201
|
Ververs JD, McEwen MR, Siebers JV. Quantitative ionization chamber alignment to a water surface: Performance of multiple chambers. Med Phys 2017; 44:3839-3847. [PMID: 28477371 DOI: 10.1002/mp.12315] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 03/12/2017] [Accepted: 04/18/2017] [Indexed: 11/06/2022] Open
Abstract
PURPOSE The purpose of this study was to experimentally examine the reliability of the gradient chamber alignment point (gCAP) determination method for accurately identifying water surface location with a range of ionization chambers (ICs). MATERIALS AND METHODS Twelve cylindrical ICs were scanned from depth through a water surface into air using a customized high-accuracy scanning system which allows for accurate alignment of the IC with respect to the true water surface. Thirteen other cylindrical ICs and five parallel-plate ICs were scanned using a standard commercially available scanning system. The thirty different ICs used in this study represent 22 different IC models. Measurements were taken with different radiation field parameters such as incident photon beam energies and field sizes. The effects of scan direction and water surface tension were also investigated. The depth at which the gradient of the relative ionization was maximized and discontinuous, the gCAP, was found for each curve. Each measured gCAP depth was compared with the theoretically expected gCAP location, the depth at which the submerged IC outer radius (OR) coincides with the water surface. RESULTS When scanning an IC from in water to air, the only parameter that affects the gCAP location is the IC OR. The gCAP location corresponds with the IC central axis positioned at a depth equal to the IC OR within the 0.1 mm measurement scan resolution for all eighteen ICs studied with the commercially available system. Using the customized scanning system, all but three ICs were identified exhibiting a gCAP within the scan resolution, with the other three within 0.25 mm of the expected location. This discrepancy was not observed in the same IC model when using the conventional scanning system. Altering the beam energy from 6 to 25 MV did not alter the gCAP location, nor did variations in the radiation field size or scan parameters. In-air IC response is proportional to the IC wall thickness. CONCLUSION The water-to-air scanning method coupled with gCAP analysis identifies the alignment of the IC OR to the water surface within the scanning resolution for all ICs studied. The gCAP method can precisely and reproducibly align the physical center of a given cylindrical IC with the water surface, be applied prospectively or retrospectively, and provides the prospect for automated water surface identification for scanning systems. The gCAP method eliminates the visual subjectivity inherent to current IC-to-water surface alignment techniques, has been validated with a wide variety of commercially available ICs, and should be independent of the scanning system used for data acquisition.
Collapse
Affiliation(s)
- James D Ververs
- Department of Radiation Oncology, Wake Forest University Baptist Medical Center, Winston Salem, NC, 27157, USA.,Department of Radiation Oncology, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Malcolm R McEwen
- Ionizing Radiation Standards, National Research Council of Canada, Ottawa, ON, K1A OR6, Canada
| | - Jeffrey V Siebers
- Department of Radiation Oncology, Virginia Commonwealth University, Richmond, VA, 23298, USA.,Department of Radiation Oncology, University of Virginia, Charlottesville, VA, 22908, USA
| |
Collapse
|
202
|
Yogo K, Tatsuno Y, Tsuneda M, Aono Y, Mochizuki D, Fujisawa Y, Matsushita A, Ishigami M, Ishiyama H, Hayakawa K. Practical use of a plastic scintillator for quality assurance of electron beam therapy. Phys Med Biol 2017; 62:4551-4570. [DOI: 10.1088/1361-6560/aa67cc] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
203
|
Heidarloo N, Baghani HR, Aghamiri SMR, Mahdavi SR, Akbari ME. Commissioning of beam shaper applicator for conformal intraoperative electron radiotherapy. Appl Radiat Isot 2017; 123:69-81. [DOI: 10.1016/j.apradiso.2017.02.039] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2016] [Revised: 02/04/2017] [Accepted: 02/23/2017] [Indexed: 11/27/2022]
|
204
|
Langner UW, Eley JG, Dong L, Langen K. Comparison of multi-institutional Varian ProBeam pencil beam scanning proton beam commissioning data. J Appl Clin Med Phys 2017; 18:96-107. [PMID: 28422381 PMCID: PMC5689862 DOI: 10.1002/acm2.12078] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 02/24/2017] [Accepted: 03/06/2017] [Indexed: 11/09/2022] Open
Abstract
Purpose Commissioning beam data for proton spot scanning beams are compared for the first two Varian ProBeam sites in the United States, at the Maryland Proton Treatment Center (MPTC) and Scripps Proton Therapy Center (SPTC). In addition, the extent to which beams can be matched between gantry rooms at MPTC is investigated. Method Beam data for the two sites were acquired with independent dosimetry systems and compared. Integrated depth dose curves (IDDs) were acquired with Bragg peak ion chambers in a 3D water tank for pencil beams at both sites. Spot profiles were acquired at different distances from the isocenter at a gantry angle of 0° as well as a function of gantry angles. Absolute dose calibration was compared between SPTC and the gantries at MPTC. Dosimetric verification of test plans, output as a function of gantry angle, monitor unit (MU) linearity, end effects, dose rate dependence, and plan reproducibility were compared for different gantries at MPTC. Results The IDDs for the two sites were similar, except in the plateau region, where the SPTC data were on average 4.5% higher for lower energies. This increase in the plateau region decreased as energy increased, with no marked difference for energies higher than 180 MeV. Range in water coincided for all energies within 0.5 mm. The sigmas of the spot profiles in air were within 10% agreement at isocenter. This difference increased as detector distance from the isocenter increased. Absolute doses for the gantries measured at both sites were within 1% agreement. Test plans, output as function of gantry angle, MU linearity, end effects, dose rate dependence, and plan reproducibility were all within tolerances given by TG142. Conclusion Beam data for the two sites and between different gantry rooms were well matched.
Collapse
Affiliation(s)
- Ulrich W Langner
- Department of Radiation Oncology, Maryland Proton Treatment Center, University of Maryland School of Medicine, 850 W. Baltimore Street, Baltimore, MD, 21201, USA
| | - John G Eley
- Department of Radiation Oncology, Maryland Proton Treatment Center, University of Maryland School of Medicine, 850 W. Baltimore Street, Baltimore, MD, 21201, USA
| | - Lei Dong
- Scripps Proton Therapy Center, 9730 Summers Ridge Road, San Diego, CA, 92121, USA
| | - Katja Langen
- Department of Radiation Oncology, Maryland Proton Treatment Center, University of Maryland School of Medicine, 850 W. Baltimore Street, Baltimore, MD, 21201, USA
| |
Collapse
|
205
|
Yuen L, McLucas C. Investigation of X-ray focal spot alignment using a jig of novel design. AUSTRALASIAN PHYSICAL & ENGINEERING SCIENCES IN MEDICINE 2017; 40:455-461. [DOI: 10.1007/s13246-017-0549-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 04/03/2017] [Indexed: 11/30/2022]
|
206
|
Muir B, Culberson W, Davis S, Kim GY, Huang Y, Lee SW, Lowenstein J, Sarfehnia A, Siebers J, Tolani N. Insight gained from responses to surveys on reference dosimetry practices. J Appl Clin Med Phys 2017; 18:182-190. [PMID: 28397396 PMCID: PMC5689843 DOI: 10.1002/acm2.12081] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 02/22/2017] [Accepted: 03/09/2017] [Indexed: 11/14/2022] Open
Abstract
Purpose To present the results and discuss potential insights gained through surveys on reference dosimetry practices. Methods Two surveys were sent to medical physicists to learn about the current state of reference dosimetry practices at radiation oncology clinics worldwide. A short survey designed to maximize response rate was made publicly available and distributed via the AAPM website and a medical physics list server. Another, much more involved survey, was sent to a smaller group of physicists to gain insight on detailed dosimetry practices. The questions were diverse, covering reference dosimetry practices on topics like measurements required for beam quality specification, the actual measurement of absorbed dose and ancillary equipment required like electrometers and environment monitoring measurements. Results There were 190 respondents to the short survey and seven respondents to the detailed survey. The diversity of responses indicates nonuniformity in reference dosimetry practices and differences in interpretation of reference dosimetry protocols. Conclusions The results of these surveys offer insight on clinical reference dosimetry practices and will be useful in identifying current and future needs for reference dosimetry.
Collapse
Affiliation(s)
- Bryan Muir
- Measurement Science and Standards, National Research Council of Canada, Ottawa, ON, Canada
| | - Wesley Culberson
- Department of Medical Physics, University of Wisconsin, Madison, WI, USA
| | - Stephen Davis
- Medical Physics Unit, McGill University, Montreal, QC, Canada
| | - Gwe-Ya Kim
- Department of Radiation Medicine and Applied Sciences, UC San Diego School of Medicine, La Jolla, CA, USA
| | - Yimei Huang
- Department of Radiation Oncology, Henry Ford Health System, Detroit, MI, USA
| | - Sung-Woo Lee
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Jessica Lowenstein
- Department of Radiation Physics, UT M.D. Anderson Cancer Center, Houston, TX, USA
| | - Arman Sarfehnia
- Department of Radiation Oncology, University of Toronto, Toronto, ON, Canada
| | - Jeffrey Siebers
- Department of Radiation Oncology, University of Virginia Health System, Charlottesville, VA, USA
| | - Naresh Tolani
- Department of Radiation Therapy, Michael E. DeBakey VA Medical Center, Houston, TX, USA
| |
Collapse
|
207
|
Shimozato T, Aoyama Y, Matsunaga T, Tabushi K. Beam Characterization of 10-MV Photon Beam from Medical Linear Accelerator without Flattening Filter. J Med Phys 2017; 42:65-71. [PMID: 28706351 PMCID: PMC5496272 DOI: 10.4103/jmp.jmp_71_16] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Aim: This work investigated the dosimetric properties of a 10-MV photon beam emitted from a medical linear accelerator (linac) with no flattening filter (FF). The aim of this study is to analyze the radiation fluence and energy emitted from the flattening filter free (FFF) linac using Monte Carlo (MC) simulations. Materials and Methods: The FFF linac was created by removing the FF from a linac in clinical use. Measurements of the depth dose (DD) and the off-axis profile were performed using a three-dimensional water phantom with an ionization chamber. A MC simulation for a 10-MV photon beam from this FFF linac was performed using the BEAMnrc code. Results: The off-axis profiles for the FFF linac exhibited a chevron-like distribution, and the dose outside the irradiation field was found to be lower for the FFF linac than for a linac with an FF (FF linac). The DD curves for the FFF linac included many contaminant electrons in the build-up region. Conclusion: Therefore, for clinical use, a metal filter is additionally required to reduce the effects of the electron contamination. The mean energy of the FFF linac was found to be lower than that of the FF linac owing to the absence of beam hardening caused by the FF.
Collapse
Affiliation(s)
- Tomohiro Shimozato
- Department of Radiological Technology, School of Health Sciences, Gifu University of Medical Science, Seki, Gifu, Japan
| | - Yuichi Aoyama
- Department of Radiation Oncology, Kobe University Hospital, Kobe, Hyougo, Japan
| | - Takuma Matsunaga
- Department of Radiology, Seirei Hamamatsu General Hospital, Hamamatsu, Shizuoka, Japan
| | - Katsuyoshi Tabushi
- Department of Radiological Technology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| |
Collapse
|
208
|
Azcona JD, Barbés B, Morán V, Burguete J. Commissioning of small field size radiosurgery cones in a 6-MV flattening filter-free beam. Med Dosim 2017; 42:282-288. [DOI: 10.1016/j.meddos.2017.06.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 05/25/2017] [Accepted: 06/16/2017] [Indexed: 11/26/2022]
|
209
|
Vargas Castrillón S, Cutanda Henríquez F. Choice of a Suitable Dosimeter for Photon Percentage Depth Dose Measurements in Flattening Filter-Free Beams. J Med Phys 2017; 42:140-143. [PMID: 28974859 PMCID: PMC5618460 DOI: 10.4103/jmp.jmp_11_17] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
The International Atomic Energy Agency Technical Reports Series-398 code of practice for dosimetry recommends measuring photon percentage depth dose (PDD) curves with parallel-plate chambers. This code of practice was published before flattening filter-free (FFF) beams were widely used in clinical linear accelerators. The choice of detector for PDD measurements needs to be reassessed for FFF beams given the physical differences between FFF beams and flattened ones. The present study compares PDD curves for FFF beams of nominal energies 6 MV, 6 FFF, 10 MV, and 10 FFF from a Varian TrueBeam linear accelerator (Varian Medical Systems, Palo Alto, USA) acquired with Scanditronix photon diodes, two scanning type chambers (both PTW 31010 Semiflex), two small volume chambers (Wellhofer CC04 and PTW 31016 PinPoint 3D), PTW 34001 Roos, Scanditronix Roos, and NACP 02 parallel-plate chambers. Results show that parallel-plate ion chambers can be used for photon PDD measurements, although for better accuracy, recombination effects should be taken into account.
Collapse
|
210
|
Jacqmin DJ, Bredfeldt JS, Frigo SP, Smilowitz JB. Implementation of the validation testing in MPPG 5.a "Commissioning and QA of treatment planning dose calculations-megavoltage photon and electron beams". J Appl Clin Med Phys 2016; 18:115-127. [PMID: 28291929 PMCID: PMC5689890 DOI: 10.1002/acm2.12015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 10/17/2016] [Indexed: 11/17/2022] Open
Abstract
The AAPM Medical Physics Practice Guideline (MPPG) 5.a provides concise guidance on the commissioning and QA of beam modeling and dose calculation in radiotherapy treatment planning systems. This work discusses the implementation of the validation testing recommended in MPPG 5.a at two institutions. The two institutions worked collaboratively to create a common set of treatment fields and analysis tools to deliver and analyze the validation tests. This included the development of a novel, open‐source software tool to compare scanning water tank measurements to 3D DICOM‐RT Dose distributions. Dose calculation algorithms in both Pinnacle and Eclipse were tested with MPPG 5.a to validate the modeling of Varian TrueBeam linear accelerators. The validation process resulted in more than 200 water tank scans and more than 50 point measurements per institution, each of which was compared to a dose calculation from the institution's treatment planning system (TPS). Overall, the validation testing recommended in MPPG 5.a took approximately 79 person‐hours for a machine with four photon and five electron energies for a single TPS. Of the 79 person‐hours, 26 person‐hours required time on the machine, and the remainder involved preparation and analysis. The basic photon, electron, and heterogeneity correction tests were evaluated with the tolerances in MPPG 5.a, and the tolerances were met for all tests. The MPPG 5.a evaluation criteria were used to assess the small field and IMRT/VMAT validation tests. Both institutions found the use of MPPG 5.a to be a valuable resource during the commissioning process. The validation testing in MPPG 5.a showed the strengths and limitations of the TPS models. In addition, the data collected during the validation testing is useful for routine QA of the TPS, validation of software upgrades, and commissioning of new algorithms.
Collapse
Affiliation(s)
- Dustin J Jacqmin
- Department of Radiation Oncology, Medical University of South Carolina, Charleston, SC, USA.,Department of Human Oncology, University of Wisconsin-Madison, Madison, WI, USA
| | - Jeremy S Bredfeldt
- Department of Human Oncology, University of Wisconsin-Madison, Madison, WI, USA
| | - Sean P Frigo
- Department of Human Oncology, University of Wisconsin-Madison, Madison, WI, USA
| | | |
Collapse
|
211
|
Monte Carlo study on effective source to surface distance for electron beams from a mobile dedicated IORT accelerator. JOURNAL OF RADIOTHERAPY IN PRACTICE 2016. [DOI: 10.1017/s1460396916000455] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
AbstractPurposeThe effective source to surface distance (SSDeff) for different combinations of energy/applicator size of the electron beam produced by the light intraoperative accelerator, a mobile dedicated intraoperative radiotherapy accelerator, has been calculated in this study.MethodsBoth ionometric dosimetry and Monte Carlo (MC) simulation were followed to obtain the SSDeff for different combinations of electron energy/applicator size. Simulations were performed using Monte Carlo Nuclear Particles (MCNP) MC code. Measurements were performed by Advance Markus chamber and inside a polymethyl methacrylate slab phantom. Inverse square law method was employed to determine the SSDeff from acquired dosimetry data.ResultWith increasing the applicator diameter at a given energy, SSDeff is also increased. The same result is obtained with increasing the electron beam energy for a given applicator size. The results of MC-based SSDeff for 10 cm diameter reference applicator at different energies were in a good accordance with those obtained by ionometric dosimetry. The maximum and mean differences between the results were 1·1 and 0·6%, respectively.ConclusionsThe results of this study showed that SSDeff of intraoperative electron beam is highly dependent on the applicator size and is a mild function of electron beam energy. These facts are in accordance with those reported for conventional electron beam. The good agreement between the results of MC simulation and ionometric dosimetry confirms the application of MCNP code in modelling of intraoperative electron beam and obtaining the intended parameters.
Collapse
|
212
|
|
213
|
Maskani R, Tahmasebibirgani MJ, Hoseini-Ghahfarokhi M, Fatahiasl J. Determination of Initial Beam Parameters of Varian 2100 CD Linac for Various Therapeutic Electrons Using PRIMO. Asian Pac J Cancer Prev 2016; 16:7795-801. [PMID: 26625800 DOI: 10.7314/apjcp.2015.16.17.7795] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
The aim of the present research was to establish primary characteristics of electron beams for a Varian 2100C/D linear accelerator with recently developed PRIMO Monte Carlo software and to verify relations between electron energy and dose distribution. To maintain conformity of simulated and measured dose curves within 1%/1mm, mean energy, Full Width at Half Maximum (FWHM) of energy and focal spot FWHM of initial beam were changed iteratively. Mean and most probable energies were extracted from validated phase spaces and compared with related empirical equation results. To explain the importance of correct estimation of primary energy on a clinical case, computed tomography images of a thorax phantom were imported in PRIMO. Dose distributions and dose volume histogram (DVH) curves were compared between validated and artificial cases with overestimated energy. Initial mean energies were obtained of 6.68, 9.73, 13.2 and 16.4 MeV for 6, 9, 12 and 15 nominal energies, respectively. Energy FWHM reduced with increase in energy. Three mm focal spot FWHM for 9 MeV and 4 mm for other energies made proper matches of simulated and measured profiles. In addition, the maximum difference of calculated mean electrons energy at the phantom surface with empirical equation was 2.2 percent. Finally, clear differences in DVH curves of validated and artificial energy were observed as heterogeneity indexes were 0.15 for 7.21 MeV and 0.25 for 6.68 MeV. The Monte Carlo model presented in PRIMO for Varian 2100 CD was precisely validated. IAEA polynomial equations estimated mean energy more accurately than a known linear one. Small displacement of R50 changed DVH curves and homogeneity indexes. PRIMO is a user-friendly software which has suitable capabilities to calculate dose distribution in water phantoms or computerized tomographic volumes accurately.
Collapse
Affiliation(s)
- Reza Maskani
- Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran E-mail :
| | | | | | | |
Collapse
|
214
|
Krishnappan C, Radha CA, Subramani V, Gunasekaran MK. Is the dose distribution distorted in IMRT and RapidArc treatment when patient plans are swapped across beam-matched machines? J Appl Clin Med Phys 2016; 17:111-123. [PMID: 27685106 PMCID: PMC5874098 DOI: 10.1120/jacmp.v17i5.6104] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Revised: 04/22/2016] [Accepted: 04/20/2016] [Indexed: 11/23/2022] Open
Abstract
The purpose of this study is to evaluate the degree of dose distribution distortion in advanced treatments like IMRT and RapidArc when patient plans are swapped across dosimetrically equivalent so‐called “beam‐matched” machines. For this purpose the entire work is divided into two stages. At forefront stage all basic beam properties of 6 MV X‐rays like PDD, profiles, output factors, TPR20/10 and MLC transmission of two beam‐matched machines — Varian Clinac iX and Varian 600 C/D Unique — are compared and evaluated for differences. At second stage 40 IMRT and RapidArc patient plans from the pool of head and neck (H&N) and pelvis sites are selected for the study. The plans are swapped across the machines for dose recalculation and the DVHs of target and critical organs are evaluated for dose differences. Following this, the accuracy of the beam‐matching at the TPS level for treatments like IMRT and RapidArc are compared. On PDD, profile (central 80%) and output factor comparison between the two machines, a maximum percentage disagreement value of −2.39%,−2.0% and −2.78%, respectively, has been observed. The maximum dose difference observed at volumes in IMRT and RapidArc treatments for H&N dose prescription of 69.3 Gy/33 fractions is 0.88 Gy and 0.82 Gy, respectively. Similarly, for pelvis, with a dose prescription of 50 Gy/25 fractions, a maximum dose difference of 0.55 Gy and 0.53 Gy is observed at volumes in IMRT and RapidArc treatments, respectively. Overall results of the swapped plans between two machines' 6 MV X‐rays are well within the limits of accepted clinical tolerance. PACS number(s): 87.56.bd
Collapse
|
215
|
Rusk BD, Carver RL, Gibbons JP, Hogstrom KR. A dosimetric comparison of copper and Cerrobend electron inserts. J Appl Clin Med Phys 2016; 17:245–261. [PMID: 27685126 PMCID: PMC5874111 DOI: 10.1120/jacmp.v17i5.6282] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Revised: 04/19/2016] [Accepted: 04/11/2016] [Indexed: 11/23/2022] Open
Abstract
The purpose of this work was to evaluate differences in dose resulting from the use of copper aperture inserts compared to lead‐alloy (Cerrobend) aperture inserts for electron beam therapy. Specifically, this study examines if copper aperture inserts can be used clinically with the same commissioning data measured using lead‐alloy aperture inserts. The copper inserts were acquired from .decimal, LLC and matching lead‐alloy, Cerrobend inserts were constructed in‐house for 32 combinations of nine square insert field sizes (2×2 to 20×20 cm2) and five applicator sizes (6×6 to 25×25 cm2). Percent depth‐dose and off‐axis relative dose profiles were measured using an electron diode in water for select copper and Cerrobend inserts for a subset of applicators (6×6,10×10,25×25 cm2) and energies (6, 12, 20 MeV) at 100 and 110 cm source‐to‐surface distances (SSD) on a Varian Clinac 21EX accelerator. Dose outputs were measured for all field size‐insert combinations and five available energies (6−20 MeV) at 100 cm SSD and for a smaller subset at 110 cm SSD. Using these data, 2D planar absolute dose distributions were generated and compared. Criteria for agreement were ±2% of maximum dose or 1 mm distance‐to‐agreement for 99% of points. A gamma analysis of the beam dosimetry showed 94 of 96 combinations of insert size, applicator, energy, and SSD were within the 2%/1 mm criteria for >99% of points. Outside the field, copper inserts showed less bremsstrahlung dose under the insert compared to Cerrobend (greatest difference was 2.5% at 20 MeV and 100 cm SSD). This effect was most prominent at the highest energies for combinations of large applicators with small field sizes, causing some gamma analysis failures. Inside the field, more electrons scattered from the collimator edge of copper compared to Cerrobend, resulting in an increased dose at the field edge for copper at shallow depths (greatest increase was 1% at 20 MeV and 100 cm SSD). Dose differences decreased as the SSD increased, with no gamma failures at 110 cm SSD. Inserts for field sizes ≥6×6cm2 at any energy, or for small fields (≤4×4cm2) at energies <20 MeV, showed dosimetric differences less than 2%/1 mm for more than 99% of points. All areas of comparison criteria failures were from lower out‐of‐field dose under copper inserts due to a reduction in bremsstrahlung production, which is clinically beneficial in reducing dose to healthy tissue outside of the planned treatment volume. All field size‐applicator size‐energy combinations passed 3%/1 mm criteria for 100% of points. Therefore, it should be clinically acceptable to utilize copper insets with dose distributions measured with Cerrobend inserts for treatment planning dose calculations and monitor unit calculations. PACS number(s): 87.56.jk
Collapse
|
216
|
Development of simple high-precision two-dimensional dose-distribution measurement method for proton beam therapy using imaging plate and EBT3. AUSTRALASIAN PHYSICAL & ENGINEERING SCIENCES IN MEDICINE 2016; 39:687-96. [PMID: 27470695 DOI: 10.1007/s13246-016-0464-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 07/12/2016] [Indexed: 10/21/2022]
Abstract
Although there are several two-dimensional (2D) dose-distribution measurement methods using proton beam therapy, they all have drawbacks; hence, there is no standard method established worldwide. The purpose of this study was to develop a simple, high-precision 2D distribution measurement method for proton beam therapy that uses an imaging plate and EBT3. First, we expanded the maximum readable dose (saturation dose) in the imaging plate. The method involves (i) the control of the fading phenomenon by an annealing process and (ii) the control of the photostimulated luminescence (PSL) phenomenon using a longpass filter (LPF). In method (i), upon heating at 80 °C, the PSL became 0.485 times the room temperature, and in method (ii), we attenuated the PSL by a factor of 0.245 using an LPF. Thus, by combining methods (i) and (ii), we expanded the saturation dose to 2 Gy. Thus, it was possible to measure the imaging plate and EBT3 in the same dose range. We simultaneously measured the percent depth dose using imaging plate and EBT3. We defined a correction factor to match the measured values-which had a reduced sensitivity because of the linear energy transfer (LET) dependence of the imaging plate and EBT3-with reference data and developed a correction factor function. Subsequently, by defining the relative LET dependence of imaging plate and EBT3 as the relative sensitivity and converting the relationship imaging plate between the relative sensitivity and correction factor into a function, we obtained a sensitivity-correction function. By employing this function, measurements with the same accuracy as the reference data were performed using the imaging plate and EBT3.
Collapse
|
217
|
Kinsella P, Shields L, McCavana P, McClean B, Langan B. Determination of MLC model parameters for Monaco using commercial diode arrays. J Appl Clin Med Phys 2016; 17:37-47. [PMID: 27455495 PMCID: PMC5690063 DOI: 10.1120/jacmp.v17i4.6190] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 02/18/2016] [Accepted: 02/12/2016] [Indexed: 11/23/2022] Open
Abstract
Multileaf collimators (MLCs) need to be characterized accurately in treatment planning systems to facilitate accurate intensity‐modulated radiation therapy (IMRT) and volumetric‐modulated arc therapy (VMAT). The aim of this study was to examine the use of MapCHECK 2 and ArcCHECK diode arrays for optimizing MLC parameters in Monaco X‐ray voxel Monte Carlo (XVMC) dose calculation algorithm. A series of radiation test beams designed to evaluate MLC model parameters were delivered to MapCHECK 2, ArcCHECK, and EBT3 Gafchromic film for comparison. Initial comparison of the calculated and ArcCHECK‐measured dose distributions revealed it was unclear how to change the MLC parameters to gain agreement. This ambiguity arose due to an insufficient sampling of the test field dose distributions and unexpected discrepancies in the open parts of some test fields. Consequently, the XVMC MLC parameters were optimized based on MapCHECK 2 measurements. Gafchromic EBT3 film was used to verify the accuracy of MapCHECK 2 measured dose distributions. It was found that adjustment of the MLC parameters from their default values resulted in improved global gamma analysis pass rates for MapCHECK 2 measurements versus calculated dose. The lowest pass rate of any MLC‐modulated test beam improved from 68.5% to 93.5% with 3% and 2 mm gamma criteria. Given the close agreement of the optimized model to both MapCHECK 2 and film, the optimized model was used as a benchmark to highlight the relatively large discrepancies in some of the test field dose distributions found with ArcCHECK. Comparison between the optimized model‐calculated dose and ArcCHECK‐measured dose resulted in global gamma pass rates which ranged from 70.0%–97.9% for gamma criteria of 3% and 2 mm. The simple square fields yielded high pass rates. The lower gamma pass rates were attributed to the ArcCHECK overestimating the dose in‐field for the rectangular test fields whose long axis was parallel to the long axis of the ArcCHECK. Considering ArcCHECK measurement issues and the lower gamma pass rates for the MLC‐modulated test beams, it was concluded that MapCHECK 2 was a more suitable detector than ArcCHECK for the optimization process. PACS number(s): 87.55.Qr
Collapse
Affiliation(s)
- Paul Kinsella
- Saint Luke's Hospital; Science Centre - North, University College Dublin.
| | | | | | | | | |
Collapse
|
218
|
Affiliation(s)
- Surendra Nath Rustgi
- Director of Radiation Oncology and Medical Physics, New Mexico Oncology Hematology Consultants LTD, Albuquerque, NM
| |
Collapse
|
219
|
Sigamani A, Nambiraj A, Yadav G, Giribabu A, Srinivasan K, Gurusamy V, Raman K, Karunakaran K, Thiyagarajan R. Surface dose measurements and comparison of unflattened and flattened photon beams. J Med Phys 2016; 41:85-91. [PMID: 27217619 PMCID: PMC4871008 DOI: 10.4103/0971-6203.181648] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The purpose of this study was to evaluate the central axis dose in the build-up region and the surface dose of a 6 MV and 10 MV flattened photon beam (FB) and flattening filter free (FFF) therapeutic photon beam for different square field sizes (FSs) for a Varian Truebeam linear accelerator using parallel-plate ionization chamber and Gafchromic film. Knowledge of dosimetric characteristics in the build-up region and surface dose of the FFF is essential for clinical care. The dose measurements were also obtained empirically using two different commonly used dosimeters: a p-type photon semiconductor dosimeter and a cylindrical ionization chamber. Surface dose increased linearly with FS for both FB and FFF photon beams. The surface dose values of FFF were higher than the FB FSs. The measured surface dose clearly increases with increasing FS. The FFF beams have a modestly higher surface dose in the build-up region than the FB. The dependence of source to skin distance (SSD) is less significant in FFF beams when compared to the flattened beams at extended SSDs.
Collapse
Affiliation(s)
- Ashokkumar Sigamani
- Division of Medical Physics, School of Advanced Sciences, VIT University, New Delhi, India
| | - Arunai Nambiraj
- Division of Medical Physics, School of Advanced Sciences, VIT University, New Delhi, India
| | - Girigesh Yadav
- Department of Radiation Oncology, Rajiv Gandhi Cancer Institute and Research Centre, New Delhi, India
| | - Ananda Giribabu
- Department of Radiation Oncology, Krishna Institute of Sciences, Hyderabad, Telangana, India
| | | | - Venkadamanickam Gurusamy
- Department of Radiation Oncology, Rajiv Gandhi Cancer Institute and Research Centre, New Delhi, India
| | - Kothanda Raman
- Department of Radiation Oncology, Rajiv Gandhi Cancer Institute and Research Centre, New Delhi, India
| | - Kaviarasu Karunakaran
- Division of Medical Physics, School of Advanced Sciences, VIT University, New Delhi, India
| | - Rajesh Thiyagarajan
- Division of Medical Physics, School of Advanced Sciences, VIT University, New Delhi, India
| |
Collapse
|
220
|
Godson HF, Ravikumar M, Sathiyan S, Ganesh KM, Ponmalar YR, Varatharaj C. Analysis of small field percent depth dose and profiles: Comparison of measurements with various detectors and effects of detector orientation with different jaw settings. J Med Phys 2016; 41:12-20. [PMID: 27051165 PMCID: PMC4795411 DOI: 10.4103/0971-6203.177284] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
The advent of modern technologies in radiotherapy poses an increased challenge in the determination of dosimetric parameters of small fields that exhibit a high degree of uncertainty. Percent depth dose and beam profiles were acquired using different detectors in two different orientations. The parameters such as relative surface dose (DS), depth of dose maximum (Dmax), percentage dose at 10 cm (D10), penumbral width, flatness, and symmetry were evaluated with different detectors. The dosimetric data were acquired for fields defined by jaws alone, multileaf collimator (MLC) alone, and by MLC while the jaws were positioned at 0, 0.25, 0.5, and 1.0 cm away from MLC leaf-end using a Varian linear accelerator with 6 MV photon beam. The accuracy in the measurement of dosimetric parameters with various detectors for three different field definitions was evaluated. The relative DS(38.1%) with photon field diode in parallel orientation was higher than electron field diode (EFD) (27.9%) values for 1 cm ×1 cm field. An overestimation of 5.7% and 8.6% in D10 depth were observed for 1 cm ×1 cm field with RK ion chamber in parallel and perpendicular orientation, respectively, for the fields defined by MLC while jaw positioned at the edge of the field when compared to EFD values in parallel orientation. For this field definition, the in-plane penumbral widths obtained with ion chamber in parallel and perpendicular orientation were 3.9 mm, 5.6 mm for 1 cm ×1 cm field, respectively. Among all detectors used in the study, the unshielded diodes were found to be an appropriate choice of detector for the measurement of beam parameters in small fields.
Collapse
Affiliation(s)
- Henry Finlay Godson
- Department of Radiation Physics, Kidwai Memorial Institute of Oncology, Bengaluru, Karnataka, India; Department of Radiotherapy, Christian Medical College, Vellore, Tamil Nadu, India
| | - M Ravikumar
- Department of Radiation Physics, Kidwai Memorial Institute of Oncology, Bengaluru, Karnataka, India
| | - S Sathiyan
- Department of Radiation Physics, Kidwai Memorial Institute of Oncology, Bengaluru, Karnataka, India
| | - K M Ganesh
- Department of Radiation Physics, Kidwai Memorial Institute of Oncology, Bengaluru, Karnataka, India
| | - Y Retna Ponmalar
- Department of Radiation Physics, Kidwai Memorial Institute of Oncology, Bengaluru, Karnataka, India; Department of Radiotherapy, Christian Medical College, Vellore, Tamil Nadu, India
| | - C Varatharaj
- Department of Radiation Physics, Kidwai Memorial Institute of Oncology, Bengaluru, Karnataka, India
| |
Collapse
|
221
|
Barraclough B, Li JG, Lebron S, Fan Q, Liu C, Yan G. Technical Note: Impact of the geometry dependence of the ion chamber detector response function on a convolution-based method to address the volume averaging effect. Med Phys 2016; 43:2081. [DOI: 10.1118/1.4944783] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
222
|
Daniel S, Roring J, Cruz W. Commissioning and cross-comparison of four scanning water tanks. INTERNATIONAL JOURNAL OF CANCER THERAPY AND ONCOLOGY 2016. [DOI: 10.14319/ijcto.41.5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
223
|
Zhao T, Sun B, Grantham K, Rankine L, Cai B, Goddu SM, Santanam L, Knutson N, Zhang T, Reilly M, Bottani B, Bradley J, Mutic S, Klein EE. Commissioning and initial experience with the first clinical gantry-mounted proton therapy system. J Appl Clin Med Phys 2016; 17:24-40. [PMID: 27074470 PMCID: PMC5874960 DOI: 10.1120/jacmp.v17i2.5868] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Revised: 10/21/2015] [Accepted: 10/13/2015] [Indexed: 11/23/2022] Open
Abstract
The purpose of this study is to describe the comprehensive commissioning process and initial clinical experience of the Mevion S250 proton therapy system, a gantry‐mounted, single‐room proton therapy platform clinically implemented in the S. Lee Kling Proton Therapy Center at Barnes‐Jewish Hospital in St. Louis, MO, USA. The Mevion S250 system integrates a compact synchrocyclotron with a C‐inner gantry, an image guidance system and a 6D robotic couch into a beam delivery platform. We present our commissioning process and initial clinical experience, including i) CT calibration; ii) beam data acquisition and machine characteristics; iii) dosimetric commissioning of the treatment planning system; iv) validation through the Imaging and Radiation Oncology Core credentialing process, including irradiations on the spine, prostate, brain, and lung phantoms; v) evaluation of localization accuracy of the image guidance system; and vi) initial clinical experience. Clinically, the system operates well and has provided an excellent platform for the treatment of diseases with protons. PACS number(s): 87.55.ne, 87.56.bd
Collapse
|
224
|
Lebron S, Lu B, Yan G, Kahler D, Li JG, Barraclough B, Liu C. Parameterization of photon beam dosimetry for a linear accelerator. Med Phys 2016; 43:748-60. [PMID: 26843238 DOI: 10.1118/1.4939261] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
PURPOSE In radiation therapy, accurate data acquisition of photon beam dosimetric quantities is important for (1) beam modeling data input into a treatment planning system (TPS), (2) comparing measured and TPS modeled data, (3) the quality assurance process of a linear accelerator's (Linac) beam characteristics, (4) the establishment of a standard data set for comparison with other data, etcetera. Parameterization of the photon beam dosimetry creates a data set that is portable and easy to implement for different applications such as those previously mentioned. The aim of this study is to develop methods to parameterize photon beam dosimetric quantities, including percentage depth doses (PDDs), profiles, and total scatter output factors (S(cp)). METHODS S(cp), PDDs, and profiles for different field sizes, depths, and energies were measured for a Linac using a cylindrical 3D water scanning system. All data were smoothed for the analysis and profile data were also centered, symmetrized, and geometrically scaled. The S(cp) data were analyzed using an exponential function. The inverse square factor was removed from the PDD data before modeling and the data were subsequently analyzed using exponential functions. For profile modeling, one halfside of the profile was divided into three regions described by exponential, sigmoid, and Gaussian equations. All of the analytical functions are field size, energy, depth, and, in the case of profiles, scan direction specific. The model's parameters were determined using the minimal amount of measured data necessary. The model's accuracy was evaluated via the calculation of absolute differences between the measured (processed) and calculated data in low gradient regions and distance-to-agreement analysis in high gradient regions. Finally, the results of dosimetric quantities obtained by the fitted models for a different machine were also assessed. RESULTS All of the differences in the PDDs' buildup and the profiles' penumbra regions were less than 2 and 0.5 mm, respectively. The differences in the low gradient regions were 0.20% ± 0.20% (<1% for all) and 0.50% ± 0.35% (<1% for all) for PDDs and profiles, respectively. For S(cp) data, all of the absolute differences were less than 0.5%. CONCLUSIONS This novel analytical model with minimum measurement requirements was proved to accurately calculate PDDs, profiles, and S(cp) for different field sizes, depths, and energies.
Collapse
Affiliation(s)
- Sharon Lebron
- Department of Radiation Oncology, University of Florida College of Medicine, Gainesville, Florida 32610-0385 and J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, Florida 32611
| | - Bo Lu
- Department of Radiation Oncology, University of Florida College of Medicine, Gainesville, Florida 32610-0385
| | - Guanghua Yan
- Department of Radiation Oncology, University of Florida College of Medicine, Gainesville, Florida 32610-0385
| | - Darren Kahler
- Department of Radiation Oncology, University of Florida College of Medicine, Gainesville, Florida 32610-0385
| | - Jonathan G Li
- Department of Radiation Oncology, University of Florida College of Medicine, Gainesville, Florida 32610-0385
| | - Brendan Barraclough
- Department of Radiation Oncology, University of Florida College of Medicine, Gainesville, Florida 32610-0385 and J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, Florida 32611
| | - Chihray Liu
- Department of Radiation Oncology, University of Florida College of Medicine, Gainesville, Florida 32610-0385
| |
Collapse
|
225
|
Narayanasamy G, Saenz D, Cruz W, Ha CS, Papanikolaou N, Stathakis S. Commissioning an Elekta Versa HD linear accelerator. J Appl Clin Med Phys 2016; 17:179-191. [PMID: 26894351 PMCID: PMC5690217 DOI: 10.1120/jacmp.v17i1.5799] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Revised: 10/12/2015] [Accepted: 09/28/2015] [Indexed: 12/31/2022] Open
Abstract
The purpose of this study is to report the dosimetric aspects of commissioning performed on an Elekta Versa HD linear accelerator (linac) with high-dose-rate flattening filter-free (FFF) photon modes and electron modes. Acceptance and commissioning was performed on the Elekta Versa HD linac with five photon energies (6 MV, 10 MV, 18 MV, 6 MV FFF, 10 MV FFF), four electron energies (6 MeV, 9MeV, 12 MeV, 15 MeV) and 160-leaf (5 mm wide) multileaf collimators (MLCs). Mechanical and dosimetric data were measured and evaluated. The measurements include percent depth doses (PDDs), in-plane and cross-plane profiles, head scatter factor (Sc), relative photon output factors (Scp), universal wedge transmission factor, MLC transmission factors, and electron cone factors. Gantry, collimator, and couch isocentricity measurements were within 1 mm, 0.7 mm, and 0.7 mm diameter, respectively. The PDDs of 6 MV FFF and 10 MV FFF beams show deeper dmax and steeper falloff with depth than the corresponding flattened beams. While flatness values of 6 MV FFF and 10 MV FFF normalized profiles were expectedly higher than the corresponding flattened beams, the symmetry values were almost identical. The cross-plane penumbra values were higher than the in-plane penumbra values for all the energies. The MLC transmission values were 0.5%, 0.6%, and 0.6% for 6 MV, 10 MV, and 18 MV photon beams, respectively. The electron PDDs, profiles, and cone factors agree well with the literature. The outcome of radiation treatment is directly related to the accuracy in the dose modeled in the treatment planning system, which is based on the commissioned data. Commissioning data provided us a valuable insight into the dosimetric characteristics of the beam. This set of commissioning data can provide comparison data to others performing Versa HD commissioning, thereby improving patient safety.
Collapse
Affiliation(s)
- Ganesh Narayanasamy
- University of Texas Health Science Center at San Antonio; University of Arkansas for Medical Sciences.
| | | | | | | | | | | |
Collapse
|
226
|
Teke T, Duzenli C, Bergman A, Viel F, Atwal P, Gete E. Monte Carlo validation of the TrueBeam 10XFFF phase-space files for applications in lung SABR. Med Phys 2015; 42:6863-74. [PMID: 26632043 DOI: 10.1118/1.4935144] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
PURPOSE To establish the clinical acceptability of universal Monte Carlo phase-space data for the 10XFFF (flattening filter free) photon beam on the Varian TrueBeam Linac, including previously unreported data for small fields, output factors, and inhomogeneous media. The study was particularly aimed at confirming the suitability for use in simulations of lung stereotactic ablative radiotherapy treatment plans. METHODS Monte Carlo calculated percent depth doses (PDDs), transverse profiles, and output factors for the TrueBeam 10 MV FFF beam using generic phase-space data that have been released by the Varian MC research team were compared with in-house measurements and published data from multiple institutions (ten Linacs from eight different institutions). BEAMnrc was used to create field size specific phase-spaces located underneath the jaws. Doses were calculated with DOSXYZnrc in a water phantom for fields ranging from 1 × 1 to 40 × 40 cm(2). Particular attention was paid to small fields (down to 1 × 1 cm(2)) and dose per pulse effects on dosimeter response for high dose rate 10XFFF beams. Ion chamber measurements were corrected for changes in ion collection efficiency (P(ion)) with increasing dose per pulse. MC and ECLIPSE ANISOTROPIC ANALYTICAL ALGORITHM (AAA) calculated PDDs were compared to Gafchromic film measurement in inhomogeneous media (water, bone, lung). RESULTS Measured data from all machines agreed with Monte Carlo simulations within 1.0% and 1.5% for PDDs and in-field transverse profiles, respectively, for field sizes >1 × 1 cm(2) in a homogeneous water phantom. Agreements in the 80%-20% penumbra widths were better than 2 mm for all the fields that were compared. For all the field sizes considered, the agreement between their measured and calculated output factors was within 1.1%. Monte Carlo results for dose to water at water/bone, bone/lung, and lung/water interfaces as well as within lung agree with film measurements to within 2.8% for 10 × 10 and 3 × 3 cm(2) field sizes. This represents a significant improvement over the performance of the ECLIPSE AAA. CONCLUSIONS The 10XFFF phase-space data offered by the Varian Monte Carlo research team have been validated for clinical use using measured, interinstitutional beam data in water and with film dosimetry in inhomogeneous media.
Collapse
Affiliation(s)
- Tony Teke
- Medical Physics, BC Cancer Agency-Centre for the Southern Interior, Kelowna, British Columbia V1Y 5L3, Canada
| | - Cheryl Duzenli
- Medical Physics, BC Cancer Agency-Vancouver Centre, Vancouver, British Columbia V5Z 4E6, Canada
| | - Alanah Bergman
- Medical Physics, BC Cancer Agency-Vancouver Centre, Vancouver, British Columbia V5Z 4E6, Canada
| | - Francis Viel
- Medical Physics, BC Cancer Agency-Vancouver Centre, Vancouver, British Columbia V5Z 4E6, Canada
| | - Parmveer Atwal
- Medical Physics, BC Cancer Agency-Vancouver Centre, Vancouver, British Columbia V5Z 4E6, Canada
| | - Ermias Gete
- Medical Physics, BC Cancer Agency-Vancouver Centre, Vancouver, British Columbia V5Z 4E6, Canada
| |
Collapse
|
227
|
Cruz W, Narayanasamy G, Papanikolaou N, Stathakis S. Dosimetric comparison of water phantoms, ion chambers, and data acquisition modes for LINAC characterization. RADIAT MEAS 2015. [DOI: 10.1016/j.radmeas.2015.09.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
228
|
Akino Y, Gautam A, Coutinho L, Würfel J, Das IJ. Characterization of a new commercial single crystal diamond detector for photon- and proton-beam dosimetry. JOURNAL OF RADIATION RESEARCH 2015; 56:912-918. [PMID: 26268483 PMCID: PMC4628217 DOI: 10.1093/jrr/rrv044] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Revised: 04/01/2015] [Accepted: 07/01/2015] [Indexed: 06/04/2023]
Abstract
A synthetic single crystal diamond detector (SCDD) is commercially available and is characterized for radiation dosimetry in various radiation beams in this study. The characteristics of the commercial SCDD model 60019 (PTW) with 6- and 15-MV photon beams, and 208-MeV proton beams, were investigated and compared with the pre-characterized detectors: Semiflex (model 31010) and PinPoint (model 31006) ionization chambers (PTW), the EDGE diode detector (Sun Nuclear Corp) and the SFD Stereotactic Dosimetry Diode Detector (IBA). To evaluate the effects of the pre-irradiation, the diamond detector, which had not been irradiated on the day, was set up in the water tank, and the response to 100 MU was measured every 20 s. The depth-dose and profiles data were collected for various field sizes and depths. For all radiation types and field sizes, the depth-dose data of the diamond chamber showed identical curves to those of the ionization chambers. The profile of the diamond detector was very similar to those of the EDGE and SFD detectors, although the Semiflex and PinPoint chambers showed volume-averaging effects in the penumbrae region. The temperature dependency was within 0.7% in the range of 4-41°C. A dose of 900 cGy and 1200 cGy was needed to stabilize the chamber to the level within 0.5% and 0.2%, respectively. The PTW type 60019 SCDD detector showed suitable characteristics for radiation dosimetry, for relative dose, depth-dose and profile measurements for a wide range of field sizes. However, at least 1000 cGy of pre-irradiation will be needed for accurate measurements.
Collapse
Affiliation(s)
- Yuichi Akino
- Department of Radiation Oncology, Indiana University School of Medicine, Indianapolis 46202, USA Present address: Division of Health Sciences, Osaka University Graduate School of Medicine, 1-7 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Archana Gautam
- Department of Radiation Oncology, Indiana University Health Proton Therapy Center, Bloomington 47408, USA Present address; Department of Radiation Physics, MD Anderson Cancer Center, 1515 Holocombe Blvd, Houston, Tx 77030, USA
| | - Len Coutinho
- Department of Radiation Oncology, Indiana University Health Proton Therapy Center, Bloomington 47408, USA
| | - Jan Würfel
- PTW-Freiburg GmbH, Loerracher Strasse 7, Freiburg 79115, Germany
| | - Indra J Das
- Department of Radiation Oncology, Indiana University School of Medicine, Indianapolis 46202, USA Department of Radiation Oncology, Indiana University Health Proton Therapy Center, Bloomington 47408, USA
| |
Collapse
|
229
|
Kumar S, Fenwick JD, Underwood TSA, Deshpande DD, Scott AJD, Nahum AE. Breakdown of Bragg–Gray behaviour for low-density detectors under electronic disequilibrium conditions in small megavoltage photon fields. Phys Med Biol 2015; 60:8187-212. [DOI: 10.1088/0031-9155/60/20/8187] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
230
|
Smilowitz JB, Das IJ, Feygelman V, Fraass BA, Kry SF, Marshall IR, Mihailidis DN, Ouhib Z, Ritter T, Snyder MG, Fairobent L. AAPM Medical Physics Practice Guideline 5.a.: Commissioning and QA of Treatment Planning Dose Calculations - Megavoltage Photon and Electron Beams. J Appl Clin Med Phys 2015; 16:14–34. [PMID: 26699330 PMCID: PMC5690154 DOI: 10.1120/jacmp.v16i5.5768] [Citation(s) in RCA: 144] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Revised: 06/10/2015] [Accepted: 06/13/2015] [Indexed: 12/02/2022] Open
Abstract
The American Association of Physicists in Medicine (AAPM) is a nonprofit professional society whose primary purposes are to advance the science, education and professional practice of medical physics. The AAPM has more than 8,000 members and is the principal organization of medical physicists in the United States. The AAPM will periodically define new practice guidelines for medical physics practice to help advance the science of medical physics and to improve the quality of service to patients throughout the United States. Existing medical physics practice guidelines will be reviewed for the purpose of revision or renewal, as appropriate, on their fifth anniversary or sooner. Each medical physics practice guideline represents a policy statement by the AAPM, has undergone a thorough consensus process in which it has been subjected to extensive review, and requires the approval of the Professional Council. The medical physics practice guidelines recognize that the safe and effective use of diagnostic and therapeutic radiology requires specific training, skills, and techniques, as described in each document. Reproduction or modification of the published practice guidelines and technical standards by those entities not providing these services is not authorized. The following terms are used in the AAPM practice guidelines:• Must and Must Not: Used to indicate that adherence to the recommendation is considered necessary to conform to this practice guideline.• Should and Should Not: Used to indicate a prudent practice to which exceptions may occasionally be made in appropriate circumstances.
Collapse
|
231
|
Njeh CF. Enhanced dynamic wedge output factors for Varian 2300CD and the case for a reference database. J Appl Clin Med Phys 2015; 16:271–283. [PMID: 26699307 PMCID: PMC5690176 DOI: 10.1120/jacmp.v16i5.5498] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Revised: 04/29/2015] [Accepted: 04/20/2015] [Indexed: 11/23/2022] Open
Abstract
Dose inhomogeneity in treatment planning can be compensated using physical wedges. Enhanced dynamic wedges (EDW) were introduced by Varian to overcome some of the shortcomings of physical wedges. The objectives of this study were to measure EDW output factors for 6 MV and 20 MV photon energies for a Varian 2300CD. Secondly, to review the literature in terms of published enhanced dynamic wedge output factors (EDWOF) for different Varian models and thereby add credence to the case of the validity of reference databases. The enhanced dynamic wedge output factors were measured for the Varian 2300CD for both 6MV and 20 MV photon energies. Twelve papers with published EDWOF for different Varian linac models were found in the literature. Comparing our results with the published mean, we found an excellent agreement for 6 MV EDWOF, with the percentage differences ranging from 0.01% to 0.57%, with a mean of 0.03%. The coefficient of variation of published EDWOF ranged from 0.17% to 0.85% and 0.1% to 0.9% for the for 6 MV and 18 MV photon energies, respectively. This paper provides the first published EDWOF for 20 MV photon energy. In addition, we have provided the first compendium of EDWOFs for different Varian linac models. The consistency of value across models and institution provide further support that a standard dataset of basic photon and electron dosimetry could be established as a guide for future commissioning, beam modeling, and quality assurance purposes.
Collapse
|
232
|
Al Kafi MA, Mwidu U, Moftah B. Continuous versus step-by-step scanning mode of a novel 3D scanner for CyberKnife measurements. Appl Radiat Isot 2015; 105:88-91. [PMID: 26265091 DOI: 10.1016/j.apradiso.2015.07.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2015] [Revised: 07/08/2015] [Accepted: 07/18/2015] [Indexed: 11/30/2022]
Abstract
The purpose of the study is to investigate the continuous versus step-by-step scanning mode of a commercial circular 3D scanner for commissioning measurements of a robotic stereotactic radiosurgery system. The 3D scanner was used for profile measurements in step-by-step and continuous modes with the intent of comparing the two scanning modes for consistency. The profile measurements of in-plane, cross-plane, 15 degree, and 105 degree were performed for both fixed cones and Iris collimators at depth of maximum dose and at 10cm depth. For CyberKnife field size, penumbra, flatness and symmetry analysis, it was observed that the measurements with continuous mode, which can be up to 6 times faster than step-by-step mode, are comparable and produce scans nearly identical to step-by-step mode. When compared with centered step-by-step mode data, a fully processed continuous mode data gives rise to maximum of 0.50% and 0.60% symmetry and flatness difference respectfully for all the fixed cones and Iris collimators studied.
Collapse
Affiliation(s)
- M Abdullah Al Kafi
- Biomedical Physics Department, King Faisal Specialist Hospital & Research Centre, MBC 03, P.O. Box 3354, Riyadh 11211, Saudi Arabia.
| | - Umar Mwidu
- Biomedical Physics Department, King Faisal Specialist Hospital & Research Centre, MBC 03, P.O. Box 3354, Riyadh 11211, Saudi Arabia
| | - Belal Moftah
- Biomedical Physics Department, King Faisal Specialist Hospital & Research Centre, MBC 03, P.O. Box 3354, Riyadh 11211, Saudi Arabia
| |
Collapse
|
233
|
Barraclough B, Li JG, Lebron S, Fan Q, Liu C, Yan G. A novel convolution-based approach to address ionization chamber volume averaging effect in model-based treatment planning systems. Phys Med Biol 2015; 60:6213-26. [PMID: 26226323 DOI: 10.1088/0031-9155/60/16/6213] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The ionization chamber volume averaging effect is a well-known issue without an elegant solution. The purpose of this study is to propose a novel convolution-based approach to address the volume averaging effect in model-based treatment planning systems (TPSs). Ionization chamber-measured beam profiles can be regarded as the convolution between the detector response function and the implicit real profiles. Existing approaches address the issue by trying to remove the volume averaging effect from the measurement. In contrast, our proposed method imports the measured profiles directly into the TPS and addresses the problem by reoptimizing pertinent parameters of the TPS beam model. In the iterative beam modeling process, the TPS-calculated beam profiles are convolved with the same detector response function. Beam model parameters responsible for the penumbra are optimized to drive the convolved profiles to match the measured profiles. Since the convolved and the measured profiles are subject to identical volume averaging effect, the calculated profiles match the real profiles when the optimization converges. The method was applied to reoptimize a CC13 beam model commissioned with profiles measured with a standard ionization chamber (Scanditronix Wellhofer, Bartlett, TN). The reoptimized beam model was validated by comparing the TPS-calculated profiles with diode-measured profiles. Its performance in intensity-modulated radiation therapy (IMRT) quality assurance (QA) for ten head-and-neck patients was compared with the CC13 beam model and a clinical beam model (manually optimized, clinically proven) using standard Gamma comparisons. The beam profiles calculated with the reoptimized beam model showed excellent agreement with diode measurement at all measured geometries. Performance of the reoptimized beam model was comparable with that of the clinical beam model in IMRT QA. The average passing rates using the reoptimized beam model increased substantially from 92.1% to 99.3% with 3%/3 mm and from 79.2% to 95.2% with 2%/2 mm when compared with the CC13 beam model. These results show the effectiveness of the proposed method. Less inter-user variability can be expected of the final beam model. It is also found that the method can be easily integrated into model-based TPS.
Collapse
Affiliation(s)
- Brendan Barraclough
- Department of Radiation Oncology, College of Medicine, University of Florida, Gainesville, FL 32611, USA. J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611, USA
| | | | | | | | | | | |
Collapse
|
234
|
Zhen H, Hrycushko B, Lee H, Timmerman R, Pompoš A, Stojadinovic S, Foster R, Jiang SB, Solberg T, Gu X. Dosimetric comparison of Acuros XB with collapsed cone convolution/superposition and anisotropic analytic algorithm for stereotactic ablative radiotherapy of thoracic spinal metastases. J Appl Clin Med Phys 2015. [PMID: 26219014 PMCID: PMC5690024 DOI: 10.1120/jacmp.v16i4.5493] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The aim of this study is to compare the recent Eclipse Acuros XB (AXB) dose calculation engine with the Pinnacle collapsed cone convolution/superposition (CCC) dose calculation algorithm and the Eclipse anisotropic analytic algorithm (AAA) for stereotactic ablative radiotherapy (SAbR) treatment planning of thoracic spinal (T‐spine) metastases using IMRT and VMAT delivery techniques. The three commissioned dose engines (CCC, AAA, and AXB) were validated with ion chamber and EBT2 film measurements utilizing a heterogeneous slab‐geometry water phantom and an anthropomorphic phantom. Step‐and‐shoot IMRT and VMAT treatment plans were developed and optimized for eight patients in Pinnacle, following our institutional SAbR protocol for spinal metastases. The CCC algorithm, with heterogeneity corrections, was used for dose calculations. These plans were then exported to Eclipse and recalculated using the AAA and AXB dose calculation algorithms. Various dosimetric parameters calculated with CCC and AAA were compared to that of the AXB calculations. In regions receiving above 50% of prescription dose, the calculated CCC mean dose is 3.1%–4.1% higher than that of AXB calculations for IMRT plans and 2.8%–3.5% higher for VMAT plans, while the calculated AAA mean dose is 1.5%–2.4% lower for IMRT and 1.2%–1.6% lower for VMAT. Statistically significant differences (p<0.05) were observed for most GTV and PTV indices between the CCC and AXB calculations for IMRT and VMAT, while differences between the AAA and AXB calculations were not statistically significant. For T‐spine SAbR treatment planning, the CCC calculations give a statistically significant overestimation of target dose compared to AXB. AAA underestimates target dose with no statistical significance compared to AXB. Further study is needed to determine the clinical impact of these findings. PACS number: 87.55.D‐, 87.53.Ly
Collapse
|
235
|
Wen N, Li H, Song K, Chin-Snyder K, Qin Y, Kim J, Bellon M, Gulam M, Gardner S, Doemer A, Devpura S, Gordon J, Chetty I, Siddiqui F, Ajlouni M, Pompa R, Hammoud Z, Simoff M, Kalkanis S, Movsas B, Siddiqui MS. Characteristics of a novel treatment system for linear accelerator-based stereotactic radiosurgery. J Appl Clin Med Phys 2015; 16:125–148. [PMID: 26218998 PMCID: PMC5690003 DOI: 10.1120/jacmp.v16i4.5313] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Revised: 02/17/2015] [Accepted: 02/13/2015] [Indexed: 11/23/2022] Open
Abstract
The purpose of this study is to characterize the dosimetric properties and accuracy of a novel treatment platform (Edge radiosurgery system) for localizing and treating patients with frameless, image-guided stereotactic radiosurgery (SRS) and stereotactic body radiotherapy (SBRT). Initial measurements of various components of the system, such as a comprehensive assessment of the dosimetric properties of the flattening filter-free (FFF) beams for both high definition (HD120) MLC and conical cone-based treatment, positioning accuracy and beam attenuation of a six degree of freedom (6DoF) couch, treatment head leakage test, and integrated end-to-end accuracy tests, have been performed. The end-to-end test of the system was performed by CT imaging a phantom and registering hidden targets on the treatment couch to determine the localization accuracy of the optical surface monitoring system (OSMS), cone-beam CT (CBCT), and MV imaging systems, as well as the radiation isocenter targeting accuracy. The deviations between the percent depth-dose curves acquired on the new linac-based system (Edge), and the previously published machine with FFF beams (TrueBeam) beyond D(max) were within 1.0% for both energies. The maximum deviation of output factors between the Edge and TrueBeam was 1.6%. The optimized dosimetric leaf gap values, which were fitted using Eclipse dose calculations and measurements based on representative spine radiosurgery plans, were 0.700 mm and 1.000 mm, respectively. For the conical cones, 6X FFF has sharper penumbra ranging from 1.2-1.8 mm (80%-20%) and 1.9-3.8 mm (90%-10%) relative to 10X FFF, which has 1.2-2.2mm and 2.3-5.1mm, respectively. The relative attenuation measurements of the couch for PA, PA (rails-in), oblique, oblique (rails-out), oblique (rails-in) were: -2.0%, -2.5%, -15.6%, -2.5%, -5.0% for 6X FFF and -1.4%, -1.5%, -12.2%, -2.5%, -5.0% for 10X FFF, respectively, with a slight decrease in attenuation versus field size. The systematic deviation between the OSMS and CBCT was -0.4 ± 0.2 mm, 0.1± 0.3mm, and 0.0 ± 0.1 mm in the vertical, longitudinal, and lateral directions. The mean values and standard deviations of the average deviation and maximum deviation of the daily Winston-Lutz tests over three months are 0.20 ± 0.03 mm and 0.66 ± 0.18 mm, respectively. Initial testing of this novel system demonstrates the technology to be highly accurate and suitable for frameless, linac-based SRS and SBRT treatment.
Collapse
|
236
|
A comparison between direct TMR measurements and TMRs calculated from PDDs using BJR Supplement 25 data for flattened and unflattened photon beams. AUSTRALASIAN PHYSICAL & ENGINEERING SCIENCES IN MEDICINE 2015; 38:503-7. [DOI: 10.1007/s13246-015-0359-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 06/23/2015] [Indexed: 10/23/2022]
|
237
|
Quino L, Hernandez C, Calvo O, Deweese M. Evaluation of a novel reference chamber “stealth chamber” through Monte Carlo simulations and experimental data. INTERNATIONAL JOURNAL OF CANCER THERAPY AND ONCOLOGY 2015. [DOI: 10.14319/ijcto.32.22] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
238
|
Slopsema RL, Lin L, Flampouri S, Yeung D, Li Z, McDonough JE, Palta J. Development of a golden beam data set for the commissioning of a proton double-scattering system in a pencil-beam dose calculation algorithm. Med Phys 2015; 41:091710. [PMID: 25186385 DOI: 10.1118/1.4893281] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
PURPOSE The purpose of this investigation is to determine if a single set of beam data, described by a minimal set of equations and fitting variables, can be used to commission different installations of a proton double-scattering system in a commercial pencil-beam dose calculation algorithm. METHODS The beam model parameters required to commission the pencil-beam dose calculation algorithm (virtual and effective SAD, effective source size, and pristine-peak energy spread) are determined for a commercial double-scattering system. These parameters are measured in a first room and parameterized as function of proton energy and nozzle settings by fitting four analytical equations to the measured data. The combination of these equations and fitting values constitutes the golden beam data (GBD). To determine the variation in dose delivery between installations, the same dosimetric properties are measured in two additional rooms at the same facility, as well as in a single room at another facility. The difference between the room-specific measurements and the GBD is evaluated against tolerances that guarantee the 3D dose distribution in each of the rooms matches the GBD-based dose distribution within clinically reasonable limits. The pencil-beam treatment-planning algorithm is commissioned with the GBD. The three-dimensional dose distribution in water is evaluated in the four treatment rooms and compared to the treatment-planning calculated dose distribution. RESULTS The virtual and effective SAD measurements fall between 226 and 257 cm. The effective source size varies between 2.4 and 6.2 cm for the large-field options, and 1.0 and 2.0 cm for the small-field options. The pristine-peak energy spread decreases from 1.05% at the lowest range to 0.6% at the highest. The virtual SAD as well as the effective source size can be accurately described by a linear relationship as function of the inverse of the residual energy. An additional linear correction term as function of RM-step thickness is required for accurate parameterization of the effective SAD. The GBD energy spread is given by a linear function of the exponential of the beam energy. Except for a few outliers, the measured parameters match the GBD within the specified tolerances in all of the four rooms investigated. For a SOBP field with a range of 15 g/cm2 and an air gap of 25 cm, the maximum difference in the 80%-20% lateral penumbra between the GBD-commissioned treatment-planning system and measurements in any of the four rooms is 0.5 mm. CONCLUSIONS The beam model parameters of the double-scattering system can be parameterized with a limited set of equations and parameters. This GBD closely matches the measured dosimetric properties in four different rooms.
Collapse
Affiliation(s)
- R L Slopsema
- University of Florida Proton Therapy Institute, 2015 North Jefferson Street, Jacksonville, Florida 32205
| | - L Lin
- Department of Radiation Oncology, University of Pennsylvania, 3400 Civic Boulevard, 2326W TRC, PCAM, Philadelphia, Pennsylvania 19104
| | - S Flampouri
- University of Florida Proton Therapy Institute, 2015 North Jefferson Street, Jacksonville, Florida 32205
| | - D Yeung
- University of Florida Proton Therapy Institute, 2015 North Jefferson Street, Jacksonville, Florida 32205
| | - Z Li
- University of Florida Proton Therapy Institute, 2015 North Jefferson Street, Jacksonville, Florida 32205
| | - J E McDonough
- Department of Radiation Oncology, University of Pennsylvania, 3400 Civic Boulevard, 2326W TRC, PCAM, Philadelphia, Pennsylvania 19104
| | - J Palta
- VCU Massey Cancer Center, Virginia Commonwealth University, 401 College Street, Richmond, Virginia 23298
| |
Collapse
|
239
|
Kairn T, Asena A, Charles PH, Hill B, Langton CM, Middlebrook ND, Moylan R, Trapp JV. Field size consistency of nominally matched linacs. AUSTRALASIAN PHYSICAL & ENGINEERING SCIENCES IN MEDICINE 2015; 38:289-97. [DOI: 10.1007/s13246-015-0349-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2014] [Accepted: 05/15/2015] [Indexed: 11/29/2022]
|
240
|
Johnstone CD, LaFontaine R, Poirier Y, Tambasco M. Modeling a superficial radiotherapy X-ray source for relative dose calculations. J Appl Clin Med Phys 2015; 16:5162. [PMID: 26103479 PMCID: PMC5690109 DOI: 10.1120/jacmp.v16i3.5162] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Revised: 01/17/2015] [Accepted: 01/13/2015] [Indexed: 11/25/2022] Open
Abstract
The purpose of this study was to empirically characterize and validate a kilovoltage (kV) X‐ray beam source model of a superficial X‐ray unit for relative dose calculations in water and assess the accuracy of the British Journal of Radiology Supplement 25 (BJR 25) percentage depth dose (PDD) data. We measured central axis PDDs and dose profiles using an Xstrahl 150 X‐ray system. We also compared the measured and calculated PDDs to those in the BJR 25. The Xstrahl source was modeled as an effective point source with varying spatial fluence and spectra. In‐air ionization chamber measurements were made along the x‐ and y‐axes of the X‐ray beam to derive the spatial fluence and half‐value layer (HVL) measurements were made to derive the spatially varying spectra. This beam characterization and resulting source model was used as input for our in‐house dose calculation software (kVDoseCalc) to compute radiation dose at points of interest (POIs). The PDDs and dose profiles were measured using 2, 5, and 15 cm cone sizes at 80, 120, 140, and 150 kVp energies in a scanning water phantom using IBA Farmer‐type ionization chambers of volumes 0.65 and 0.13 cc, respectively. The percent difference in the computed PDDs compared with our measurements range from −4.8% to 4.8%, with an overall mean percent difference and standard deviation of 1.5% and 0.7%, respectively. The percent difference between our PDD measurements and those from BJR 25 range from −14.0% to 15.7%, with an overall mean percent difference and standard deviation of 4.9% and 2.1%, respectively — showing that the measurements are in much better agreement with kVDoseCalc than BJR 25. The range in percent difference between kVDoseCalc and measurement for profiles was −5.9% to 5.9%, with an overall mean percent difference and standard deviation of 1.4% and 1.4%, respectively. The results demonstrate that our empirically based X‐ray source modeling approach for superficial X‐ray therapy can be used to accurately compute relative dose in a homogeneous water‐equivalent medium. They also show limitations in the accuracy of the BJR 25 PDD data. PACS number: 87.55.kh
Collapse
|
241
|
Xiao Y, Kry SF, Popple R, Yorke E, Papanikolaou N, Stathakis S, Xia P, Huq S, Bayouth J, Galvin J, Yin FF. Flattening filter-free accelerators: a report from the AAPM Therapy Emerging Technology Assessment Work Group. J Appl Clin Med Phys 2015; 16:5219. [PMID: 26103482 PMCID: PMC5690108 DOI: 10.1120/jacmp.v16i3.5219] [Citation(s) in RCA: 122] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2014] [Revised: 02/06/2015] [Accepted: 01/23/2015] [Indexed: 11/23/2022] Open
Abstract
This report describes the current state of flattening filter‐free (FFF) radiotherapy beams implemented on conventional linear accelerators, and is aimed primarily at practicing medical physicists. The Therapy Emerging Technology Assessment Work Group of the American Association of Physicists in Medicine (AAPM) formed a writing group to assess FFF technology. The published literature on FFF technology was reviewed, along with technical specifications provided by vendors. Based on this information, supplemented by the clinical experience of the group members, consensus guidelines and recommendations for implementation of FFF technology were developed. Areas in need of further investigation were identified. Removing the flattening filter increases beam intensity, especially near the central axis. Increased intensity reduces treatment time, especially for high‐dose stereotactic radiotherapy/radiosurgery (SRT/SRS). Furthermore, removing the flattening filter reduces out‐of‐field dose and improves beam modeling accuracy. FFF beams are advantageous for small field (e.g., SRS) treatments and are appropriate for intensity‐modulated radiotherapy (IMRT). For conventional 3D radiotherapy of large targets, FFF beams may be disadvantageous compared to flattened beams because of the heterogeneity of FFF beam across the target (unless modulation is employed). For any application, the nonflat beam characteristics and substantially higher dose rates require consideration during the commissioning and quality assurance processes relative to flattened beams, and the appropriate clinical use of the technology needs to be identified. Consideration also needs to be given to these unique characteristics when undertaking facility planning. Several areas still warrant further research and development. Recommendations pertinent to FFF technology, including acceptance testing, commissioning, quality assurance, radiation safety, and facility planning, are presented. Examples of clinical applications are provided. Several of the areas in which future research and development are needed are also indicated. PACS number: 87.53.‐j, 87.53.Bn, 87.53.Ly, 87.55.‐x, 87.55.N‐, 87.56.bc
Collapse
Affiliation(s)
- Ying Xiao
- Thomas Jefferson University Hospital.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
242
|
Baghani HR, Aghamiri SMR, Mahdavi SR, Akbari ME, Mirzaei HR. Comparing the dosimetric characteristics of the electron beam from dedicated intraoperative and conventional radiotherapy accelerators. J Appl Clin Med Phys 2015; 16:5017. [PMID: 26103175 PMCID: PMC5690101 DOI: 10.1120/jacmp.v16i2.5017] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Revised: 11/11/2014] [Accepted: 10/31/2014] [Indexed: 11/28/2022] Open
Abstract
The specific design of the mobile dedicated intraoperative radiotherapy (IORT) accelerators and different electron beam collimation system can change the dosimetric characteristics of electron beam with respect to the conventional accelerators. The aim of this study is to measure and compare the dosimetric characteristics of electron beam produced by intraoperative and conventional radiotherapy accelerators. To this end, percentage depth dose along clinical axis (PDD), transverse dose profile (TDP), and output factor of LIAC IORT and Varian 2100C/D conventional radiotherapy accelerators were measured and compared. TDPs were recorded at depth of maximum dose. The results of this work showed that depths of maximum dose, R90,R50, and RP for LIAC beam are lower than those of Varian beam. Furthermore, for all energies, surface doses related to the LIAC beam are substantially higher than those of Varian beam. The symmetry and flatness of LIAC beam profiles are more desirable compared to the Varian ones. Contrary to Varian accelerator, output factor of LIAC beam substantially increases with a decrease in the size of the applicator. Dosimetric characteristics of beveled IORT applicators along clinical axis were different from those of the flat ones. From these results, it can be concluded that dosimetric characteristics of intraoperative electron beam are substantially different from those of conventional clinical electron beam. The dosimetric characteristics of the LIAC electron beam make it a useful tool for intraoperative radiotherapy purposes. PACS number: 87.56.‐v, 87.56.bd
Collapse
|
243
|
Sarkar V, Wang B, Zhao H, Lynch B, James JA, McCullough KT, Salter BJ. Percent depth-dose distribution discrepancies from very small volume ion chambers. J Appl Clin Med Phys 2015; 16:5230. [PMID: 26103196 PMCID: PMC5690102 DOI: 10.1120/jacmp.v16i2.5230] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2014] [Revised: 12/06/2014] [Accepted: 12/04/2014] [Indexed: 11/23/2022] Open
Abstract
As very small ion chambers become commercially available, medical physicists may be inclined to use them during the linear accelerator commissioning process to better characterize the beam in steep dose gradient areas. For this work, a total of eight different ion chambers (volumes from 0.007 cc to 0.6 cc) and four different scanning systems were used to scan PDDs at both +300V and −300V biases. We observed a reproducible, significant difference (overresponse with depth) in PDDs acquired when using very small ion chambers, with specific bias/water tank combinations — up to 5% at a depth of 25 cm in water. This difference was not observed when the PDDs were sampled using the ion chamber in static positions in conjunction with an external electrometer. This suggests noise/signal interference produced by the controller box and cable system assemblies, which can become relatively significant for the very small current signals collected by very small ion chambers, especially at depth as the signal level is even further reduced. Based on the results observed here, the use of very small active volume chambers under specific scanning conditions may lead to collection of erroneous data, introducing systematic errors into the treatment planning system. In case the use of such a chamber is required, we recommend determining whether such erroneous effect exists by comparing the scans with those obtained with a larger chamber. PACS numbers: 87.56.bd, 87.56.Fc, 87.56.Da
Collapse
|
244
|
Clinical use of diodes and micro-chambers to obtain accurate small field output factor measurements. AUSTRALASIAN PHYSICAL & ENGINEERING SCIENCES IN MEDICINE 2015; 38:357-67. [DOI: 10.1007/s13246-015-0334-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2014] [Accepted: 02/19/2015] [Indexed: 12/22/2022]
|
245
|
Robatjazi M, Mahdavi SR, Takavr A, Baghani HR. Application of Gafchromic EBT2 film for intraoperative radiation therapy quality assurance. Phys Med 2015; 31:314-9. [PMID: 25703011 DOI: 10.1016/j.ejmp.2015.01.020] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2014] [Revised: 01/29/2015] [Accepted: 01/31/2015] [Indexed: 10/24/2022] Open
Abstract
PURPOSE Intraoperative radiation therapy (IORT) using electron beam is commonly done by mobile dedicated linacs that have a variable range of electron energies. This paper focuses on the evaluation of the EBT2 film response in the green and red colour channels for IORT quality assurance (QA). METHODS The calibration of the EBT2 films was done in two ranges; 0-8 Gy for machine QA by red channel and 8-24 Gy for patient-specific QA by green channel analysis. Irradiation of calibration films and relative dosimetries were performed in a water phantom. To evaluate the accuracy of the film response in relative dosimetry, gamma analysis was used to compare the results of the Monte Carlo simulation and ionometric dosimetry. Ten patients with early stage breast cancer were selected for in-vivo dosimetry using the green channel of the EBT2 film. RESULTS The calibration curves were obtained by linear fitting of the green channel and a third-order polynomial function in the red channel (R2=0.99). The total dose uncertainty was up to 4.2% and 4.7% for the red and green channels, respectively. There was a good agreement between the relative dosimetries of films by the red channel, Monte Carlo simulations and ionometric values. The mean dose difference of the in-vivo dosimetry by green channel of this film and the expected values was about 1.98% ± 0.75. CONCLUSION The results of this study showed that EBT2 film can be considered as an appropriate tool for machine and patient-specific QA in IORT.
Collapse
Affiliation(s)
- Mostafa Robatjazi
- Department of Medical Physics, Tehran University of Medical Science, Poursina St, 1417614411 Tehran, Iran
| | - Seied Rabi Mahdavi
- Department of Medical Physics, Iran University of Medical Science, Hemmat Exp. Way, 14496141525 Tehran, Iran.
| | - Abbas Takavr
- Department of Medical Physics, Tehran University of Medical Science, Poursina St, 1417614411 Tehran, Iran
| | - Hamid Reza Baghani
- Department of Radiation Medicine, Shahid Beheshti University, Daneshjoo St, Velenjak, 1983963113 Tehran, Iran
| |
Collapse
|
246
|
Narayanasamy G, Cruz W, Papanikolaou N, Stathakis S. Comparison between measured tissue phantom ratio values and calculated from percent depth doses with and without peak scatter correction factor in a 6 MV beam. INTERNATIONAL JOURNAL OF CANCER THERAPY AND ONCOLOGY 2015. [DOI: 10.14319/ijcto.0302.4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
247
|
Peng JL, Ashenafi MS, McDonald DG, Vanek KN. Assessment of a three-dimensional (3D) water scanning system for beam commissioning and measurements on a helical tomotherapy unit. J Appl Clin Med Phys 2015; 16:4980. [PMID: 25679156 PMCID: PMC5689986 DOI: 10.1120/jacmp.v16i1.4980] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Revised: 08/22/2014] [Accepted: 08/21/2014] [Indexed: 11/23/2022] Open
Abstract
Beam scanning data collected on the tomotherapy linear accelerator using the TomoScanner water scanning system is primarily used to verify the golden beam profiles included in all Helical TomoTherapy treatment planning systems (TOMO TPSs). The user is not allowed to modify the beam profiles/parameters for beam modeling within the TOMO TPSs. The authors report the first feasibility study using the Blue Phantom Helix (BPH) as an alternative to the TomoScanner (TS) system. This work establishes a benchmark dataset using BPH for target commissioning and quality assurance (QA), and quantifies systematic uncertainties between TS and BPH. Reproducibility of scanning with BPH was tested by three experienced physicists taking five sets of measurements over a six‐month period. BPH provides several enhancements over TS, including a 3D scanning arm, which is able to acquire necessary beam‐data with one tank setup, a universal chamber mount, and the OmniPro software, which allows online data collection and analysis. Discrepancies between BPH and TS were estimated by acquiring datasets with each tank. In addition, data measured with BPH and TS was compared to the golden TOMO TPS beam data. The total systematic uncertainty, defined as the combination of scanning system and beam modeling uncertainties, was determined through numerical analysis and tabulated. OmniPro was used for all analysis to eliminate uncertainty due to different data processing algorithms. The setup reproducibility of BPH remained within 0.5 mm/0.5%. Comparing BPH, TS, and Golden TPS for PDDs beyond maximum depth, the total systematic uncertainties were within 1.4 mm/2.1%. Between BPH and TPS golden data, maximum differences in the field width and penumbra of in‐plane profiles were within 0.8 and 1.1 mm, respectively. Furthermore, in cross‐plane profiles, the field width differences increased at depth greater than 10 cm up to 2.5 mm, and maximum penumbra uncertainties were 5.6 mm and 4.6 mm from TS scanning system and TPS modeling, respectively. Use of BPH reduced measurement time by 1–2 hrs per session. The BPH has been assessed as an efficient, reproducible, and accurate scanning system capable of providing a reliable benchmark beam data. With this data, a physicist can utilize the BPH in a clinical setting with an understanding of the scan discrepancy that may be encountered while validating the TPS or during routine machine QA. Without the flexibility of modifying the TPS and without a golden beam dataset from the vendor or a TPS model generated from data collected with the BPH, this represents the best solution for current clinical use of the BPH. PACS number: 87.56.Fc
Collapse
|
248
|
Martín-Viera Cueto JA, Parra Osorio V, Moreno Sáiz C, Navarro Guirado F, Casado Villalón FJ, Galán Montenegro P. A universal dose-response curve for radiochromic films. Med Phys 2015; 42:221-31. [PMID: 25563262 DOI: 10.1118/1.4903301] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
PURPOSE This paper presents a model for dose-response curves of radiochromic films. It is based on a modified version of single-hit model to take into account the growth experienced by lithium salt of pentacosa-10,12-diynoic acid polymers after irradiation. METHODS Polymer growth in radiochromic films is a critical phenomenon that can be properly described by means of percolation theory to provide an appropriate distribution function for polymer sizes. Resulting functional form is a power function featuring a critical exponent and two adjustable parameters. Moreover, these parameters act as scaling factors setting a natural scale for sensitometric curves where the dependence on channel sensitivity is removed. A unique reduced response curve is then obtained from all the color channels describing film behavior independently of film dosimetry system. RESULTS Resulting functional form has been successfully tested in several sensitometric curves from different Gafchromic EBT models, providing excellent agreement with experimental data in a wide dose range up to about 40 Gy and low dose uncertainty. CONCLUSIONS The model presented in this paper describes accurately the sensitometric curves of radiochromic films in wide dose ranges covering all typical ranges used in external radiotherapy. Resulting dose uncertainty is low enough to render a reasonably good performance in clinical applications. Due to cross-correlation, only one of the adjustable parameters is totally independent and characterizes film batches.
Collapse
Affiliation(s)
| | - V Parra Osorio
- Radiofísica Hospitalaria, Hospital Regional Universitario, Málaga 29010, Spain
| | - C Moreno Sáiz
- Radiofísica Hospitalaria, Hospital Regional Universitario, Málaga 29010, Spain
| | - F Navarro Guirado
- Radiofísica Hospitalaria, Hospital Regional Universitario, Málaga 29010, Spain
| | - F J Casado Villalón
- Radiofísica Hospitalaria, Hospital Regional Universitario, Málaga 29010, Spain
| | - P Galán Montenegro
- Radiofísica Hospitalaria, Hospital Regional Universitario, Málaga 29010, Spain
| |
Collapse
|
249
|
Characterization of miniature RAD-HARD silicon diodes as dosimeters for small fields of photon beams used in radiotherapy. RADIAT MEAS 2014. [DOI: 10.1016/j.radmeas.2014.08.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
250
|
Usmani MN, Takegawa H, Takashina M, Numasaki H, Suga M, Anetai Y, Kurosu K, Koizumi M, Teshima T. Development and reproducibility evaluation of a Monte Carlo-based standard LINAC model for quality assurance of multi-institutional clinical trials. JOURNAL OF RADIATION RESEARCH 2014; 55:1131-1140. [PMID: 24957755 PMCID: PMC4229916 DOI: 10.1093/jrr/rru051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Revised: 05/20/2014] [Accepted: 05/21/2014] [Indexed: 06/03/2023]
Abstract
Technical developments in radiotherapy (RT) have created a need for systematic quality assurance (QA) to ensure that clinical institutions deliver prescribed radiation doses consistent with the requirements of clinical protocols. For QA, an ideal dose verification system should be independent of the treatment-planning system (TPS). This paper describes the development and reproducibility evaluation of a Monte Carlo (MC)-based standard LINAC model as a preliminary requirement for independent verification of dose distributions. The BEAMnrc MC code is used for characterization of the 6-, 10- and 15-MV photon beams for a wide range of field sizes. The modeling of the LINAC head components is based on the specifications provided by the manufacturer. MC dose distributions are tuned to match Varian Golden Beam Data (GBD). For reproducibility evaluation, calculated beam data is compared with beam data measured at individual institutions. For all energies and field sizes, the MC and GBD agreed to within 1.0% for percentage depth doses (PDDs), 1.5% for beam profiles and 1.2% for total scatter factors (Scps.). Reproducibility evaluation showed that the maximum average local differences were 1.3% and 2.5% for PDDs and beam profiles, respectively. MC and institutions' mean Scps agreed to within 2.0%. An MC-based standard LINAC model developed to independently verify dose distributions for QA of multi-institutional clinical trials and routine clinical practice has proven to be highly accurate and reproducible and can thus help ensure that prescribed doses delivered are consistent with the requirements of clinical protocols.
Collapse
Affiliation(s)
- Muhammad Nauman Usmani
- Department of Medical Physics and Engineering, Osaka University Graduate School of Medicine, 1-7 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Hideki Takegawa
- Department of Medical Physics and Engineering, Osaka University Graduate School of Medicine, 1-7 Yamadaoka, Suita, Osaka 565-0871, Japan Department of Radiology, Kaizuka City Hospital, 3-10-20 Hori, Kaizuka, Osaka 597-0015, Japan
| | - Masaaki Takashina
- Department of Medical Physics and Engineering, Osaka University Graduate School of Medicine, 1-7 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Hodaka Numasaki
- Department of Medical Physics and Engineering, Osaka University Graduate School of Medicine, 1-7 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Masaki Suga
- Department of Medical Physics and Engineering, Osaka University Graduate School of Medicine, 1-7 Yamadaoka, Suita, Osaka 565-0871, Japan Department of Accelerator Managing, Hyogo Ion Beam Medical Center, 1-2-1 Kouto, Shingu-cho, Tatsuno, Hyogo 679-5165, Japan
| | - Yusuke Anetai
- Department of Medical Physics and Engineering, Osaka University Graduate School of Medicine, 1-7 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Keita Kurosu
- Department of Medical Physics and Engineering, Osaka University Graduate School of Medicine, 1-7 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Masahiko Koizumi
- Department of Medical Physics and Engineering, Osaka University Graduate School of Medicine, 1-7 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Teruki Teshima
- Department of Medical Physics and Engineering, Osaka University Graduate School of Medicine, 1-7 Yamadaoka, Suita, Osaka 565-0871, Japan Department of Radiation Oncology, Osaka Medical Center for Cancer and Cardiovascular Diseases, 1-3-3 Nakamichi, Higashinari-ku, Osaka 537-8511, Japan
| |
Collapse
|