201
|
Xu YR, Yang WX. Calcium influx and sperm-evoked calcium responses during oocyte maturation and egg activation. Oncotarget 2017; 8:89375-89390. [PMID: 29179526 PMCID: PMC5687696 DOI: 10.18632/oncotarget.19679] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 06/19/2017] [Indexed: 12/18/2022] Open
Abstract
Under the guidance and regulation of hormone signaling, large majority of mammalian oocytes go through twice cell cycle arrest-resumption prior to the fertilized egg splits: oocyte maturation and egg activation. Cytosolic free calcium elevations and endoplasmic reticulum calcium store alternations are actively involved in triggering the complex machineries and events during oogenesis. Among these, calcium influx had been implicated in the replenishment of endoplasmic reticulum store during oocyte maturation and calcium oscillation during egg activation. This process also drove successful fertilization and early embryo development. Store-operated Ca2+ entry, acts as the principal force of calcium influx, is composed of STIM1 and Orai1 on the plasma membrane. Besides, transient receptor potential channels also participate in the process of calcium inwards. In this review, we summarize the recent researches on the spatial-temporal distribution of store-operated calcium entry components and transient receptor potential channels. Questions about how these channels play function for calcium influx and what impacts these channels have on oocytes are discussed. At the time of sperm-egg fusion, sperm-specific factor(s) diffuse and enable eggs to mount intracellular calcium oscillations. In this review, we also focus on the basic knowledge and the modes of action of the potential sperm factor phospholipase C zeta, as well as the downstream receptor, type 1 inositol 1,4,5-trisphosphate receptor. From the achievement in the previous several decades, it is easy to find that there are too many doubtful points in the field that need researchers take into consideration and take action in the future.
Collapse
Affiliation(s)
- Ya-Ru Xu
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Wan-Xi Yang
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
202
|
Molecular Targets of the Phytocannabinoids: A Complex Picture. PROGRESS IN THE CHEMISTRY OF ORGANIC NATURAL PRODUCTS 2017; 103:103-131. [PMID: 28120232 DOI: 10.1007/978-3-319-45541-9_4] [Citation(s) in RCA: 212] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
For centuries, hashish and marihuana, both derived from the Indian hemp Cannabis sativa L., have been used for their medicinal, as well as, their psychotropic effects. These effects are associated with the phytocannabinoids which are oxygen containing C21 aromatic hydrocarbons found in Cannabis sativa L. To date, over 120 phytocannabinoids have been isolated from Cannabis. For many years, it was assumed that the beneficial effects of the phytocannabinoids were mediated by the cannabinoid receptors, CB1 and CB2. However, today we know that the picture is much more complex, with the same phytocannabinoid acting at multiple targets. This contribution focuses on the molecular pharmacology of the phytocannabinoids, including Δ9-THC and CBD, from the prospective of the targets at which these important compounds act.
Collapse
|
203
|
Balemans D, Boeckxstaens GE, Talavera K, Wouters MM. Transient receptor potential ion channel function in sensory transduction and cellular signaling cascades underlying visceral hypersensitivity. Am J Physiol Gastrointest Liver Physiol 2017; 312:G635-G648. [PMID: 28385695 DOI: 10.1152/ajpgi.00401.2016] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 03/21/2017] [Accepted: 04/01/2017] [Indexed: 01/31/2023]
Abstract
Visceral hypersensitivity is an important mechanism underlying increased abdominal pain perception in functional gastrointestinal disorders including functional dyspepsia, irritable bowel syndrome, and inflammatory bowel disease in remission. Although the exact pathophysiological mechanisms are poorly understood, recent studies described upregulation and altered functions of nociceptors and their signaling pathways in aberrant visceral nociception, in particular the transient receptor potential (TRP) channel family. A variety of TRP channels are present in the gastrointestinal tract (TRPV1, TRPV3, TRPV4, TRPA1, TRPM2, TRPM5, and TRPM8), and modulation of their function by increased activation or sensitization (decreased activation threshold) or altered expression in visceral afferents have been reported in visceral hypersensitivity. TRP channels directly detect or transduce osmotic, mechanical, thermal, and chemosensory stimuli. In addition, pro-inflammatory mediators released in tissue damage or inflammation can activate receptors of the G protein-coupled receptor superfamily leading to TRP channel sensitization and activation, which amplify pain and neurogenic inflammation. In this review, we highlight the present knowledge on the functional roles of neuronal TRP channels in visceral hypersensitivity and discuss the signaling pathways that underlie TRP channel modulation. We propose that a better understanding of TRP channels and their modulators may facilitate the development of more selective and effective therapies to treat visceral hypersensitivity.
Collapse
Affiliation(s)
- Dafne Balemans
- Translational Research Center for Gastrointestinal Disorders, University of Leuven, Leuven, Belgium; and
| | - Guy E Boeckxstaens
- Translational Research Center for Gastrointestinal Disorders, University of Leuven, Leuven, Belgium; and
| | - Karel Talavera
- Laboratory of Ion Channel Research and TRP Research Platform Leuven, Department of Cellular and Molecular Medicine, University of Leuven, Leuven Belgium
| | - Mira M Wouters
- Translational Research Center for Gastrointestinal Disorders, University of Leuven, Leuven, Belgium; and
| |
Collapse
|
204
|
Transient receptor potential canonical type 3 channels: Interactions, role and relevance - A vascular focus. Pharmacol Ther 2017; 174:79-96. [DOI: 10.1016/j.pharmthera.2017.02.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
205
|
Azimi I, Milevskiy MJG, Kaemmerer E, Turner D, Yapa KTDS, Brown MA, Thompson EW, Roberts-Thomson SJ, Monteith GR. TRPC1 is a differential regulator of hypoxia-mediated events and Akt signalling in PTEN-deficient breast cancer cells. J Cell Sci 2017; 130:2292-2305. [PMID: 28559303 DOI: 10.1242/jcs.196659] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 05/23/2017] [Indexed: 02/06/2023] Open
Abstract
Hypoxia is a feature of the tumour microenvironment that promotes invasiveness, resistance to chemotherapeutics and cell survival. Our studies identify the transient receptor potential canonical-1 (TRPC1) ion channel as a key component of responses to hypoxia in breast cancer cells. This regulation includes control of specific epithelial to mesenchymal transition (EMT) events and hypoxia-mediated activation of signalling pathways such as activation of the EGFR, STAT3 and the autophagy marker LC3B, through hypoxia-inducible factor-1α (HIF1α)-dependent and -independent mechanisms. TRPC1 regulated HIF1α levels in PTEN-deficient MDA-MB-468 and HCC1569 breast cancer cell lines. This regulation arises from effects on the constitutive translation of HIF1α under normoxic conditions via an Akt-dependent pathway. In further support of the role of TRPC1 in EMT, its expression is closely associated with EMT- and metastasis-related genes in breast tumours, and is enhanced in basal B breast cancer cell lines. TRPC1 expression is also significantly prognostic for basal breast cancers, particularly those classified as lymph node positive. The defined roles of TRPC1 identified here could be therapeutically exploited for the control of oncogenic pathways in breast cancer cells.
Collapse
Affiliation(s)
- Iman Azimi
- The School of Pharmacy, The University of Queensland, Brisbane, Queensland, 4102, Australia.,Mater Research Institute, The University of Queensland, Brisbane, Queensland, 4101, Australia.,Translational Research Institute, Brisbane, Queensland, 4102, Australia
| | - Michael J G Milevskiy
- The School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Elke Kaemmerer
- The School of Pharmacy, The University of Queensland, Brisbane, Queensland, 4102, Australia.,Mater Research Institute, The University of Queensland, Brisbane, Queensland, 4101, Australia.,Translational Research Institute, Brisbane, Queensland, 4102, Australia
| | - Dane Turner
- The School of Pharmacy, The University of Queensland, Brisbane, Queensland, 4102, Australia
| | - Kunsala T D S Yapa
- The School of Pharmacy, The University of Queensland, Brisbane, Queensland, 4102, Australia
| | - Melissa A Brown
- The School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Erik W Thompson
- Translational Research Institute, Brisbane, Queensland, 4102, Australia.,Institute of Health and Biomedical Innovation and School of Biomedical Sciences, Queensland University of Technology, Brisbane, Queensland, 4059, Australia.,University of Melbourne, Department of Surgery, St. Vincent's Hospital, Melbourne, Victoria, 3065, Australia
| | | | - Gregory R Monteith
- The School of Pharmacy, The University of Queensland, Brisbane, Queensland, 4102, Australia .,Mater Research Institute, The University of Queensland, Brisbane, Queensland, 4101, Australia.,Translational Research Institute, Brisbane, Queensland, 4102, Australia
| |
Collapse
|
206
|
Angstadt JD, Giordano JR, Goncalves AJ. 9-Phenanthrol modulates postinhibitory rebound and afterhyperpolarizing potentials in an excitatory motor neuron of the medicinal leech. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2017; 203:613-633. [DOI: 10.1007/s00359-017-1178-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 05/01/2017] [Accepted: 05/02/2017] [Indexed: 12/19/2022]
|
207
|
Kandasamy R, London D, Stam L, von Deyn W, Zhao X, Salgado VL, Nesterov A. Afidopyropen: New and potent modulator of insect transient receptor potential channels. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2017; 84:32-39. [PMID: 28347703 DOI: 10.1016/j.ibmb.2017.03.005] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 03/13/2017] [Accepted: 03/16/2017] [Indexed: 06/06/2023]
Abstract
The commercial insecticides pymetrozine and pyrifluquinazon control plant-sucking pests by disturbing their coordination and ability to feed. We have previously shown that these compounds act by overstimulating and eventually silencing vanilloid-type transient receptor potential (TRPV) channels, which consist of two proteins, Nanchung and Inactive, that are co-expressed exclusively in insect chordotonal stretch receptor neurons. Here we show that a new insecticidal compound, afidopyropen, modulates chordotonal organs of American grasshoppers (Schistocerca americana) in the same fashion. Afidopyropen stimulated heterologously expressed TRPV channels from two different insect species - fruit fly (Drosophila melanogaster) and pea aphid (Acyrthosiphon pisum) - but did not affect function of the mammalian TRPV channel TRPV4. Activation of the insect TRPVs required simultaneous expression of both Nanchung and Inactive proteins. Tritium-labeled afidopyropen bound fruit fly TRPVs with higher affinity than pymetrozine and competed with pymetrozine for binding. Nanchung protein formed the main binding interface for afidopyropen, whereas co-expression of Inactive dramatically increased binding affinity. Another modulator of chordotonal organs, flonicamid, did not activate insect TRPV channels, nor did it compete with afidopyropen for binding, indicating that it has a different target site. These results define afidopyropen as a new, potent and specific modulator of insect TRPV channels, and provide insight into the unique binding mode of these compounds.
Collapse
Affiliation(s)
- Ramani Kandasamy
- BASF Corporation, 26 Davis Drive, Research Triangle Park, NC 27709, USA
| | - Damian London
- BASF Corporation, 26 Davis Drive, Research Triangle Park, NC 27709, USA
| | - Lynn Stam
- BASF Corporation, 26 Davis Drive, Research Triangle Park, NC 27709, USA
| | | | - Xilong Zhao
- BASF Corporation, 26 Davis Drive, Research Triangle Park, NC 27709, USA
| | - Vincent L Salgado
- BASF Corporation, 26 Davis Drive, Research Triangle Park, NC 27709, USA
| | - Alexandre Nesterov
- BASF Corporation, 26 Davis Drive, Research Triangle Park, NC 27709, USA.
| |
Collapse
|
208
|
Fredenhagen A, Eggimann FK, Kittelmann M, Lochmann T, Kühnöl J. Human UDP-glucuronosyltransferase UGT1A4 forms tertiary N-glucuronides predominately with the energetically less favored tautomer of substituted 1H-indazole (benzpyrazole). J Anal Sci Technol 2017. [DOI: 10.1186/s40543-017-0120-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
|
209
|
Kittaka H, Uchida K, Fukuta N, Tominaga M. Lysophosphatidic acid-induced itch is mediated by signalling of LPA 5 receptor, phospholipase D and TRPA1/TRPV1. J Physiol 2017; 595:2681-2698. [PMID: 28176353 DOI: 10.1113/jp273961] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 01/31/2017] [Indexed: 01/28/2023] Open
Abstract
KEY POINTS Lysophosphatidic acid (LPA) is an itch mediator, but not a pain mediator by a cheek injection model. Dorsal root ganglion neurons directly respond to LPA depending on transient receptor potential ankyrin 1 (TRPA1) and vanilloid 1 (TRPV1). LPA-induced itch-related behaviours are decreased in TRPA1-knockout (KO), TRPV1KO or TRPA1TRPV1 double KO mice. TRPA1 and TRPV1 channels are activated by intracellular LPA, but not by extracellular LPA following LPA5 receptor activation with an activity of Ca2+ -independent phospholipase A2 and phospholipase D. Intracellular LPA interaction sites of TRPA1 are KK672-673 and KR977-978 (K: lysine, R: arginine). ABSTRACT Intractable and continuous itch sensations often accompany diseases such as atopic dermatitis, neurogenic lesions, uremia and cholestasis. Lysophosphatidic acid (LPA) is an itch mediator found in cholestatic itch patients and it induces acute itch and pain in experimental rodent models. However, the molecular mechanism by which LPA activates peripheral sensory neurons remains unknown. In this study, we used a cheek injection method in mice to reveal that LPA induced itch-related behaviours but not pain-related behaviours. The LPA-induced itch behaviour and cellular effects were dependent on transient receptor potential ankyrin 1 (TRPA1) and vanilloid 1 (TRPV1), which are important for itch signal transduction. We also found that, among the six LPA receptors, the LPA5 receptor had the greatest involvement in itching. Furthermore, we demonstrated that phospholipase D (PLD) plays a critical role downstream of LPA5 and that LPA directly and intracellularly activates TRPA1 and TRPV1. These results suggest a unique mechanism by which cytoplasmic LPA produced de novo could activate TRPA1 and TRPV1. We conclude that LPA-induced itch is mediated by LPA5 , PLD, TRPA1 and TRPV1 signalling, and thus targeting TRPA1, TRPV1 or PLD could be effective for cholestatic itch interventions.
Collapse
Affiliation(s)
- Hiroki Kittaka
- Division of Cell Signaling, Okazaki Institute for Integrative Bioscience (National Institute for Physiological Sciences), National Institutes of Natural Sciences, Okazaki, 444-8787, Japan
| | - Kunitoshi Uchida
- Division of Cell Signaling, Okazaki Institute for Integrative Bioscience (National Institute for Physiological Sciences), National Institutes of Natural Sciences, Okazaki, 444-8787, Japan.,Department of Physiological Science and Molecular Biology, Fukuoka Dental College, Fukuoka, 814-0193, Japan
| | - Naomi Fukuta
- Division of Cell Signaling, Okazaki Institute for Integrative Bioscience (National Institute for Physiological Sciences), National Institutes of Natural Sciences, Okazaki, 444-8787, Japan
| | - Makoto Tominaga
- Division of Cell Signaling, Okazaki Institute for Integrative Bioscience (National Institute for Physiological Sciences), National Institutes of Natural Sciences, Okazaki, 444-8787, Japan.,Department of Physiological Sciences, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, 444-8787, Japan.,Institute for Environmental and Gender-Specific Medicine, Juntendo University, Urayasu, 279-0021, Japan
| |
Collapse
|
210
|
Tykocki NR, Boerman EM, Jackson WF. Smooth Muscle Ion Channels and Regulation of Vascular Tone in Resistance Arteries and Arterioles. Compr Physiol 2017; 7:485-581. [PMID: 28333380 DOI: 10.1002/cphy.c160011] [Citation(s) in RCA: 228] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Vascular tone of resistance arteries and arterioles determines peripheral vascular resistance, contributing to the regulation of blood pressure and blood flow to, and within the body's tissues and organs. Ion channels in the plasma membrane and endoplasmic reticulum of vascular smooth muscle cells (SMCs) in these blood vessels importantly contribute to the regulation of intracellular Ca2+ concentration, the primary determinant of SMC contractile activity and vascular tone. Ion channels provide the main source of activator Ca2+ that determines vascular tone, and strongly contribute to setting and regulating membrane potential, which, in turn, regulates the open-state-probability of voltage gated Ca2+ channels (VGCCs), the primary source of Ca2+ in resistance artery and arteriolar SMCs. Ion channel function is also modulated by vasoconstrictors and vasodilators, contributing to all aspects of the regulation of vascular tone. This review will focus on the physiology of VGCCs, voltage-gated K+ (KV) channels, large-conductance Ca2+-activated K+ (BKCa) channels, strong-inward-rectifier K+ (KIR) channels, ATP-sensitive K+ (KATP) channels, ryanodine receptors (RyRs), inositol 1,4,5-trisphosphate receptors (IP3Rs), and a variety of transient receptor potential (TRP) channels that contribute to pressure-induced myogenic tone in resistance arteries and arterioles, the modulation of the function of these ion channels by vasoconstrictors and vasodilators, their role in the functional regulation of tissue blood flow and their dysfunction in diseases such as hypertension, obesity, and diabetes. © 2017 American Physiological Society. Compr Physiol 7:485-581, 2017.
Collapse
Affiliation(s)
- Nathan R Tykocki
- Department of Pharmacology, University of Vermont, Burlington, Vermont, USA
| | - Erika M Boerman
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri, USA
| | - William F Jackson
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
211
|
Markó L, Mannaa M, Haschler TN, Krämer S, Gollasch M. Renoprotection: focus on TRPV1, TRPV4, TRPC6 and TRPM2. Acta Physiol (Oxf) 2017; 219:589-612. [PMID: 28028935 DOI: 10.1111/apha.12828] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2016] [Revised: 04/22/2016] [Accepted: 10/31/2016] [Indexed: 01/09/2023]
Abstract
Members of the transient receptor potential (TRP) cation channel receptor family have unique sites of regulatory function in the kidney which enables them to promote regional vasodilatation and controlled Ca2+ influx into podocytes and tubular cells. Activated TRP vanilloid 1 receptor channels (TRPV1) have been found to elicit renoprotection in rodent models of acute kidney injury following ischaemia/reperfusion. Transient receptor potential cation channel, subfamily C, member 6 (TRPC6) in podocytes is involved in chronic proteinuric kidney disease, particularly in focal segmental glomerulosclerosis (FSGS). TRP vanilloid 4 receptor channels (TRPV4) are highly expressed in the kidney, where they induce Ca2+ influx into endothelial and tubular cells. TRP melastatin (TRPM2) non-selective cation channels are expressed in the cytoplasm and intracellular organelles, where their inhibition ameliorates ischaemic renal pathology. Although some of their basic properties have been recently identified, the renovascular role of TRPV1, TRPV4, TRPC6 and TRPM2 channels in disease states such as obesity, hypertension and diabetes is largely unknown. In this review, we discuss recent evidence for TRPV1, TRPV4, TRPC6 and TRPM2 serving as potential targets for acute and chronic renoprotection in chronic vascular and metabolic disease.
Collapse
Affiliation(s)
- L. Markó
- Experimental and Clinical Research Center; A Joint Cooperation Between the Charité Medical Faculty and the Max-Delbrück Center (MDC) for Molecular Medicine; Berlin Germany
| | - M. Mannaa
- Experimental and Clinical Research Center; A Joint Cooperation Between the Charité Medical Faculty and the Max-Delbrück Center (MDC) for Molecular Medicine; Berlin Germany
- Charité Campus Virchow; Nephrology/Intensive Care; Berlin Germany
- German Institute of Human Nutrition; Potsdam-Rehbrücke Germany
| | - T. N. Haschler
- Experimental and Clinical Research Center; A Joint Cooperation Between the Charité Medical Faculty and the Max-Delbrück Center (MDC) for Molecular Medicine; Berlin Germany
- German Institute of Human Nutrition; Potsdam-Rehbrücke Germany
| | - S. Krämer
- German Institute of Human Nutrition; Potsdam-Rehbrücke Germany
| | - M. Gollasch
- Experimental and Clinical Research Center; A Joint Cooperation Between the Charité Medical Faculty and the Max-Delbrück Center (MDC) for Molecular Medicine; Berlin Germany
- Charité Campus Virchow; Nephrology/Intensive Care; Berlin Germany
| |
Collapse
|
212
|
Bernhardt ML, Padilla-Banks E, Stein P, Zhang Y, Williams CJ. Store-operated Ca 2+ entry is not required for fertilization-induced Ca 2+ signaling in mouse eggs. Cell Calcium 2017; 65:63-72. [PMID: 28222911 DOI: 10.1016/j.ceca.2017.02.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 02/07/2017] [Accepted: 02/07/2017] [Indexed: 01/01/2023]
Abstract
Repetitive oscillations in cytoplasmic Ca2+ due to periodic Ca2+ release from the endoplasmic reticulum (ER) drive mammalian embryo development following fertilization. Influx of extracellular Ca2+ to support the refilling of ER stores is required for sustained Ca2+ oscillations, but the mechanisms underlying this Ca2+ influx are controversial. Although store-operated Ca2+ entry (SOCE) is an appealing candidate mechanism, several groups have arrived at contradictory conclusions regarding the importance of SOCE in oocytes and eggs. To definitively address this question, Ca2+ influx was assessed in oocytes and eggs lacking the major components of SOCE, the ER Ca2+ sensor STIM proteins, and the plasma membrane Ca2+ channel ORAI1. We generated oocyte-specific conditional knockout (cKO) mice for Stim1 and Stim2, and also generated Stim1/2 double cKO mice. Females lacking one or both STIM proteins were fertile and their ovulated eggs displayed normal patterns of Ca2+ oscillations following fertilization. In addition, no impairment was observed in ER Ca2+ stores or Ca2+ influx following store depletion. Similar studies were performed on eggs from mice globally lacking ORAI1; no abnormalities were observed. Furthermore, spontaneous Ca2+ influx was normal in oocytes from Stim1/2 cKO and ORAI1-null mice. Finally, we tested if TRPM7-like channels could support spontaneous Ca2+ influx, and found that it was largely prevented by NS8593, a TRPM7-specific inhibitor. Fertilization-induced Ca2+ oscillations were also impaired by NS8593. Combined, these data robustly show that SOCE is not required to support appropriate Ca2+ signaling in mouse oocytes and eggs, and that TRPM7-like channels may contribute to Ca2+ influx that was previously attributed to SOCE.
Collapse
Affiliation(s)
- Miranda L Bernhardt
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Elizabeth Padilla-Banks
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Paula Stein
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Yingpei Zhang
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Carmen J Williams
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA.
| |
Collapse
|
213
|
Sun HS. Role of TRPM7 in cerebral ischaemia and hypoxia. J Physiol 2017; 595:3077-3083. [PMID: 27891609 DOI: 10.1113/jp273709] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 11/11/2016] [Indexed: 01/07/2023] Open
Abstract
Transient receptor potential melastatin 7 (TRPM7) channel, a calcium-permeable non-selective divalent cation channel, is broadly expressed in various cells and tissues, including the brain. TRPM7 is thought to be coupled to the metabolic state and regulate calcium homeostasis in the cell. TRPM7 takes part in a wide range of cell biology processes that affect cell growth and proliferation, as well as in embryonic development and skeleton formation. TRPM7 plays a significant role in ischaemic and hypoxic brain injury and neuronal cell death. TRPM7, as a key non-glutamate mechanism of cerebral ischaemia, also triggers an intracellular ionic imbalance and neuronal cell death in ischaemia and hypoxia. We have reported that TRPM7 is expressed in neurons of the hippocampus and cortex and activation of TRPM7 induced ischaemic neuronal cell death; suppression of TRPM7 with virally mediated gene silencing using siRNA reduced ischaemic neuronal cell death and improved neurobehavioural outcomes in vivo. Recently, we also demonstrated that inhibition of TRPM7 using pharmacological means promoted neuronal outgrowth in vitro and provided neuroprotection against brain injury to hypoxia in vivo. Thus, we have shown the contributions of TRPM7 in many physiological and pathophysiological processes, including hypoxia and ischaemia.
Collapse
Affiliation(s)
- Hong-Shuo Sun
- Departments of Surgery, Physiology, and Pharmacology, Institute of Medical Science, Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada, M5S 1A8
| |
Collapse
|
214
|
Trpm5 expression in the olfactory epithelium. Mol Cell Neurosci 2017; 80:75-88. [PMID: 28188885 DOI: 10.1016/j.mcn.2017.02.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 02/02/2017] [Accepted: 02/05/2017] [Indexed: 11/20/2022] Open
Abstract
The Ca2+-activated monovalent cation channel Trpm5 is a key element in chemotransduction of taste receptor cells of the tongue, but the extent to which Trpm5 channels are expressed in olfactory sensory neurons (OSNs) of the main olfactory epithelium (MOE) of adult mice as part of a specific pheromonal detection system is debated. Here, we used a novel Trpm5-IRES-Cre knockin strain to drive Cre recombinase expression, employed previously validated Trpm5 antibodies, performed in situ hybridization experiments to localize Trpm5 RNA, and searched extensively for Trpm5 splice variants in genetically-labeled, Trpm5-expressing MOE cells. In contrast to previous reports, we find no evidence for the existence in adult mouse OSNs of the classical Trpm5 channel known from taste cells. We show that Trpm5-expressing adult OSNs express a novel Trpm5 splice variant, Trpm5-9, that is unlikely to form a functional cation channel by itself. We also demonstrate that Trpm5 is transiently expressed in a subpopulation of mature OSNs in the embryonic olfactory epithelium, indicating that Trpm5 channels could play a specific role in utero during a narrow developmental time window. Ca2+ imaging with GCaMP3 under the control of the Trpm5-IRES-Cre allele using a newly developed MOE wholemount preparation of the adult olfactory epithelium reveals that Trpm5-GCaMP3 OSNs comprise a heterogeneous group of sensory neurons many of which can detect general odorants. Together, these studies are essential for understanding the role of transient receptor potential channels in mammalian olfaction.
Collapse
|
215
|
Skerratt S. Recent Progress in the Discovery and Development of TRPA1 Modulators. PROGRESS IN MEDICINAL CHEMISTRY 2017; 56:81-115. [PMID: 28314413 DOI: 10.1016/bs.pmch.2016.11.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
TRPA1 is a well-validated therapeutic target in areas of high unmet medical need that include pain and respiratory disorders. The human genetic rationale for TRPA1 as a pain target is provided by a study describing a rare gain-of-function mutation in TRPA1, causing familial episodic pain syndrome. There is a growing interest in the TRPA1 field, with many pharmaceutical companies reporting the discovery of TRPA1 chemical matter; however, GRC 17536 remains to date the only TRPA1 antagonist to have completed Phase IIa studies. A key issue in the progression of TRPA1 programmes is the identification of high-quality orally bioavailable molecules. Most published TRPA1 ligands are commonly not suitable for clinical progression due to low lipophilic efficiency and/or poor absorption, distribution, metabolism, excretion and pharmaceutical properties. The recent TRPA1 cryogenic electron microscopy structure from the Cheng and Julius labs determined the structure of full-length human TRPA1 at up to 4Å resolution in the presence of TRPA1 ligands. This ground-breaking science paves the way to enable structure-based drug design within the TRPA1 field.
Collapse
Affiliation(s)
- S Skerratt
- Convergence (a Biogen Company), Cambridge, United Kingdom
| |
Collapse
|
216
|
Evidence that polycystins are involved in Hydra cnidocyte discharge. INVERTEBRATE NEUROSCIENCE 2017; 17:1. [PMID: 28078622 DOI: 10.1007/s10158-016-0194-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 12/19/2016] [Indexed: 12/25/2022]
Abstract
Like other cnidarians, the freshwater organism Hydra is characterized by the possession of cnidocytes (stinging cells). Most cnidocytes are located on hydra tentacles, where they are organized along with sensory cells and ganglion cells into battery complexes. The function of the battery complexes is to integrate multiple types of stimuli for the regulation of cnidocyte discharge. The molecular mechanisms controlling the discharge of cnidocytes are not yet fully understood, but it is known that discharge depends on extracellular Ca2+ and that mechanically induced cnidocyte discharge can be enhanced by the presence of prey extracts and other chemicals. Experiments in this paper show that a PKD2 (polycystin 2) transient receptor potential (TRP) channel is expressed in hydra tentacles and bases. PKD2 (TRPP) channels belong to the TRP channel superfamily and are non-selective Ca2+ channels involved in the transduction of both mechanical and chemical stimuli in other organisms. Non-specific PKD2 channel inhibitors Neo (neomycin) and Gd3+ (gadolinium) inhibit both prey capture and cnidocyte discharge in hydra. The PKD2 activator Trip (triptolide) enhances cnidocyte discharge in both starved and satiated hydra and reduces the inhibition of cnidocyte discharge caused by Neo. PKD1 and 2 proteins are known to act together to transduce mechanical and chemical stimuli; in situ hybridization experiments show that a PKD1 gene is expressed in hydra tentacles and bases, suggesting that polycystins play a direct or indirect role in cnidocyte discharge.
Collapse
|
217
|
Aromolaran KA, Goldstein PA. Ion channels and neuronal hyperexcitability in chemotherapy-induced peripheral neuropathy; cause and effect? Mol Pain 2017; 13:1744806917714693. [PMID: 28580836 PMCID: PMC5480635 DOI: 10.1177/1744806917714693] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 05/12/2017] [Accepted: 05/16/2017] [Indexed: 12/18/2022] Open
Abstract
Abstract Cancer is the second leading cause of death worldwide and is a major global health burden. Significant improvements in survival have been achieved, due in part to advances in adjuvant antineoplastic chemotherapy. The most commonly used antineoplastics belong to the taxane, platinum, and vinca alkaloid families. While beneficial, these agents are frequently accompanied by severe side effects, including chemotherapy-induced peripheral neuropathy (CPIN). While CPIN affects both motor and sensory systems, the majority of symptoms are sensory, with pain, tingling, and numbness being the predominant complaints. CPIN not only decreases the quality of life of cancer survivors but also can lead to discontinuation of treatment, thereby adversely affecting survival. Consequently, minimizing the incidence or severity of CPIN is highly desirable, but strategies to prevent and/or treat CIPN have proven elusive. One difficulty in achieving this goal arises from the fact that the molecular and cellular mechanisms that produce CPIN are not fully known; however, one common mechanism appears to be changes in ion channel expression in primary afferent sensory neurons. The processes that underlie chemotherapy-induced changes in ion channel expression and function are poorly understood. Not all antineoplastic agents directly affect ion channel function, suggesting additional pathways may contribute to the development of CPIN Indeed, there are indications that these drugs may mediate their effects through cellular signaling pathways including second messengers and inflammatory cytokines. Here, we focus on ion channelopathies as causal mechanisms for CPIN and review the data from both pre-clinical animal models and from human studies with the aim of facilitating the development of appropriate strategies to prevent and/or treat CPIN.
Collapse
Affiliation(s)
- Kelly A Aromolaran
- Department of Anesthesiology, Weill Cornell Medical College, New York, NY, USA
| | - Peter A Goldstein
- Department of Anesthesiology, Weill Cornell Medical College, New York, NY, USA
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| |
Collapse
|
218
|
He Z. TRPC Channel Downstream Signaling Cascades. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 976:25-33. [PMID: 28508310 DOI: 10.1007/978-94-024-1088-4_3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The family of TRP channel is comprised of a large group of cation-permeable channels, displaying as signaling integrators for sensing extracellular stimulus and initiating intracellular signaling cascades. This chapter offers a brief review of the signaling molecules related to TRPC channels, the first identified mammalian TRP family. Besides the signaling molecules involved in TRPC activation, I will focus on their upstream and downstream signaling cascades and the molecules involved in their intracellular trafficking.
Collapse
Affiliation(s)
- Zhuohao He
- Department of Pathology and Laboratory Medicine, Institute on Aging and Center for Neurodegenerative Disease Research, University of Pennsylvania School of Medicine, Philadelphia, PA, 19104, USA.
| |
Collapse
|
219
|
Cui C, Merritt R, Fu L, Pan Z. Targeting calcium signaling in cancer therapy. Acta Pharm Sin B 2017; 7:3-17. [PMID: 28119804 PMCID: PMC5237760 DOI: 10.1016/j.apsb.2016.11.001] [Citation(s) in RCA: 383] [Impact Index Per Article: 54.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 10/28/2016] [Indexed: 12/15/2022] Open
Abstract
The intracellular calcium ions (Ca2+) act as second messenger to regulate gene transcription, cell proliferation, migration and death. Accumulating evidences have demonstrated that intracellular Ca2+ homeostasis is altered in cancer cells and the alteration is involved in tumor initiation, angiogenesis, progression and metastasis. Targeting derailed Ca2+ signaling for cancer therapy has become an emerging research area. This review summarizes some important Ca2+ channels, transporters and Ca2+-ATPases, which have been reported to be altered in human cancer patients. It discusses the current research effort toward evaluation of the blockers, inhibitors or regulators for Ca2+ channels/transporters or Ca2+-ATPase pumps as anti-cancer drugs. This review is also aimed to stimulate interest in, and support for research into the understanding of cellular mechanisms underlying the regulation of Ca2+ signaling in different cancer cells, and to search for novel therapies to cure these malignancies by targeting Ca2+ channels or transporters.
Collapse
Key Words
- 20-GPPD, 20-O-β-D-glucopyranosyl-20(S)-protopanaxadiol
- Apoptosis
- CBD, cannabidiol
- CBG, cannabigerol
- CPZ, capsazepine
- CRAC, Ca2+ release-activated Ca2+ channel
- CTL, cytotoxic T cells
- CYP3A4, cytochrome P450 3A4
- Ca2+ channels
- CaM, calmodulin
- CaMKII, calmodulin-dependent protein kinase II
- Cancer therapy
- Cell proliferation
- Channel blockers;
- ER/SR, endoplasmic/sarcoplasmic reticulum
- HCX, H+/Ca2+ exchangers
- IP3, inositol 1,4,5-trisphosphate
- IP3R (1, 2, 3), IP3 receptor (type 1, type 2, type 3)
- MCU, mitochondrial Ca2+ uniporter
- MCUR1, MCU uniporter regulator 1
- MICU (1, 2, 3), mitochondrial calcium uptake (type 1, type 2, type 3)
- MLCK, myosin light-chain kinase
- Migration
- NCX, Na+/Ca2+ exchanger
- NF-κB, nuclear factor-κB
- NFAT, nuclear factor of activated T cells
- NSCLC, non-small cell lung cancer
- OSCC, oral squamous cell carcinoma cells
- PKC, protein kinase C
- PM, plasma membrane
- PMCA, plasma membrane Ca2+-ATPase
- PTP, permeability transition pore
- ROS, reactive oxygen species
- RyR, ryanodine receptor
- SERCA, SR/ER Ca2+-ATPase
- SOCE, store-operated Ca2+ entry
- SPCA, secretory pathway Ca2+-ATPase
- Store-operated Ca2+ entry
- TEA, tetraethylammonium
- TG, thapsigargin
- TPC2, two-pore channel 2
- TRIM, 1-(2-(trifluoromethyl) phenyl) imidazole
- TRP (A, C, M, ML, N, P, V), transient receptor potential (ankyrin, canonical, melastatin, mucolipin, no mechanoreceptor potential C, polycystic, vanilloid)
- VGCC, voltage-gated Ca2+ channel
- mAb, monoclonal antibody
Collapse
Affiliation(s)
- Chaochu Cui
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
- Department of Surgery, Division of Thoracic Surgery, The Ohio State University, Columbus, OH 43210, USA
| | - Robert Merritt
- Department of Surgery, Division of Thoracic Surgery, The Ohio State University, Columbus, OH 43210, USA
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| | - Liwu Fu
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Zui Pan
- Department of Surgery, Division of Thoracic Surgery, The Ohio State University, Columbus, OH 43210, USA
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
- College of Nursing and Health Innovation, The University of Texas at Arlington, Arlington, TX 76019, USA
| |
Collapse
|
220
|
Dasari S, Hill C, Gulledge AT. A unifying hypothesis for M1 muscarinic receptor signalling in pyramidal neurons. J Physiol 2016; 595:1711-1723. [PMID: 27861914 DOI: 10.1113/jp273627] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 11/07/2016] [Indexed: 01/15/2023] Open
Abstract
KEY POINTS Phasic release of acetylcholine (ACh) in the neocortex facilitates attentional processes. Acting at a single metabotropic receptor subtype, ACh exerts two opposing actions in cortical pyramidal neurons: transient inhibition and longer-lasting excitation. Cholinergic inhibitory responses depend on calcium release from intracellular calcium stores, and run down rapidly at resting membrane potentials when calcium stores become depleted. We demonstrate that cholinergic excitation promotes calcium entry at subthreshold membrane potentials to rapidly refill calcium stores, thereby maintaining the fidelity of inhibitory cholinergic signalling. We propose a 'unifying hypothesis' for M1 receptor signalling whereby inhibitory and excitatory responses to ACh in pyramidal neurons represent complementary mechanisms governing rapid calcium cycling between the endoplasmic reticulum, the cytosol and the extracellular space. ABSTRACT Gq -coupled M1-type muscarinic acetylcholine (ACh) receptors (mAChRs) mediate two distinct electrophysiological responses in cortical pyramidal neurons: transient inhibition driven by calcium-dependent small conductance potassium ('SK') channels, and longer-lasting and voltage-dependent excitation involving non-specific cation channels. Here we examine the interaction of these two cholinergic responses with respect to their contributions to intracellular calcium dynamics, testing the 'unifying hypothesis' that rundown of inhibitory SK responses at resting membrane potentials (RMPs) reflects depletion of intracellular calcium stores, while mAChR-driven excitation acts to refill those stores by promoting voltage-dependent entry of extracellular calcium. We report that fidelity of cholinergic SK responses requires the continued presence of extracellular calcium. Inhibitory responses that diminished after repetitive ACh application at RMPs were immediately rescued by pairing mAChR stimulation with subthreshold depolarization (∼10 mV from RMPs) initiated with variable delay (up to 500 ms) after ACh application, but not by subthreshold depolarization preceding mAChR stimulation. Further, rescued SK responses were time-locked to ACh application, rather than to the timing of subsequent depolarizing steps, suggesting that cholinergic signal transduction itself is not voltage-sensitive, but that depolarization facilitates rapid cycling of extracellular calcium through the endoplasmic reticulum to activate SK channels. Consistent with this prediction, rescue of SK responses by subthreshold depolarization required the presence of extracellular calcium. Our results demonstrate that, in addition to gating calcium release from intracellular stores, mAChR activation facilitates voltage-dependent refilling of calcium stores, thereby maintaining the ongoing fidelity of SK-mediated inhibition in response to phasic release of ACh.
Collapse
Affiliation(s)
- Sameera Dasari
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth College, Hanover, NH, 03755, USA
| | - Corey Hill
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth College, Hanover, NH, 03755, USA
| | - Allan T Gulledge
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth College, Hanover, NH, 03755, USA
| |
Collapse
|
221
|
Hashad AM, Mazumdar N, Romero M, Nygren A, Bigdely-Shamloo K, Harraz OF, Puglisi JL, Vigmond EJ, Wilson SM, Welsh DG. Interplay among distinct Ca 2+ conductances drives Ca 2+ sparks/spontaneous transient outward currents in rat cerebral arteries. J Physiol 2016; 595:1111-1126. [PMID: 27805790 DOI: 10.1113/jp273329] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 10/30/2016] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS Distinct Ca2+ channels work in a coordinated manner to grade Ca2+ spark/spontaneous transient outward currents (STOCs) in rat cerebral arteries. The relative contribution of each Ca2+ channel to Ca2+ spark/STOC production depends upon their biophysical properties and the resting membrane potential of smooth muscle. Na+ /Ca2+ exchanger, but not TRP channels, can also facilitate STOC production. ABSTRACT Ca2+ sparks are generated in a voltage-dependent manner to initiate spontaneous transient outward currents (STOCs), events that moderate arterial constriction. In this study, we defined the mechanisms by which membrane depolarization increases Ca2+ sparks and subsequent STOC production. Using perforated patch clamp electrophysiology and rat cerebral arterial myocytes, we monitored STOCs in the presence and absence of agents that modulate Ca2+ entry. Beginning with CaV 3.2 channel inhibition, Ni2+ was shown to decrease STOC frequency in cells held at hyperpolarized (-40 mV) but not depolarized (-20 mV) voltages. In contrast, nifedipine, a CaV 1.2 inhibitor, markedly suppressed STOC frequency at -20 mV but not -40 mV. These findings aligned with the voltage-dependent profiles of L- and T-type Ca2+ channels. Furthermore, computational and experimental observations illustrated that Ca2+ spark production is intimately tied to the activity of both conductances. Intriguingly, this study observed residual STOC production at depolarized voltages that was independent of CaV 1.2 and CaV 3.2. This residual component was insensitive to TRPV4 channel modulation and was abolished by Na+ /Ca2+ exchanger blockade. In summary, our work highlights that the voltage-dependent triggering of Ca2+ sparks/STOCs is not tied to a single conductance but rather reflects an interplay among multiple Ca2+ permeable pores with distinct electrophysiological properties. This integrated orchestration enables smooth muscle to grade Ca2+ spark/STOC production and thus precisely tune negative electrical feedback.
Collapse
Affiliation(s)
- Ahmed M Hashad
- Department of Physiology and Pharmacology, Hotchkiss Brain and Libin Cardiovascular Institute, University of Calgary, Alberta, Canada
| | - Neil Mazumdar
- Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario, Canada
| | - Monica Romero
- Department of Basic Sciences, Division of Pharmacology, Loma Linda University, CA, USA
| | - Anders Nygren
- Department of Electrical and Computer Engineering, University of Calgary, Calgary, Alberta, Canada
| | - Kamran Bigdely-Shamloo
- Department of Physiology and Pharmacology, Hotchkiss Brain and Libin Cardiovascular Institute, University of Calgary, Alberta, Canada.,Department of Electrical and Computer Engineering, University of Calgary, Calgary, Alberta, Canada
| | - Osama F Harraz
- Department of Pharmacology, University of Vermont, Burlington, VT, USA
| | - Jose L Puglisi
- California Northstate University College of Medicine, CA, USA
| | - Edward J Vigmond
- Department of Electrical and Computer Engineering, University of Calgary, Calgary, Alberta, Canada.,LIRYC Institute and Lab IMB, University of Bordeaux, Bordeaux, France
| | - Sean M Wilson
- Department of Basic Sciences, Division of Pharmacology, Loma Linda University, CA, USA
| | - Donald G Welsh
- Department of Physiology and Pharmacology, Hotchkiss Brain and Libin Cardiovascular Institute, University of Calgary, Alberta, Canada.,Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
222
|
Gebhardt C, von Bohlen und Halbach O, Hadler MD, Harteneck C, Albrecht D. A novel form of capsaicin-modified amygdala LTD mediated by TRPM1. Neurobiol Learn Mem 2016; 136:1-12. [DOI: 10.1016/j.nlm.2016.09.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 09/02/2016] [Accepted: 09/10/2016] [Indexed: 10/21/2022]
|
223
|
Araújo DSM, Miya-Coreixas VS, Pandolfo P, Calaza KC. Cannabinoid receptors and TRPA1 on neuroprotection in a model of retinal ischemia. Exp Eye Res 2016; 154:116-125. [PMID: 27876485 DOI: 10.1016/j.exer.2016.11.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Revised: 11/11/2016] [Accepted: 11/18/2016] [Indexed: 12/16/2022]
Abstract
Retinal ischemia is a pathological event present in several retinopathies such as diabetic retinopathy and glaucoma, leading to partial or full blindness with no effective treatment available. Since synthetic and endogenous cannabinoids have been studied as modulators of ischemic events in the central nervous system (CNS), the present study aimed to investigate the involvement of cannabinoid system in the cell death induced by ischemia in an avascular (chick) retina. We observed that chick retinal treatment with a combination of WIN 55212-2 and cannabinoid receptor antagonists (either AM251/O-2050 or AM630) decreased the release of lactate dehydrogenase (LDH) induced by retinal ischemia in an oxygen and glucose deprivation (OGD) model. Further, the increased availability of endocannabinoids together with cannabinoid receptor antagonists also had a neuroprotective effect. Surprisingly, retinal exposure to any of these drugs alone did not prevent the release of LDH stimulated by OGD. Since cannabinoids may also activate transient receptor potential (TRP) channels, we investigated the involvement of TRPA1 receptors (TRPA1) in retinal cell death induced by ischemic events. We demonstrated the presence of TRPA1 in the chick retina, and observed an increase in TRPA1 content after OGD, both by western blot and immunohistochemistry. In addition, the selective activation of TRPA1 by mustard oil (MO) did not worsen retinal LDH release induced by OGD, whereas the blockage of TRPA1 completely prevented the extravasation of cellular LDH in ischemic condition. Hence, these results show that during the ischemic event there is an augment of TRPA1, and activation of this receptor is important in cell death induction. The data also indicate that metabotropic cannabinoid receptors, both type 1 and 2, are not involved with the cell death found in the early stages of ischemia. Therefore, the study points to a potential role of TRPA1 as a target for neuroprotective approaches in retinal ischemia.
Collapse
Affiliation(s)
- D S M Araújo
- Laboratory of Neurobiology of the Retina, Department of Neurobiology and Program of Neurosciences, Institute of Biology, Fluminense Federal University, Niterói, RJ, Brazil
| | - V S Miya-Coreixas
- Laboratory of Neurobiology of the Retina, Department of Neurobiology and Program of Neurosciences, Institute of Biology, Fluminense Federal University, Niterói, RJ, Brazil
| | - P Pandolfo
- Laboratory of Neurobiology of Animal Behavior, Department of Neurobiology and Program of Neurosciences, Institute of Biology, Fluminense Federal University, Niterói, RJ, Brazil
| | - K C Calaza
- Laboratory of Neurobiology of the Retina, Department of Neurobiology and Program of Neurosciences, Institute of Biology, Fluminense Federal University, Niterói, RJ, Brazil.
| |
Collapse
|
224
|
Mickle AD, Shepherd AJ, Mohapatra DP. Nociceptive TRP Channels: Sensory Detectors and Transducers in Multiple Pain Pathologies. Pharmaceuticals (Basel) 2016; 9:ph9040072. [PMID: 27854251 PMCID: PMC5198047 DOI: 10.3390/ph9040072] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 11/07/2016] [Accepted: 11/09/2016] [Indexed: 02/07/2023] Open
Abstract
Specialized receptors belonging to the transient receptor potential (TRP) family of ligand-gated ion channels constitute the critical detectors and transducers of pain-causing stimuli. Nociceptive TRP channels are predominantly expressed by distinct subsets of sensory neurons of the peripheral nervous system. Several of these TRP channels are also expressed in neurons of the central nervous system, and in non-neuronal cells that communicate with sensory nerves. Nociceptive TRPs are activated by specific physico-chemical stimuli to provide the excitatory trigger in neurons. In addition, decades of research has identified a large number of immune and neuromodulators as mediators of nociceptive TRP channel activation during injury, inflammatory and other pathological conditions. These findings have led to aggressive targeting of TRP channels for the development of new-generation analgesics. This review summarizes the complex activation and/or modulation of nociceptive TRP channels under pathophysiological conditions, and how these changes underlie acute and chronic pain conditions. Furthermore, development of small-molecule antagonists for several TRP channels as analgesics, and the positive and negative outcomes of these drugs in clinical trials are discussed. Understanding the diverse functional and modulatory properties of nociceptive TRP channels is critical to function-based drug targeting for the development of evidence-based and efficacious new generation analgesics.
Collapse
Affiliation(s)
- Aaron D Mickle
- Department of Anesthesiology, Washington University School of Medicine, 660 S. Euclid Avenue, St. Louis, MO 63110, USA.
- Washington University Pain Center, Department of Anesthesiology, Washington University School of Medicine, 660 S. Euclid Avenue, St. Louis, MO 63110, USA.
| | - Andrew J Shepherd
- Department of Anesthesiology, Washington University School of Medicine, 660 S. Euclid Avenue, St. Louis, MO 63110, USA.
- Washington University Pain Center, Department of Anesthesiology, Washington University School of Medicine, 660 S. Euclid Avenue, St. Louis, MO 63110, USA.
| | - Durga P Mohapatra
- Department of Anesthesiology, Washington University School of Medicine, 660 S. Euclid Avenue, St. Louis, MO 63110, USA.
- Washington University Pain Center, Department of Anesthesiology, Washington University School of Medicine, 660 S. Euclid Avenue, St. Louis, MO 63110, USA.
- Center for Investigation of Membrane Excitability Diseases, Washington University School of Medicine, 660 S. Euclid Avenue, St. Louis, MO 63110, USA.
- Siteman Cancer Center, Washington University School of Medicine, 660 S. Euclid Avenue, St. Louis, MO 63110, USA.
| |
Collapse
|
225
|
Shang S, Zhu F, Liu B, Chai Z, Wu Q, Hu M, Wang Y, Huang R, Zhang X, Wu X, Sun L, Wang Y, Wang L, Xu H, Teng S, Liu B, Zheng L, Zhang C, Zhang F, Feng X, Zhu D, Wang C, Liu T, Zhu MX, Zhou Z. Intracellular TRPA1 mediates Ca2+ release from lysosomes in dorsal root ganglion neurons. J Cell Biol 2016; 215:369-381. [PMID: 27799370 PMCID: PMC5100290 DOI: 10.1083/jcb.201603081] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 08/16/2016] [Accepted: 10/04/2016] [Indexed: 11/22/2022] Open
Abstract
Transient receptor potential A1 (TRPA1) is a nonselective cation channel implicated in thermosensation and inflammatory pain. In this study, we show that TRPA1 (activated by allyl isothiocyanate, acrolein, and 4-hydroxynonenal) elevates the intracellular Ca2+ concentration ([Ca2+]i) in dorsal root ganglion (DRG) neurons in the presence and absence of extracellular Ca2+ Pharmacological and immunocytochemical analyses revealed the presence of TRPA1 channels both on the plasma membrane and in endolysosomes. Confocal line-scan imaging demonstrated Ca2+ signals elicited from individual endolysosomes ("lysosome Ca2+ sparks") by TRPA1 activation. In physiological solutions, the TRPA1-mediated endolysosomal Ca2+ release contributed to ∼40% of the overall [Ca2+]i rise and directly triggered vesicle exocytosis and calcitonin gene-related peptide release, which greatly enhanced the excitability of DRG neurons. Thus, in addition to working via Ca2+ influx, TRPA1 channels trigger vesicle release in sensory neurons by releasing Ca2+ from lysosome-like organelles.
Collapse
Affiliation(s)
- Shujiang Shang
- State Key Laboratory of Membrane Biology and Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine and Peking-Tsinghua Center for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, China.,Laboratory Animal Center, Peking University, Beijing 100871, China.,School of Life Science, Peking University, Beijing 100871, China
| | - Feipeng Zhu
- State Key Laboratory of Membrane Biology and Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine and Peking-Tsinghua Center for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, China
| | - Bin Liu
- State Key Laboratory of Membrane Biology and Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine and Peking-Tsinghua Center for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, China
| | - Zuying Chai
- State Key Laboratory of Membrane Biology and Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine and Peking-Tsinghua Center for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, China
| | - Qihui Wu
- State Key Laboratory of Membrane Biology and Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine and Peking-Tsinghua Center for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, China
| | - Meiqin Hu
- State Key Laboratory of Membrane Biology and Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine and Peking-Tsinghua Center for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, China
| | - Yuan Wang
- State Key Laboratory of Membrane Biology and Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine and Peking-Tsinghua Center for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, China
| | - Rong Huang
- State Key Laboratory of Membrane Biology and Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine and Peking-Tsinghua Center for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, China
| | - Xiaoyu Zhang
- State Key Laboratory of Membrane Biology and Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine and Peking-Tsinghua Center for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, China
| | - Xi Wu
- State Key Laboratory of Membrane Biology and Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine and Peking-Tsinghua Center for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, China
| | - Lei Sun
- State Key Laboratory of Membrane Biology and Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine and Peking-Tsinghua Center for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, China
| | - Yeshi Wang
- State Key Laboratory of Membrane Biology and Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine and Peking-Tsinghua Center for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, China
| | - Li Wang
- State Key Laboratory of Membrane Biology and Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine and Peking-Tsinghua Center for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, China
| | - Huadong Xu
- State Key Laboratory of Membrane Biology and Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine and Peking-Tsinghua Center for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, China
| | - Sasa Teng
- State Key Laboratory of Membrane Biology and Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine and Peking-Tsinghua Center for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, China
| | - Bing Liu
- State Key Laboratory of Membrane Biology and Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine and Peking-Tsinghua Center for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, China
| | - Lianghong Zheng
- State Key Laboratory of Membrane Biology and Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine and Peking-Tsinghua Center for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, China
| | - Chen Zhang
- School of Life Science, Peking University, Beijing 100871, China
| | - Fukang Zhang
- Institute for Biomedical Science of Pain, Capital Medical University, Beijing 100069, China
| | - Xinghua Feng
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center at Houston, Houston, TX 77030
| | - Desheng Zhu
- Laboratory Animal Center, Peking University, Beijing 100871, China
| | - Changhe Wang
- State Key Laboratory of Membrane Biology and Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine and Peking-Tsinghua Center for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, China
| | - Tao Liu
- State Key Laboratory of Membrane Biology and Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine and Peking-Tsinghua Center for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, China
| | - Michael X Zhu
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center at Houston, Houston, TX 77030
| | - Zhuan Zhou
- State Key Laboratory of Membrane Biology and Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine and Peking-Tsinghua Center for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, China
| |
Collapse
|
226
|
Dussor G, Cao YQ. TRPM8 and Migraine. Headache 2016; 56:1406-1417. [PMID: 27634619 PMCID: PMC5335856 DOI: 10.1111/head.12948] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 05/31/2016] [Accepted: 06/19/2016] [Indexed: 12/27/2022]
Abstract
Migraine is among the most common diseases on earth and one of the most disabling, the latter due in large part to poor treatment efficacy. Development of new therapeutics is dependent on the identification of mechanisms contributing to migraine and discovery of targets for new drugs. Numerous genome-wide association studies (GWAS) have implicated the transient receptor-potential M8 (TRPM8) channel in migraine. This channel is predominantly expressed on peripheral sensory neurons and is known as the sensor for cold temperature in cutaneous tissue but is also expressed on deep visceral afferents where cold is not likely a stimulus. Consequently, a number of alternative endogenous agonists have been proposed. Apart from its role in cold sensation, TRPM8 also contributes to cold allodynia after nerve injury or inflammation, and it is necessary for cooling/menthol-based analgesia. How it might contribute to migraine is less clear. The purpose of this review is to discuss the anatomical and physiological mechanisms by which meningeal TRPM8 may play a role in migraine as well as the potential of TRPM8 as a therapeutic target. TRPM8 is expressed on sensory afferents innervating the meninges, and these neurons are subject to developmental changes that may influence their contribution to migraine. As in viscera, meningeal TRPM8 channels are unlikely to be activated by temperature fluctuations and their endogenous ligands remain unknown. Preclinical migraine studies show that activation of meningeal TRPM8 by exogenous agonists can both cause and alleviate headache behaviors, depending on whether other meningeal afferents concurrently receive noxious stimuli. This is reminiscent of the fact that cold can trigger migraine in humans but menthol can also alleviate headache. We propose that both TRPM8 agonists and antagonists may be potential therapeutics, depending on how migraine is triggered in individual patients. In this regard, TRPM8 may be a novel target for personalized medicine in migraine treatment.
Collapse
Affiliation(s)
- Greg Dussor
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX, USA.
| | - Yu-Qing Cao
- Washington University Pain Center and Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
227
|
Carvacho I, Ardestani G, Lee HC, McGarvey K, Fissore RA, Lykke-Hartmann K. TRPM7-like channels are functionally expressed in oocytes and modulate post-fertilization embryo development in mouse. Sci Rep 2016; 6:34236. [PMID: 27681336 PMCID: PMC5041074 DOI: 10.1038/srep34236] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 09/05/2016] [Indexed: 01/16/2023] Open
Abstract
The Transient Receptor Potential (TRP) channels are a family of cationic ion channels widely distributed in mammalian tissues. In general, the global genetic disruption of individual TRP channels result in phenotypes associated with impairment of a particular tissue and/or organ function. An exception is the genetic ablation of the TRP channel TRPM7, which results in early embryonic lethality. Nevertheless, the function of TRPM7 in oocytes, eggs and pre-implantation embryos remains unknown. Here, we described an outward rectifying non-selective current mediated by a TRP ion channel in immature oocytes (germinal vesicle stage), matured oocytes (metaphase II eggs) and 2-cell stage embryos. The current is activated by specific agonists and inhibited by distinct blockers consistent with the functional expression of TRPM7 channels. We demonstrated that the TRPM7-like channels are homo-tetramers and their activation mediates calcium influx in oocytes and eggs, which is fundamental to support fertilization and egg activation. Lastly, we showed that pharmacological inhibition of the channel function delays pre-implantation embryo development and reduces progression to the blastocyst stage. Our data demonstrate functional expression of TRPM7-like channels in mouse oocytes, eggs and embryos that may play an essential role in the initiation of embryo development.
Collapse
Affiliation(s)
- Ingrid Carvacho
- Department of Biomedicine, Aarhus University, DK-8000 Aarhus C, Denmark.,Centre for Membrane Pumps in Cells and Disease-PUMPKIN, Danish National Research Foundation, Aarhus University, Department of Molecular Biology and Genetics, DK-8000 Aarhus C, Denmark.,Department of Biology and Chemistry, Faculty of Basic Sciences, Universidad Católica del Maule, 3480112 Talca, Chile
| | - Goli Ardestani
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA 01003, USA
| | - Hoi Chang Lee
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA 01003, USA
| | - Kaitlyn McGarvey
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA 01003, USA
| | - Rafael A Fissore
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA 01003, USA
| | - Karin Lykke-Hartmann
- Department of Biomedicine, Aarhus University, DK-8000 Aarhus C, Denmark.,Centre for Membrane Pumps in Cells and Disease-PUMPKIN, Danish National Research Foundation, Aarhus University, Department of Molecular Biology and Genetics, DK-8000 Aarhus C, Denmark.,Aarhus Institute of Advanced Studies (AIAS), Aarhus University, DK-8000 Aarhus C, Denmark
| |
Collapse
|
228
|
Cattaneo AM, Bengtsson JM, Montagné N, Jacquin-Joly E, Rota-Stabelli O, Salvagnin U, Bassoli A, Witzgall P, Anfora G. TRPA5, an Ankyrin Subfamily Insect TRP Channel, is Expressed in Antennae of Cydia pomonella (Lepidoptera: Tortricidae) in Multiple Splice Variants. JOURNAL OF INSECT SCIENCE (ONLINE) 2016; 16:83. [PMID: 27638948 PMCID: PMC5026476 DOI: 10.1093/jisesa/iew072] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 07/13/2016] [Indexed: 05/16/2023]
Abstract
Transient receptor potential (TRP) channels are an ancient family of cation channels, working as metabotropic triggers, which respond to physical and chemical environmental cues. Perception of chemical signals mediate reproductive behaviors and is therefore an important target for sustainable management tactics against the codling moth Cydia pomonella L. (Lepidoptera: Tortricidae). However, olfactory behavior strongly depends on diel periodicity and correlation of chemical with physical cues, like temperature, and physical cues thus essentially contribute to the generation of behavioral response. From an antennal transcriptome generated by next generation sequencing, we characterized five candidate TRPs in the codling moth. The coding DNA sequence of one of these was extended to full length, and phylogenetic investigation revealed it to be orthologous of the TRPA5 genes, reported in several insect genomes as members of the insect TRPA group with unknown function but closely related to the thermal sensor pyrexia Reverse transcription PCR revealed the existence of five alternate splice forms of CpTRPA5. Identification of a novel TRPA and its splice forms in codling moth antennae open for investigation of their possible sensory roles and implications in behavioral responses related to olfaction.
Collapse
Affiliation(s)
- Alberto Maria Cattaneo
- Research and Innovation Centre, Agricultural Entomology - Fondazione Edmund Mach, via E. Mach, 1 38010 San Michele all'Adige, Italy
| | - Jonas Martin Bengtsson
- Department of Zoology, Stockholm University, Svante Arrhenius väg 18 B, Stockholm 106 91, Sweden
| | - Nicolas Montagné
- Sorbonne Universités - UPMC, Institute of Ecology & Environmental Sciences of Paris, 4 Place Jussieu 75005 Paris, France
| | - Emmanuelle Jacquin-Joly
- INRA, Institute of Ecology and Environmental Sciences of Paris, Saint Cyr Road, Versailles 78026, France
| | - Omar Rota-Stabelli
- Research and Innovation Centre, Agricultural Entomology - Fondazione Edmund Mach, via E. Mach, 1 38010 San Michele all'Adige, Italy
| | - Umberto Salvagnin
- Research and Innovation Centre, Agricultural Entomology - Fondazione Edmund Mach, via E. Mach, 1 38010 San Michele all'Adige, Italy
| | - Angela Bassoli
- DeFENS, Department of Food, Nutritional and Environmental Sciences - Università degli Studi di Milano, Via Celoria 2 20133, Milan, Italy
| | - Peter Witzgall
- Chemical Ecology Unit, Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Box 102 SE-23053, Alnarp, Sweden
| | - Gianfranco Anfora
- Research and Innovation Centre, Agricultural Entomology - Fondazione Edmund Mach, via E. Mach, 1 38010 San Michele all'Adige, Italy
| |
Collapse
|
229
|
Cold sensitivity of TRPA1 is unveiled by the prolyl hydroxylation blockade-induced sensitization to ROS. Nat Commun 2016; 7:12840. [PMID: 27628562 PMCID: PMC5027619 DOI: 10.1038/ncomms12840] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2016] [Accepted: 08/05/2016] [Indexed: 11/08/2022] Open
Abstract
Mammalian transient receptor potential ankyrin 1 (TRPA1) is a polymodal nociceptor that plays an important role in pain generation, but its role as a cold nociceptor is still controversial. Here, we propose that TRPA1 can sense noxious cold via transduction of reactive oxygen species (ROS) signalling. We show that inhibiting hydroxylation of a proline residue within the N-terminal ankyrin repeat of human TRPA1 by mutation or using a prolyl hydroxylase (PHD) inhibitor potentiates the cold sensitivity of TRPA1 in the presence of hydrogen peroxide. Inhibiting PHD in mice triggers mouse TRPA1 sensitization sufficiently to sense cold-evoked ROS, which causes cold hypersensitivity. Furthermore, this phenomenon underlies the acute cold hypersensitivity induced by the chemotherapeutic agent oxaliplatin or its metabolite oxalate. Thus, our findings provide evidence that blocking prolyl hydroxylation reveals TRPA1 sensitization to ROS, which enables TRPA1 to convert ROS signalling into cold sensitivity. The transient receptor potential ankyrin 1 (TRPA1) is a cation channel that is involved in nociceptive pain sensing. Here, the authors show that hydroxylation of a proline in the N terminus of TRPA1 renders it sensitive to reactive oxygen species resulting from noxious cold.
Collapse
|
230
|
Cubillos S, Norgauer J. Low vitamin D-modulated calcium-regulating proteins in psoriasis vulgaris plaques: S100A7 overexpression depends on joint involvement. Int J Mol Med 2016; 38:1083-92. [PMID: 27573000 PMCID: PMC5029959 DOI: 10.3892/ijmm.2016.2718] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 08/01/2016] [Indexed: 11/06/2022] Open
Abstract
Psoriasis is an inflammatory skin disease with or without joint involvement. In this disease, the thickened epidermis and impaired barrier are associated with altered calcium gradients. Calcium and vitamin D are known to play important roles in keratinocyte differentiation and bone metabolism. Intracellular calcium is regulated by calcium-sensing receptor (CASR), calcium release-activated calcium modulator (ORAI) and stromal interaction molecule (STIM). Other proteins modulated by vitamin D play important roles in calcium regulation e.g., calbindin 1 (CALB1) and transient receptor potential cation channel 6 (TRPV6). In this study, we aimed to investigate the expression of calcium-regulating proteins in the plaques of patients with psoriasis vulgaris with or without joint inflammation. We confirmed low calcium levels, keratinocyte hyperproliferation and an altered epidermal barrier. The CASR, ORAI1, ORAI3, STIM1, CALB1 and TRPV6 mRNA, as well as the sterol 27-hydroxylase (CYP27A1), 25-hydroxyvitamin D3 1-α-hydroxylase (CYP27B1) and 1,25-dihydroxyvitamin D3 24-hydroxylase (CYP24A1) protein levels were low in the plaques of patients with psoriasis. We demonstrated S100 calcium-binding protein A7 (S100A7) overexpression in the plaques of patients with psoriasis vulgaris with joint inflammation, compared with those without joint involvement. We suggest an altered capacity to regulate the intracellular Ca2+ concentration ([Ca2+]i), characterized by a reduced expression of CASR, ORAI1, ORAI3, STIM1, CALB1 and TRPV6 associated with diminished levels of 1,25-dihydroxyvitamin D3 [1,25(OH)2D3], which may be associated with an altered balance between keratinocyte proliferation and differentiation in the psoriatic epidermis. Additionally, differences in S100A7 expression depend on the presence of joint involvement.
Collapse
Affiliation(s)
- Susana Cubillos
- Department of Dermatology, Jena University Hospital, D-07743 Jena, Germany
| | - Johannes Norgauer
- Department of Dermatology, Jena University Hospital, D-07743 Jena, Germany
| |
Collapse
|
231
|
The TRPM2 ion channel is required for sensitivity to warmth. Nature 2016; 536:460-3. [PMID: 27533035 PMCID: PMC5720344 DOI: 10.1038/nature19074] [Citation(s) in RCA: 192] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 07/01/2016] [Indexed: 12/26/2022]
Abstract
How do we detect warmth? Thermally-activated ion channels expressed in somatosensory neurons detect the entire thermal range from extreme heat (TRPV2), painful heat (TRPV1, TRPM3, ANO1), non-painful warmth (TRPV3 and TRPV4) and non-painful coolness (TRPM8) through to painful cold (TRPA1)1–7. Genetic deletion of each of these ion channels, however, has only modest effects on thermal behaviour in mice6–12, with the exception of TRPM8, whose deletion has marked effects on the perception of moderate coolness in the range 10°C - 25°C13. The molecular mechanism responsible for detecting non-painful warmth, in particular, is unresolved. Here we used calcium imaging to identify a population of novel thermally-sensitive somatosensory neurons which do not express any of the known thermally-activated TRP channels. We then used a combination of calcium imaging, electrophysiology and RNA sequencing to show that the ion channel generating heat sensitivity in these neurons is TRPM2. Autonomic neurons, usually thought of as exclusively motor, also express TRPM2 and respond directly to heat. Mice in which TRPM2 had been genetically deleted showed a striking deficit in their sensation of non-noxious warm temperatures, consistent with the idea that TRPM2 initiates a “warm” signal which drives cool-seeking behaviour.
Collapse
|
232
|
Shapiro H, Singer P, Ariel A. Beyond the classic eicosanoids: Peripherally-acting oxygenated metabolites of polyunsaturated fatty acids mediate pain associated with tissue injury and inflammation. Prostaglandins Leukot Essent Fatty Acids 2016; 111:45-61. [PMID: 27067460 DOI: 10.1016/j.plefa.2016.03.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Revised: 02/25/2016] [Accepted: 03/01/2016] [Indexed: 02/06/2023]
Abstract
Pain is a complex sensation that may be protective or cause undue suffering and loss of function, depending on the circumstances. Peripheral nociceptor neurons (PNs) innervate most tissues, and express ion channels, nocisensors, which depolarize the cell in response to intense stimuli and numerous substances. Inflamed tissues manifest inflammatory hyperalgesia in which the threshold for pain and the response to painful stimuli are decreased and increased, respectively. Constituents of the inflammatory milieu sensitize PNs, thereby contributing to hyperalgesia. Polyunsaturated fatty acids undergo enzymatic and free radical-mediated oxygenation into an array of bioactive metabolites, oxygenated polyunsaturated fatty acids (oxy-PUFAs), including the classic eicosanoids. Oxy-PUFA production is enhanced during inflammation. Pioneering studies by Vane and colleagues from the early 1970s first implicated classic eicosanoids in the pain associated with inflammation. Here, we review the production and action of oxy-PUFAs that are not classic eicosanoids, but nevertheless are produced in injured/ inflamed tissues and activate or sensitize PNs. In general, oxy-PUFAs that sensitize PNs may do so directly, by activation of nocisensors, ion channels or GPCRs expressed on the surface of PNs, or indirectly, by increasing the production of inflammatory mediators that activate or sensitize PNs. We focus on oxy-PUFAs that act directly on PNs. Specifically, we discuss the role of arachidonic acid-derived 12S-HpETE, HNE, ONE, PGA2, iso-PGA2 and 15d-PGJ2, 5,6-and 8,9-EET, PGE2-G and 8R,15S-diHETE, as well as the linoleic acid-derived 9-and 13-HODE in inducing acute nocifensive behavior and/or inflammatory hyperalgesia in rodents. The nocisensors TRPV1, TRPV4 and TRPA1, and putative Gαs-type GPCRs are the PN targets of these oxy-PUFAs.
Collapse
Affiliation(s)
- Haim Shapiro
- Department of Human Biology, Faculty of Natural Sciences, University of Haifa, 199 Abba Khoushy Ave, Mount Carmel, Haifa 3498838, Israel.
| | - Pierre Singer
- Department of General Intensive Care, Institute for Nutrition Research, Rabin Medical Center, Sackler School of Medicine, Tel Aviv University, Petah Tikva 49100, Israel
| | - Amiram Ariel
- Department of Human Biology, Faculty of Natural Sciences, University of Haifa, 199 Abba Khoushy Ave, Mount Carmel, Haifa 3498838, Israel
| |
Collapse
|
233
|
Bais S, Greenberg RM. TRP channels in schistosomes. INTERNATIONAL JOURNAL FOR PARASITOLOGY-DRUGS AND DRUG RESISTANCE 2016; 6:335-342. [PMID: 27496302 PMCID: PMC5196486 DOI: 10.1016/j.ijpddr.2016.07.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 07/13/2016] [Accepted: 07/17/2016] [Indexed: 12/22/2022]
Abstract
Praziquantel (PZQ) is effectively the only drug currently available for treatment and control of schistosomiasis, a disease affecting hundreds of millions of people worldwide. Many anthelmintics, likely including PZQ, target ion channels, membrane protein complexes essential for normal functioning of the neuromusculature and other tissues. Despite this fact, only a few classes of parasitic helminth ion channels have been assessed for their pharmacological properties or for their roles in parasite physiology. One such overlooked group of ion channels is the transient receptor potential (TRP) channel superfamily. TRP channels share a common core structure, but are widely diverse in their activation mechanisms and ion selectivity. They are critical to transducing sensory signals, responding to a wide range of external stimuli. They are also involved in other functions, such as regulating intracellular calcium and organellar ion homeostasis and trafficking. Here, we review current literature on parasitic helminth TRP channels, focusing on those in schistosomes. We discuss the likely roles of these channels in sensory and locomotor activity, including the possible significance of a class of TRP channels (TRPV) that is absent in schistosomes. We also focus on evidence indicating that at least one schistosome TRP channel (SmTRPA) has atypical, TRPV1-like pharmacological sensitivities that could potentially be exploited for future therapeutic targeting. We provide an overview of transient receptor potential (TRP) channels in schistosomes and other parasitic helminths. TRP channels are important for sensory signaling, ion homeostasis, organellar trafficking, and a host of other functions. Very little work has been done on TRP channels in parasitic helminths. TRPV channels, found throughout the Metazoa, appear not to be present in parasitic platyhelminths. TRP channels in schistosomes appear to have atypical pharmacology, perhaps an entrée for therapeutic targeting.
Collapse
Affiliation(s)
- Swarna Bais
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, 3800 Spruce Street, Philadelphia, PA 19104, USA
| | - Robert M Greenberg
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, 3800 Spruce Street, Philadelphia, PA 19104, USA.
| |
Collapse
|
234
|
|
235
|
Allais L, De Smet R, Verschuere S, Talavera K, Cuvelier CA, Maes T. Transient Receptor Potential Channels in Intestinal Inflammation: What Is the Impact of Cigarette Smoking? Pathobiology 2016; 84:1-15. [DOI: 10.1159/000446568] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 05/02/2016] [Indexed: 11/19/2022] Open
|
236
|
Kozai D, Sakaguchi R, Ohwada T, Mori Y. Deciphering Subtype-Selective Modulations in TRPA1 Biosensor Channels. Curr Neuropharmacol 2016; 13:266-78. [PMID: 26411770 PMCID: PMC4598439 DOI: 10.2174/1570159x1302150525122020] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The transient receptor potential (TRP) proteins are a family of ion channels that act as
cellular sensors. Several members of the TRP family are sensitive to oxidative stress mediators.
Among them, TRPA1 is remarkably susceptible to various oxidants, and is known to mediate
neuropathic pain and respiratory, vascular and gastrointestinal functions, making TRPA1 an
attractive therapeutic target. Recent studies have revealed a number of modulators (both activators and inhibitors) that act
on TRPA1. Endogenous mediators of oxidative stress and exogenous electrophiles activate TRPA1 through oxidative
modification of cysteine residues. Non-electrophilic compounds also activate TRPA1. Certain non-electrophilic
modulators may act on critical non-cysteine sites in TRPA1. However, a method to achieve selective modulation of
TRPA1 by small molecules has not yet been established. More recently, we found that a novel N-nitrosamine compound
activates TRPA1 by S-nitrosylation (the addition of a nitric oxide (NO) group to cysteine thiol), and does so with
significant selectivity over other NO-sensitive TRP channels. It is proposed that this subtype selectivity is conferred
through synergistic effects of electrophilic cysteine transnitrosylation and molecular recognition of the non-electrophilic
moiety on the N-nitrosamine. In this review, we describe the molecular pharmacology of these TRPA1 modulators and
discuss their modulatory mechanisms.
Collapse
Affiliation(s)
| | | | | | - Yasuo Mori
- Laboratory of Molecular Biology, Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura Campus, Nishikyoku, Kyoto 615-8510, Japan.
| |
Collapse
|
237
|
Russo HM, Rathkey J, Boyd-Tressler A, Katsnelson MA, Abbott DW, Dubyak GR. Active Caspase-1 Induces Plasma Membrane Pores That Precede Pyroptotic Lysis and Are Blocked by Lanthanides. THE JOURNAL OF IMMUNOLOGY 2016; 197:1353-67. [PMID: 27385778 DOI: 10.4049/jimmunol.1600699] [Citation(s) in RCA: 134] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 06/04/2016] [Indexed: 12/27/2022]
Abstract
Canonical inflammasome activation induces a caspase-1/gasdermin D (Gsdmd)-dependent lytic cell death called pyroptosis that promotes antimicrobial host defense but may contribute to sepsis. The nature of the caspase-1-dependent change in plasma membrane (PM) permeability during pyroptotic progression remains incompletely defined. We assayed propidium(2+) (Pro(2+)) influx kinetics during NLRP3 or Pyrin inflammasome activation in murine bone marrow-derived macrophages (BMDMs) as an indicator of this PM permeabilization. BMDMs were characterized by rapid Pro(2+) influx after initiation of NLRP3 or Pyrin inflammasomes by nigericin (NG) or Clostridium difficile toxin B (TcdB), respectively. No Pro(2+) uptake in response to NG or TcdB was observed in Casp1(-/-) or Asc(-/-) BMDMs. The cytoprotectant glycine profoundly suppressed NG and TcdB-induced lysis but not Pro(2+) influx. The absence of Gsdmd expression resulted in suppression of NG-stimulated Pro(2+) influx and pyroptotic lysis. Extracellular La(3+) and Gd(3+) rapidly and reversibly blocked the induced Pro(2+) influx and markedly delayed pyroptotic lysis without limiting upstream inflammasome assembly and caspase-1 activation. Thus, caspase-1-driven pyroptosis requires induction of initial prelytic pores in the PM that are dependent on Gsdmd expression. These PM pores also facilitated the efflux of cytosolic ATP and influx of extracellular Ca(2+) Although lanthanides and Gsdmd deletion both suppressed PM pore activity and pyroptotic lysis, robust IL-1β release was observed in lanthanide-treated BMDMs but not in Gsdmd-deficient cells. This suggests roles for Gsdmd in both passive IL-1β release secondary to pyroptotic lysis and in nonlytic/nonclassical IL-1β export.
Collapse
Affiliation(s)
- Hana M Russo
- Department of Pathology, Case Western Reserve University, Cleveland, OH 44106
| | - Joseph Rathkey
- Department of Pathology, Case Western Reserve University, Cleveland, OH 44106
| | - Andrea Boyd-Tressler
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH 44106; and
| | | | - Derek W Abbott
- Department of Pathology, Case Western Reserve University, Cleveland, OH 44106
| | - George R Dubyak
- Department of Pathology, Case Western Reserve University, Cleveland, OH 44106; Department of Pharmacology, Case Western Reserve University, Cleveland, OH 44106; and Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, OH 44106
| |
Collapse
|
238
|
Lerch MM, Hansen MJ, van Dam GM, Szymanski W, Feringa BL. Emerging Targets in Photopharmacology. Angew Chem Int Ed Engl 2016; 55:10978-99. [DOI: 10.1002/anie.201601931] [Citation(s) in RCA: 413] [Impact Index Per Article: 51.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 03/29/2016] [Indexed: 12/26/2022]
Affiliation(s)
- Michael M. Lerch
- Stratingh Institute for Chemistry; University of Groningen; Nijenborgh 4 9747 AG Groningen The Netherlands
| | - Mickel J. Hansen
- Stratingh Institute for Chemistry; University of Groningen; Nijenborgh 4 9747 AG Groningen The Netherlands
- Zernike Institute for Advanced Materials; University of Groningen; Nijenborgh 7 9747 AG Groningen The Netherlands
| | - Gooitzen M. van Dam
- Department of Surgery, Nuclear Medicine and Molecular Imaging and Intensive Care, University of Groningen; University Medical Center Groningen; Hanzeplein 1, P.O. Box 30001 9700 RB Groningen The Netherlands
| | - Wiktor Szymanski
- Stratingh Institute for Chemistry; University of Groningen; Nijenborgh 4 9747 AG Groningen The Netherlands
- Department of Radiology, University of Groningen; University Medical Center Groningen; Hanzeplein 1, P.O. Box 30001 9700 RB Groningen The Netherlands
| | - Ben L. Feringa
- Stratingh Institute for Chemistry; University of Groningen; Nijenborgh 4 9747 AG Groningen The Netherlands
- Zernike Institute for Advanced Materials; University of Groningen; Nijenborgh 7 9747 AG Groningen The Netherlands
- Department of Radiology, University of Groningen; University Medical Center Groningen; Hanzeplein 1, P.O. Box 30001 9700 RB Groningen The Netherlands
| |
Collapse
|
239
|
Lerch MM, Hansen MJ, van Dam GM, Szymanski W, Feringa BL. Neue Ziele für die Photopharmakologie. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201601931] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Michael M. Lerch
- Stratingh Institute for Chemistry; University of Groningen; Nijenborgh 4 9747 AG Groningen Niederlande
| | - Mickel J. Hansen
- Stratingh Institute for Chemistry; University of Groningen; Nijenborgh 4 9747 AG Groningen Niederlande
- Zernike Institute for Advanced Materials; University of Groningen; Nijenborgh 7 9747 AG Groningen Niederlande
| | - Gooitzen M. van Dam
- Department of Surgery, Nuclear Medicine and Molecular Imaging and Intensive Care, University of Groningen; University Medical Center Groningen; Hanzeplein 1, P.O. Box 30001 9700 RB Groningen Niederlande
| | - Wiktor Szymanski
- Stratingh Institute for Chemistry; University of Groningen; Nijenborgh 4 9747 AG Groningen Niederlande
- Department of Radiology, University of Groningen; University Medical Center Groningen; Hanzeplein 1, P.O. Box 30001 9700 RB Groningen Niederlande
| | - Ben L. Feringa
- Stratingh Institute for Chemistry; University of Groningen; Nijenborgh 4 9747 AG Groningen Niederlande
- Zernike Institute for Advanced Materials; University of Groningen; Nijenborgh 7 9747 AG Groningen Niederlande
- Department of Radiology, University of Groningen; University Medical Center Groningen; Hanzeplein 1, P.O. Box 30001 9700 RB Groningen Niederlande
| |
Collapse
|
240
|
DeCaen PG, Liu X, Abiria S, Clapham DE. Atypical calcium regulation of the PKD2-L1 polycystin ion channel. eLife 2016; 5. [PMID: 27348301 PMCID: PMC4922860 DOI: 10.7554/elife.13413] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 05/12/2016] [Indexed: 11/13/2022] Open
Abstract
Native PKD2-L1 channel subunits are present in primary cilia and other restricted cellular spaces. Here we investigate the mechanism for the channel's unusual regulation by external calcium, and rationalize this behavior to its specialized function. We report that the human PKD2-L1 selectivity filter is partially selective to calcium ions (Ca(2+)) moving into the cell, but blocked by high internal Ca(2+)concentrations, a unique feature of this transient receptor potential (TRP) channel family member. Surprisingly, we find that the C-terminal EF-hands and coiled-coil domains do not contribute to PKD2-L1 Ca(2+)-induced potentiation and inactivation. We propose a model in which prolonged channel activity results in calcium accumulation, triggering outward-moving Ca(2+) ions to block PKD2-L1 in a high-affinity interaction with the innermost acidic residue (D523) of the selectivity filter and subsequent long-term channel inactivation. This response rectifies Ca(2+) flow, enabling Ca(2+) to enter but not leave small compartments such as the cilium.
Collapse
Affiliation(s)
- Paul G DeCaen
- Department of Cardiology, Howard Hughes Medical Institute, Boston Children's Hospital, Boston, United States.,Department of Neurobiology, Harvard Medical School, Boston, United States
| | - Xiaowen Liu
- Department of Cardiology, Howard Hughes Medical Institute, Boston Children's Hospital, Boston, United States.,Department of Neurobiology, Harvard Medical School, Boston, United States
| | - Sunday Abiria
- Department of Cardiology, Howard Hughes Medical Institute, Boston Children's Hospital, Boston, United States.,Department of Neurobiology, Harvard Medical School, Boston, United States
| | - David E Clapham
- Department of Cardiology, Howard Hughes Medical Institute, Boston Children's Hospital, Boston, United States.,Department of Neurobiology, Harvard Medical School, Boston, United States
| |
Collapse
|
241
|
Wu YT, Yen SL, Li CF, Chan TC, Chen TJ, Lee SW, He HL, Chang IW, Hsing CH, Shiue YL. Overexpression of Transient Receptor Protein Cation Channel Subfamily A Member 1, Confers an Independent Prognostic Indicator in Nasopharyngeal Carcinoma. J Cancer 2016; 7:1181-8. [PMID: 27390592 PMCID: PMC4934025 DOI: 10.7150/jca.15326] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 04/26/2016] [Indexed: 12/20/2022] Open
Abstract
Background: Detection of oncogenes provides chances to understand tumor development and progression. Transient receptor protein cation channel subfamily A, member 1 (TRPA1) transcript was significantly upregulated in nasopharyngeal carcinoma (NPC) with a stepwise upregulation from low- to high-stage NPCs from a preliminary data analysis in the Gene Expression Omnibus database. The TRPA1 gene is a member of the TRP channel family, encoding integral membrane proteins that functions as cation channels. Loss of calcium homeostasis takes place in cancer cells. Methods: Immunostaining of TRPA1 was analyzed on 124 biopsies from NPC patients retrospectively. The H-score method was used to evaluate the immunoexpression of TRPA1. The correlations between H-score of TRPA1 protein level and clinicopathological factors, as well as the significances of TRPA1 protein level for disease-specific, distal-metastasis-free and local recurrence-free survivals were assessed. Results: These patients were characterized to be no initial metastasis and medicated with the traditional procedure. The TRPA1 score was found to be associated with clinicopathological parameters and patient survivals. Along with the guideline of 7th edition of the American Joint Committee on Cancer, we found that TRPA1 upregulation (50%) was associated with advanced primary tumor (P = 0.009) and overall clinical stage (P = 0.019). In univariate log-rank testing, primary tumor, nodal status, stage and TRPA1 protein level significantly contributed to worse disease-specific survival, distal metastasis-free survival and local recurrence-free survival. In multivariate analysis, high TRPA1 protein level and tumor stage emerged as independent prognostic indicators for inferior disease-specific survival (P = 0.014; P = 0.003), distal metastasis-free survival (P = 0.004; P = 0.034) and recurrence-free survival (P = 0.017; P = 0.015). Conclusions: The upregulation of TRPA1 protein level is frequently correlated to unfavorable prognosticators and gives rise to cancer progression in NPC patients.
Collapse
Affiliation(s)
- You-Ting Wu
- 1. Departments of Pathology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan;; 2. Department of Pathology, Chang Gung Memorial Hospital, Chia-Yi, Taiwan
| | - Shao-Lun Yen
- 1. Departments of Pathology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Chien-Feng Li
- 3. Department of Pathology, Chi-Mei Medical Center, Tainan, Taiwan;; 4. National Institute of Cancer Research, National Health Research Institutes, Tainan, Taiwan;; 5. Department of Biotechnology, Southern Taiwan University of Science and Technology, Tainan, Taiwan;; 6. Institute of Clinical Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ti-Chun Chan
- 3. Department of Pathology, Chi-Mei Medical Center, Tainan, Taiwan
| | - Tzu-Ju Chen
- 3. Department of Pathology, Chi-Mei Medical Center, Tainan, Taiwan
| | - Sung-Wei Lee
- 7. Department of Radiation Oncology, Chi-Mei Medical Center, Liouying, Tainan, Taiwan
| | - Hong-Lin He
- 8. Department of Pathology, E-DA Hospital, I-Shou University, Kaohsiung, Taiwan;; 9. Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - I-Wei Chang
- 8. Department of Pathology, E-DA Hospital, I-Shou University, Kaohsiung, Taiwan
| | - Chung-Hsi Hsing
- 10. Department of Anesthesiology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Yow-Ling Shiue
- 9. Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan;; 11. Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan;; 12. Doctoral degree program in Marine Biotechnology, National Sun Yat-sen University, Kaohsiung, Taiwan
| |
Collapse
|
242
|
Nguyen T, Staines D, Nilius B, Smith P, Marshall-Gradisnik S. Novel identification and characterisation of Transient receptor potential melastatin 3 ion channels on Natural Killer cells and B lymphocytes: effects on cell signalling in Chronic fatigue syndrome/Myalgic encephalomyelitis patients. Biol Res 2016; 49:27. [PMID: 27245705 PMCID: PMC4888729 DOI: 10.1186/s40659-016-0087-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 05/09/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Transient receptor potential melastatin 3 (TRPM3) cation channels are ubiquitously expressed by multiple cells and have an important regulatory role in calcium-dependent cell signalling to help maintain cellular homeostasis. TRPM3 protein expression has yet to be determined on Natural Killer (NK) cells and B lymphocytes. Multiple single nucleotide polymorphisms have been reported in TRPM3 genes from isolated peripheral blood mononuclear cells, NK and B cells in Chronic fatigue syndrome/Myalgic encephalomyelitis (CFS/ME) patients and have been proposed to correlate with illness presentation. The object of the study was to assess TRPM3 surface expression on NK and B lymphocytes from healthy controls, followed by a comparative investigation examining TRPM3 surface expression, and cytoplasmic and mitochondrial calcium influx in CD19(+) B cells, CD56(bright) and CD56(dim) cell populations from CFS/ME patients. RESULTS TRPM3 cell surface expression was identified for NK and B lymphocytes in healthy controls (CD56(bright) TRPM3 35.72 % ± 7.37; CD56(dim) 5.74 % ± 2.00; B lymphocytes 2.05 % ± 0.19, respectively). There was a significant reduction of TRPM3 surface expression on CD19(+) B cells (1.56 ± 0.191) and CD56(bright) NK cells (17.37 % ± 5.34) in CFS/ME compared with healthy controls. Anti-CD21 and anti-IgM conjugated biotin was cross-linked with streptavidin,and subsequently treatment with thapsigargin. This showed a significant reduction in cytoplasmic calcium ion concentration in CD19(+) B lymphocytes. CD56(bright) NK cells also had a significant decrease in cytoplasmic calcium in the presence of 2-APB and thapsigargin in CFS/ME patients. CONCLUSIONS The results from this preliminary investigation identify, for the first time, TRPM3 surface expression on both NK and B lymphocytes in healthy controls. We also report for the first time, significant reduction in TRPM3 cell surface expression in NK and B lymphocytes, as well as decreased intracellular calcium within specific conditions in CFS/ME patients. This warrants further examination of these pathways to elucidate whether TRPM3 and impaired calcium mobilisation has a role in CFS/ME.
Collapse
Affiliation(s)
- T Nguyen
- The National Centre for Neuroimmunology and Emerging Diseases, Menzies Health Institute, Griffith University, Parklands Drive, Southport, Mailbox 68, Gold Coast, 4222, Australia. .,School of Medical Science, Griffith University, Gold Coast, Australia.
| | - D Staines
- The National Centre for Neuroimmunology and Emerging Diseases, Menzies Health Institute, Griffith University, Parklands Drive, Southport, Mailbox 68, Gold Coast, 4222, Australia.,School of Medical Science, Griffith University, Gold Coast, Australia
| | - B Nilius
- Department of Molecular Cell Biology, Laboratory of Ion Channel Research, KU Leuven University, 49 Herestraat, Leuven, B-3000, Belgium
| | - P Smith
- The National Centre for Neuroimmunology and Emerging Diseases, Menzies Health Institute, Griffith University, Parklands Drive, Southport, Mailbox 68, Gold Coast, 4222, Australia
| | - S Marshall-Gradisnik
- The National Centre for Neuroimmunology and Emerging Diseases, Menzies Health Institute, Griffith University, Parklands Drive, Southport, Mailbox 68, Gold Coast, 4222, Australia.,School of Medical Science, Griffith University, Gold Coast, Australia
| |
Collapse
|
243
|
Katsnelson MA, Lozada-Soto KM, Russo HM, Miller BA, Dubyak GR. NLRP3 inflammasome signaling is activated by low-level lysosome disruption but inhibited by extensive lysosome disruption: roles for K+ efflux and Ca2+ influx. Am J Physiol Cell Physiol 2016; 311:C83-C100. [PMID: 27170638 DOI: 10.1152/ajpcell.00298.2015] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 05/05/2016] [Indexed: 12/28/2022]
Abstract
Nucleotide-binding domain, leucine-rich-repeat-containing family, pyrin domain-containing 3 (NLRP3) is a cytosolic protein that nucleates assembly of inflammasome signaling platforms, which facilitate caspase-1-mediated IL-1β release and other inflammatory responses in myeloid leukocytes. NLRP3 inflammasomes are assembled in response to multiple pathogen- or environmental stress-induced changes in basic cell physiology, including the destabilization of lysosome integrity and activation of K(+)-permeable channels/transporters in the plasma membrane (PM). However, the quantitative relationships between lysosome membrane permeabilization (LMP), induction of increased PM K(+) permeability, and activation of NLRP3 signaling are incompletely characterized. We used Leu-Leu-O-methyl ester (LLME), a soluble lysosomotropic agent, to quantitatively track the kinetics and extent of LMP in relation to NLRP3 inflammasome signaling responses (ASC oligomerization, caspase-1 activation, IL-1β release) and PM cation fluxes in murine bone marrow-derived dendritic cells (BMDCs). Treatment of BMDCs with submillimolar (≤1 mM) LLME induced slower and partial increases in LMP that correlated with robust NLRP3 inflammasome activation and K(+) efflux. In contrast, supramillimolar (≥2 mM) LLME elicited extremely rapid and complete collapse of lysosome integrity that was correlated with suppression of inflammasome signaling. Supramillimolar LLME also induced dominant negative effects on inflammasome activation by the canonical NLRP3 agonist nigericin; this inhibition correlated with an increase in NLRP3 ubiquitination. LMP elicited rapid BMDC death by both inflammasome-dependent pyroptosis and inflammasome-independent necrosis. LMP also triggered Ca(2+) influx, which attenuated LLME-stimulated NLRP3 inflammasome signaling but potentiated LLME-induced necrosis. Taken together, these studies reveal a previously unappreciated signaling network that defines the coupling between LMP, changes in PM cation fluxes, cell death, and NLRP3 inflammasome activation.
Collapse
Affiliation(s)
- Michael A Katsnelson
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Kristen M Lozada-Soto
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Hana M Russo
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Barbara A Miller
- Department of Pediatrics, Penn State Hershey Children's Hospital, Hershey, Pennsylvania
| | - George R Dubyak
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, Ohio; Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio;
| |
Collapse
|
244
|
Rohacs T. Phosphoinositide signaling in somatosensory neurons. Adv Biol Regul 2016; 61:2-16. [PMID: 26724974 PMCID: PMC4884561 DOI: 10.1016/j.jbior.2015.11.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Revised: 11/06/2015] [Accepted: 11/07/2015] [Indexed: 02/03/2023]
Abstract
Somatosensory neurons of the dorsal root ganglia (DRG) and trigeminal ganglia (TG) are responsible for detecting thermal and tactile stimuli. They are also the primary neurons mediating pain and itch. A large number of cell surface receptors in these neurons couple to phospholipase C (PLC) enzymes leading to the hydrolysis of phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2] and the generation of downstream signaling molecules. These neurons also express many different ion channels, several of which are regulated by phosphoinositides. This review will summarize the knowledge on phosphoinositide signaling in DRG neurons, with special focus on effects on sensory and other ion channels.
Collapse
Affiliation(s)
- Tibor Rohacs
- Rutgers, New Jersey Medical School, Newark, NJ, USA.
| |
Collapse
|
245
|
Kaimoto T, Hatakeyama Y, Takahashi K, Imagawa T, Tominaga M, Ohta T. Involvement of transient receptor potential A1 channel in algesic and analgesic actions of the organic compound limonene. Eur J Pain 2016; 20:1155-65. [DOI: 10.1002/ejp.840] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/02/2015] [Indexed: 12/26/2022]
Affiliation(s)
- T. Kaimoto
- Department of Veterinary Pharmacology; Faculty of Agriculture; Tottori University; Tottori Japan
| | - Y. Hatakeyama
- Department of Veterinary Pharmacology; Faculty of Agriculture; Tottori University; Tottori Japan
| | - K. Takahashi
- Department of Veterinary Pharmacology; Faculty of Agriculture; Tottori University; Tottori Japan
- Division of Functional Fungal Physiology and Pharmacology; Fungus/Mushroom Resource and Research Center; Faculty of Agriculture; Tottori University; Tottori Japan
| | - T. Imagawa
- Biological Chemistry; Department of Chemistry; Faculty of Science; Hokkaido University; Sapporo Japan
| | - M. Tominaga
- Division of Cell Signaling; Okazaki Institute for Integrative Bioscience (National Institute for Physiological Sciences); National Institutes of Natural Sciences; Okazaki Japan
| | - T. Ohta
- Department of Veterinary Pharmacology; Faculty of Agriculture; Tottori University; Tottori Japan
- Division of Functional Fungal Physiology and Pharmacology; Fungus/Mushroom Resource and Research Center; Faculty of Agriculture; Tottori University; Tottori Japan
| |
Collapse
|
246
|
Abstract
The transient receptor potential ankyrin 1 (TRPA1) channel is an irritant sensor highly expressed on nociceptive neurons. The clinical use of TRPA1 antagonists is based on the concept that TRPA1 is active during disease states like neuropathic pain. Indeed, in Phase 2a proof-of-concept studies the TRPA1 antagonist GRC17536 has shown efficacy in patients with painful diabetic neuropathy. Moreover, animal studies suggest that the therapeutic value of TRPA1 antagonists extends beyond pain to pruritus, asthma and cough with limited safety concerns. This review provides a comprehensive overview of the patent literature (since 2007) on small-molecule inhibitors of the TRPA1 channel. Despite the clear progress, many unanswered questions remain. Future advancement to Phase 3 studies will assess the real translational potential of this research field.
Collapse
|
247
|
Badheka D, Borbiro I, Rohacs T. Transient receptor potential melastatin 3 is a phosphoinositide-dependent ion channel. ACTA ACUST UNITED AC 2016; 146:65-77. [PMID: 26123195 PMCID: PMC4485020 DOI: 10.1085/jgp.201411336] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
PI(4,5)P2 is required for TRPM3 activity, establishing its role as a crucial cofactor for the entire TRPM channel family. Phosphoinositides are emerging as general regulators of the functionally diverse transient receptor potential (TRP) ion channel family. Phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) has been reported to positively regulate many TRP channels, but in several cases phosphoinositide regulation is controversial. TRP melastatin 3 (TRPM3) is a heat-activated ion channel that is also stimulated by chemical agonists, such as pregnenolone sulfate. Here, we used a wide array of approaches to determine the effects of phosphoinositides on TRPM3. We found that channel activity in excised inside-out patches decreased over time (rundown), an attribute of PI(4,5)P2-dependent ion channels. Channel activity could be restored by application of either synthetic dioctanoyl (diC8) or natural arachidonyl stearyl (AASt) PI(4,5)P2. The PI(4,5)P2 precursor phosphatidylinositol 4-phosphate (PI(4)P) was less effective at restoring channel activity. TRPM3 currents were also restored by MgATP, an effect which was inhibited by two different phosphatidylinositol 4-kinase inhibitors, or by pretreatment with a phosphatidylinositol-specific phospholipase C (PI-PLC) enzyme, indicating that MgATP acted by generating phosphoinositides. In intact cells, reduction of PI(4,5)P2 levels by chemically inducible phosphoinositide phosphatases or a voltage-sensitive 5′-phosphatase inhibited channel activity. Activation of PLC via muscarinic receptors also inhibited TRPM3 channel activity. Overall, our data indicate that TRPM3 is a phosphoinositide-dependent ion channel and that decreasing PI(4,5)P2 abundance limits its activity. As all other members of the TRPM family have also been shown to require PI(4,5)P2 for activity, our data establish PI(4,5)P2 as a general positive cofactor of this ion channel subfamily.
Collapse
Affiliation(s)
- Doreen Badheka
- Department of Pharmacology and Physiology, Rutgers New Jersey Medical School, Newark, NJ 07103
| | - Istvan Borbiro
- Department of Pharmacology and Physiology, Rutgers New Jersey Medical School, Newark, NJ 07103
| | - Tibor Rohacs
- Department of Pharmacology and Physiology, Rutgers New Jersey Medical School, Newark, NJ 07103
| |
Collapse
|
248
|
Hypoxia-induced sensitisation of TRPA1 in painful dysesthesia evoked by transient hindlimb ischemia/reperfusion in mice. Sci Rep 2016; 6:23261. [PMID: 26983498 PMCID: PMC4794653 DOI: 10.1038/srep23261] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Accepted: 03/02/2016] [Indexed: 11/13/2022] Open
Abstract
Dysesthesia is an unpleasant abnormal sensation, which is often accompanied by peripheral neuropathy or vascular impairment. Here, we examined the roles of transient receptor potential ankyrin 1 (TRPA1) in dysesthesia-like behaviours elicited by transient hindlimb ischemia (15–60 min) by tightly compressing the hindlimb, and reperfusion by releasing the ligature. The paw-withdrawal responses to tactile stimulation were reduced during ischemia and lasted for a while after reperfusion. Hindlimb ischemia/reperfusion elicited spontaneous licking of the ischemic hindpaw that peaked within 10 min. The licking was inhibited by reactive oxygen species (ROS) scavengers, a TRPA1 antagonist, or TRPA1 deficiency, but not by TRPV1 deficiency. In human TRPA1-expressing cells as well as cultured mouse dorsal root ganglion neurons, the H2O2-evoked TRPA1 response was significantly increased by pretreatment with hypoxia (80 mmHg) for 30 min. This hypoxia-induced TRPA1 sensitisation to H2O2 was inhibited by overexpressing a catalytically-inactive mutant of prolyl hydroxylase (PHD) 2 or in a TRPA1 proline mutant resistant to PHDs. Consistent with these results, a PHD inhibitor increased H2O2-evoked nocifensive behaviours through TRPA1 activation. Our results suggest that transient hindlimb ischemia/reperfusion-evoked spontaneous licking, i.e. painful dysesthesia, is caused by ROS-evoked activation of TRPA1 sensitised by hypoxia through inhibiting PHD-mediated hydroxylation of a proline residue in TRPA1.
Collapse
|
249
|
Saul S, Gibhardt CS, Schmidt B, Lis A, Pasieka B, Conrad D, Jung P, Gaupp R, Wonnenberg B, Diler E, Stanisz H, Vogt T, Schwarz EC, Bischoff M, Herrmann M, Tschernig T, Kappl R, Rieger H, Niemeyer BA, Bogeski I. A calcium-redox feedback loop controls human monocyte immune responses: The role of ORAI Ca2+ channels. Sci Signal 2016; 9:ra26. [PMID: 26956485 DOI: 10.1126/scisignal.aaf1639] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In phagocytes, pathogen recognition is followed by Ca(2+) mobilization and NADPH oxidase 2 (NOX2)-mediated "oxidative burst," which involves the rapid production of large amounts of reactive oxygen species (ROS). We showed that ORAI Ca(2+) channels control store-operated Ca(2+) entry, ROS production, and bacterial killing in primary human monocytes. ROS inactivate ORAI channels that lack an ORAI3 subunit. Staphylococcal infection of mice reduced the expression of the gene encoding the redox-sensitive Orai1 and increased the expression of the gene encoding the redox-insensitive Orai3 in the lungs or in bronchoalveolar lavages. A similar switch from ORAI1 to ORAI3 occurred in primary human monocytes exposed to bacterial peptides in culture. These alterations in ORAI1 and ORAI3 abundance shifted the channel assembly toward a more redox-insensitive configuration. Accordingly, silencing ORAI3 increased the redox sensitivity of the channel and enhanced oxidation-induced inhibition of NOX2. We generated a mathematical model that predicted additional features of the Ca(2+)-redox interplay. Our results identified the ORAI-NOX2 feedback loop as a determinant of monocyte immune responses.
Collapse
Affiliation(s)
- Stephanie Saul
- Department of Biophysics, Center for Integrative Physiology and Molecular Medicine (CIPPM), School of Medicine, Saarland University, Homburg 66421, Germany
| | - Christine S Gibhardt
- Department of Biophysics, Center for Integrative Physiology and Molecular Medicine (CIPPM), School of Medicine, Saarland University, Homburg 66421, Germany
| | - Barbara Schmidt
- Department of Biophysics, Center for Integrative Physiology and Molecular Medicine (CIPPM), School of Medicine, Saarland University, Homburg 66421, Germany. Department of Theoretical Physics, Saarland University, Saarbrücken 66123, Germany. Molecular Biophysics, CIPMM, School of Medicine, Saarland University, Homburg 66421, Germany
| | - Annette Lis
- Department of Biophysics, Center for Integrative Physiology and Molecular Medicine (CIPPM), School of Medicine, Saarland University, Homburg 66421, Germany
| | - Bastian Pasieka
- Department of Biophysics, Center for Integrative Physiology and Molecular Medicine (CIPPM), School of Medicine, Saarland University, Homburg 66421, Germany
| | - David Conrad
- Department of Biophysics, Center for Integrative Physiology and Molecular Medicine (CIPPM), School of Medicine, Saarland University, Homburg 66421, Germany
| | - Philipp Jung
- Institute of Medical Microbiology and Hygiene, Saarland University, Homburg 66421, Germany
| | - Rosmarie Gaupp
- Institute of Medical Microbiology and Hygiene, Saarland University, Homburg 66421, Germany
| | - Bodo Wonnenberg
- Department of Anatomy, School of Medicine, Saarland University, Homburg 66421, Germany
| | - Ebru Diler
- Department of Anatomy, School of Medicine, Saarland University, Homburg 66421, Germany
| | - Hedwig Stanisz
- Department of Dermatology, Venereology and Allergology, University Hospital of Saarland, Homburg 66421, Germany
| | - Thomas Vogt
- Department of Dermatology, Venereology and Allergology, University Hospital of Saarland, Homburg 66421, Germany
| | - Eva C Schwarz
- Department of Biophysics, Center for Integrative Physiology and Molecular Medicine (CIPPM), School of Medicine, Saarland University, Homburg 66421, Germany
| | - Markus Bischoff
- Institute of Medical Microbiology and Hygiene, Saarland University, Homburg 66421, Germany
| | - Mathias Herrmann
- Institute of Medical Microbiology and Hygiene, Saarland University, Homburg 66421, Germany
| | - Thomas Tschernig
- Department of Anatomy, School of Medicine, Saarland University, Homburg 66421, Germany
| | - Reinhard Kappl
- Department of Biophysics, Center for Integrative Physiology and Molecular Medicine (CIPPM), School of Medicine, Saarland University, Homburg 66421, Germany
| | - Heiko Rieger
- Department of Theoretical Physics, Saarland University, Saarbrücken 66123, Germany
| | - Barbara A Niemeyer
- Molecular Biophysics, CIPMM, School of Medicine, Saarland University, Homburg 66421, Germany
| | - Ivan Bogeski
- Department of Biophysics, Center for Integrative Physiology and Molecular Medicine (CIPPM), School of Medicine, Saarland University, Homburg 66421, Germany.
| |
Collapse
|
250
|
Abstract
The transient receptor potential canonical (TRPC) channels have gained interest as potential therapeutic targets for respiratory diseases, neurological disorders, cardiovascular disorders, pain, cancer and several other pathological conditions. The TRPC receptor family consists of seven isoforms (C1-C7) and has been divided into three subfamilies based on structural and functional similarities. Several pharmaceutical companies and academic institutes are currently exploring the potential of these nonselective cation channels as therapeutic targets using small molecule inhibitors or modulators. This review covers patents on TRPC receptor modulators published from 2002 to 2014. The review mainly focuses on TRPC receptor target biology, small and large molecule modulators and their therapeutic potential.
Collapse
|