201
|
Chlamydia trachomatis co-opts GBF1 and CERT to acquire host sphingomyelin for distinct roles during intracellular development. PLoS Pathog 2011; 7:e1002198. [PMID: 21909260 PMCID: PMC3164637 DOI: 10.1371/journal.ppat.1002198] [Citation(s) in RCA: 179] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2011] [Accepted: 06/23/2011] [Indexed: 11/26/2022] Open
Abstract
The obligate intracellular pathogen Chlamydia trachomatis replicates within a membrane-bound inclusion that acquires host sphingomyelin (SM), a process that is essential for replication as well as inclusion biogenesis. Previous studies demonstrate that SM is acquired by a Brefeldin A (BFA)-sensitive vesicular trafficking pathway, although paradoxically, this pathway is dispensable for bacterial replication. This finding suggests that other lipid transport mechanisms are involved in the acquisition of host SM. In this work, we interrogated the role of specific components of BFA-sensitive and BFA-insensitive lipid trafficking pathways to define their contribution in SM acquisition during infection. We found that C. trachomatis hijacks components of both vesicular and non-vesicular lipid trafficking pathways for SM acquisition but that the SM obtained from these separate pathways is being utilized by the pathogen in different ways. We show that C. trachomatis selectively co-opts only one of the three known BFA targets, GBF1, a regulator of Arf1-dependent vesicular trafficking within the early secretory pathway for vesicle-mediated SM acquisition. The Arf1/GBF1-dependent pathway of SM acquisition is essential for inclusion membrane growth and stability but is not required for bacterial replication. In contrast, we show that C. trachomatis co-opts CERT, a lipid transfer protein that is a key component in non-vesicular ER to trans-Golgi trafficking of ceramide (the precursor for SM), for C. trachomatis replication. We demonstrate that C. trachomatis recruits CERT, its ER binding partner, VAP-A, and SM synthases, SMS1 and SMS2, to the inclusion and propose that these proteins establish an on-site SM biosynthetic factory at or near the inclusion. We hypothesize that SM acquired by CERT-dependent transport of ceramide and subsequent conversion to SM is necessary for C. trachomatis replication whereas SM acquired by the GBF1-dependent pathway is essential for inclusion growth and stability. Our results reveal a novel mechanism by which an intracellular pathogen redirects SM biosynthesis to its replicative niche. C. trachomatis is the leading cause of non-congenital blindness in developing countries and is the number one cause of sexually transmitted disease and non-congenital infertility in Western countries. The capacity of Chlamydia infections to lead to infertility and blindness, their association with chronic diseases, and the extraordinary prevalence and array of these infections make them public concerns of primary importance. This pathogen must establish a protective membrane-bound niche and acquire essential lipids from the host cell during infection in order to survive and replicate. This study identifies novel mechanisms by which C. trachomatis hijacks various lipid trafficking proteins for distinct roles during intracellular development. Disruption of these lipid trafficking pathways results in alterations in the growth and stability of its protective niche as well as a defect in replication. Understanding the molecular mechanisms of these host-pathogen interactions will lead to rational approaches for the development of novel therapeutics, diagnostics, and preventative strategies.
Collapse
|
202
|
WAVE regulatory complex activation by cooperating GTPases Arf and Rac1. Proc Natl Acad Sci U S A 2011; 108:14449-54. [PMID: 21844371 DOI: 10.1073/pnas.1107666108] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The WAVE regulatory complex (WRC) is a critical element in the control of actin polymerization at the eukaryotic cell membrane, but how WRC is activated remains uncertain. While Rho GTPase Rac1 can bind and activate WRC in vitro, this interaction is of low affinity, suggesting other factors may be important. By reconstituting WAVE-dependent actin assembly on membrane-coated beads in mammalian cell extracts, we found that Rac1 was not sufficient to engender bead motility, and we uncovered a key requirement for Arf GTPases. In vitro, Rac1 and Arf1 were individually able to bind weakly to recombinant WRC and activate it, but when both GTPases were bound at the membrane, recruitment and concomitant activation of WRC were dramatically enhanced. This cooperativity between the two GTPases was sufficient to induce WAVE-dependent bead motility in cell extracts. Our findings suggest that Arf GTPases may be central components in WAVE signalling, acting directly, alongside Rac1.
Collapse
|
203
|
Sakurai A, Jian X, Lee CJ, Manavski Y, Chavakis E, Donaldson J, Randazzo PA, Gutkind JS. Phosphatidylinositol-4-phosphate 5-kinase and GEP100/Brag2 protein mediate antiangiogenic signaling by semaphorin 3E-plexin-D1 through Arf6 protein. J Biol Chem 2011; 286:34335-45. [PMID: 21795701 DOI: 10.1074/jbc.m111.259499] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The semaphorins are a family of secreted or membrane-bound proteins that are known to guide axons in the developing nervous system. Genetic evidence revealed that a class III semaphorin, semaphorin 3E (Sema3E), and its receptor Plexin-D1 also control the vascular patterning during development. At the molecular level, we have recently shown that Sema3E acts on Plexin-D1 expressed in endothelial cells, thus initiating a novel antiangiogenic signaling pathway that results in the retraction of filopodia in endothelial tip cells. Sema3E induces the rapid disassembly of integrin-mediated adhesive structures, thereby inhibiting endothelial cell adhesion to the extracellular matrix. This process requires the activation of small GTPase Arf6 (ADP-ribosylation factor 6), which regulates intracellular trafficking of β1 integrin. However, the molecular mechanisms by which Sema3E-Plexin-D1 activates Arf6 remained to be identified. Here we show that GEP100 (guanine nucleotide exchange protein 100)/Brag2, a guanine nucleotide exchange factor for Arf6, mediates Sema3E-induced Arf6 activation in endothelial cells. We provide evidence that upon activation by Sema3E, Plexin-D1 recruits phosphatidylinositol-4-phosphate 5-kinase, and its enzymatic lipid product, phosphatidylinositol 4,5-bisphosphate, binds to the pleckstrin homology domain of GEP100. Phosphatidylinositol 4,5-bisphosphate binding to GEP100 enhances its guanine nucleotide exchange factor activity toward Arf6, thus resulting in the disassembly of integrin-mediated focal adhesions and endothelial cell collapse. Our present study reveals a novel phospholipid-regulated antiangiogenic signaling pathway whereby Sema3E activates Arf6 through Plexin-D1 and consequently controls integrin-mediated endothelial cell attachment to the extracellular matrix and migration.
Collapse
Affiliation(s)
- Atsuko Sakurai
- Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | | | |
Collapse
|
204
|
Niebel B, Weiche B, Mueller AL, Li DY, Karnowski N, Famulok M. A luminescent oxygen channeling biosensor that measures small GTPase activation. Chem Commun (Camb) 2011; 47:7521-3. [PMID: 21625685 DOI: 10.1039/c1cc11944c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We established a homogeneous luminescent oxygen channeling sensor for measuring activation states of small GTPases. The assay quantifies activated GTPases in cell lysates, can be applied to different GTPases, and can be used for multiplex screening. The study will provide guidelines for determining activation states of diverse GTPases in various biological contexts.
Collapse
Affiliation(s)
- Björn Niebel
- LIMES Institute, Chemical Biology & Medicinal Chemistry Unit, University of Bonn, 53121 Bonn, Germany
| | | | | | | | | | | |
Collapse
|
205
|
ARF family G proteins and their regulators: roles in membrane transport, development and disease. Nat Rev Mol Cell Biol 2011; 12:362-75. [PMID: 21587297 PMCID: PMC3245550 DOI: 10.1038/nrm3117] [Citation(s) in RCA: 685] [Impact Index Per Article: 48.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The ADP-ribosylation factor (ARF) family of guanine-nucleotide-binding (G) proteins, including the ARF proteins, ARF-like (ARL) proteins and SAR1, regulates membrane traffic and organelle structure, and each family member is regulated through a cycle of GTP binding and GTP hydrolysis, which activate and inactivate, respectively, the G protein. Traditionally, ARFs have been characterized for their immediate effects in the recruitment of coat proteins to drive cargo sorting, the recruitment of enzymes that can alter membrane lipid composition and the regulation of cytoskeletal factors. Now, new roles for ARFs have been discovered at the Golgi complex, for example in driving lipid transport. ARL proteins are also being increasingly linked to coordination of trafficking with cytoskeletal processes, for example during ciliogenesis. There is particular interest in the mechanisms that control recruitment of the ARF guanine nucleotide exchange factors (GEFs) that mediate GTP binding to ARFs and, in the case of the cytohesin (also known as ARNO) GEF, membrane recruitment is coupled to relief of autoinhibition. GEFs such as cytohesin may also participate in a cascade of activation between particular pairs of ARFs. Traditionally, G protein signalling has been viewed as a linear pathway, with the GDP-bound form of an ARF protein being inactive; however, more recent studies have highlighted novel roles for these GDP-bound forms and have also shown that GEFs and GTPase-activating proteins (GAPs) themselves can engage in distinct signalling responses through scaffolding functions.
The ADP-ribosylation factor (ARF) and ARF-like (ARL) family of G proteins, which are known to regulate membrane traffic and organelle structure, are emerging as regulators of diverse processes, including lipid and cytoskeletal transport. Although traditionally viewed as part of a linear signalling pathway, ARFs and their regulators must now be considered to exist within functional networks, in which both the 'inactive' ARF and the regulators themselves can mediate distinct effects. Members of the ADP-ribosylation factor (ARF) family of guanine-nucleotide-binding (G) proteins, including the ARF-like (ARL) proteins and SAR1, regulate membrane traffic and organelle structure by recruiting cargo-sorting coat proteins, modulating membrane lipid composition, and interacting with regulators of other G proteins. New roles of ARF and ARL proteins are emerging, including novel functions at the Golgi complex and in cilia formation. Their function is under tight spatial control, which is mediated by guanine nucleotide exchange factors (GEFs) and GTPase-activating proteins (GAPs) that catalyse GTP exchange and hydrolysis, respectively. Important advances are being gained in our understanding of the functional networks that are formed not only by the GEFs and GAPs themselves but also by the inactive forms of the ARF proteins.
Collapse
|
206
|
Cohen LA, Donaldson JG. Analysis of Arf GTP-binding protein function in cells. ACTA ACUST UNITED AC 2011; Chapter 3:Unit 14.12.1-17. [PMID: 20853342 DOI: 10.1002/0471143030.cb1412s48] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
This unit describes techniques and approaches that can be used to study the functions of the ADP-ribosylation factor (Arf) GTP-binding proteins in cells. There are six mammalian Arfs and many more Arf-like proteins (Arls), and these proteins are conserved in eukaryotes from yeast to humans. Like all GTPases, Arfs cycle between GDP-bound, inactive and GTP-bound active conformations, facilitated by guanine nucleotide exchange factors (GEFs) and GTPase-activating proteins (GAPs) that catalyze GTP binding and hydrolysis, respectively. This unit describes approaches that can be taken to examine the localization and function of Arf and Arl proteins in cells. A simple protocol for measuring activation (GTP-binding) of specific Arf proteins in cells using a pull-down assay is also described. Approaches that can be taken to assess function of GEFs and GAPs in cells is described.
Collapse
Affiliation(s)
- Lee Ann Cohen
- Laboratory of Cell Biology, NHLBI, National Institutes of Health, Bethesda, Maryland, USA
| | | |
Collapse
|
207
|
Bai M, Gad H, Turacchio G, Cocucci E, Yang JS, Li J, Beznoussenko GV, Nie Z, Luo R, Fu L, Collawn JF, Kirchhausen T, Luini A, Hsu VW. ARFGAP1 promotes AP-2-dependent endocytosis. Nat Cell Biol 2011; 13:559-67. [PMID: 21499258 PMCID: PMC3087831 DOI: 10.1038/ncb2221] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2010] [Accepted: 02/03/2011] [Indexed: 12/17/2022]
Abstract
COPI (coat protein I) and the clathrin-AP-2 (adaptor protein 2) complex are well-characterized coat proteins, but a component that is common to these two coats has not been identified. The GTPase-activating protein (GAP) for ADP-ribosylation factor 1 (ARF1), ARFGAP1, is a known component of the COPI complex. Here, we show that distinct regions of ARFGAP1 interact with AP-2 and coatomer (components of the COPI complex). Selectively disrupting the interaction of ARFGAP1 with either of these two coat proteins leads to selective inhibition in the corresponding transport pathway. The role of ARFGAP1 in AP-2-regulated endocytosis has mechanistic parallels with its roles in COPI transport, as both its GAP activity and coat function contribute to promoting AP-2 transport.
Collapse
Affiliation(s)
- Ming Bai
- Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, and Department of Medicine, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
208
|
El azreq MA, Bourgoin SG. Cytohesin-1 regulates human blood neutrophil adhesion to endothelial cells through β2 integrin activation. Mol Immunol 2011; 48:1408-16. [PMID: 21511340 DOI: 10.1016/j.molimm.2011.03.018] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2010] [Revised: 03/21/2011] [Accepted: 03/22/2011] [Indexed: 12/23/2022]
Abstract
Cytohesin-1 is a guanine nucleotide exchange factor for ADP ribosylation factor 6 (Arf6) in human blood neutrophils and differentiated PLB-985 neutrophil-like cells. Cytohesin-1 regulates adhesion and the transendothelial migration of monocytes, dendritic cells and T lymphocytes through activation of the β2 integrin LFA-1. In this study we investigated the role of cytohesin-1 in neutrophil and neutrophil-like cell adhesion to HUVECs, immobilized ICAM-1, and the α4β1 and α5β1 integrin extracellular matrix ligand fibronectin. We show that cytohesin-1 knockdown or inhibition with secinH3 inhibits fMLF-mediated cell adhesion to HUVECs and immobilized ICAM-1, whereas cytohesin-1 over-expression has the opposing effect. Binding of PLB-985 cells to HUVECs correlated with expression of the high-affinity β2 integrin epitope recognized by mAb24. Adhesion to HUVECs was inhibited by soluble ICAM-1, anti-ICAM-1, anti-CD11a and anti-CD18, but not anti-CD11b, blocking antibodies. We also demonstrate that cytohesin-1 knockdown promotes fMLF-mediated cell adhesion to fibronectin whereas cytohesin-1 over-expression has the opposing effect. Crosstalk between β1 and β2 integrins also exists since inhibition of β1 integrin functions with blocking antibodies enhanced adhesion of PLB-985 over-expressing cytohesin-1 to ICAM-1. We suggest that cytohesin-1 is a key regulator of neutrophil adhesion to endothelial cells and to components of extracellular matrix, which may influence cell emigration through its dual opposing effect on β2 and β1 integrin activation.
Collapse
Affiliation(s)
- Mohammed-Amine El azreq
- Centre de Recherche en Rhumatologie et Immunologie, Centre de Recherche du CHUQ-CHUL, Québec, Canada
| | | |
Collapse
|
209
|
Paul P, van den Hoorn T, Jongsma MLM, Bakker MJ, Hengeveld R, Janssen L, Cresswell P, Egan DA, van Ham M, Ten Brinke A, Ovaa H, Beijersbergen RL, Kuijl C, Neefjes J. A Genome-wide multidimensional RNAi screen reveals pathways controlling MHC class II antigen presentation. Cell 2011; 145:268-83. [PMID: 21458045 DOI: 10.1016/j.cell.2011.03.023] [Citation(s) in RCA: 118] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2010] [Revised: 10/27/2010] [Accepted: 03/06/2011] [Indexed: 12/31/2022]
Abstract
MHC class II molecules (MHC-II) present peptides to T helper cells to facilitate immune responses and are strongly linked to autoimmune diseases. To unravel processes controlling MHC-II antigen presentation, we performed a genome-wide flow cytometry-based RNAi screen detecting MHC-II expression and peptide loading followed by additional high-throughput assays. All data sets were integrated to answer two fundamental questions: what regulates tissue-specific MHC-II transcription, and what controls MHC-II transport in dendritic cells? MHC-II transcription was controlled by nine regulators acting in feedback networks with higher-order control by signaling pathways, including TGFβ. MHC-II transport was controlled by the GTPase ARL14/ARF7, which recruits the motor myosin 1E via an effector protein ARF7EP. This complex controls movement of MHC-II vesicles along the actin cytoskeleton in human dendritic cells (DCs). These genome-wide systems analyses have thus identified factors and pathways controlling MHC-II transcription and transport, defining targets for manipulation of MHC-II antigen presentation in infection and autoimmunity.
Collapse
Affiliation(s)
- Petra Paul
- Division of Cell Biology and Centre for Biomedical Genetics, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
210
|
Merkulova M, Hurtado-Lorenzo A, Hosokawa H, Zhuang Z, Brown D, Ausiello DA, Marshansky V. Aldolase directly interacts with ARNO and modulates cell morphology and acidic vesicle distribution. Am J Physiol Cell Physiol 2011; 300:C1442-55. [PMID: 21307348 DOI: 10.1152/ajpcell.00076.2010] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Previously, we demonstrated that the vacuolar-type H(+)-ATPase (V-ATPase) a2-subunit functions as an endosomal pH sensor that interacts with the ADP-ribosylation factor (Arf) guanine nucleotide exchange factor, ARNO. In the present study, we showed that ARNO directly interacts not only with the a2-subunit but with all a-isoforms (a1-a4) of the V-ATPase, indicating a widespread regulatory interaction between V-ATPase and Arf GTPases. We then extended our search for other ARNO effectors that may modulate V-ATPase-dependent vesicular trafficking events and actin cytoskeleton remodeling. Pull-down experiments using cytosol of mouse proximal tubule cells (MTCs) showed that ARNO interacts with aldolase, but not with other enzymes of the glycolytic pathway. Direct interaction of aldolase with the pleckstrin homology domain of ARNO was revealed by pull-down assays using recombinant proteins, and surface plasmon resonance revealed their high avidity interaction with a dissociation constant: K(D) = 2.84 × 10(-10) M. MTC cell fractionation revealed that aldolase is also associated with membranes of early endosomes. Functionally, aldolase knockdown in HeLa cells produced striking morphological changes accompanied by long filamentous cell protrusions and acidic vesicle redistribution. However, the 50% knockdown we achieved did not modulate the acidification capacity of endosomal/lysosomal compartments. Finally, a combination of small interfering RNA knockdown and overexpression revealed that the expression of aldolase is inversely correlated with gelsolin levels in HeLa cells. In summary, we have shown that aldolase forms a complex with ARNO/Arf6 and the V-ATPase and that it may contribute to remodeling of the actin cytoskeleton and/or the trafficking and redistribution of V-ATPase-dependent acidic compartments via a combination of protein-protein interaction and gene expression mechanisms.
Collapse
Affiliation(s)
- Maria Merkulova
- Program in Membrane Biology and Nephrology Division, Center for Systems Biology, Simches Research Center, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA 02114, USA
| | | | | | | | | | | | | |
Collapse
|
211
|
Jayaram B, Syed I, Kyathanahalli CN, Rhodes CJ, Kowluru A. Arf nucleotide binding site opener [ARNO] promotes sequential activation of Arf6, Cdc42 and Rac1 and insulin secretion in INS 832/13 β-cells and rat islets. Biochem Pharmacol 2011; 81:1016-27. [PMID: 21276423 DOI: 10.1016/j.bcp.2011.01.006] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2010] [Revised: 01/07/2011] [Accepted: 01/12/2011] [Indexed: 12/21/2022]
Abstract
Glucose-stimulated insulin secretion [GSIS] involves interplay between small G-proteins and their regulatory factors. Herein, we tested the hypothesis that Arf nucleotide binding site opener [ARNO], a guanine nucleotide-exchange factor [GEF] for the small G-protein Arf6, mediates the functional activation of Arf6, and that ARNO/Arf6 signaling axis, in turn, controls the activation of Cdc42 and Rac1, which have been implicated in GSIS. Molecular biological [i.e., expression of inactive mutants or siRNA] and pharmacological approaches were employed to assess the roles for ARNO/Arf6 signaling pathway in insulin secretion in normal rat islets and INS 832/13 cells. Degrees of activation of Arf6 and Cdc42/Rac1 were quantitated by GST-GGA3 and PAK-1 kinase pull-down assays, respectively. ARNO is expressed in INS 832/13 cells, rat islets and human islets. Expression of inactive mutants of Arf6 [Arf6-T27N] or ARNO [ARNO-E156K] or siRNA-ARNO markedly reduced GSIS in isolated β-cells. SecinH3, a selective inhibitor of ARNO/Arf6 signaling axis, also inhibited GSIS in INS 832/13 cells and rat islets. Stimulatory concentrations of glucose promoted Arf6 activation, which was inhibited by secinH3 or siRNA-ARNO, suggesting that ARNO/Arf6 signaling cascade is necessary for GSIS. SecinH3 or siRNA-ARNO also inhibited glucose-induced activation of Cdc42 and Rac1 suggesting that ARNO/Arf6 might be upstream to Cdc42 and Rac1 activation steps, which are necessary for GSIS. Lastly, co-immunoprecipitation and confocal microscopic studies suggested increased association between Arf6 and ARNO in glucose-stimulated β-cells. These findings provide the first evidence to implicate ARNO in the sequential activation of Arf6, Cdc42 and Rac1 culminating in GSIS.
Collapse
Affiliation(s)
- Bhavaani Jayaram
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University and β-Cell Biochemistry Laboratory, John D. Dingell VA Medical Center, 259 Mack Avenue, Detroit, MI 48201, USA
| | | | | | | | | |
Collapse
|
212
|
El Azreq MA, Garceau V, Bourgoin SG. Cytohesin-1 regulates fMLF-mediated activation and functions of the β2 integrin Mac-1 in human neutrophils. J Leukoc Biol 2011; 89:823-36. [PMID: 21233413 DOI: 10.1189/jlb.0410222] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The nucleotide exchange factor cytohesin-1 was previously reported to interact with the cytoplasmic domains of the integrin β-chain common to all β(2) integrins such as LFA-1 and Mac-1. We show here that cytohesin-1, which contributes to fMLF-induced functional responses in PMNs through activation of Arf6, restrains the activation of the β(2) integrin Mac-1 (αMβ(2)) in PMNs or dcAMP-differentiated PLB-985 cells. We found that the cytohesin-1 inhibitor SecinH3 or siRNA increased cell adhesion to immobilized fibrinogen and fMLF-mediated conformational changes of Mac-1, monitored using mAb CBRM1/5, specific for the activation epitope of the αM subunit. In contrast, PLB-985 cells overexpressing cytohesin-1 showed little adhesion to fibrinogen. The use of SecinH3 and siRNA also revealed that interference with cytohesin-1 signaling also enhanced phagocytosis of zymosan particles and chemotaxis toward fMLF in transwell migration assays. These increments of phagocytosis and chemotaxis in cells treated with SecinH3 and cytohesin-1 siRNA were reversed by a blocking mAb to the integrin-αM subunit. We provide evidence for increased polymerized cortical actin in cells treated with SecinH3 and that altered signaling through cytohesin-1 increased cell surface expression of FPRL-1 and impairs the late calcium mobilization response elicited by fMLF. The data provide evidence that stimulation with fMLF initiates a signaling cascade that restrains Mac-1 activation in PMNs. Such crosstalk between FPRL-1 and Mac-1 involves cytohesin-1. We suggest that cytohesin-1 may coordinate activation of the β(2) integrins to regulate PMN adhesion, phagocytosis, and chemotaxis.
Collapse
Affiliation(s)
- Mohammed-Amine El Azreq
- Centre de Recherche en Rhumatologie et Immunologie, Centre de Recherche du CHUQ-CHUL, Faculté de Médecine, Université Laval, Québec, Canada
| | | | | |
Collapse
|
213
|
Wolters H, Anders N, Geldner N, Gavidia R, Jürgens G. Coordination of apical and basal embryo development revealed by tissue-specific GNOM functions. Development 2011; 138:117-26. [DOI: 10.1242/dev.059147] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Flowering-plant embryogenesis generates the basic body organization, including the apical and basal stem cell niches, i.e. shoot and root meristems, the major tissue layers and the cotyledon(s). gnom mutant embryos fail to initiate the root meristem at the early-globular stage and the cotyledon primordia at the late globular/transition stage. Tissue-specific GNOM expression in the gnom mutant embryo revealed that both apical and basal embryo organization depend on GNOM provascular expression and a functioning apical-basal auxin flux: GNOM provascular expression in gnom mutant background resulted in non-cell-autonomous reconstitution of apical and basal tissues which could be linked to changes in auxin responses in those tissues, stressing the importance of apical-basal auxin flow for overall embryo organization. Although reconstitution of apical-basal auxin flux in gnom results in the formation of single cotyledons (monocots), only additional GNOM epidermal expression is able to induce wild-type apical patterning. We conclude that provascular expression of GNOM is vital for both apical and basal tissue organization, and that epidermal GNOM expression is required for radial-to-bilateral symmetry transition of the embryo. We propose GNOM-dependent auxin sinks as a means to generate auxin gradients across tissues.
Collapse
Affiliation(s)
- Hanno Wolters
- ZMBP, Entwicklungsgenetik, Universität Tübingen, Auf der Morgenstelle 3, 72076 Tübingen, Germany
| | - Nadine Anders
- ZMBP, Entwicklungsgenetik, Universität Tübingen, Auf der Morgenstelle 3, 72076 Tübingen, Germany
| | - Niko Geldner
- ZMBP, Entwicklungsgenetik, Universität Tübingen, Auf der Morgenstelle 3, 72076 Tübingen, Germany
| | - Richard Gavidia
- ZMBP, Entwicklungsgenetik, Universität Tübingen, Auf der Morgenstelle 3, 72076 Tübingen, Germany
| | - Gerd Jürgens
- ZMBP, Entwicklungsgenetik, Universität Tübingen, Auf der Morgenstelle 3, 72076 Tübingen, Germany
| |
Collapse
|
214
|
Takashima K, Saitoh A, Hirose S, Nakai W, Kondo Y, Takasu Y, Kakeya H, Shin HW, Nakayama K. GBF1-Arf-COPI-ArfGAP-mediated Golgi-to-ER Transport Involved in Regulation of Lipid Homeostasis. Cell Struct Funct 2011; 36:223-35. [DOI: 10.1247/csf.11035] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Affiliation(s)
- Kouhei Takashima
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, Kyoto University
| | - Akina Saitoh
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, Kyoto University
| | - Shohei Hirose
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, Kyoto University
| | - Waka Nakai
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, Kyoto University
| | - Yumika Kondo
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, Kyoto University
| | - Yasuaki Takasu
- Department of System Chemotherapy and Molecular Sciences, Graduate School of Pharmaceutical Sciences, Kyoto University
| | - Hideaki Kakeya
- Department of System Chemotherapy and Molecular Sciences, Graduate School of Pharmaceutical Sciences, Kyoto University
| | - Hye-Won Shin
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, Kyoto University
- Career-Path Promotion Unit for Young Life Scientists, Kyoto University
| | - Kazuhisa Nakayama
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, Kyoto University
| |
Collapse
|
215
|
Belov GA, Kovtunovych G, Jackson CL, Ehrenfeld E. Poliovirus replication requires the N-terminus but not the catalytic Sec7 domain of ArfGEF GBF1. Cell Microbiol 2010; 12:1463-79. [PMID: 20497182 PMCID: PMC2945620 DOI: 10.1111/j.1462-5822.2010.01482.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Viruses are intracellular parasites whose reproduction relies on factors provided by the host. The cellular protein GBF1 is critical for poliovirus replication. Here we show that the contribution of GBF1 to virus replication is different from its known activities in uninfected cells. Normally GBF1 activates the ADP-ribosylation factor (Arf) GTPases necessary for formation of COPI transport vesicles. GBF1 function is modulated by p115 and Rab1b. However, in polio-infected cells, p115 is degraded and neither p115 nor Rab1b knock-down affects virus replication. Poliovirus infection is very sensitive to brefeldin A (BFA), an inhibitor of Arf activation by GBF1. BFA targets the catalytic Sec7 domain of GBF1. Nevertheless the BFA block of polio replication is rescued by expression of only the N-terminal region of GBF1 lacking the Sec7 domain. Replication of BFA-resistant poliovirus in the presence of BFA is uncoupled from Arf activation but is dependent on GBF1. Thus the function(s) of this protein essential for viral replication can be separated from those required for cellular metabolism.
Collapse
Affiliation(s)
- George A Belov
- National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892, USA
| | | | | | | |
Collapse
|
216
|
Cytohesins are cytoplasmic ErbB receptor activators. Cell 2010; 143:201-11. [PMID: 20946980 DOI: 10.1016/j.cell.2010.09.011] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2010] [Revised: 07/13/2010] [Accepted: 08/10/2010] [Indexed: 11/24/2022]
Abstract
Signaling by ErbB receptors requires the activation of their cytoplasmic kinase domains, which is initiated by ligand binding to the receptor ectodomains. Cytoplasmic factors contributing to the activation are unknown. Here we identify members of the cytohesin protein family as such factors. Cytohesin inhibition decreased ErbB receptor autophosphorylation and signaling, whereas cytohesin overexpression stimulated receptor activation. Monitoring epidermal growth factor receptor (EGFR) conformation by anisotropy microscopy together with cell-free reconstitution of cytohesin-dependent receptor autophosphorylation indicate that cytohesins facilitate conformational rearrangements in the intracellular domains of dimerized receptors. Consistent with cytohesins playing a prominent role in ErbB receptor signaling, we found that cytohesin overexpression correlated with EGF signaling pathway activation in human lung adenocarcinomas. Chemical inhibition of cytohesins resulted in reduced proliferation of EGFR-dependent lung cancer cells in vitro and in vivo. Our results establish cytohesins as cytoplasmic conformational activators of ErbB receptors that are of pathophysiological relevance.
Collapse
|
217
|
Anitei M, Wassmer T, Stange C, Hoflack B. Bidirectional transport between the trans-Golgi network and the endosomal system. Mol Membr Biol 2010; 27:443-56. [DOI: 10.3109/09687688.2010.522601] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
218
|
Kartberg F, Asp L, Dejgaard SY, Smedh M, Fernandez-Rodriguez J, Nilsson T, Presley JF. ARFGAP2 and ARFGAP3 are essential for COPI coat assembly on the Golgi membrane of living cells. J Biol Chem 2010; 285:36709-20. [PMID: 20858901 DOI: 10.1074/jbc.m110.180380] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Coat protein complex I (COPI) vesicles play a central role in the recycling of proteins in the early secretory pathway and transport of proteins within the Golgi stack. Vesicle formation is initiated by the exchange of GDP for GTP on ARF1 (ADP-ribosylation factor 1), which, in turn, recruits the coat protein coatomer to the membrane for selection of cargo and membrane deformation. ARFGAP1 (ARF1 GTPase-activating protein 1) regulates the dynamic cycling of ARF1 on the membrane that results in both cargo concentration and uncoating for the generation of a fusion-competent vesicle. Two human orthologues of the yeast ARFGAP Glo3p, termed ARFGAP2 and ARFGAP3, have been demonstrated to be present on COPI vesicles generated in vitro in the presence of guanosine 5'-3-O-(thio)triphosphate. Here, we investigate the function of these two proteins in living cells and compare it with that of ARFGAP1. We find that ARFGAP2 and ARFGAP3 follow the dynamic behavior of coatomer upon stimulation of vesicle budding in vivo more closely than does ARFGAP1. Electron microscopy of ARFGAP2 and ARFGAP3 knockdowns indicated Golgi unstacking and cisternal shortening similarly to conditions where vesicle uncoating was blocked. Furthermore, the knockdown of both ARFGAP2 and ARFGAP3 prevents proper assembly of the COPI coat lattice for which ARFGAP1 does not seem to play a major role. This suggests that ARFGAP2 and ARFGAP3 are key components of the COPI coat lattice and are necessary for proper vesicle formation.
Collapse
Affiliation(s)
- Fredrik Kartberg
- Department of Medical and Clinical Genetics, Institute of Biomedicine, University of Gothenburg, 405 30 Göteborg, Sweden
| | | | | | | | | | | | | |
Collapse
|
219
|
Chen KY, Tsai PC, Hsu JW, Hsu HC, Fang CY, Chang LC, Tsai YT, Yu CJ, Lee FJS. Syt1p promotes activation of Arl1p at the late Golgi to recruit Imh1p. J Cell Sci 2010; 123:3478-89. [PMID: 20841378 DOI: 10.1242/jcs.074237] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In yeast, Arl3p recruits Arl1p GTPase to regulate Golgi function and structure. However, the molecular mechanism involved in regulating activation of Arl1p at the Golgi is unknown. Here, we show that Syt1p promoted activation of Arl1p and recruitment of a golgin protein, Imh1p, to the Golgi. Deletion of SYT1 resulted in the majority of Arl1p being distributed diffusely throughout the cytosol. Overexpression of Syt1p increased Arl1p-GTP production in vivo and the Syt1-Sec7 domain promoted nucleotide exchange on Arl1p in vitro. Syt1p function required the N-terminal region, Sec7 and PH domains. Arl1p, but not Arl3p, interacted with Syt1p. Localization of Syt1p to the Golgi did not require Arl3p. Unlike arl1Δ or arl3Δ mutants, syt1Δ did not show defects in Gas1p transport, cell wall integrity or vacuolar structure. These findings reveal that activation of Arl1p is regulated in part by Syt1p, and imply that Arl1p activation, by using more than one GEF, exerts distinct biological activities at the Golgi compartment.
Collapse
Affiliation(s)
- Kuan-Yu Chen
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, and Department of Medical Research, National Taiwan University Hospital, Taipei 100, Taiwan
| | | | | | | | | | | | | | | | | |
Collapse
|
220
|
Interaction between Sec7p and Pik1p: The first clue for the regulation of a coincidence detection signal. Eur J Cell Biol 2010; 89:575-83. [DOI: 10.1016/j.ejcb.2010.02.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2009] [Revised: 02/10/2010] [Accepted: 02/16/2010] [Indexed: 11/19/2022] Open
|
221
|
Liu Y, Kahn RA, Prestegard JH. Dynamic structure of membrane-anchored Arf*GTP. Nat Struct Mol Biol 2010; 17:876-81. [PMID: 20601958 PMCID: PMC2921649 DOI: 10.1038/nsmb.1853] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2010] [Accepted: 04/13/2010] [Indexed: 11/11/2022]
Abstract
Arfs (ADP ribosylation factors) are N-myristoylated GTP/GDP switch proteins playing key regulatory roles in vesicle transport in eukaryotic cells. ARFs execute their roles by anchoring to membrane surfaces where they interact with other proteins to initiate budding and maturation of transport vesicles. However, existing structures of Arf•GTP are limited to non-myristoylated and truncated forms with impaired membrane binding. We report a high resolution NMR structure for full-length myristoylated yeast (Saccharomyces cerevisiae) Arf1 in complex with a membrane mimic. The two domain structure, in which the myristoylated N-terminal helix is separated from the C-terminal domain by a flexible linker, suggests a level of adaptability in binding modes for the myriad of proteins with which Arf interacts, and allows predictions of specific lipid binding sites on some of these proteins.
Collapse
Affiliation(s)
- Yizhou Liu
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
| | | | | |
Collapse
|
222
|
Someya A, Moss J, Nagaoka I. The guanine nucleotide exchange protein for ADP-ribosylation factor 6, ARF-GEP100/BRAG2, regulates phagocytosis of monocytic phagocytes in an ARF6-dependent process. J Biol Chem 2010; 285:30698-707. [PMID: 20601426 DOI: 10.1074/jbc.m110.107458] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Phagocytosis is a complex multistep process requiring diverse signaling and regulatory molecules. ADP-ribosylation factor 6 (ARF6), a small GTPase, is known to regulate membrane trafficking and the actin cytoskeketon at the plasma membrane and functions as a regulatory molecule of phagocytosis. ARF activity is regulated by cycling between GDP-bound and GTP-bound forms. ARF activation is catalyzed by guanine nucleotide exchange factors (GEFs) that facilitate GTP binding. We had earlier reported a 100-kDa ARF-GEF, termed ARF-guanine nucleotide exchange protein 100, GEP100, that preferentially activates ARF6 and was also described by Dunphy et al. (Dunphy, J. L., Moravec, R., Ly, K., Lasell, T. K., Melancon, P., and Casanova, J. E. (2006) Curr. Biol. 16, 315-320) as brefeldin A-resistant ARF-GEF2 (BRAG2). We have now examined a role for GEP100 in phagocytosis. Stable depletion of GEP100 decreased phagocytosis of serum-treated zymosan and IgG-coated latex beads by human monocyte-macrophage-like U937 cells differentiated with phorbol 12-myristate 13-acetate. Decrease of phagocytic activity by RNAi was not rescued by GEP100ΔSec7, a deletion mutant lacking the ARF-activating domain. GEP100-depleted cells also exhibited reduced F-actin fibers around internalized particles. Attachment of these particles to cells and amounts of C3bi and Fcγ receptors, however, were not affected by GEP100 depletion. On immunofluorescence microscopy, GEP100 and ARF6 were concentrated and partially colocalized around internalized particles. Phagocytosis by GEP100-depleted cells was not further affected by depletion of ARF6. Phagocytic activity of GEP100-depleted cells was, however, rescued by expression of the constitutively active ARF6Q67N mutant but not by the dominant-negative ARF6T27N mutant. These data are consistent with the conclusion that GEP100 functions in phagocytosis via its role in ARF6-dependent actin remodeling.
Collapse
Affiliation(s)
- Akimasa Someya
- Department of Host Defense and Biochemical Research, Juntendo University, School of Medicine, Tokyo 113-8421, Japan.
| | | | | |
Collapse
|
223
|
Torii T, Miyamoto Y, Sanbe A, Nishimura K, Yamauchi J, Tanoue A. Cytohesin-2/ARNO, through its interaction with focal adhesion adaptor protein paxillin, regulates preadipocyte migration via the downstream activation of Arf6. J Biol Chem 2010; 285:24270-81. [PMID: 20525696 DOI: 10.1074/jbc.m110.125658] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The formation of primitive adipose tissue is the initial process in adipose tissue development followed by the migration of preadipocytes into adipocyte clusters. Comparatively little is known about the molecular mechanism controlling preadipocyte migration. Here, we show that cytohesin-2, the guanine-nucleotide exchange factor for the Arf family GTP-binding proteins, regulates migration of mouse preadipocyte 3T3-L1 cells through Arf6. SecinH3, a specific inhibitor of the cytohesin family, markedly inhibits migration of 3T3-L1 cells. 3T3-L1 cells express cytohesin-2 and cytohesin-3, and knockdown of cytohesin-2 with its small interfering RNA effectively decreases cell migration. Cytohesin-2 preferentially acts upstream of Arf6 in this signaling pathway. Furthermore, we find that the focal adhesion protein paxillin forms a complex with cytohesin-2. Paxillin colocalizes with cytohesin-2 at the leading edges of migrating cells. This interaction is mediated by the LIM2 domain of paxillin and the isolated polybasic region of cytohesin-2. Importantly, migration is inhibited by expression of the constructs containing these regions. These results suggest that cytohesin-2, through a previously unexplored complex formation with paxillin, regulates preadipocyte migration and that paxillin plays a previously unknown role as a scaffold protein of Arf guanine-nucleotide exchange factor.
Collapse
Affiliation(s)
- Tomohiro Torii
- Department of Pharmacology, National Research Institute for Child Health and Development, Setagaya, Okura, Tokyo 157-8535, Japan
| | | | | | | | | | | |
Collapse
|
224
|
Cameron CE, Oh HS, Moustafa IM. Expanding knowledge of P3 proteins in the poliovirus lifecycle. Future Microbiol 2010; 5:867-81. [PMID: 20521933 PMCID: PMC2904470 DOI: 10.2217/fmb.10.40] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Poliovirus is the most extensively studied member of the order Picornavirales, which contains numerous medical, veterinary and agricultural pathogens. The picornavirus genome encodes a single polyprotein that is divided into three regions: P1, P2 and P3. P3 proteins are known to participate more directly in genome replication, for example by containing the viral RNA-dependent RNA polymerase (RdRp or 3Dpol), among several other proteins and enzymes. We will review recent data that provide new insight into the structure, function and mechanism of P3 proteins and their complexes, which are required for initiation of genome replication. Replication of poliovirus genomes occurs within macromolecular complexes, containing viral RNA, viral proteins and host-cell membranes, collectively referred to as replication complexes. P2 proteins clearly contribute to interactions with the host cell that are required for virus multiplication, including formation of replication complexes. We will discuss recent data that suggest a role for P3 proteins in formation of replication complexes. Among the least understood steps of the poliovirus lifecycle is encapsidation of genomic RNA. We will also describe data that suggest a role for P3 proteins in this step.
Collapse
Affiliation(s)
- Craig E Cameron
- Department of Biochemistry & Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA.
| | | | | |
Collapse
|
225
|
Shoubridge C, Tarpey PS, Abidi F, Ramsden SL, Rujirabanjerd S, Murphy JA, Boyle J, Shaw M, Gardner A, Proos A, Puusepp H, Raymond FL, Schwartz CE, Stevenson RE, Turner G, Field M, Walikonis RS, Harvey RJ, Hackett A, Futreal PA, Stratton MR, Gécz J. Mutations in the guanine nucleotide exchange factor gene IQSEC2 cause nonsyndromic intellectual disability. Nat Genet 2010; 42:486-8. [PMID: 20473311 PMCID: PMC3632837 DOI: 10.1038/ng.588] [Citation(s) in RCA: 120] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2009] [Accepted: 04/07/2010] [Indexed: 12/15/2022]
Abstract
The first family identified as having a nonsyndromic intellectual disability was mapped in 1988. Here we show that a mutation of IQSEC2, encoding a guanine nucleotide exchange factor for the ADP-ribosylation factor family of small GTPases, caused this disorder. In addition to MRX1, IQSEC2 mutations were identified in three other families with X-linked intellectual disability. This discovery was made possible by systematic and unbiased X chromosome exome resequencing.
Collapse
Affiliation(s)
- Cheryl Shoubridge
- Genetics and Molecular Pathology, SA Pathology, Adelaide, Australia.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
226
|
van der Vaart A, Griffith J, Reggiori F. Exit from the Golgi is required for the expansion of the autophagosomal phagophore in yeast Saccharomyces cerevisiae. Mol Biol Cell 2010; 6:800-1. [PMID: 20444982 PMCID: PMC2893990 DOI: 10.1091/mbc.e09-04-0345] [Citation(s) in RCA: 159] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The delivery of proteins and organelles to the vacuole by autophagy involves membrane rearrangements that result in the formation of autophagosomes. We have investigated the role of the Golgi in autophagy and found that, in yeast, this organelle plays a crucial role in supplying lipid bilayers necessary for autophagosome biogenesis. The delivery of proteins and organelles to the vacuole by autophagy involves membrane rearrangements that result in the formation of large vesicles called autophagosomes. The mechanism underlying autophagosome biogenesis and the origin of the membranes composing these vesicles remains largely unclear. We have investigated the role of the Golgi complex in autophagy and have determined that in yeast, activation of ADP-ribosylation factor (Arf)1 and Arf2 GTPases by Sec7, Gea1, and Gea2 is essential for this catabolic process. The two main events catalyzed by these components, the biogenesis of COPI- and clathrin-coated vesicles, do not play a critical role in autophagy. Analysis of the sec7 strain under starvation conditions revealed that the autophagy machinery is correctly assembled and the precursor membrane cisterna of autophagosomes, the phagophore, is normally formed. However, the expansion of the phagophore into an autophagosome is severely impaired. Our data show that the Golgi complex plays a crucial role in supplying the lipid bilayers necessary for the biogenesis of double-membrane vesicles possibly through a new class of transport carriers or a new mechanism.
Collapse
Affiliation(s)
- Aniek van der Vaart
- Department of Cell Biology and Institute of Biomembranes, University Medical Center Utrecht, Utrecht 3584, The Netherlands
| | | | | |
Collapse
|
227
|
Phosphorylation and membrane dissociation of the ARF exchange factor GBF1 in mitosis. Biochem J 2010; 427:401-12. [PMID: 20175751 DOI: 10.1042/bj20091681] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Secretory protein trafficking is arrested and the Golgi apparatus fragmented when mammalian cells enter mitosis. These changes are thought to facilitate cell-cycle progression and Golgi inheritance, and are brought about through the actions of mitotically active protein kinases. To better understand how the Golgi apparatus undergoes mitotic fragmentation we have sought to identify novel Golgi targets for mitotic kinases. We report in the present paper the identification of the ARF (ADP-ribosylation factor) exchange factor GBF1 (Golgi-specific brefeldin A-resistant guanine nucleotide-exchange factor 1) as a Golgi phosphoprotein. GBF1 is phosphorylated by CDK1 (cyclin-dependent kinase 1)-cyclin B in mitosis, which results in its dissociation from Golgi membranes. Consistent with a reduced level of GBF1 activity at the Golgi membrane there is a reduction in levels of membrane-associated GTP-bound ARF in mitotic cells. Despite the reduced levels of membrane-bound GBF1 and ARF, COPI (coat protein I) binding to the Golgi membrane appears unaffected in mitotic cells. Surprisingly, this pool of COPI is dependent upon GBF1 for its recruitment to the membrane, suggesting that a low level of GBF1 activity persists in mitosis. We propose that the phosphorylation and membrane dissociation of GBF1 and the consequent reduction in ARF-GTP levels in mitosis are important for changes in Golgi dynamics and possibly other mitotic events mediated through effectors other than the COPI vesicle coat.
Collapse
|
228
|
Semaphorin 3E initiates antiangiogenic signaling through plexin D1 by regulating Arf6 and R-Ras. Mol Cell Biol 2010; 30:3086-98. [PMID: 20385769 DOI: 10.1128/mcb.01652-09] [Citation(s) in RCA: 124] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Recent studies revealed that a class III semaphorin, semaphorin 3E (Sema3E), acts through a single-pass transmembrane receptor, plexin D1, to provide a repulsive cue for plexin D1-expressing endothelial cells, thus providing a highly conserved and developmentally regulated signaling system guiding the growth of blood vessels. We show here that Sema3E acts as a potent inhibitor of adult and tumor-induced angiogenesis. Activation of plexin D1 by Sema3E causes the rapid disassembly of integrin-mediated adhesive structures, thereby inhibiting endothelial cell adhesion to the extracellular matrix (ECM) and causing the retraction of filopodia in endothelial tip cells. Sema3E acts on plexin D1 to initiate a two-pronged mechanism involving R-Ras inactivation and Arf6 stimulation, which affect the status of activation of integrins and their intracellular trafficking, respectively. Ultimately, our present study provides a molecular framework for antiangiogenesis signaling, thus impinging on a myriad of pathological conditions that are characterized by aberrant increase in neovessel formation, including cancer.
Collapse
|
229
|
Boal F, Stephens DJ. Specific functions of BIG1 and BIG2 in endomembrane organization. PLoS One 2010; 5:e9898. [PMID: 20360857 PMCID: PMC2845624 DOI: 10.1371/journal.pone.0009898] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2010] [Accepted: 03/04/2010] [Indexed: 11/29/2022] Open
Abstract
Background Transport of molecules from one subcellular compartment to another involves the recruitment of cytosolic coat protein complexes to a donor membrane to concentrate cargo, deform the membrane and ultimately to form an independent carrier. Small-GTP-binding proteins of the Arf family are central to many membrane trafficking events. Arfs are activated by guanine nucleotide exchange factors (GEFs) which results in their recruitment to membranes and subsequent engagement with Arf-effectors, many of which are coat proteins. Among the human BFA-sensitive large Arf-GEFs, the function of the two closely related BIG1 and BIG2 is still not clear, and recent studies have raised the question of functional redundancy between the two proteins. Methodology/Principal Findings Here we have used small-interfering RNA on human cells and a combination of fixed and live-cell imaging to investigate the differential functions of BIG1 and BIG2 in endomembrane organization and function. Importantly, in this direct comparative study, we show discrete functions for BIG1 and BIG2. Our results show that depletion of BIG2 but not of BIG1 induces a tubulation of the recycling endosomal compartment, consistent with a specific role for BIG2 here. In contrast, suppression of BIG1 induces the formation of Golgi mini-stacks still polarized and functional in terms of cargo export. Conclusions A key finding from our work is that suppression of BIG1 expression results in a fragmentation of the Golgi apparatus. Our data indicate that the human BFA-sensitive large Arf-GEFs have non-redundant functions in cell organization and membrane trafficking. BIG1 is required to maintain the normal morphology of the Golgi; BIG2 is important for endosomal compartment integrity and cannot replace the function of BIG1 in Golgi organization.
Collapse
Affiliation(s)
- Frédéric Boal
- Department of Biochemistry, Cell Biology Laboratories, University of Bristol School of Medical Sciences, Bristol, United Kingdom.
| | | |
Collapse
|
230
|
Oh SJ, Santy LC. Differential effects of cytohesins 2 and 3 on beta1 integrin recycling. J Biol Chem 2010; 285:14610-6. [PMID: 20223830 DOI: 10.1074/jbc.m109.043935] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
ADP-ribosylation actor 6 (ARF6) regulates the endocytosis and recycling of a variety of proteins and also promotes peripheral actin rearrangements and cell motility. ARF6 is activated by a large number of guanine nucleotide exchange factors, which likely regulate ARF6 at different locations and during different processes. In this study we investigate the roles of the cytohesin ADP-ribosylation factor (ARF)-guanine nucleotide exchange factors during the recycling of integrin beta1. Intriguingly, we find that knockdown and overexpression of ARNO/cytohesin 2 and GRP1/cytohesin 3 have opposing effects on cell adhesion and spreading on fibronectin and on cell migration. We find that ARNO/cytohesin 2 is required for integrin beta1 recycling, whereas GRP1/cytohesin 3 is dispensable for this process. This is the first demonstration of unique roles for these proteins.
Collapse
Affiliation(s)
- Seung Ja Oh
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | | |
Collapse
|
231
|
Abstract
The small GTP-binding protein Arf6 is known to be an important regulator of the actin cytoskeleton and of cell motility associated with metastasis. A recent study identifies yet another role for Arf6 in metastasis - as a regulator of plasma-membrane-derived microvesicle release.
Collapse
Affiliation(s)
- Richard T Premont
- Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA.
| | | |
Collapse
|
232
|
Jian X, Cavenagh M, Gruschus JM, Randazzo PA, Kahn RA. Modifications to the C-terminus of Arf1 alter cell functions and protein interactions. Traffic 2010; 11:732-42. [PMID: 20214751 DOI: 10.1111/j.1600-0854.2010.01054.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Arf family proteins are approximately 21-kDa GTP-binding proteins that are critical regulators of membrane traffic and the actin cytoskeleton. Studies examining the complex signaling pathways underlying Arf action have relied on recombinant proteins comprised of Arf fused to epitope tags or proteins, such as glutathione S-transferase or green fluorescent protein, for both cell-based mammalian cell studies and bacterially expressed recombinant proteins for biochemical assays. However, the effects of such protein fusions on the biochemical properties relevant to the cellular function have been only incompletely studied at best. Here, we have characterized the effect of C-terminal tagging of Arf1 on (i) function in Saccharomyces cerevisiae, (ii) in vitro nucleotide exchange and (iii) interaction with guanine nucleotide exchange factors and GTPase-activating proteins. We found that the tagged Arfs were substantially impaired or altered in each assay, compared with the wild-type protein, and these changes are certain to alter actions in cells. We discuss the results related to the interpretation of experiments using these reagents and we propose that authors and editors consistently adopt a few simple rules for describing and discussing results obtained with Arf family members that can be readily applied to other proteins.
Collapse
Affiliation(s)
- Xiaoying Jian
- Laboratory of Cellular and Molecular Biology, National Cancer Institute, Bldg 37 Room 2042, Bethesda, MD 20892, USA
| | | | | | | | | |
Collapse
|
233
|
Shina MC, Müller R, Blau-Wasser R, Glöckner G, Schleicher M, Eichinger L, Noegel AA, Kolanus W. A cytohesin homolog in Dictyostelium amoebae. PLoS One 2010; 5:e9378. [PMID: 20186335 PMCID: PMC2826412 DOI: 10.1371/journal.pone.0009378] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2009] [Accepted: 02/02/2010] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND Dictyostelium, an amoeboid motile cell, harbors several paralogous Sec7 genes that encode members of three distinct subfamilies of the Sec7 superfamily of Guanine nucleotide exchange factors. Among them are proteins of the GBF/BIG family present in all eukaryotes. The third subfamily represented with three members in D. discoideum is the cytohesin family that has been thought to be metazoan specific. Cytohesins are characterized by a Sec7 PH tandem domain and have roles in cell adhesion and migration. PRINCIPAL FINDINGS Dictyostelium SecG exhibits highest homologies to the cytohesins. It harbors at its amino terminus several ankyrin repeats that are followed by the Sec7 PH tandem domain. Mutants lacking SecG show reduced cell-substratum adhesion whereas cell-cell adhesion that is important for development is not affected. Accordingly, multicellular development proceeds normally in the mutant. During chemotaxis secG(-) cells elongate and migrate in a directed fashion towards cAMP, however speed is moderately reduced. SIGNIFICANCE The data indicate that SecG is a relevant factor for cell-substrate adhesion and reveal the basic function of a cytohesin in a lower eukaryote.
Collapse
Affiliation(s)
- Maria Christina Shina
- Center for Biochemistry, Medical Faculty, Center for Molecular Medicine Cologne (CMMC) and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Köln, Germany
| | - Rolf Müller
- Center for Biochemistry, Medical Faculty, Center for Molecular Medicine Cologne (CMMC) and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Köln, Germany
| | - Rosemarie Blau-Wasser
- Center for Biochemistry, Medical Faculty, Center for Molecular Medicine Cologne (CMMC) and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Köln, Germany
| | - Gernot Glöckner
- Center for Biochemistry, Medical Faculty, Center for Molecular Medicine Cologne (CMMC) and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Köln, Germany
- Leibniz Institute for Age Research - Fritz-Lipmann-Institute e.V., Jena, Germany
| | - Michael Schleicher
- Institute of Anatomy and Cell Biology and Center for Integrated Protein Science (CIPSM), Ludwig-Maximilians-University, Muenchen, Germany
| | - Ludwig Eichinger
- Center for Biochemistry, Medical Faculty, Center for Molecular Medicine Cologne (CMMC) and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Köln, Germany
| | - Angelika A. Noegel
- Center for Biochemistry, Medical Faculty, Center for Molecular Medicine Cologne (CMMC) and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Köln, Germany
- * E-mail: (AAN); (WK)
| | - Waldemar Kolanus
- Laboratory of Molecular Immunology, LIMES Institute of the University of Bonn, Bonn, Germany
- * E-mail: (AAN); (WK)
| |
Collapse
|
234
|
A computational study of a recreated G protein-GEF reaction intermediate competent for nucleotide exchange: fate of the Mg ion. PLoS One 2010; 5:e9142. [PMID: 20174625 PMCID: PMC2823772 DOI: 10.1371/journal.pone.0009142] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2009] [Accepted: 01/10/2010] [Indexed: 12/03/2022] Open
Abstract
Small G-proteins of the superfamily Ras function as molecular switches, interacting with different cellular partners according to their activation state. G-protein activation involves the dissociation of bound GDP and its replacement by GTP, in an exchange reaction that is accelerated and regulated in the cell by guanine-nucleotide exchange factors (GEFs). Large conformational changes accompany the exchange reaction, and our understanding of the mechanism is correspondingly incomplete. However, much knowledge has been derived from structural studies of blocked or inactive mutant GEFs, which presumably closely represent intermediates in the exchange reaction and yet which are by design incompetent for carrying out the nucleotide exchange reaction. In this study we have used comparative modelling to recreate an exchange-competent form of a late, pre-GDP-ejection intermediate species in Arf1, a well-characterized small G-protein. We extensively characterized three distinct models of this intermediate using molecular dynamics simulations, allowing us to address ambiguities related to the mutant structural studies. We observed in particular the unfavorable nature of Mg associated forms of the complex and the establishment of closer Arf1-GEF contacts in its absence. The results of this study shed light on GEF-mediated activation of this small G protein and on predicting the fate of the Mg ion at a critical point in the exchange reaction. The structural models themselves furnish additional targets for interfacial inhibitor design, a promising direction for exploring potentially druggable targets with high biological specificity.
Collapse
|
235
|
Merkulova M, Bakulina A, Thaker YR, Grüber G, Marshansky V. Specific motifs of the V-ATPase a2-subunit isoform interact with catalytic and regulatory domains of ARNO. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2010; 1797:1398-409. [PMID: 20153292 DOI: 10.1016/j.bbabio.2010.02.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2009] [Revised: 01/11/2010] [Accepted: 02/08/2010] [Indexed: 11/19/2022]
Abstract
We have previously shown that the V-ATPase a2-subunit isoform interacts specifically, and in an intra-endosomal acidification-dependent manner, with the Arf-GEF ARNO. In the present study, we examined the molecular mechanism of this interaction using synthetic peptides and purified recombinant proteins in protein-association assays. In these experiments, we revealed the involvement of multiple sites on the N-terminus of the V-ATPase a2-subunit (a2N) in the association with ARNO. While six a2N-derived peptides interact with wild-type ARNO, only two of them (named a2N-01 and a2N-03) bind to its catalytic Sec7-domain. However, of these, only the a2N-01 peptide (MGSLFRSESMCLAQLFL) showed specificity towards the Sec7-domain compared to other domains of the ARNO protein. Surface plasmon resonance kinetic analysis revealed a very strong binding affinity between this a2N-01 peptide and the Sec7-domain of ARNO, with dissociation constant KD=3.44x10(-7) M, similar to the KD=3.13x10(-7) M binding affinity between wild-type a2N and the full-length ARNO protein. In further pull-down experiments, we also revealed the involvement of multiple sites on ARNO itself in the association with a2N. However, while its catalytic Sec7-domain has the strongest interaction, the PH-, and PB-domains show much weaker binding to a2N. Interestingly, an interaction of the a2N to a peptide corresponding to ARNO's PB-domain was abolished by phosphorylation of ARNO residue Ser392. The 3D-structures of the non-phosphorylated and phosphorylated peptides were resolved by NMR spectroscopy, and we have identified rearrangements resulting from Ser392 phosphorylation. Homology modeling suggests that these alterations may modulate the access of the a2N to its interaction pocket on ARNO that is formed by the Sec7 and PB-domains. Overall, our data indicate that the interaction between the a2-subunit of V-ATPase and ARNO is a complex process involving various binding sites on both proteins. Importantly, the binding affinity between the a2-subunit and ARNO is in the same range as those previously reported for the intramolecular association of subunits within V-ATPase complex itself, indicating an important cell biological role for the interaction between the V-ATPase and small GTPase regulatory proteins.
Collapse
Affiliation(s)
- Maria Merkulova
- Center for Systems Biology, Program in Membrane Biology and Division of Nephrology, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | | | | | | | | |
Collapse
|
236
|
Boulay PL, Claing A. [ARF proteins: molecular switches controlling tumour proliferation and metastasis]. Med Sci (Paris) 2010; 25:783-5. [PMID: 19849973 DOI: 10.1051/medsci/20092510783] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Pierre-Luc Boulay
- Université de Montréal, Département de pharmacologie, CP 6128, Succursale Centre-ville, Montréal (Québec), H3C 3J7 Canada
| | | |
Collapse
|
237
|
Someya A, Nagaoka I. Role of ARF-GEP100, a guanine nucleotide-exchange protein for ADP-ribosylation factor in macrophage phagocytosis. Inflamm Regen 2010. [DOI: 10.2492/inflammregen.30.48] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
238
|
Benke D. Mechanisms of GABAB receptor exocytosis, endocytosis, and degradation. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2010; 58:93-111. [PMID: 20655479 DOI: 10.1016/s1054-3589(10)58004-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
GABA(B) receptors belong to the family of G-protein-coupled receptors, which mediate slow inhibitory neurotransmission in the central nervous system. They are promising drug targets for a variety of neurological disorders and play important functions in regulating synaptic plasticity. Signaling strength is critically dependent on the availability of the receptors at the cell surface. Several distinct highly regulated trafficking mechanisms ensure the presence of adequate receptor numbers in the plasma membrane. The rate of exocytosis of newly synthesized receptors from the endoplasmic reticulum via the Golgi apparatus to the cell surface as well as the rates of their endocytosis and degradation determines the retention time of receptors at the cell surface. This chapter focuses on the recently emerged mechanisms of GABA(B) receptor exocytosis, endocytosis, recycling, and degradation.
Collapse
Affiliation(s)
- Dietmar Benke
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
239
|
Richter S, Anders N, Wolters H, Beckmann H, Thomann A, Heinrich R, Schrader J, Singh MK, Geldner N, Mayer U, Jürgens G. Role of the GNOM gene in Arabidopsis apical-basal patterning--From mutant phenotype to cellular mechanism of protein action. Eur J Cell Biol 2009; 89:138-44. [PMID: 20036441 DOI: 10.1016/j.ejcb.2009.11.020] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
How the apical-basal axis of polarity is established in embryogenesis is still a mystery in plant development. This axis appeared specifically compromised by mutations in the Arabidopsis GNOM gene. Surprisingly, GNOM encodes an ARF guanine-nucleotide exchange factor (ARF-GEF) that regulates the formation of vesicles in membrane trafficking. In-depth functional analysis of GNOM and its closest relative, GNOM-LIKE 1 (GNL1), has provided a mechanistic explanation for the development-specific role of a seemingly mundane trafficking regulator. The current model proposes that GNOM is specifically involved in the endosomal recycling of the auxin-efflux carrier PIN1 to the basal plasma membrane in provascular cells, which in turn is required for the accumulation of the plant hormone auxin at the future root pole through polar auxin transport. Thus, the analysis of GNOM highlights the importance of cell-biological processes for a mechanistic understanding of development.
Collapse
Affiliation(s)
- Sandra Richter
- Center for Plant Molecular Biology - Developmental Genetics, University of Tübingen, Auf der Morgenstelle 3, D-72076 Tübingen, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
240
|
FRMD4A regulates epithelial polarity by connecting Arf6 activation with the PAR complex. Proc Natl Acad Sci U S A 2009; 107:748-53. [PMID: 20080746 DOI: 10.1073/pnas.0908423107] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The Par-3/Par-6/aPKC/Cdc42 complex regulates the conversion of primordial adherens junctions (AJs) into belt-like AJs and the formation of linear actin cables during epithelial polarization. However, the mechanisms by which this complex functions are not well elucidated. In the present study, we found that activation of Arf6 is spatiotemporally regulated as a downstream signaling pathway of the Par protein complex. When primordial AJs are formed, Par-3 recruits a scaffolding protein, termed the FERM domain containing 4A (FRMD4A). FRMD4A connects Par-3 and the Arf6 guanine-nucleotide exchange factor (GEF), cytohesin-1. We propose that the Par-3/FRMD4A/cytohesin-1 complex ensures accurate activation of Arf6, a central player in actin cytoskeleton dynamics and membrane trafficking, during junctional remodeling and epithelial polarization.
Collapse
|
241
|
White DT, McShea KM, Attar MA, Santy LC. GRASP and IPCEF promote ARF-to-Rac signaling and cell migration by coordinating the association of ARNO/cytohesin 2 with Dock180. Mol Biol Cell 2009; 21:562-71. [PMID: 20016009 PMCID: PMC2820421 DOI: 10.1091/mbc.e09-03-0217] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The ARF-GEF ARNO promotes motility by activating ARF6 and a subsequent downstream activation of Rac. ARNO is shown to associate with the Rac GEF Dock180 via its coiled-coil domain. Knockdown of scaffold proteins that bind ARNO disrupts the formation of this complex and disrupts ARF-to-Rac signaling. ARFs are small GTPases that regulate vesicular trafficking, cell shape, and movement. ARFs are subject to extensive regulation by a large number of accessory proteins. The many different accessory proteins are likely specialized to regulate ARF signaling during particular processes. ARNO/cytohesin 2 is an ARF-activating protein that promotes cell migration and cell shape changes. We report here that protein–protein interactions mediated by the coiled-coil domain of ARNO are required for ARNO induced motility. ARNO lacking the coiled-coil domain does not promote migration and does not induce ARF-dependent Rac activation. We find that the coiled-coil domain promotes the assembly of a multiprotein complex containing both ARNO and the Rac-activating protein Dock180. Knockdown of either GRASP/Tamalin or IPCEF, two proteins known to bind to the coiled-coil of ARNO, prevents the association of ARNO and Dock180 and prevents ARNO-induced Rac activation. These data suggest that scaffold proteins can regulate ARF dependent processes by biasing ARF signaling toward particular outputs.
Collapse
Affiliation(s)
- David T White
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
| | | | | | | |
Collapse
|
242
|
El Azreq MA, Garceau V, Harbour D, Pivot-Pajot C, Bourgoin SG. Cytohesin-1 regulates the Arf6-phospholipase D signaling axis in human neutrophils: impact on superoxide anion production and secretion. THE JOURNAL OF IMMUNOLOGY 2009; 184:637-49. [PMID: 20018626 DOI: 10.4049/jimmunol.0901654] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Polymorphonuclear neutrophil (PMN) stimulation with fMLP stimulates small G proteins such as ADP-ribosylation factors (Arfs) Arf1 and Arf6, leading to phospholipase D (PLD) activation and functions such as degranulation and the oxidative burst. However, the molecular links between fMLF receptors and PLD remain unclear. PMNs express cytohesin-1, an Arf-guanine exchange factor that activates Arfs, and its expression is strongly induced during the acquisition of the neutrophilic phenotype by neutrophil-like cells. The role of cytohesin-1 in the activation of the fMLF-Arf-PLD signaling axis, and the accomplishment of superoxide anion production, and degranulation was investigated in PMNs using the selective inhibitor of cytohesin, Sec 7 inhibitor H3 (secinH3). Cytohesin-1 inhibition with secinH3 leads to Arf6 but not Arf1 inhibition, demonstrating the specificity for Arf6, and fMLF-mediated activation of PLD and of the oxidative burst as well. We observed a decrease in fMLF-mediated protein secretion and expression of cell surface markers corresponding to primary (CD63/myeloperoxidase), secondary (CD66/lactoferrin), and tertiary (matrix metalloproteinase-9) granules in PMNs incubated with secinH3. Similarly, silencing cytohesin-1 or Arf6 in PLB-985 cells negatively affected fMLF-induced activation of PLD, superoxide production, and expression of granule markers on the cell surface. In contrast, stable overexpression of cytohesin-1 in PLB-985 cells enhanced fMLF-induced activation of Arf6, PLD, and NADPH oxidase. The results of this study provide evidence for an involvement of cytohesin-1 in the regulation of the functional responses of human PMNs and link these events, in part at least, to the activation of Arf6.
Collapse
Affiliation(s)
- Mohammed-Amine El Azreq
- Centre de Recherche en Rhumatologie et Immunologie, Centre de Recherche du Centre Hospitalier de l'Université Québec-Centre Hospitalier de l'Université Laval, Québec, Canada
| | | | | | | | | |
Collapse
|
243
|
|
244
|
Toward a model for Arf GTPases as regulators of traffic at the Golgi. FEBS Lett 2009; 583:3872-9. [PMID: 19879269 DOI: 10.1016/j.febslet.2009.10.066] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2009] [Revised: 10/25/2009] [Accepted: 10/26/2009] [Indexed: 12/19/2022]
Abstract
In this review, I summarize the likely roles played by ADP-ribosylation factor (Arf) proteins in the regulation of membrane traffic at the Golgi, from the perspective of the GTPase. The most glaring limitations to the development of a coherent molecular model are highlighted; including incomplete information on the initiation of Arf activation, identification of the "accessory proteins" required for carrier maturation and scission, and those required for directed traffic and fusion at the destination membrane. Though incomplete, the molecular model of carrier biogenesis has developed rapidly in recent years and promises richness in understanding this essential process.
Collapse
|
245
|
Katsumata O, Ohara N, Tamaki H, Niimura T, Naganuma H, Watanabe M, Sakagami H. IQ-ArfGEF/BRAG1 is associated with synaptic ribbons in the mouse retina. Eur J Neurosci 2009; 30:1509-16. [PMID: 19811534 DOI: 10.1111/j.1460-9568.2009.06943.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
IQ-ArfGEF/BRAG1 is a guanine nucleotide exchange factor for ADP ribosylation factors (Arfs), which are implicated in membrane trafficking and actin cytoskeleton dynamics. In this study, we examined the immunohistochemical localization of IQ-ArfGEF/BRAG1 in the adult mouse retina using light and electron microscopy. IQ-ArfGEF/BRAG1 was distributed in a punctate manner and colocalized well with RIBEYE in both the outer and inner plexiform layers. Immunoelectron microscopic analysis showed that IQ-ArfGEF/BRAG1 was localized at the synaptic ribbons of photoreceptors. When heterologously expressed in HeLa cells, IQ-ArfGEF/BRAG1 was recruited to RIBEYE-containing clusters and formed an immunoprecipitable complex with RIBEYE. Furthermore, immunoprecipitation analysis showed that anti-IQ-ArfGEF/BRAG1 antibody efficiently pulled down RIBEYE from retinal lysates. These findings indicate that IQ-ArfGEF/BRAG1 is a novel component of retinal synaptic ribbons and forms a protein complex with RIBEYE.
Collapse
Affiliation(s)
- Osamu Katsumata
- Department of Anatomy, Kitasato University School of Medicine, Sagamihara, Kanagawa 228-8555, Japan
| | | | | | | | | | | | | |
Collapse
|
246
|
Bui QT, Golinelli-Cohen MP, Jackson CL. Large Arf1 guanine nucleotide exchange factors: evolution, domain structure, and roles in membrane trafficking and human disease. Mol Genet Genomics 2009; 282:329-50. [PMID: 19669794 PMCID: PMC7088145 DOI: 10.1007/s00438-009-0473-3] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2009] [Accepted: 07/19/2009] [Indexed: 12/16/2022]
Abstract
The Sec7 domain ADP-ribosylation factor (Arf) guanine nucleotide exchange factors (GEFs) are found in all eukaryotes, and are involved in membrane remodeling processes throughout the cell. This review is focused on members of the GBF/Gea and BIG/Sec7 subfamilies of Arf GEFs, all of which use the class I Arf proteins (Arf1-3) as substrates, and play a fundamental role in trafficking in the endoplasmic reticulum (ER)—Golgi and endosomal membrane systems. Members of the GBF/Gea and BIG/Sec7 subfamilies are large proteins on the order of 200 kDa, and they possess multiple homology domains. Phylogenetic analyses indicate that both of these subfamilies of Arf GEFs have members in at least five out of the six eukaryotic supergroups, and hence were likely present very early in eukaryotic evolution. The homology domains of the large Arf1 GEFs play important functional roles, and are involved in interactions with numerous protein partners. The large Arf1 GEFs have been implicated in several human diseases. They are crucial host factors for the replication of several viral pathogens, including poliovirus, coxsackievirus, mouse hepatitis coronavirus, and hepatitis C virus. Mutations in the BIG2 Arf1 GEF have been linked to autosomal recessive periventricular heterotopia, a disorder of neuronal migration that leads to severe malformation of the cerebral cortex. Understanding the roles of the Arf1 GEFs in membrane dynamics is crucial to a full understanding of trafficking in the secretory and endosomal pathways, which in turn will provide essential insights into human diseases that arise from misregulation of these pathways.
Collapse
Affiliation(s)
- Quynh Trang Bui
- Laboratoire d'Enzymologie et Biochimie Structurales, Bat 34, CNRS, 1, Avenue de la Terrasse, 91198 Gif-sur-Yvette, France
| | | | | |
Collapse
|
247
|
Kim JW, Akiyama M, Park JH, Lin ML, Shimo A, Ueki T, Daigo Y, Tsunoda T, Nishidate T, Nakamura Y, Katagiri T. Activation of an estrogen/estrogen receptor signaling by BIG3 through its inhibitory effect on nuclear transport of PHB2/REA in breast cancer. Cancer Sci 2009; 100:1468-78. [PMID: 19496786 PMCID: PMC11159637 DOI: 10.1111/j.1349-7006.2009.01209.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Breast cancer is known to be a hormone-dependent disease, and estrogens through an interaction with estrogen receptor (ER) enhance the proliferative and metastatic activity of breast tumor cells. Here we show a critical role of transactivation of BIG3, brefeldin A-inhibited guanine nucleotide-exchange protein 3, in activation of the estrogen/ER signaling in breast cancer cells. Knocking-down of BIG3 expression with small-interfering RNA (siRNA) drastically suppressed the growth of breast cancer cells. Subsequent coimmunoprecipitation and immunoblotting assays revealed an interaction of BIG3 with prohibitin 2/repressor of estrogen receptor activity (PHB2/REA). When BIG3 was absent, stimulation of estradiol caused the translocation of PHB2/REA to the nucleus, enhanced the interaction of PHB2/REA and ERalpha, and resulted in suppression of the ERalpha transcriptional activity. On the other hand, when BIG3 was present, BIG3 trapped PHB2/REA in the cytoplasm and inhibited its nuclear translocation, and caused enhancement of ERalpha transcriptional activity. Our results imply that BIG3 overexpression is one of the important mechanisms causing the activation of the estrogen/ERalpha signaling pathway in the hormone-related growth of breast cancer cells.
Collapse
Affiliation(s)
- Jung-Won Kim
- Laboratory of Molecular Medicine, Human Genome Center, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
248
|
Jia DJ, Cao X, Wang W, Tan XY, Zhang XQ, Chen LQ, Ye D. GNOM-LIKE 2, encoding an adenosine diphosphate-ribosylation factor-guanine nucleotide exchange factor protein homologous to GNOM and GNL1, is essential for pollen germination in Arabidopsis. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2009; 51:762-73. [PMID: 19686373 DOI: 10.1111/j.1744-7909.2009.00858.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
In flowering plants, male gametes are delivered to female gametophytes by pollen tubes. Although it is important for sexual plant reproduction, little is known about the genetic mechanism that controls pollen germination and pollen tube growth. Here we report the identification and characterization of two novel mutants, gnom-like 2-1 (gnl2-1) and gnl2-2 in Arabidopsis thaliana, in which the pollen grains failed to germinate in vitro and in vivo. GNL2 encodes a protein homologous to the adenosine diphosphate-ribosylation factor-guanine nucleotide exchange factors, GNOM and GNL1 that are involved in endosomal recycling and endoplasmic reticulum-Golgi vesicular trafficking. It was prolifically expressed in pollen grains and pollen tubes. The results of the present study suggest that GNL2 plays an important role in pollen germination.
Collapse
Affiliation(s)
- Dong-Jie Jia
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
| | | | | | | | | | | | | |
Collapse
|
249
|
Morikawa RK, Aoki J, Kano F, Murata M, Yamamoto A, Tsujimoto M, Arai H. Intracellular phospholipase A1gamma (iPLA1gamma) is a novel factor involved in coat protein complex I- and Rab6-independent retrograde transport between the endoplasmic reticulum and the Golgi complex. J Biol Chem 2009; 284:26620-30. [PMID: 19632984 DOI: 10.1074/jbc.m109.038869] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The mammalian intracellular phospholipase A(1) (iPLA(1)) family consists of three members, iPLA(1)alpha/PA-PLA(1), iPLA(1)beta/p125, and iPLA(1)gamma/KIAA0725p. Although iPLA(1)beta has been implicated in organization of the ER-Golgi compartments, little is known about the physiological role of its closest paralog, iPLA(1)gamma. Here we show that iPLA(1)gamma mediates a specific retrograde membrane transport pathway between the endoplasmic reticulum (ER) and the Golgi complex. iPLA(1)gamma appeared to be localized to the cytosol, the cis-Golgi, and the ER-Golgi intermediate compartment (ERGIC). Time-lapse microscopy revealed that a population of GFP-iPLA(1)gamma was associated with transport carriers moving out from the Golgi complex. Knockdown of iPLA(1)gamma expression by RNAi did not affect the anterograde transport of VSVGts045 but dramatically delayed two types of Golgi-to-ER retrograde membrane transport; that is, transfer of the Golgi membrane into the ER in the presence of brefeldin A and delivery of cholera toxin B subunit from the Golgi complex to the ER. Notably, knockdown of iPLA(1)gamma did not impair COPI- and Rab6-dependent retrograde transports represented by ERGIC-53 recycling and ER delivery of Shiga toxin, respectively. Thus, iPLA(1)gamma is a novel membrane transport factor that contributes to a specific Golgi-to-ER retrograde pathway distinct from presently characterized COPI- and Rab6-dependent pathways.
Collapse
Affiliation(s)
- Rei K Morikawa
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | | | | | | | | | | | | |
Collapse
|
250
|
Fujita A, Misumi Y. Fission yeast syt22 protein, a putative Arf guanine nucleotide exchange factor, is necessary for new end take off. FEMS Microbiol Lett 2009; 294:191-7. [PMID: 19431238 DOI: 10.1111/j.1574-6968.2009.01566.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
In fission yeast Schizosaccharomyces pombe, the directions of cell growth change from monopolar to bipolar in character, which is known as 'new end take off ' (NETO). We previously found that arf6p, a member (class III) of the ADP-ribosylation factor (Arf) family, is necessary for NETO in fission yeast. Here we report the characterization of an S. pombe gene, syt22(+), encoding a putative Arf guanine nucleotide exchange factor (GEF). The syt22 protein contains a Sec7 domain and a PH domain conserved in the mammalian EFA6 GEF family, and has high similarity to Yel1p, which was identified as a GEF for Arf3p (class III Arf) in Saccharomyces cerevisiae. syt22Delta cells, like arf6Delta cells, completely failed to undergo NETO. Syt22p uniformly localizes to the cell periphery. Its localization is not dependent on microtubules, actin cytoskeletons or arf6p. We hypothesize that syt22p functions as a GEF for arf6p.
Collapse
|