarado-Rodríguez M, Fraire-Velázquez S. Conserved versatile master regulators in signalling pathways in response to stress in plants. AOB PLANTS 2013; 5:plt033. [PMID: 24147216 PMCID: PMC3800984 DOI: 10.1093/aobpla/plt033] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Accepted: 07/06/2013] [Indexed: 05/06/2023]
Abstract
From the first land plants to the complex gymnosperms and angiosperms of today, environmental conditions have forced plants to develop molecular strategies to surpass natural obstacles to growth and proliferation, and these genetic gains have been transmitted to the following generations. In this long natural process, novel and elaborate mechanisms have evolved to enable plants to cope with environmental limitations. Elements in many signalling cascades enable plants to sense different, multiple and simultaneous ambient cues. A group of versatile master regulators of gene expression control plant responses to stressing conditions. For crop breeding purposes, the task is to determine how to activate these key regulators to enable accurate and optimal reactions to common stresses. In this review, we discuss how plants sense biotic and abiotic stresses, how and which master regulators are implied in the responses to these stresses, their evolution in the life kingdoms, and the domains in these proteins that interact with other factors to lead to a proper and efficient plant response.
Collapse
Affiliation(s)
- Victor E. Balderas-Hernández
- Laboratorio de Biología Integrativa de Plantas y Microorganismos, Unidad Académica de Ciencias Biológicas, Universidad Autónoma de Zacatecas, Av. Preparatoria s/n, Col. Agronómica, CP 98066, Zacatecas, México
| | - Miguel Alvarado-Rodríguez
- Laboratorio de Cultivo de Tejidos Vegetales, Unidad de Agronomía, Universidad Autónoma de Zacatecas, Carr. Zacatecas-Jerez km 17, CP 98000, Zacatecas, México
| | - Saúl Fraire-Velázquez
- Laboratorio de Biología Integrativa de Plantas y Microorganismos, Unidad Académica de Ciencias Biológicas, Universidad Autónoma de Zacatecas, Av. Preparatoria s/n, Col. Agronómica, CP 98066, Zacatecas, México
| |
Collapse
|
248
|
Nakayama A, Fukushima S, Goto S, Matsushita A, Shimono M, Sugano S, Jiang CJ, Akagi A, Yamazaki M, Inoue H, Takatsuji H. Genome-wide identification of WRKY45-regulated genes that mediate benzothiadiazole-induced defense responses in rice. BMC PLANT BIOLOGY 2013; 13:150. [PMID: 24093634 PMCID: PMC3850545 DOI: 10.1186/1471-2229-13-150] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Accepted: 10/02/2013] [Indexed: 05/20/2023]
Abstract
BACKGROUND The rice transcription factor WRKY45 plays a crucial role in salicylic acid (SA)/benzothiadiazole (BTH)-induced disease resistance. Its knockdown severely reduces BTH-induced resistance to the fungal pathogen Magnaporthe oryzae and the bacterial pathogen Xanthomonas oryzae pv. oryzae (Xoo). Conversely, overexpression of WRKY45 induces extremely strong resistance to both of these pathogens. To elucidate the molecular basis of WRKY45-dependent disease resistance, we analyzed WRKY45-regulated gene expression using rice transformants and a transient gene expression system. RESULTS We conducted a microarray analysis using WRKY45-knockdown (WRKY45-kd) rice plants, and identified WRKY45-dependent genes among the BTH-responsive genes. The BTH-responsiveness of 260 genes was dependent on WRKY45. Among these, 220 genes (85%), many of which encoded PR proteins and proteins associated with secondary metabolism, were upregulated by BTH. Only a small portion of these genes overlapped with those regulated by OsNPR1/NH1, supporting the idea that the rice SA pathway branches into WRKY45- regulated and OsNPR1/NH1-regulated subpathways. Dexamethazone-induced expression of myc-tagged WRKY45 in rice immediately upregulated transcription of endogenous WRKY45 and genes encoding the transcription factors WRKY62, OsNAC4, and HSF1, all of which have been reported to have defense-related functions. This was followed by upregulation of defense genes encoding PR proteins and secondary metabolic enzymes. Many of these genes were also induced after M. oryzae infection. Their temporal transcription patterns were consistent with those after dexamethazone-induced WRKY45 expression. In a transient expression system consisting of particle bombardment of rice coleoptiles, WRKY45 acted as an effector to trans-activate reporter genes in which the luciferase coding sequence was fused to upstream and intragenic sequences of WRKY62 and OsNAC4. Trans-activation of transcription occurred through a W-box-containing sequence upstream of OsNAC4 and mutations in the W-boxes abolished the trans-activation. CONCLUSIONS These data suggest a role of WRKY45 in BTH-induced disease resistance as a master regulator of the transcriptional cascade regulating defense responses in one of two branches in the rice SA pathway.
Collapse
Affiliation(s)
- Akira Nakayama
- Disease Resistant Crops Research Unit, National Institute of Agrobiological Sciences, Ibaraki 305-8602, Japan
- Maebashi Institute of Technology, Maebashi 371-0816, Japan
| | - Setsuko Fukushima
- Disease Resistant Crops Research Unit, National Institute of Agrobiological Sciences, Ibaraki 305-8602, Japan
| | - Shingo Goto
- Disease Resistant Crops Research Unit, National Institute of Agrobiological Sciences, Ibaraki 305-8602, Japan
| | - Akane Matsushita
- Disease Resistant Crops Research Unit, National Institute of Agrobiological Sciences, Ibaraki 305-8602, Japan
- Present address: Du Pont Kabushiki Kaisha, 2-11-1, Nagata-cho, Chiyoda-ku, Tokyo 100-6111, Japan
| | - Masaki Shimono
- Disease Resistant Crops Research Unit, National Institute of Agrobiological Sciences, Ibaraki 305-8602, Japan
- Present address: Department of Plant Pathology, Michigan State University, East Lansing, MI 48824, USA
| | - Shoji Sugano
- Disease Resistant Crops Research Unit, National Institute of Agrobiological Sciences, Ibaraki 305-8602, Japan
| | - Chang-Jie Jiang
- Disease Resistant Crops Research Unit, National Institute of Agrobiological Sciences, Ibaraki 305-8602, Japan
| | - Aya Akagi
- Disease Resistant Crops Research Unit, National Institute of Agrobiological Sciences, Ibaraki 305-8602, Japan
- Present address: Bayer CropScience, Tokyo 100-8262, Japan
| | - Muneo Yamazaki
- Disease Resistant Crops Research Unit, National Institute of Agrobiological Sciences, Ibaraki 305-8602, Japan
| | - Haruhiko Inoue
- Disease Resistant Crops Research Unit, National Institute of Agrobiological Sciences, Ibaraki 305-8602, Japan
| | - Hiroshi Takatsuji
- Disease Resistant Crops Research Unit, National Institute of Agrobiological Sciences, Ibaraki 305-8602, Japan
- Disease Resistant Crops Research Unit, National Institute of Agrobiological Sciences, 2-1-2 Kannondai, Tsukuba, Ibaraki 305–8602, Japan
| |
Collapse
|
249
|
Chen Y, Shen H, Wang M, Li Q, He Z. Salicyloyl-aspartate synthesized by the acetyl-amido synthetase GH3.5 is a potential activator of plant immunity in Arabidopsis. Acta Biochim Biophys Sin (Shanghai) 2013; 45:827-36. [PMID: 23842113 DOI: 10.1093/abbs/gmt078] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Salicylic acid (SA) plays a critical role in plant immunity responses against pathogen infection, especially in the establishment of systemic acquired resistance. Whether other forms of salicylates also function in plant immunity has not been explored. Our previous study has revealed that salicyloyl-aspartate (SA-Asp), the only reported endogenous SA-amino acid conjugate in plants, was highly accumulated in the Arabidopsis activation-tagged mutant gh3.5-1D after pathogen infection. In this study, we dissected SA-Asp production in Arabidopsis. In vitro biochemical experiments showed that the GH3.5 protein could catalyze the conjugation of SA with aspartic acid to form SA-Asp. SA-Asp is not converted into free SA and likely acts as a mobile molecule in plants. SA-Asp could induce pathogenesis-related (PR) gene expression and increase disease resistance to pathogenic Pseudomonas syringae. Our current study also supports the notion that GH3.5 is a multifunction enzyme in plant hormone metabolism.
Collapse
Affiliation(s)
- Ying Chen
- National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | | | | | | | | |
Collapse
|
250
|
Wang L, Fobert PR. Arabidopsis clade I TGA factors regulate apoplastic defences against the bacterial pathogen Pseudomonas syringae through endoplasmic reticulum-based processes. PLoS One 2013; 8:e77378. [PMID: 24086773 PMCID: PMC3785447 DOI: 10.1371/journal.pone.0077378] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Accepted: 09/10/2013] [Indexed: 11/26/2022] Open
Abstract
During the plant immune response, large-scale transcriptional reprogramming is modulated by numerous transcription (co) factors. The Arabidopsis basic leucine zipper transcription factors TGA1 and TGA4, which comprise the clade I TGA factors, have been shown to positively contribute to disease resistance against virulent strains of the bacterial pathogen Pseudomonas syringae. Despite physically interacting with the key immune regulator, NON-EXPRESSOR OF PATHOGENESIS-RELATED GENES 1 (NPR1), following elicitation with salicylic acid (SA), clade I function was shown to be largely independent of NPR1. Unlike mutants in NPR1, tga1-1 tga4-1 plants do not display reductions in steady-state levels of SA-pathway marker genes following treatment with this phenolic signaling metabolite or after challenge with virulent or avirulent P. syringae. By exploiting bacterial strains that have limited capacity to suppress Arabidopsis defence responses, the present study demonstrates that tga1-1 tga4-1 plants are compromised in basal resistance and defective in several apoplastic defence responses, including the oxidative burst of reactive oxygen species, callose deposition, as well as total and apoplastic PATHOGENESIS-RELATED 1 (PR-1) protein accumulation. Furthermore, analysis of npr1-1 and the tga1-1 tga4-1 npr1-1 triple mutant indicates that clade I TGA factors act substantially independent of NPR1 in mediating disease resistance against these strains of P. syringae. Increased sensitivity to the N-glycosylation inhibitor tunicamycin and elevated levels of endoplasmic reticulum (ER) stress marker genes encoding ER-resident chaperones in mutant seedlings suggest that loss of apoplastic defence responses is associated with aberrant protein secretion and implicate clade I TGA factors as positive regulators of one or more ER-related secretion pathways.
Collapse
Affiliation(s)
- Lipu Wang
- Department of Biology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada ; National Research Council Canada, Saskatoon, Saskatchewan, Canada
| | | |
Collapse
|