201
|
Properzi F, Badhan A, Klier S, Schmidt C, Klöhn PC, Wadsworth JDF, Clarke AR, Jackson GS, Collinge J. Physical, chemical and kinetic factors affecting prion infectivity. Prion 2016; 10:251-61. [PMID: 27282252 PMCID: PMC4981209 DOI: 10.1080/19336896.2016.1181250] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The mouse-adapted scrapie prion strain RML is one of the most widely used in prion research. The introduction of a cell culture-based assay of RML prions, the scrapie cell assay (SCA) allows more rapid and precise prion titration. A semi-automated version of this assay (ASCA) was applied to explore a range of conditions that might influence the infectivity and properties of RML prions. These include resistance to freeze-thaw procedures; stability to endogenous proteases in brain homogenate despite prolonged exposure to varying temperatures; distribution of infective material between pellet and supernatant after centrifugation, the effect of reducing agents and the influence of detergent additives on the efficiency of infection. Apparent infectivity is increased significantly by interaction with cationic detergents. Importantly, we have also elucidated the relationship between the duration of exposure of cells to RML prions and the transmission of infection. We established that the infection process following contact of cells with RML prions is rapid and followed an exponential time course, implying a single rate-limiting process.
Collapse
Affiliation(s)
- Francesca Properzi
- a MRC Prion Unit, Department of Neurodegenerative Disease , UCL Institute of Neurology , London , UK
| | - Anjna Badhan
- a MRC Prion Unit, Department of Neurodegenerative Disease , UCL Institute of Neurology , London , UK
| | - Steffi Klier
- a MRC Prion Unit, Department of Neurodegenerative Disease , UCL Institute of Neurology , London , UK
| | - Christian Schmidt
- a MRC Prion Unit, Department of Neurodegenerative Disease , UCL Institute of Neurology , London , UK
| | - Peter C Klöhn
- a MRC Prion Unit, Department of Neurodegenerative Disease , UCL Institute of Neurology , London , UK
| | - Jonathan D F Wadsworth
- a MRC Prion Unit, Department of Neurodegenerative Disease , UCL Institute of Neurology , London , UK
| | - Anthony R Clarke
- a MRC Prion Unit, Department of Neurodegenerative Disease , UCL Institute of Neurology , London , UK
| | - Graham S Jackson
- a MRC Prion Unit, Department of Neurodegenerative Disease , UCL Institute of Neurology , London , UK
| | - John Collinge
- a MRC Prion Unit, Department of Neurodegenerative Disease , UCL Institute of Neurology , London , UK
| |
Collapse
|
202
|
Huang YW, Chang YC, Diaz-Avalos R, King CY. W8, a new Sup35 prion strain, transmits distinctive information with a conserved assembly scheme. Prion 2016; 9:207-27. [PMID: 26038983 DOI: 10.1080/19336896.2015.1039217] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
Prion strains are different self-propagating conformers of the same infectious protein. Three strains of the [PSI] prion, infectious forms of the yeast Sup35 protein, have been previously characterized in our laboratory. Here we report the discovery of a new [PSI] strain, named W8. We demonstrate its robust cellular propagation as well as the protein-only transmission. To reveal strain-specific sequence requirement, mutations that interfered with the propagation of W8 were identified by consecutive substitution of residues 5-55 of Sup35 by proline and insertion of glycine at alternate sites in this segment. Interestingly, propagating W8 with single mutations at residues 5-7 and around residue 43 caused the strain to transmute. In contrast to the assertion that [PSI] existed as a dynamic cloud of sub-structures, no random drift in transmission characteristics was detected in mitotically propagated W8 populations. Electron diffraction and mass-per-length measurements indicate that, similar to the 3 previously characterized strains, W8 fibers are composed of about 1 prion molecule per 4.7-Å cross-β repeat period. Thus differently folded single Sup35 molecules, not dimeric and trimeric assemblies, form the basic repeating units to build the 4 [PSI] strains.
Collapse
Key Words
- 5-FOA, 5-fluoroorotic acid
- Aβ, amyloid β-protein
- GFP, green fluorescent protein
- PrP, prion protein
- SC, synthetic complete
- STEM, scanning transmission electron microscopy
- YPD, yeast extract, peptone, dextrose
- amyloid, prion strain, [PSI+], SUP35, yeast
- mpl, mass per length
Collapse
Affiliation(s)
- Yu-Wen Huang
- a Molecular and Cell Biology; Taiwan International Graduate Program; Academia Sinica and National Defense Medical Center ; Taipei , Taiwan
| | | | | | | |
Collapse
|
203
|
Prion-like domains as epigenetic regulators, scaffolds for subcellular organization, and drivers of neurodegenerative disease. Brain Res 2016; 1647:9-18. [PMID: 26996412 PMCID: PMC5003744 DOI: 10.1016/j.brainres.2016.02.037] [Citation(s) in RCA: 163] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 02/19/2016] [Accepted: 02/20/2016] [Indexed: 12/12/2022]
Abstract
Key challenges faced by all cells include how to spatiotemporally organize complex biochemistry and how to respond to environmental fluctuations. The budding yeast Saccharomyces cerevisiae harnesses alternative protein folding mediated by yeast prion domains (PrDs) for rapid evolution of new traits in response to environmental stress. Increasingly, it is appreciated that low complexity domains similar in amino acid composition to yeast PrDs (prion-like domains; PrLDs) found in metazoa have a prominent role in subcellular cytoplasmic organization, especially in relation to RNA homeostasis. In this review, we highlight recent advances in our understanding of the role of prions in enabling rapid adaptation to environmental stress in yeast. We also present the complete list of human proteins with PrLDs and discuss the prevalence of the PrLD in nucleic-acid binding proteins that are often connected to neurodegenerative disease, including: ataxin 1, ataxin 2, FUS, TDP-43, TAF15, EWSR1, hnRNPA1, and hnRNPA2. Recent paradigm-shifting advances establish that PrLDs undergo phase transitions to liquid states, which contribute to the structure and biophysics of diverse membraneless organelles. This structural functionality of PrLDs, however, simultaneously increases their propensity for deleterious protein-misfolding events that drive neurodegenerative disease. We suggest that even these PrLD-misfolding events are not irreversible and can be mitigated by natural or engineered protein disaggregases, which could have important therapeutic applications.
Collapse
|
204
|
Fernández C, Núñez-Ramírez R, Jiménez M, Rivas G, Giraldo R. RepA-WH1, the agent of an amyloid proteinopathy in bacteria, builds oligomeric pores through lipid vesicles. Sci Rep 2016; 6:23144. [PMID: 26984374 PMCID: PMC4794723 DOI: 10.1038/srep23144] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 02/29/2016] [Indexed: 12/12/2022] Open
Abstract
RepA-WH1 is a disease-unrelated protein that recapitulates in bacteria key aspects of human amyloid proteinopathies: i) It undergoes ligand-promoted amyloidogenesis in vitro; ii) its aggregates are able to seed/template amyloidosis on soluble protein molecules; iii) its conformation is modulated by Hsp70 chaperones in vivo, generating transmissible amyloid strains; and iv) causes proliferative senescence. Membrane disruption by amyloidogenic oligomers has been found for most proteins causing human neurodegenerative diseases. Here we report that, as for PrP prion and α-synuclein, acidic phospholipids also promote RepA-WH1 amyloidogenesis in vitro. RepA-WH1 molecules bind to liposomes, where the protein assembles oligomeric membrane pores. Fluorescent tracer molecules entrapped in the lumen of the vesicles leak through these pores and RepA-WH1 can then form large aggregates on the surface of the vesicles without inducing their lysis. These findings prove that it is feasible to generate in vitro a synthetic proteinopathy with a minimal set of cytomimetic components and support the view that cell membranes are primary targets in protein amyloidoses.
Collapse
Affiliation(s)
- Cristina Fernández
- Department of Cellular and Molecular Biology Centro de Investigaciones Biológicas-CSIC, E28040 Madrid, Spain
| | - Rafael Núñez-Ramírez
- Electron Microscopy Facility, Centro de Investigaciones Biológicas–CSIC, E28040 Madrid, Spain
| | - Mercedes Jiménez
- Department of Cellular and Molecular Biology Centro de Investigaciones Biológicas-CSIC, E28040 Madrid, Spain
| | - Germán Rivas
- Department of Cellular and Molecular Biology Centro de Investigaciones Biológicas-CSIC, E28040 Madrid, Spain
| | - Rafael Giraldo
- Department of Cellular and Molecular Biology Centro de Investigaciones Biológicas-CSIC, E28040 Madrid, Spain
| |
Collapse
|
205
|
Imamura M, Kato N, Iwamaru Y, Mohri S, Yokoyama T, Murayama Y. Multiple affinity purification of a baculovirus-derived recombinant prion protein with in vitro ability to convert to its pathogenic form. Prep Biochem Biotechnol 2016; 47:1-7. [PMID: 26918377 DOI: 10.1080/10826068.2016.1155058] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
We previously showed that baculovirus-derived recombinant prion protein (Bac-PrP) can be converted to the misfolded infectious form (PrPSc) by protein misfolding cyclic amplification, an in vitro conversion technique. Bac-PrP, with post-translational modifications, would be useful for various applications such as using PrP as an immunogen for generating anti-PrP antibody, developing anti-prion drugs or diagnostic assays using in vitro conversion systems, and establishing an in vitro prion propagation model. For this purpose, highly purified Bac-PrP with in vitro conversion activity is necessary for use as a PrPC source, to minimize contamination. Furthermore, an exogenous affinity tag-free form is desirable to avoid potential steric interference by the affinity tags during the conversion process. In this study, we established purification methods for the untagged Bac-PrP under native conditions by combining exogenous double-affinity tags, namely, a polyhistidine-tag and a profinity eXact tag, with an octarepeat sequence of the N-terminal region of PrP, which has metal ion-binding affinity. The untagged Bac-PrP with near-homogeneity was obtained by three-step affinity purification, and it was shown that the final, purified Bac-PrP could convert to its pathogenic form. The presented purification procedure could be applied not only to PrP but also to other eukaryotic, recombinant proteins that require high purity and intact physiological activity.
Collapse
Affiliation(s)
- Morikazu Imamura
- a Influenza and Prion Disease Research Center, National Institute of Animal Health , Tsukuba , Ibaraki , Japan
| | - Nobuko Kato
- a Influenza and Prion Disease Research Center, National Institute of Animal Health , Tsukuba , Ibaraki , Japan
| | - Yoshifumi Iwamaru
- a Influenza and Prion Disease Research Center, National Institute of Animal Health , Tsukuba , Ibaraki , Japan
| | - Shirou Mohri
- a Influenza and Prion Disease Research Center, National Institute of Animal Health , Tsukuba , Ibaraki , Japan
| | - Takashi Yokoyama
- a Influenza and Prion Disease Research Center, National Institute of Animal Health , Tsukuba , Ibaraki , Japan
| | - Yuichi Murayama
- a Influenza and Prion Disease Research Center, National Institute of Animal Health , Tsukuba , Ibaraki , Japan
| |
Collapse
|
206
|
Strain-dependent profile of misfolded prion protein aggregates. Sci Rep 2016; 6:20526. [PMID: 26877167 PMCID: PMC4753423 DOI: 10.1038/srep20526] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 01/05/2016] [Indexed: 12/21/2022] Open
Abstract
Prions are composed of the misfolded prion protein (PrPSc) organized in a variety of aggregates. An important question in the prion field has been to determine the identity of functional PrPSc aggregates. In this study, we used equilibrium sedimentation in sucrose density gradients to separate PrPSc aggregates from three hamster prion strains (Hyper, Drowsy, SSLOW) subjected to minimal manipulations. We show that PrPSc aggregates distribute in a wide range of arrangements and the relative proportion of each species depends on the prion strain. We observed a direct correlation between the density of the predominant PrPSc aggregates and the incubation periods for the strains studied. The relative presence of PrPSc in fractions of different sucrose densities was indicative of the protein deposits present in the brain as analyzed by histology. Interestingly, no association was found between sensitivity to proteolytic degradation and aggregation profiles. Therefore, the organization of PrP molecules in terms of the density of aggregates generated may determine some of the particular strain properties, whereas others are independent from it. Our findings may contribute to understand the mechanisms of strain variation and the role of PrPSc aggregates in prion-induced neurodegeneration.
Collapse
|
207
|
Botsios S, Manuelidis L. CJD and Scrapie Require Agent-Associated Nucleic Acids for Infection. J Cell Biochem 2016; 117:1947-58. [PMID: 26773845 DOI: 10.1002/jcb.25495] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 01/15/2016] [Indexed: 01/18/2023]
Abstract
Unlike Alzheimer's and most other neurodegenerative diseases, Transmissible Spongiform Encephalopathies (TSEs) are all caused by actively replicating infectious particles of viral size and density. Different strain-specific TSE agents cause CJD, kuru, scrapie and BSE, and all behave as latent viruses that evade adaptive immune responses and can persist for years in lymphoreticular tissues. A foreign viral structure with a nucleic acid genome best explains these TSE strains and their endemic and epidemic spread in susceptible species. Nevertheless, it is widely believed that host prion protein (PrP), without any genetic material, encodes all these strains. We developed rapid infectivity assays that allowed us to reproducibly isolate infectious particles where >85% of the starting titer separated from the majority of host components, including PrP. Remarkably, digestion of all forms of PrP did not reduce brain particle titers. To ask if TSE agents, as other viruses, require nucleic acids, we exposed high titer FU-CJD and 22L scrapie particles to potent nucleases. Both agent-strains were propagated in GT1 neuronal cells to avoid interference by complex degenerative brain changes that can impede nuclease digestions. After exposure to nucleases that are active in sarkosyl, infectivity of both agents was reproducibly reduced by ≥99%. No gold-stained host proteins or any form of PrP were visibly altered by these nucleases. In contrast, co-purifying protected mitochondrial DNA and circular SPHINX DNAs were destroyed. These findings demonstrate that TSE agents require protected genetic material to infect their hosts, and should reopen investigation of essential agent nucleic acids. J. Cell. Biochem. 117: 1947-1958, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Sotirios Botsios
- Department of Surgery, Section of Neuropathology, Yale Medical School, New Haven, 06510, Connecticut
| | - Laura Manuelidis
- Department of Surgery, Section of Neuropathology, Yale Medical School, New Haven, 06510, Connecticut
| |
Collapse
|
208
|
Guo BB, Bellingham SA, Hill AF. Stimulating the Release of Exosomes Increases the Intercellular Transfer of Prions. J Biol Chem 2016; 291:5128-37. [PMID: 26769968 DOI: 10.1074/jbc.m115.684258] [Citation(s) in RCA: 108] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Indexed: 01/20/2023] Open
Abstract
Exosomes are small extracellular vesicles released by cells and play important roles in intercellular communication and pathogen transfer. Exosomes have been implicated in several neurodegenerative diseases, including prion disease and Alzheimer disease. Prion disease arises upon misfolding of the normal cellular prion protein, PrP(C), into the disease-associated isoform, PrP(Sc). The disease has a unique transmissible etiology, and exosomes represent a novel and efficient method for prion transmission. The precise mechanism by which prions are transmitted from cell to cell remains to be fully elucidated, although three hypotheses have been proposed: direct cell-cell contact, tunneling nanotubes, and exosomes. Given the reported presence of exosomes in biological fluids and in the lipid and nucleic acid contents of exosomes, these vesicles represent an ideal mechanism for encapsulating prions and potential cofactors to facilitate prion transmission. This study investigates the relationship between exosome release and intercellular prion dissemination. Stimulation of exosome release through treatment with an ionophore, monensin, revealed a corresponding increase in intercellular transfer of prion infectivity. Conversely, inhibition of exosome release using GW4869 to target the neutral sphingomyelinase pathway induced a decrease in intercellular prion transmission. Further examination of the effect of monensin on PrP conversion revealed that monensin also alters the conformational stability of PrP(C), leading to increased generation of proteinase K-resistant prion protein. The findings presented here provide support for a positive relationship between exosome release and intercellular transfer of prion infectivity, highlighting an integral role for exosomes in facilitating the unique transmissible nature of prions.
Collapse
Affiliation(s)
- Belinda B Guo
- From the Department of Biochemistry and Molecular Biology and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Melbourne, Victoria 3010, Australia and
| | - Shayne A Bellingham
- From the Department of Biochemistry and Molecular Biology and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Melbourne, Victoria 3010, Australia and
| | - Andrew F Hill
- From the Department of Biochemistry and Molecular Biology and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Melbourne, Victoria 3010, Australia and the Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia
| |
Collapse
|
209
|
Interaction of RNA with a C-terminal fragment of the amyotrophic lateral sclerosis-associated TDP43 reduces cytotoxicity. Sci Rep 2016; 6:19230. [PMID: 26757674 PMCID: PMC4725827 DOI: 10.1038/srep19230] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 12/01/2015] [Indexed: 12/12/2022] Open
Abstract
A hallmark of amyotrophic lateral sclerosis (ALS), a devastating neurodegenerative disease, is formation of inclusion bodies (IBs) from misfolded proteins in neuronal cells. TAR RNA/DNA-binding protein 43 kDa (TDP43) is an ALS-causative protein forming IBs in ALS patients. The relation between localization of the IBs and neurotoxicity remains largely unknown. We characterized aggregation of fluorescently tagged TDP43 and its carboxyl-terminal fragments (CTFs) by analytical fluorescence imaging techniques. Quantitative time-lapse analysis in individual live cells showed that fluorescent-protein-tagged TDP43 was cleaved and a 35 kDa TDP43 CTF (TDP35) formed ubiquitin (Ub)-negative cytoplasmic IBs. Although TDP35 formed mildly toxic Ub-negative IBs in the cytoplasm, TDP25, another type of a TDP43 CTF, efficiently formed sufficiently toxic Ub-positive IBs. One- or two-color fluorescence correlation spectroscopy (FCS/FCCS) revealed that coaggregation of TDP25 with TDP43 was initiated by depletion of the RNA that binds to TDP25. Moreover, nuclear localization tagging TDP25 reduced the rate of neuronal cell death. These observations point to the need to elucidate the novel sequestration mechanism and details of the toxicity of the misfolded and aggregation-prone TDP43 CTFs (as well as the RNA binding and nuclear retention) in order to identify possible preventive interventions against ALS.
Collapse
|
210
|
Insights into Mechanisms of Chronic Neurodegeneration. Int J Mol Sci 2016; 17:ijms17010082. [PMID: 26771599 PMCID: PMC4730326 DOI: 10.3390/ijms17010082] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 12/22/2015] [Accepted: 12/23/2015] [Indexed: 12/03/2022] Open
Abstract
Chronic neurodegenerative diseases such as Alzheimer’s disease (AD), Parkinson’s disease (PD), and prion diseases are characterised by the accumulation of abnormal conformers of a host encoded protein in the central nervous system. The process leading to neurodegeneration is still poorly defined and thus development of early intervention strategies is challenging. Unique amongst these diseases are Transmissible Spongiform Encephalopathies (TSEs) or prion diseases, which have the ability to transmit between individuals. The infectious nature of these diseases has permitted in vivo and in vitro modelling of the time course of the disease process in a highly reproducible manner, thus early events can be defined. Recent evidence has demonstrated that the cell-to-cell spread of protein aggregates by a “prion-like mechanism” is common among the protein misfolding diseases. Thus, the TSE models may provide insights into disease mechanisms and testable hypotheses for disease intervention, applicable to a number of these chronic neurodegenerative diseases.
Collapse
|
211
|
Detection of Atypical H-Type Bovine Spongiform Encephalopathy and Discrimination of Bovine Prion Strains by Real-Time Quaking-Induced Conversion. J Clin Microbiol 2016; 54:676-86. [PMID: 26739160 DOI: 10.1128/jcm.02731-15] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 12/25/2015] [Indexed: 12/30/2022] Open
Abstract
Prion diseases of cattle include the classical bovine spongiform encephalopathy (C-BSE) and the atypical H-type BSE (H-BSE) and L-type BSE (L-BSE) strains. Although the C- and L-BSE strains can be detected and discriminated by ultrasensitive real-time quaking-induced conversion (RT-QuIC) assays, no such test has yet been described for the detection of H-BSE or the discrimination of each of the major bovine prion strains. Here, we demonstrate an RT-QuIC assay for H-BSE that can detect as little as 10(-9) dilutions of brain tissue and neat cerebrospinal fluid samples from clinically affected cattle. Moreover, comparisons of the reactivities with different recombinant prion protein substrates and/or immunoblot band profiles of proteinase K-treated RT-QuIC reaction products indicated that H-, L-, and C-BSE have distinctive prion seeding activities and can be discriminated by RT-QuIC on this basis.
Collapse
|
212
|
Papaevgeniou N, Chondrogianni N. UPS Activation in the Battle Against Aging and Aggregation-Related Diseases: An Extended Review. Methods Mol Biol 2016; 1449:1-70. [PMID: 27613027 DOI: 10.1007/978-1-4939-3756-1_1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Aging is a biological process accompanied by gradual increase of damage in all cellular macromolecules, i.e., nucleic acids, lipids, and proteins. When the proteostasis network (chaperones and proteolytic systems) cannot reverse the damage load due to its excess as compared to cellular repair/regeneration capacity, failure of homeostasis is established. This failure is a major hallmark of aging and/or aggregation-related diseases. Dysfunction of the major cellular proteolytic machineries, namely the proteasome and the lysosome, has been reported during the progression of aging and aggregation-prone diseases. Therefore, activation of these pathways is considered as a possible preventive or therapeutic approach against the progression of these processes. This chapter focuses on UPS activation studies in cellular and organismal models and the effects of such activation on aging, longevity and disease prevention or reversal.
Collapse
Affiliation(s)
- Nikoletta Papaevgeniou
- Institute of Biology, Medicinal Chemistry and Biotechnology, National Hellenic Research Foundation, 48 Vassileos Constantinou Ave., Athens, 11635, Greece
| | - Niki Chondrogianni
- Institute of Biology, Medicinal Chemistry and Biotechnology, National Hellenic Research Foundation, 48 Vassileos Constantinou Ave., Athens, 11635, Greece.
| |
Collapse
|
213
|
Moda F, T. Le TN, Aulić S, Bistaffa E, Campagnani I, Virgilio T, Indaco A, Palamara L, Andréoletti O, Tagliavini F, Legname G. Synthetic prions with novel strain-specified properties. PLoS Pathog 2015; 11:e1005354. [PMID: 26720726 PMCID: PMC4699842 DOI: 10.1371/journal.ppat.1005354] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 11/30/2015] [Indexed: 01/10/2023] Open
Abstract
Prions are infectious proteins that possess multiple self-propagating structures. The information for strains and structural specific barriers appears to be contained exclusively in the folding of the pathological isoform, PrPSc. Many recent studies determined that de novo prion strains could be generated in vitro from the structural conversion of recombinant (rec) prion protein (PrP) into amyloidal structures. Our aim was to elucidate the conformational diversity of pathological recPrP amyloids and their biological activities, as well as to gain novel insights in characterizing molecular events involved in mammalian prion conversion and propagation. To this end we generated infectious materials that possess different conformational structures. Our methodology for the prion conversion of recPrP required only purified rec full-length mouse (Mo) PrP and common chemicals. Neither infected brain extracts nor amplified PrPSc were used. Following two different in vitro protocols recMoPrP converted to amyloid fibrils without any seeding factor. Mouse hypothalamic GT1 and neuroblastoma N2a cell lines were infected with these amyloid preparations as fast screening methodology to characterize the infectious materials. Remarkably, a large number of amyloid preparations were able to induce the conformational change of endogenous PrPC to harbor several distinctive proteinase-resistant PrP forms. One such preparation was characterized in vivo habouring a synthetic prion with novel strain specified neuropathological and biochemical properties. Prions are infectious proteins capable of acquiring multiple self-propagating structures. The information for strains and structural specific barriers appears to be contained exclusively in the folding of the pathological isoform, designated as PrPSc. During propagation, disease-associated conformer PrPSc coerces the physiological form, denoted as PrPC, to adopt the pathological isoform conformation. We describe here the generation of an array of infectious materials with different structural, morphological, biochemical and cell biological characteristics. After producing purified recombinant prion protein of the wild-type mouse full-length sequence in Escherichia coli, we polymerized the protein into various amyloid fibril conformations based on different amyloid preparations. We also applied a build-in methodology for screening amyloid preparations and generate infectious materials using an amyloid-infected cell culture assay. Some of the amyloid fibrils preparations were able to efficiently amplify in PMCA (Protein Misfolding Cyclic Amplification), and to induce endogenous PrPC to convert into PrPSc in both murine hypothalamic GT1 and neuroblastoma N2a cell lines. One such protocol lead to the generation of a novel synthetic prion strain in mice.
Collapse
Affiliation(s)
- Fabio Moda
- Unit of Neuropathology and Neurology 5, IRCCS Foundation Carlo Besta Neurological Institute, Milano, Italy
| | - Thanh-Nhat T. Le
- Laboratory of Prion Biology, Department of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati (SISSA), Trieste, Ital,y
| | - Suzana Aulić
- Laboratory of Prion Biology, Department of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati (SISSA), Trieste, Ital,y
| | - Edoardo Bistaffa
- Laboratory of Prion Biology, Department of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati (SISSA), Trieste, Ital,y
| | - Ilaria Campagnani
- Unit of Neuropathology and Neurology 5, IRCCS Foundation Carlo Besta Neurological Institute, Milano, Italy
| | - Tommaso Virgilio
- Unit of Neuropathology and Neurology 5, IRCCS Foundation Carlo Besta Neurological Institute, Milano, Italy
| | - Antonio Indaco
- Unit of Neuropathology and Neurology 5, IRCCS Foundation Carlo Besta Neurological Institute, Milano, Italy
| | - Luisa Palamara
- Unit of Neuropathology and Neurology 5, IRCCS Foundation Carlo Besta Neurological Institute, Milano, Italy
| | - Olivier Andréoletti
- UMR INRA-ENVT, Physiopathologie Infectieuse et Parasitaire des Ruminants, Ecole Nationale Vétérinaire de Toulouse, Toulouse, France
| | - Fabrizio Tagliavini
- Unit of Neuropathology and Neurology 5, IRCCS Foundation Carlo Besta Neurological Institute, Milano, Italy
| | - Giuseppe Legname
- Laboratory of Prion Biology, Department of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati (SISSA), Trieste, Ital,y
- ELETTRA Laboratory, Sincrotrone Trieste S.C.p.A, Basovizza, Trieste, Italy
- * E-mail:
| |
Collapse
|
214
|
Conformational Switching and Nanoscale Assembly of Human Prion Protein into Polymorphic Amyloids via Structurally Labile Oligomers. Biochemistry 2015; 54:7505-13. [DOI: 10.1021/acs.biochem.5b01110] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
215
|
Torrent J, Lange R, Igel-Egalon A, Béringue V, Rezaei H. Getting to the core of prion superstructural variability. Prion 2015; 10:1-8. [PMID: 26636374 PMCID: PMC4981190 DOI: 10.1080/19336896.2015.1122161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
The phenomenon of protein superstructural polymorphism has become the subject of increased research activity. Besides the relevance to explain the existence of multiple prion strains, such activity is partly driven by the recent finding that in many age-related neurodegenerative diseases highly ordered self-associated forms of peptides and proteins might be the structural basis of prion-like processes and strains giving rise to different disease phenotypes. Biophysical studies of prion strains have been hindered by a lack of tools to characterize inherently noncrystalline, heterogeneous and insoluble proteins. A description of the pressure response of prion quaternary structures might change this picture. This is because applying pressure induces quaternary structural changes of PrP, such as misfolding and self-assembly. From the thermodynamics of these processes, structural features in terms of associated volume changes can then be deduced. We suggest that conformation-enciphered prion strains can be distinguished in terms of voids in the interfaces of the constituting PrP protomers and thus in their volumetric properties.
Collapse
Affiliation(s)
- Joan Torrent
- a Institut National de la Recherche Agronomique, UR892, Virologie Immunologie Moléculaires , Jouy-en-Josas , France
| | - Reinhard Lange
- b Institut National de la Recherche Agronomique, UMR1208, Ingénierie des Agropolymères et Technologies Emergentes, Université Montpellier , Montpellier , France
| | - Angelique Igel-Egalon
- a Institut National de la Recherche Agronomique, UR892, Virologie Immunologie Moléculaires , Jouy-en-Josas , France
| | - Vincent Béringue
- a Institut National de la Recherche Agronomique, UR892, Virologie Immunologie Moléculaires , Jouy-en-Josas , France
| | - Human Rezaei
- a Institut National de la Recherche Agronomique, UR892, Virologie Immunologie Moléculaires , Jouy-en-Josas , France
| |
Collapse
|
216
|
The Good, the Bad, and the Ugly of Dendritic Cells during Prion Disease. J Immunol Res 2015; 2015:168574. [PMID: 26697507 PMCID: PMC4677227 DOI: 10.1155/2015/168574] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 11/15/2015] [Indexed: 12/11/2022] Open
Abstract
Prions are a unique group of proteinaceous pathogens which cause neurodegenerative disease and can be transmitted by a variety of exposure routes. After peripheral exposure, the accumulation and replication of prions within secondary lymphoid organs are obligatory for their efficient spread from the periphery to the brain where they ultimately cause neurodegeneration and death. Mononuclear phagocytes (MNP) are a heterogeneous population of dendritic cells (DC) and macrophages. These cells are abundant throughout the body and display a diverse range of roles based on their anatomical locations. For example, some MNP are strategically situated to provide a first line of defence against pathogens by phagocytosing and destroying them. Conventional DC are potent antigen presenting cells and migrate via the lymphatics to the draining lymphoid tissue where they present the antigens to lymphocytes. The diverse roles of MNP are also reflected in various ways in which they interact with prions and in doing so impact on disease pathogenesis. Indeed, some studies suggest that prions exploit conventional DC to infect the host. Here we review our current understanding of the influence of MNP in the pathogenesis of the acquired prion diseases with particular emphasis on the role of conventional DC.
Collapse
|
217
|
Abstract
Prion diseases are a heterogeneous class of fatal neurodegenerative disorders associated with misfolding of host cellular prion protein (PrP(C)) into a pathological isoform, termed PrP(Sc). Prion diseases affect various mammals, including humans, and effective treatments are not available. Prion diseases are distinguished from other protein misfolding disorders - such as Alzheimer's or Parkinson's disease - in that they are infectious. Prion diseases occur sporadically without any known exposure to infected material, and hereditary cases resulting from rare mutations in the prion protein have also been documented. The mechanistic underpinnings of prion and other neurodegenerative disorders remain poorly understood. Various proteomics techniques have been instrumental in early PrP(Sc) detection, biomarker discovery, elucidation of PrP(Sc) structure and mapping of biochemical pathways affected by pathogenesis. Moving forward, proteomics approaches will likely become more integrated into the clinical and research settings for the rapid diagnosis and characterization of prion pathogenesis.
Collapse
Affiliation(s)
- Roger A Moore
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, NIH,NIAID, Hamilton, MT 59840, USA
| | | | | |
Collapse
|
218
|
Makarava N, Savtchenko R, Baskakov IV. Two alternative pathways for generating transmissible prion disease de novo. Acta Neuropathol Commun 2015; 3:69. [PMID: 26556038 PMCID: PMC4641408 DOI: 10.1186/s40478-015-0248-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 10/27/2015] [Indexed: 11/13/2022] Open
Abstract
Introduction Previous studies established that prion disease with unique strain-specific phenotypes could be induced by in vitro-formed recombinant PrP (rPrP) fibrils with structures different from that of authentic prions, or PrPSc. To explain the etiology of prion diseases, new mechanism proposed that in animals the transition from rPrP fibrils to PrPSc consists of two main steps: the first involves fibril-induced formation of atypical PrPres, a self-replicating but clinically silent state, and the second consists of atypical PrPres-dependent formation of PrPSc via rare deformed templating events. Results In the current study, atypical PrPres with characteristics similar to those of brain-derived atypical PrPres was generated in vitro. Upon inoculation into animals, in vitro-generated atypical PrPres gave rise to PrPSc and prion disease with a phenotype similar to those induced by rPrP fibrils. Significant differences in the sialylation pattern between atypical PrPres and PrPSc suggested that only a small sub-fraction of the PrPC that is acceptable as a substrate for PrPSc could be also recruited by atypical PrPres. This can explain why atypical PrPres replicates slower than PrPSc and why PrPSc outcompetes atypical PrPres. Conclusions This study illustrates that transmissible prion diseases with very similar disease phenotypes could be produced via two alternative procedures: direct inoculation of recombinant PrP amyloid fibrils or in vitro-produced atypical PrPres. Moreover, this work showed that preparations of atypical PrPres free of PrPSc can give rise to transmissible diseases in wild type animals and that atypical PrPres generated in vitro is an adequate model for brain-derived atypical PrPres. Electronic supplementary material The online version of this article (doi:10.1186/s40478-015-0248-5) contains supplementary material, which is available to authorized users.
Collapse
|
219
|
Mammalian prion protein (PrP) forms conformationally different amyloid intracellular aggregates in bacteria. Microb Cell Fact 2015; 14:174. [PMID: 26536866 PMCID: PMC4634817 DOI: 10.1186/s12934-015-0361-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 10/17/2015] [Indexed: 01/21/2023] Open
Abstract
Background An increasing number of proteins are being shown to assemble into amyloid structures that lead to pathological states. Among them, mammalian prions outstand due to their ability to transmit the pathogenic conformation, becoming thus infectious. The structural conversion of the cellular prion protein (PrPC), into its misfolded pathogenic form (PrPSc) is the central event of prion-driven pathologies. The study of the structural properties of intracellular amyloid aggregates in general and of prion-like ones in particular is a challenging task. In this context, the evidence that the inclusion bodies formed by amyloid proteins in bacteria display amyloid-like structural and functional properties make them a privileged system to model intracellular amyloid aggregation. Results Here we provide the first demonstration that recombinant murine PrP and its C-terminal domain (90–231) attain amyloid conformations inside bacteria. Moreover, the inclusions formed by these two PrP proteins display conformational diversity, since they differ in fibril morphology, binding affinity to amyloid dyes, stability, resistance to proteinase K digestion and neurotoxicity. Conclusions Overall, our results suggest that modelling PrP amyloid formation in microbial cell factories might open an avenue for a better understanding of the structural features modulating the pathogenic impact of this intriguing protein. Electronic supplementary material The online version of this article (doi:10.1186/s12934-015-0361-y) contains supplementary material, which is available to authorized users.
Collapse
|
220
|
Eisele YS, Monteiro C, Fearns C, Encalada SE, Wiseman RL, Powers ET, Kelly JW. Targeting protein aggregation for the treatment of degenerative diseases. Nat Rev Drug Discov 2015; 14:759-80. [PMID: 26338154 PMCID: PMC4628595 DOI: 10.1038/nrd4593] [Citation(s) in RCA: 294] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The aggregation of specific proteins is hypothesized to underlie several degenerative diseases, which are collectively known as amyloid disorders. However, the mechanistic connection between the process of protein aggregation and tissue degeneration is not yet fully understood. Here, we review current and emerging strategies to ameliorate aggregation-associated degenerative disorders, with a focus on disease-modifying strategies that prevent the formation of and/or eliminate protein aggregates. Persuasive pharmacological and genetic evidence now supports protein aggregation as the cause of postmitotic tissue dysfunction or loss. However, a more detailed understanding of the factors that trigger and sustain aggregate formation and of the structure-activity relationships underlying proteotoxicity is needed to develop future disease-modifying therapies.
Collapse
Affiliation(s)
- Yvonne S. Eisele
- Department of Chemistry, The Scripps Research Institute, La Jolla, California 92037, USA
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, California 92037, USA
| | - Cecilia Monteiro
- Department of Chemistry, The Scripps Research Institute, La Jolla, California 92037, USA
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, California 92037, USA
| | - Colleen Fearns
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, California 92037, USA
| | - Sandra E. Encalada
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, California 92037, USA
- Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, California 92037, USA
- Department of Molecular and Cellular Neuroscience, The Scripps Research Institute, La Jolla, California 92037, USA
| | - R. Luke Wiseman
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, California 92037, USA
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California 92037, USA
| | - Evan T. Powers
- Department of Chemistry, The Scripps Research Institute, La Jolla, California 92037, USA
| | - Jeffery W. Kelly
- Department of Chemistry, The Scripps Research Institute, La Jolla, California 92037, USA
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, California 92037, USA
- The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, California 92037, USA
| |
Collapse
|
221
|
Kipkorir T, Tittman S, Botsios S, Manuelidis L. Highly infectious CJD particles lack prion protein but contain many viral-linked peptides by LC-MS/MS. J Cell Biochem 2015; 115:2012-21. [PMID: 24933657 PMCID: PMC7166504 DOI: 10.1002/jcb.24873] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Accepted: 06/10/2014] [Indexed: 02/05/2023]
Abstract
It is widely believed that host prion protein (PrP), without nucleic acid, converts itself into an infectious form (PrP‐res) that causes transmissible encephalopathies (TSEs), such as human sporadic CJD (sCJD), endemic sheep scrapie, and epidemic BSE. There are many detailed investigations of PrP, but proteomic studies of other proteins in verified infectious TSE particles have not been pursued, even though brain homogenates without PrP retain their complete infectious titer. To define proteins that may be integral to, process, or protect an agent genome, we developed a streamlined, high‐yield purification of infectious FU‐CJD mouse brain particles with minimal PrP. Proteinase K (PK) abolished all residual particle PrP, but did not reduce infectivity, and viral‐size particles lacking PrP were ∼70S (vs. 90–120S without PK). Furthermore, over 1,500 non‐PrP proteins were still present and positively identified in high titer FU‐CJD particles without detectable PrP by mass spectrometry (LC‐MS/MS); 114 of these peptides were linked to viral motifs in the environmental–viral database, and not evident in parallel uninfected controls. Host components were also identified in both PK and non‐PK treated particles from FU‐CJD mouse brain and human sCJD brain. This abundant cellular data had several surprises, including finding Huntingtin in the sCJD but not normal human brain samples. Similarly, the neural Wiskott–Aldrich sequence and multivesicular and endosome components associated with retromer APP (Alzheimer amyloid) processing were only in sCJD. These cellular findings suggest that new therapies directed at retromer–vesicular trafficking in other neurodegenerative diseases may also counteract late‐onset sCJD PrP amyloid pathology. J. Cell. Biochem. 115: 2012–2021, 2014. © 2014 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Terry Kipkorir
- Section of Neuropathology, Department of Surgery, Yale University Medical School, 333 Cedar St, New Haven, Connecticut, 06510
| | | | | | | |
Collapse
|
222
|
Aguzzi A, Lakkaraju AKK. Cell Biology of Prions and Prionoids: A Status Report. Trends Cell Biol 2015; 26:40-51. [PMID: 26455408 DOI: 10.1016/j.tcb.2015.08.007] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Revised: 08/08/2015] [Accepted: 08/24/2015] [Indexed: 11/18/2022]
Abstract
The coalescence of proteins into highly ordered aggregates is a hallmark of protein misfolding disorders (PMDs), which, when affecting the central nervous system, lead to progressive neurodegeneration. Although the chemical identity and the topology of each culprit protein are unique, the principles governing aggregation and propagation are strikingly stereotypical. It is now clear that such protein aggregates can spread from cell to cell and eventually affect entire organ systems - similarly to prion diseases. However, because most aggregates are not found to transmit between individuals, they are not infectious sensu strictiori. Therefore, they are not identical to prions and we prefer to define them as 'prionoids'. Here we review recent advances in understanding the toxicity of protein aggregation affecting the brain.
Collapse
Affiliation(s)
- Adriano Aguzzi
- Institute of Neuropathology, University of Zürich, CH-8091 Zürich, Switzerland.
| | - Asvin K K Lakkaraju
- Institute of Neuropathology, University of Zürich, CH-8091 Zürich, Switzerland.
| |
Collapse
|
223
|
Faburay B, Tark D, Kanthasamy AG, Richt JA. In vitro amplification of scrapie and chronic wasting disease PrP(res) using baculovirus-expressed recombinant PrP as substrate. Prion 2015; 8:393-403. [PMID: 25495764 DOI: 10.4161/19336896.2014.983753] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Protein misfolding cyclic amplification (PMCA) is an in vitro simulation of prion replication, which relies on the use of normal brain homogenate derived from host species as substrate for the specific amplification of abnormal prion protein, PrP(Sc). Studies showed that recombinant cellular PrP, PrP(C), expressed in Escherichia coli lacks N-glycosylation and an glycophosphatidyl inositol anchor (GPI) and therefore may not be the most suitable substrate in seeded PMCA reactions to recapitulate prion conversion in vitro. In this study, we expressed 2 PRNP genotypes of sheep, V136L141R154Q171 and A136F141R154Q171, and one genotype of white-tailed deer (Q95G96, X132,Y216) using the baculovirus expression system and evaluated their suitability as substrates in seeded-PMCA. It has been reported that host-encoded mammalian RNA molecules and divalent cations play a role in the pathogenesis of prion diseases, and RNA molecules have also been shown to improve the sensitivity of PMCA assays. Therefore, we also assessed the effect of co-factors, such as prion-specific mRNA molecules and a divalent cation, manganese, on protein conversion. Here, we report that baculovirus-expressed recombinant PrP(C) shows a glycoform and GPI-anchor profile similar to mammalian brain-derived PrP(C) and supports amplification of PrP(Sc) and PrP(CWD) derived from prion-affected animals in a single round of seeded PMCA in the absence of exogenous co-factors. Addition of species-specific in vitro transcribed PrP mRNA molecules stimulated the conversion efficiency resulting in increased PrP(Sc) or PrP(CWD) production. Addition of 2 to 20 μM of manganese chloride (MnCl2) to unseeded PMCA resulted in conversion of recombinant PrP(C) to protease-resistant PrP. Collectively, we demonstrate, for the first time, that baculovirus expressed sheep and deer PrP can serve as a substrate in protein misfolding cyclic amplification for sheep and deer prions in the absence of additional exogenous co-factors.
Collapse
Affiliation(s)
- Bonto Faburay
- a Department of Diagnostic Medicine and Pathobiology ; College of Veterinary Medicine ; Kansas State University ; Manhattan , KS USA
| | | | | | | |
Collapse
|
224
|
Müller H, Brener O, Andreoletti O, Piechatzek T, Willbold D, Legname G, Heise H. Progress towards structural understanding of infectious sheep PrP-amyloid. Prion 2015; 8:344-58. [PMID: 25482596 PMCID: PMC4601355 DOI: 10.4161/19336896.2014.983754] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The still elusive structural difference of non-infectious and infectious amyloid of the mammalian prion protein (PrP) is a major pending milestone in understanding protein-mediated infectivity in neurodegenerative diseases. Preparations of PrP-amyloid proven to be infectious have never been investigated with a high-resolution technique. All available models to date have been based on low-resolution data. Here, we establish protocols for the preparation of infectious samples of full-length recombinant (rec) PrP-amyloid in NMR-sufficient amounts by spontaneous fibrillation and seeded fibril growth from brain extract. We link biological and structural data of infectious recPrP-amyloid, derived from bioassays, atomic force microscopy, and solid-state NMR spectroscopy. Our data indicate a semi-mobile N-terminus, some residues with secondary chemical shifts typical of α-helical secondary structure in the middle part between ∼115 to ∼155, and a distinct β-sheet core C-terminal of residue ∼155. These findings are not in agreement with all current models for PrP-amyloid. We also provide evidence that samples seeded from brain extract may not differ in the overall arrangement of secondary structure elements, but rather in the flexibility of protein segments outside the β-core region. Taken together, our protocols provide an essential basis for the high-resolution characterization of non-infectious and infectious PrP-amyloid in the near future.
Collapse
Affiliation(s)
- Henrik Müller
- a Institute of Complex Systems; ICS-6: Structural Biochemistry; Forschungszentrum Jülich (FZJ) ; Jülich , Germany
| | | | | | | | | | | | | |
Collapse
|
225
|
Honda RP, Xu M, Yamaguchi KI, Roder H, Kuwata K. A Native-like Intermediate Serves as a Branching Point between the Folding and Aggregation Pathways of the Mouse Prion Protein. Structure 2015; 23:1735-1742. [PMID: 26256540 PMCID: PMC4640677 DOI: 10.1016/j.str.2015.07.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Revised: 06/08/2015] [Accepted: 07/01/2015] [Indexed: 12/30/2022]
Abstract
Transient folding intermediates and/or partially unfolded equilibrium states are thought to play a key role in the formation of protein aggregates. However, there is only indirect evidence linking accumulation of folding intermediates to aggregation, and the underlying mechanism remains to be elucidated. Here, we show that a partially unfolded state of the prion protein accumulates both as a stable equilibrium state at acidic pH (A-state) and as a late folding intermediate. With a time resolution of approximately 60 μs, we systematically studied the kinetics of folding and unfolding, starting from various initial conditions including the U-, N-, and A-states. Quantitative modeling showed that the observed kinetic data are completely consistent with a sequential four-state mechanism where the A-state is a late folding intermediate. Combined with previous evidence linking A-state accumulation to aggregation, the results indicate that this native-like state serves as a branching point between the folding and aggregation pathways.
Collapse
Affiliation(s)
- Ryo P Honda
- Department of Molecular Pathobiochemistry, Gifu University Graduate School of Medicine, Yanagido 1-1, Gifu 501-1193, Japan
| | - Ming Xu
- Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Kei-Ichi Yamaguchi
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Yanagido 1-1, Gifu 501-1194, Japan
| | - Heinrich Roder
- Fox Chase Cancer Center, Philadelphia, PA 19111, USA; Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Kazuo Kuwata
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Yanagido 1-1, Gifu 501-1194, Japan; Department of Gene Development, Graduate School of Medicine, Gifu University, Yanagido 1-1, Gifu 501-1193, Japan.
| |
Collapse
|
226
|
Wong SH, King CY. Amino Acid Proximities in Two Sup35 Prion Strains Revealed by Chemical Cross-linking. J Biol Chem 2015; 290:25062-71. [PMID: 26265470 DOI: 10.1074/jbc.m115.676379] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Indexed: 12/26/2022] Open
Abstract
Strains of the yeast prion [PSI] are different folding patterns of the same Sup35 protein, which stacks up periodically to form a prion fiber. Chemical cross-linking is employed here to probe different fiber structures assembled with a mutant Sup35 fragment. The photo-reactive cross-linker, p-benzoyl-l-phenylalanine (pBpa), was biosynthetically incorporated into bacterially prepared recombinant Sup(1-61)-GFP, containing the first 61 residues of Sup35, followed by the green fluorescent protein. Four methionine substitutions and two alanine substitutions were introduced at fixed positions in Sup(1-61) to allow cyanogen bromide cleavage to facilitate subsequent mass spectrometry analysis. Amyloid fibers of pBpa and Met/Ala-substituted Sup(1-61)-GFP were nucleated from purified yeast prion particles of two different strains, namely VK and VL, and shown to faithfully transmit specific strain characteristics to yeast expressing the wild type Sup35 protein. Intra- and intermolecular cross-linking were distinguished by tandem mass spectrometry analysis on fibers seeded from solutions containing equal amounts of (14)N- and (15)N-labeled protein. Fibers propagating the VL strain type exhibited intra- and intermolecular cross-linking between amino acid residues 3 and 28, as well as intra- and intermolecular linking between 32 and 55. Inter- and intramolecular cross-linking between residues 32 and 55 were detected in fibers propagating the VK strain type. Adjacencies of amino acid residues in space revealed by cross-linking were used to constrain possible chain folds of different [PSI] strains.
Collapse
Affiliation(s)
- Shenq-Huey Wong
- From the Molecular Cell Biology, Taiwan International Graduate Program, Academia Sinica and Graduate Institute of Life Sciences, National Defense Medical Center, Taipei 114, Taiwan and the Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Chih-Yen King
- the Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan
| |
Collapse
|
227
|
Scientific Opinion on a request for a review of a scientific publication concerning the zoonotic potential of ovine scrapie prions. EFSA J 2015. [DOI: 10.2903/j.efsa.2015.4197] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
228
|
Pan K, Yi CW, Chen J, Liang Y. Zinc significantly changes the aggregation pathway and the conformation of aggregates of human prion protein. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2015; 1854:907-18. [DOI: 10.1016/j.bbapap.2015.04.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2015] [Revised: 04/09/2015] [Accepted: 04/21/2015] [Indexed: 12/27/2022]
|
229
|
Dinkel PD, Holden MR, Matin N, Margittai M. RNA Binds to Tau Fibrils and Sustains Template-Assisted Growth. Biochemistry 2015; 54:4731-40. [PMID: 26177386 PMCID: PMC4526887 DOI: 10.1021/acs.biochem.5b00453] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Tau fibrils are the main proteinacious components of neurofibrillary lesions in Alzheimer disease. Although RNA molecules are sequestered into these lesions, their relationship to Tau fibrils is only poorly understood. Such understanding, however, is important, as short fibrils can transfer between neurons and nonproteinacious factors including RNA could play a defining role in modulating the latter process. Here, we used sedimentation assays combined with electron paramagnetic resonance (EPR), fluorescence, and absorbance spectroscopy to determine the effects of RNA on Tau fibril structure and growth. We observe that, in the presence of RNA, three-repeat (3R) and four-repeat (4R) Tau form fibrils with parallel, in-register arrangement of β-strands and exhibit an asymmetric seeding barrier in which 4R Tau grows onto 3R Tau seeds but not vice versa. These structural features are similar to those previously observed for heparin-induced fibrils, indicating that basic conformational properties are conserved, despite their being molecular differences of the nucleating agents. Furthermore, RNA sustains template-assisted growth and binds to the fibril surface and can be exchanged by heparin. These findings suggest that, in addition to mediating fibrillization, cofactors decorating the surface of Tau fibrils may modulate biological interactions and thereby influence the spreading of Tau pathology in the human brain.
Collapse
Affiliation(s)
- Paul D Dinkel
- Department of Chemistry and Biochemistry, University of Denver, Denver, Colorado 80208, United States
| | - Michael R Holden
- Department of Chemistry and Biochemistry, University of Denver, Denver, Colorado 80208, United States
| | - Nadira Matin
- Department of Chemistry and Biochemistry, University of Denver, Denver, Colorado 80208, United States
| | - Martin Margittai
- Department of Chemistry and Biochemistry, University of Denver, Denver, Colorado 80208, United States
| |
Collapse
|
230
|
Singh J, Udgaonkar JB. Molecular Mechanism of the Misfolding and Oligomerization of the Prion Protein: Current Understanding and Its Implications. Biochemistry 2015; 54:4431-42. [PMID: 26171558 DOI: 10.1021/acs.biochem.5b00605] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Prion diseases, also known as transmissible spongiform encephalopathies, make up a group of fatal neurodegenerative disorders linked with the misfolding and aggregation of the prion protein (PrP). Although it is not yet understood how the misfolding of PrP induces neurodegeneration, it is widely accepted that the formation of misfolded prion protein (termed PrP(Sc)) is both the triggering event in the disease and the main component of the infectious agent responsible for disease transmission. Despite the clear involvement of PrP(Sc) in prion diseases, the exact composition of PrP(Sc) is not yet well-known. Recent studies show that misfolded oligomers of PrP could, however, be responsible for neurotoxicity and/or infectivity in the prion diseases. Hence, understanding the molecular mechanism of formation of the misfolded oligomers of PrP is critical for developing an understanding about the prion diseases and for developing anti-prion therapeutics. This review discusses recent advances in understanding the molecular mechanism of misfolded oligomer formation by PrP and its implications for the development of anti-prion therapeutics.
Collapse
Affiliation(s)
- Jogender Singh
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru 560065, India
| | - Jayant B Udgaonkar
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru 560065, India
| |
Collapse
|
231
|
Kraus A, Anson KJ, Raymond LD, Martens C, Groveman BR, Dorward DW, Caughey B. Prion Protein Prolines 102 and 105 and the Surrounding Lysine Cluster Impede Amyloid Formation. J Biol Chem 2015; 290:21510-22. [PMID: 26175152 DOI: 10.1074/jbc.m115.665844] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Indexed: 11/06/2022] Open
Abstract
Human prion diseases can have acquired, sporadic, or genetic origins, each of which results in the conversion of prion protein (PrP) to transmissible, pathological forms. The genetic prion disease Gerstmann-Straussler-Scheinker syndrome can arise from point mutations of prolines 102 or 105. However, the structural effects of these two prolines, and mutations thereof, on PrP misfolding are not well understood. Here, we provide evidence that individual mutations of Pro-102 or Pro-105 to noncyclic aliphatic residues such as the Gerstmann-Straussler-Scheinker-linked leucines can promote the in vitro formation of PrP amyloid with extended protease-resistant cores reminiscent of infectious prions. This effect was enhanced by additional charge-neutralizing mutations of four nearby lysine residues comprising the so-called central lysine cluster. Substitution of these proline and lysine residues accelerated PrP conversion such that spontaneous amyloid formation was no longer slower than scrapie-seeded amyloid formation. Thus, Pro-102 and Pro-105, as well as the lysines in the central lysine cluster, impede amyloid formation by PrP, implicating these residues as key structural modulators in the conversion of PrP to disease-associated types of amyloid.
Collapse
Affiliation(s)
- Allison Kraus
- From the Laboratory of Persistent Viral Diseases and
| | | | | | - Craig Martens
- Research Technologies Branch, Rocky Mountain Laboratories, NIAID, National Institutes of Health, Hamilton, Montana 59840
| | | | - David W Dorward
- Research Technologies Branch, Rocky Mountain Laboratories, NIAID, National Institutes of Health, Hamilton, Montana 59840
| | - Byron Caughey
- From the Laboratory of Persistent Viral Diseases and
| |
Collapse
|
232
|
Wang X, McGovern G, Zhang Y, Wang F, Zha L, Jeffrey M, Ma J. Intraperitoneal Infection of Wild-Type Mice with Synthetically Generated Mammalian Prion. PLoS Pathog 2015; 11:e1004958. [PMID: 26136122 PMCID: PMC4489884 DOI: 10.1371/journal.ppat.1004958] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2014] [Accepted: 05/14/2015] [Indexed: 11/23/2022] Open
Abstract
The prion hypothesis postulates that the infectious agent in transmissible spongiform encephalopathies (TSEs) is an unorthodox protein conformation based agent. Recent successes in generating mammalian prions in vitro with bacterially expressed recombinant prion protein provide strong support for the hypothesis. However, whether the pathogenic properties of synthetically generated prion (rec-Prion) recapitulate those of naturally occurring prions remains unresolved. Using end-point titration assay, we showed that the in vitro prepared rec-Prions have infectious titers of around 104 LD50 / μg. In addition, intraperitoneal (i.p.) inoculation of wild-type mice with rec-Prion caused prion disease with an average survival time of 210 – 220 days post inoculation. Detailed pathological analyses revealed that the nature of rec-Prion induced lesions, including spongiform change, disease specific prion protein accumulation (PrP-d) and the PrP-d dissemination amongst lymphoid and peripheral nervous system tissues, the route and mechanisms of neuroinvasion were all typical of classical rodent prions. Our results revealed that, similar to naturally occurring prions, the rec-Prion has a titratable infectivity and is capable of causing prion disease via routes other than direct intra-cerebral challenge. More importantly, our results established that the rec-Prion caused disease is pathogenically and pathologically identical to naturally occurring contagious TSEs, supporting the concept that a conformationally altered protein agent is responsible for the infectivity in TSEs. The transmissible spongiform encephalopathies (TSEs) are a group of infectious neurodegenerative diseases affecting both humans and animals. The prion hypothesis postulates that prions are protein conformation based infectious agents responsible for TSE infectivity. Prions have been synthetically generated in vitro, but it remains unclear whether the properties of synthetically generated prion are the same as those of TSE agents and whether the disease caused by synthetically generated prion is identical to naturally occurring TSEs. In this study, we demonstrated that similar to the classical TSE agents, the synthetically generated prion has a titratable infectivity and is able to cause prion disease in wild-type mice via routes other than direct intra-cerebral inoculation. More importantly, we showed that the synthetically generated prion induced pathological changes, including the dissemination of disease-specific prion protein accumulation and the route and mechanism of neuroinvasion, were all typical of classical TSEs. These results demonstrate the similarity of synthetically generated prion to the infectious agent in TSEs, providing strong evidence supporting the prion hypothesis.
Collapse
Affiliation(s)
- Xinhe Wang
- Center for Neurodegenerative Science, Van Andel Research Institute, Grand Rapids, Michigan, United States of America
- Department of Molecular and Cellular Biochemistry, Ohio State University, Columbus, Ohio, United States of America
| | - Gillian McGovern
- Animal and Plant Health Agency, Lasswade Laboratory, Pentlands Science Park, Penicuik, Midlothian, Scotland
| | - Yi Zhang
- Department of Molecular and Cellular Biochemistry, Ohio State University, Columbus, Ohio, United States of America
- Key Laboratory of Brain Functional Genomics (East China Normal University), Ministry of Education, Shanghai Key Laboratory of Brain Functional Genomics (East China Normal University), School of Life Sciences, East China Normal University, Shanghai, China
| | - Fei Wang
- Center for Neurodegenerative Science, Van Andel Research Institute, Grand Rapids, Michigan, United States of America
- Department of Molecular and Cellular Biochemistry, Ohio State University, Columbus, Ohio, United States of America
| | - Liang Zha
- Department of Molecular and Cellular Biochemistry, Ohio State University, Columbus, Ohio, United States of America
| | - Martin Jeffrey
- Animal and Plant Health Agency, Lasswade Laboratory, Pentlands Science Park, Penicuik, Midlothian, Scotland
| | - Jiyan Ma
- Center for Neurodegenerative Science, Van Andel Research Institute, Grand Rapids, Michigan, United States of America
- Department of Molecular and Cellular Biochemistry, Ohio State University, Columbus, Ohio, United States of America
- Key Laboratory of Brain Functional Genomics (East China Normal University), Ministry of Education, Shanghai Key Laboratory of Brain Functional Genomics (East China Normal University), School of Life Sciences, East China Normal University, Shanghai, China
- * E-mail:
| |
Collapse
|
233
|
Noble GP, Wang DW, Walsh DJ, Barone JR, Miller MB, Nishina KA, Li S, Supattapone S. A Structural and Functional Comparison Between Infectious and Non-Infectious Autocatalytic Recombinant PrP Conformers. PLoS Pathog 2015; 11:e1005017. [PMID: 26125623 PMCID: PMC4488359 DOI: 10.1371/journal.ppat.1005017] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 06/09/2015] [Indexed: 11/30/2022] Open
Abstract
Infectious prions contain a self-propagating, misfolded conformer of the prion protein termed PrPSc. A critical prediction of the protein-only hypothesis is that autocatalytic PrPSc molecules should be infectious. However, some autocatalytic recombinant PrPSc molecules have low or undetectable levels of specific infectivity in bioassays, and the essential determinants of recombinant prion infectivity remain obscure. To identify structural and functional features specifically associated with infectivity, we compared the properties of two autocatalytic recombinant PrP conformers derived from the same original template, which differ by >105-fold in specific infectivity for wild-type mice. Structurally, hydrogen/deuterium exchange mass spectrometry (DXMS) studies revealed that solvent accessibility profiles of infectious and non-infectious autocatalytic recombinant PrP conformers are remarkably similar throughout their protease-resistant cores, except for two domains encompassing residues 91-115 and 144-163. Raman spectroscopy and immunoprecipitation studies confirm that these domains adopt distinct conformations within infectious versus non-infectious autocatalytic recombinant PrP conformers. Functionally, in vitro prion propagation experiments show that the non-infectious conformer is unable to seed mouse PrPC substrates containing a glycosylphosphatidylinositol (GPI) anchor, including native PrPC. Taken together, these results indicate that having a conformation that can be specifically adopted by post-translationally modified PrPC molecules is an essential determinant of biological infectivity for recombinant prions, and suggest that this ability is associated with discrete features of PrPSc structure. A key prediction of the prion hypothesis is that autocatalytic, misfolded PrPSc molecules should be highly infectious. Various recombinant PrPSc conformers are able to self-propagate in vitro, yet paradoxically only some of these conformers possess significant levels of specific infectivity in bioassays. Here we use two closely-matched autocatalytic recombinant PrP conformers that share the same origin but differ by >105-fold in specific infectivity to study the molecular basis of prion infectivity. We show that infectious and non-infectious autocatalytic recombinant PrP conformers have subtle structural differences, and that GPI-anchored PrP substrate molecules can only adopt the infectious PrPSc conformation. We conclude that post-translational modifications of host PrPC molecules play a critical role in restricting the range of recombinant PrPSc conformers that are biologically infectious.
Collapse
Affiliation(s)
- Geoffrey P. Noble
- Departments of Biochemistry and Medicine, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States of America
| | - Daphne W. Wang
- Medicine and Biomedical Sciences Graduate Program, University of California at San Diego, La Jolla, California, United States of America
| | - Daniel J. Walsh
- Departments of Biochemistry and Medicine, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States of America
| | - Justin R. Barone
- Department of Biological Systems Engineering, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Michael B. Miller
- Departments of Biochemistry and Medicine, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States of America
| | - Koren A. Nishina
- Departments of Biochemistry and Medicine, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States of America
| | - Sheng Li
- Medicine and Biomedical Sciences Graduate Program, University of California at San Diego, La Jolla, California, United States of America
| | - Surachai Supattapone
- Departments of Biochemistry and Medicine, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States of America
- * E-mail:
| |
Collapse
|
234
|
Torrent J, Lange R, Rezaei H. The Volumetric Diversity of Misfolded Prion Protein Oligomers Revealed by Pressure Dissociation. J Biol Chem 2015; 290:20417-26. [PMID: 26126829 DOI: 10.1074/jbc.m115.661710] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Indexed: 11/06/2022] Open
Abstract
Protein oligomerization has been associated with a wide range of diseases. High pressure approaches offer a powerful tool for deciphering the underlying molecular mechanisms by revealing volume changes associated with the misfolding and assembly reactions. We applied high pressure to induce conformational changes in three distinct β-sheet-rich oligomers of the prion protein PrP, a protein characterized by a variety of infectious quaternary structures that can propagate stably and faithfully and cause diseases with specific phenotypic traits. We show that pressure induces dissociation of the oligomers and leads to a lower volume monomeric PrP state that refolds into the native conformation after pressure release. By measuring the different pressure and temperature sensitivity of the tested PrP oligomers, we demonstrate significantly different void volumes in their quaternary structure. In addition, by focusing on the kinetic and energetic behavior of the pressure-induced dissociation of one specific PrP oligomer, we reveal a large negative activation volume and an increase in both apparent activation enthalpy and entropy. This suggests a transition state ensemble that is less structured and significantly more hydrated than the oligomeric state. Finally, we found that site-specific fluorescent labeling allows monitoring of the transient population of a kinetic intermediate in the dissociation reaction. Our results indicate that defects in atomic packing may deserve consideration as a new factor that influences differences between PrP assemblies and that could be relevant also for explaining the origin of prion strains.
Collapse
Affiliation(s)
- Joan Torrent
- From the Institut National de la Recherche Agronomique, UR892, Virologie Immunologie Moléculaires, Domaine de Vilvert, F-78350 Jouy-en-Josas, France and
| | - Reinhard Lange
- the Institut National de la Recherche Agronomique, UMR1208, Ingénierie des Agropolymères et Technologies Emergentes, Université Montpellier, F-34095 Montpellier, France
| | - Human Rezaei
- From the Institut National de la Recherche Agronomique, UR892, Virologie Immunologie Moléculaires, Domaine de Vilvert, F-78350 Jouy-en-Josas, France and
| |
Collapse
|
235
|
Contrasting Effects of Two Lipid Cofactors of Prion Replication on the Conformation of the Prion Protein. PLoS One 2015; 10:e0130283. [PMID: 26090881 PMCID: PMC4474664 DOI: 10.1371/journal.pone.0130283] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Accepted: 05/18/2015] [Indexed: 01/03/2023] Open
Abstract
Recent studies introduced two experimental protocols for converting full-length recombinant prion protein (rPrP) purified from E.coli into the infectious prion state (PrPSc) with high infectivity titers. Both protocols employed protein misfolding cyclic amplification (PMCA) for generating PrPScde novo, but used two different lipids, 1-palmitoyl-2-oleolyl-sn-glycero-3-phospho(1’-rac-glycerol) (POPG) or phosphatidylethanolamine (PE), as conversion cofactors. The current study compares the effect of POPG and PE on the physical properties of native, α-helical full-length mouse rPrP under the solvent conditions used for converting rPrP into PrPSc. Surprisingly, the effects of POPG and PE on rPrP physical properties, including its conformation, thermodynamic stability, aggregation state and interaction with a lipid, were found to be remarkably different. PE was shown to have minimal, if any, effects on rPrP thermodynamic stability, cooperativity of unfolding, immediate solvent environment or aggregation state. In fact, little evidence indicates that PE interacts with rPrP directly. In contrast, POPG was found to bind to and induce dramatic changes in rPrP structure, including a loss of α-helical conformation and formation of large lipid-protein aggregates that were resistant to partially denaturing conditions. These results suggest that the mechanisms by which lipids assist conversion of rPrP into PrPSc might be fundamentally different for POPG and PE.
Collapse
|
236
|
Hosokawa-Muto J, Yamaguchi KI, Kamatari YO, Kuwata K. Synthesis of double-fluorescent labeled prion protein for FRET analysis. Biosci Biotechnol Biochem 2015; 79:1802-9. [PMID: 26035019 DOI: 10.1080/09168451.2015.1050991] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
An abnormal form of prion protein (PrP) is considered to be the pathogen in prion diseases. However, the structural details of this abnormal form are not known. To characterize the non-native structure of PrP, we synthesized position-specific double-fluorescent labeled PrP for a fluorescence resonance energy transfer (FRET) experiment. Using FRET, we observed a conformational change in the labeled PrP associated with amyloid fibril formation. The FRET analysis indicated that the distance between fluorescent labeled N- and C-terminal sites of PrP increased upon the formation of amyloid fibrils compared with that of the native state. This approach using FRET analysis is useful for elucidating the structure of abnormal PrP.
Collapse
Affiliation(s)
| | - Kei-ichi Yamaguchi
- a Center for Emerging Infectious Diseases , Gifu University.,b United Graduate School of Drug Discovery and Medical Information Sciences , Gifu University
| | - Yuji O Kamatari
- a Center for Emerging Infectious Diseases , Gifu University.,c Life Science Research Center , Gifu University
| | - Kazuo Kuwata
- a Center for Emerging Infectious Diseases , Gifu University.,b United Graduate School of Drug Discovery and Medical Information Sciences , Gifu University.,d Department of Gene Development, Graduate School of Medicine , Gifu University , Gifu , Japan
| |
Collapse
|
237
|
Haigh CL, Drew SC. Cavitation during the protein misfolding cyclic amplification (PMCA) method – The trigger for de novo prion generation? Biochem Biophys Res Commun 2015; 461:494-500. [DOI: 10.1016/j.bbrc.2015.04.048] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 04/07/2015] [Indexed: 12/14/2022]
|
238
|
Abstract
Prion disease is the only naturally occurring infectious protein misfolding disorder. The chemical nature of the infectious agent has been debated for more than half a century. Early studies on scrapie suggested that the unusual infectious agent might propagate in the absence of nucleic acid. The 'protein-only hypothesis' provides a theoretical model to explain how a protein self-replicates without nucleic acid, which predicts that a prion, the proteinaceous infectious agent, propagates by converting its normal counterpart into the likeness of itself. Decades of studies have provided overwhelming evidence to support this hypothesis. The latest advances in generating infectious prions with bacterially expressed recombinant prion protein in the presence of cofactors not only provide convincing evidence supporting the 'protein-only hypothesis', but also indicate a role of cofactors in forming prion infectivity and encoding prion strains. In the present chapter, we review the literature regarding the chemical nature of the infectious agent, describe recent achievements in proving the 'protein-only hypothesis', and discuss the remaining questions in this research area.
Collapse
|
239
|
Yuan Z, Yang L, Chen B, Zhu T, Hassan MF, Yin X, Zhou X, Zhao D. Protein misfolding cyclic amplification induces the conversion of recombinant prion protein to PrP oligomers causing neuronal apoptosis. J Neurochem 2015; 133:722-9. [DOI: 10.1111/jnc.13098] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2014] [Revised: 03/12/2015] [Accepted: 03/15/2015] [Indexed: 12/29/2022]
Affiliation(s)
- Zhen Yuan
- State Key Laboratories for Agrobiotechnology; Key Lab of Animal Epidemiology and Zoonosis; Ministry of Agriculture; National Animal Transmissible Spongiform Encephalopathy Laboratory; College of Veterinary Medicine; China Agricultural University; Beijing China
| | - Lifeng Yang
- State Key Laboratories for Agrobiotechnology; Key Lab of Animal Epidemiology and Zoonosis; Ministry of Agriculture; National Animal Transmissible Spongiform Encephalopathy Laboratory; College of Veterinary Medicine; China Agricultural University; Beijing China
| | - Baian Chen
- Department of Laboratory Animal Science; School of Basic Medical Science; Capital Medical University; Beijing China
| | - Ting Zhu
- State Key Laboratories for Agrobiotechnology; Key Lab of Animal Epidemiology and Zoonosis; Ministry of Agriculture; National Animal Transmissible Spongiform Encephalopathy Laboratory; College of Veterinary Medicine; China Agricultural University; Beijing China
| | - Mohammad Farooque Hassan
- State Key Laboratories for Agrobiotechnology; Key Lab of Animal Epidemiology and Zoonosis; Ministry of Agriculture; National Animal Transmissible Spongiform Encephalopathy Laboratory; College of Veterinary Medicine; China Agricultural University; Beijing China
| | - Xiaomin Yin
- State Key Laboratories for Agrobiotechnology; Key Lab of Animal Epidemiology and Zoonosis; Ministry of Agriculture; National Animal Transmissible Spongiform Encephalopathy Laboratory; College of Veterinary Medicine; China Agricultural University; Beijing China
| | - Xiangmei Zhou
- State Key Laboratories for Agrobiotechnology; Key Lab of Animal Epidemiology and Zoonosis; Ministry of Agriculture; National Animal Transmissible Spongiform Encephalopathy Laboratory; College of Veterinary Medicine; China Agricultural University; Beijing China
| | - Deming Zhao
- State Key Laboratories for Agrobiotechnology; Key Lab of Animal Epidemiology and Zoonosis; Ministry of Agriculture; National Animal Transmissible Spongiform Encephalopathy Laboratory; College of Veterinary Medicine; China Agricultural University; Beijing China
| |
Collapse
|
240
|
Wang G, Wang M, Li C. The Unexposed Secrets of Prion Protein Oligomers. J Mol Neurosci 2015; 56:932-937. [PMID: 25823438 DOI: 10.1007/s12031-015-0546-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Accepted: 03/04/2015] [Indexed: 12/16/2022]
Abstract
According to the "protein-only" hypothesis, the misfolding and conversion of host-derived cellular prion protein (PrP(C)) into pathogenically misfolded PrP are believed to be the key procedure in the pathogenesis of prion diseases. Intermediate, soluble oligomeric prion protein (PrP) aggregates were considered a critical process for prion diseases. Several independent studies on PrP oligomers gained insights into oligomers' formation, biophysical and biochemical characteristics, structure conversion, and neurotoxicity. PrP oligomers are rich in β-sheet structure and slightly resistant to proteinase K digestion. PrP oligomers exhibited more neurotoxicity and induced neuronal apoptosis in vivo and/or in vitro. In this review, we summarized recent studies regarding PrP oligomers and the relationship between misfolded PrP aggregates and neuronal death in the course of prion diseases.
Collapse
Affiliation(s)
- Gailing Wang
- Department of Bioengineering, Huanghuai University, 463000, Zhumadian, China.
| | - Mingcheng Wang
- Department of Bioengineering, Huanghuai University, 463000, Zhumadian, China
| | - Chuanfeng Li
- Department of Bioengineering, Huanghuai University, 463000, Zhumadian, China
| |
Collapse
|
241
|
Abstract
The prion paradigm has emerged as a unifying molecular principle for the pathogenesis of many age-related neurodegenerative diseases. This paradigm holds that a fundamental cause of specific disorders is the misfolding and seeded aggregation of certain proteins. The concept arose from the discovery that devastating brain diseases called spongiform encephalopathies are transmissible to new hosts by agents consisting solely of a misfolded protein, now known as the prion protein. Accordingly, "prion" was defined as a "proteinaceous infectious particle." As the concept has expanded to include other diseases, many of which are not infectious by any conventional definition, the designation of prions as infectious agents has become problematic. We propose to define prions as "proteinaceous nucleating particles" to highlight the molecular action of the agents, lessen unwarranted apprehension about the transmissibility of noninfectious proteopathies, and promote the wider acceptance of this revolutionary paradigm by the biomedical community.
Collapse
|
242
|
Proteinase K and the structure of PrPSc: The good, the bad and the ugly. Virus Res 2015; 207:120-6. [PMID: 25816779 DOI: 10.1016/j.virusres.2015.03.008] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Revised: 03/14/2015] [Accepted: 03/16/2015] [Indexed: 10/23/2022]
Abstract
Infectious proteins (prions) are, ironically, defined by their resistance to proteolytic digestion. A defining characteristic of the transmissible isoform of the prion protein (PrP(Sc)) is its partial resistance to proteinase K (PK) digestion. Diagnosis of prion disease typically relies upon immunodetection of PK-digested PrP(Sc) by Western blot, ELISA or immunohistochemical detection. PK digestion has also been used to detect differences in prion strains. Thus, PK has been a crucial tool to detect and, thereby, control the spread of prions. PK has also been used as a tool to probe the structure of PrP(Sc). Mass spectrometry and antibodies have been used to identify PK cleavage sites in PrP(Sc). These results have been used to identify the more accessible, flexible stretches connecting the β-strand components in PrP(Sc). These data, combined with physical constraints imposed by spectroscopic results, were used to propose a qualitative model for the structure of PrP(Sc). Assuming that PrP(Sc) is a four rung β-solenoid, we have threaded the PrP sequence to satisfy the PK proteolysis data and other experimental constraints.
Collapse
|
243
|
Degradation of misfolded proteins in neurodegenerative diseases: therapeutic targets and strategies. Exp Mol Med 2015; 47:e147. [PMID: 25766616 PMCID: PMC4351408 DOI: 10.1038/emm.2014.117] [Citation(s) in RCA: 581] [Impact Index Per Article: 64.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Accepted: 11/19/2014] [Indexed: 12/13/2022] Open
Abstract
Mammalian cells remove misfolded proteins using various proteolytic systems, including the ubiquitin (Ub)-proteasome system (UPS), chaperone mediated autophagy (CMA) and macroautophagy. The majority of misfolded proteins are degraded by the UPS, in which Ub-conjugated substrates are deubiquitinated, unfolded and cleaved into small peptides when passing through the narrow chamber of the proteasome. The substrates that expose a specific degradation signal, the KFERQ sequence motif, can be delivered to and degraded in lysosomes via the CMA. Aggregation-prone substrates resistant to both the UPS and the CMA can be degraded by macroautophagy, in which cargoes are segregated into autophagosomes before degradation by lysosomal hydrolases. Although most misfolded and aggregated proteins in the human proteome can be degraded by cellular protein quality control, some native and mutant proteins prone to aggregation into β-sheet-enriched oligomers are resistant to all known proteolytic pathways and can thus grow into inclusion bodies or extracellular plaques. The accumulation of protease-resistant misfolded and aggregated proteins is a common mechanism underlying protein misfolding disorders, including neurodegenerative diseases such as Huntington's disease (HD), Alzheimer's disease (AD), Parkinson's disease (PD), prion diseases and Amyotrophic Lateral Sclerosis (ALS). In this review, we provide an overview of the proteolytic pathways in neurons, with an emphasis on the UPS, CMA and macroautophagy, and discuss the role of protein quality control in the degradation of pathogenic proteins in neurodegenerative diseases. Additionally, we examine existing putative therapeutic strategies to efficiently remove cytotoxic proteins from degenerating neurons.
Collapse
|
244
|
Lau A, McDonald A, Daude N, Mays CE, Walter ED, Aglietti R, Mercer RCC, Wohlgemuth S, van der Merwe J, Yang J, Gapeshina H, Kim C, Grams J, Shi B, Wille H, Balachandran A, Schmitt-Ulms G, Safar JG, Millhauser GL, Westaway D. Octarepeat region flexibility impacts prion function, endoproteolysis and disease manifestation. EMBO Mol Med 2015; 7:339-56. [PMID: 25661904 PMCID: PMC4364950 DOI: 10.15252/emmm.201404588] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Revised: 12/31/2014] [Accepted: 01/08/2015] [Indexed: 12/21/2022] Open
Abstract
The cellular prion protein (PrP(C)) comprises a natively unstructured N-terminal domain, including a metal-binding octarepeat region (OR) and a linker, followed by a C-terminal domain that misfolds to form PrP(S) (c) in Creutzfeldt-Jakob disease. PrP(C) β-endoproteolysis to the C2 fragment allows PrP(S) (c) formation, while α-endoproteolysis blocks production. To examine the OR, we used structure-directed design to make novel alleles, 'S1' and 'S3', locking this region in extended or compact conformations, respectively. S1 and S3 PrP resembled WT PrP in supporting peripheral nerve myelination. Prion-infected S1 and S3 transgenic mice both accumulated similar low levels of PrP(S) (c) and infectious prion particles, but differed in their clinical presentation. Unexpectedly, S3 PrP overproduced C2 fragment in the brain by a mechanism distinct from metal-catalysed hydrolysis reported previously. OR flexibility is concluded to impact diverse biological endpoints; it is a salient variable in infectious disease paradigms and modulates how the levels of PrP(S) (c) and infectivity can either uncouple or engage to drive the onset of clinical disease.
Collapse
Affiliation(s)
- Agnes Lau
- Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, AB, Canada Department of Medicine, University of Alberta, Edmonton, AB, Canada
| | - Alex McDonald
- Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, CA, USA
| | - Nathalie Daude
- Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, AB, Canada
| | - Charles E Mays
- Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, AB, Canada
| | - Eric D Walter
- Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, CA, USA
| | - Robin Aglietti
- Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, CA, USA
| | - Robert C C Mercer
- Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, AB, Canada
| | - Serene Wohlgemuth
- Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, AB, Canada
| | - Jacques van der Merwe
- Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, AB, Canada
| | - Jing Yang
- Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, AB, Canada
| | - Hristina Gapeshina
- Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, AB, Canada
| | - Chae Kim
- National Prion Disease Surveillance Center, Departments of Pathology and Neurology, School of Medicine Case Western Reserve University, Cleveland, OH, USA
| | - Jennifer Grams
- Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, AB, Canada
| | - Beipei Shi
- Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, AB, Canada
| | - Holger Wille
- Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, AB, Canada Department of Biochemistry, University of Alberta, Edmonton, AB, Canada
| | | | - Gerold Schmitt-Ulms
- Tanz Centre for Research in Neurodegenerative Diseases, Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Jiri G Safar
- National Prion Disease Surveillance Center, Departments of Pathology and Neurology, School of Medicine Case Western Reserve University, Cleveland, OH, USA
| | - Glenn L Millhauser
- Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, CA, USA
| | - David Westaway
- Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, AB, Canada Department of Medicine, University of Alberta, Edmonton, AB, Canada Department of Biochemistry, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
245
|
Rouget R, Sharma G, LeBlanc AC. Cyclin-dependent kinase 5 phosphorylation of familial prion protein mutants exacerbates conversion into amyloid structure. J Biol Chem 2015; 290:5759-71. [PMID: 25572400 DOI: 10.1074/jbc.m114.630699] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Familial prion protein (PrP) mutants undergo conversion from soluble and protease-sensitive to insoluble and partially protease-resistant proteins. Cyclin-dependent kinase 5 (Cdk5) phosphorylation of wild type PrP (pPrP) at serine 43 induces a conversion of PrP into aggregates and fibrils. Here, we investigated whether familial PrP mutants are predisposed to Cdk5 phosphorylation and whether phosphorylation of familial PrP mutants increases conversion. PrP mutants representing three major familial PrP diseases and different PrP structural domains were studied. We developed a novel in vitro kinase reaction coupled with Thioflavin T binding to amyloid structure assay to monitor phosphorylation-dependent amyloid conversion. Although non-phosphorylated full-length wild type or PrP mutants did not convert into amyloid, Cdk5 phosphorylation rapidly converted these into Thioflavin T-positive structures following first order kinetics. Dephosphorylation partially reversed conversion. Phosphorylation-dependent conversion of PrP from α-helical structures into β-sheet structures was confirmed by circular dichroism. Relative to wild type pPrP, most PrP mutants showed increased rate constants of conversion. In contrast, non-phosphorylated truncated PrP Y145X (where X represents a stop codon) and Q160X mutants converted spontaneously into Thioflavin T-positive fibrils after a lag phase of over 20 h, indicating nucleation-dependent polymerization. Phosphorylation reduced the lag phase by over 50% and thus accelerated the formation of the nucleating event. Consistently, phosphorylated Y145X and phosphorylated Q160X exacerbated conversion in a homologous seeding reaction, whereas WT pPrP could not seed WT PrP. These results demonstrate an influence of both the N terminus and the C terminus of PrP on conversion. We conclude that post-translational modifications of the flexible N terminus of PrP can cause or exacerbate PrP mutant conversion.
Collapse
Affiliation(s)
- Raphaël Rouget
- From the Lady Davis Institute for Medical Research, Sir Mortimer B. Davis Jewish General Hospital, Department of Neurology and Neurosurgery, McGill University, Montréal, Québec H3T 1E2, Canada and
| | - Gyanesh Sharma
- From the Lady Davis Institute for Medical Research, Sir Mortimer B. Davis Jewish General Hospital, Department of Neurology and Neurosurgery, McGill University, Montréal, Québec H3T 1E2, Canada and Department of Neurology and Neurosurgery, McGill University, 3775 University Street, Montréal, Québec H3A 2B4, Canada
| | - Andréa C LeBlanc
- From the Lady Davis Institute for Medical Research, Sir Mortimer B. Davis Jewish General Hospital, Department of Neurology and Neurosurgery, McGill University, Montréal, Québec H3T 1E2, Canada and Department of Neurology and Neurosurgery, McGill University, 3775 University Street, Montréal, Québec H3A 2B4, Canada
| |
Collapse
|
246
|
Kabir ME, Safar JG. Implications of prion adaptation and evolution paradigm for human neurodegenerative diseases. Prion 2015; 8:111-6. [PMID: 24401672 PMCID: PMC7030914 DOI: 10.4161/pri.27661] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
There is a growing body of evidence indicating that number of human neurodegenerative diseases, including Alzheimer disease, Parkinson disease, fronto-temporal dementias, and amyotrophic lateral sclerosis, propagate in the brain via prion-like intercellular induction of protein misfolding. Prions cause lethal neurodegenerative diseases in humans, the most prevalent being sporadic Creutzfeldt-Jakob disease (sCJD); they self-replicate and spread by converting the cellular form of prion protein (PrPC) to a misfolded pathogenic conformer (PrPSc). The extensive phenotypic heterogeneity of human prion diseases is determined by polymorphisms in the prion protein gene, and by prion strain-specific conformation of PrPSc. Remarkably, even though informative nucleic acid is absent, prions may undergo rapid adaptation and evolution in cloned cells and upon crossing the species barrier. In the course of our investigation of this process, we isolated distinct populations of PrPSc particles that frequently co-exist in sCJD. The human prion particles replicate independently and undergo competitive selection of those with lower initial conformational stability. Exposed to mutant substrate, the winning PrPSc conformers are subject to further evolution by natural selection of the subpopulation with the highest replication rate due to the lowest stability. Thus, the evolution and adaptation of human prions is enabled by a dynamic collection of distinct populations of particles, whose evolution is governed by the selection of progressively less stable, faster replicating PrPSc conformers. This fundamental biological mechanism may explain the drug resistance that some prions gained after exposure to compounds targeting PrPSc. Whether the phenotypic heterogeneity of other neurodegenerative diseases caused by protein misfolding is determined by the spectrum of misfolded conformers (strains) remains to be established. However, the prospect that these conformers may evolve and adapt by a prion-like mechanism calls for the reevaluation of therapeutic strategies that target aggregates of misfolded proteins, and argues for new therapeutic approaches that will focus on prior pathogenetic steps.
Collapse
|
247
|
Rasmussen J, Gilroyed BH, Reuter T, Dudas S, Neumann NF, Balachandran A, Kav NNV, Graham C, Czub S, McAllister TA. Can plants serve as a vector for prions causing chronic wasting disease? Prion 2015; 8:136-42. [PMID: 24509640 DOI: 10.4161/pri.27963] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Prions, the causative agent of chronic wasting disease (CWD) enter the environment through shedding of bodily fluids and carcass decay, posing a disease risk as a result of their environmental persistence. Plants have the ability to take up large organic particles, including whole proteins, and microbes. This study used wheat (Triticum aestivum L.) to investigate the uptake of infectious CWD prions into roots and their transport into aerial tissues. The roots of intact wheat plants were exposed to infectious prions (PrP(TSE)) for 24 h in three replicate studies with PrP(TSE) in protein extracts being detected by western blot, IDEXX and Bio-Rad diagnostic tests. Recombinant prion protein (PrP(C)) bound to roots, but was not detected in the stem or leaves. Protease-digested CWD prions (PrP(TSE)) in elk brain homogenate interacted with root tissue, but were not detected in the stem. This suggests wheat was unable to transport sufficient PrP(TSE) from the roots to the stem to be detectable by the methods employed. Undigested PrP(TSE) did not associate with roots. The present study suggests that if prions are transported from the roots to the stems it is at levels that are below those that are detectable by western blot, IDEXX or Bio-Rad diagnostic kits.
Collapse
|
248
|
Requena JR, Wille H. The structure of the infectious prion protein: experimental data and molecular models. Prion 2015; 8:60-6. [PMID: 24583975 PMCID: PMC7030906 DOI: 10.4161/pri.28368] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The structures of the infectious prion protein, PrP(Sc), and that of its proteolytically truncated variant, PrP 27-30, have evaded experimental determination due to their insolubility and propensity to aggregate. Molecular modeling has been used to fill this void and to predict their structures, but various modeling approaches have produced significantly different models. The disagreement between the different modeling solutions indicates the limitations of this method. Over the years, in absence of a three-dimensional (3D) structure, a variety of experimental techniques have been used to gain insights into the structure of this biologically, medically, and agriculturally important isoform. Here, we present an overview of experimental results that were published in recent years, and which provided new insights into the molecular architecture of PrP(Sc) and PrP 27-30. Furthermore, we evaluate all published models in light of these recent, experimental data, and come to the conclusion that none of the models can accommodate all of the experimental constraints. Moreover, this conclusion constitutes an open invitation for renewed efforts to model the structure of PrP(Sc).
Collapse
|
249
|
Abstract
Perhaps the most intriguing scientific question about mammalian prions is how these proteinaceous entities encode and propagate infectivity. Over the past decade, our laboratory has taken a reductionist biochemical approach to study this challenging question. Our studies have resulted in the identification of endogenous phospholipid and polyanionic cofactor molecules that facilitate prion formation in vitro. Using these cofactor molecules, we have been able to produce purified, chemically defined prions with high levels of specific infectivity for wild type animal hosts. Our most recent studies suggest that cofactor molecules may also play crucial roles in maintaining the infectious conformation and strain properties of mammalian prions. The ability to produce high titer prions in vitro using cofactors provides an unprecedented opportunity to study the structural mechanism of infectious prion formation directly.
Collapse
|
250
|
Ellett LJ, Coleman BM, Shambrook MC, Johanssen VA, Collins SJ, Masters CL, Hill AF, Lawson VA. Glycosaminoglycan sulfation determines the biochemical properties of prion protein aggregates. Glycobiology 2015; 25:745-55. [PMID: 25701659 DOI: 10.1093/glycob/cwv014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Accepted: 02/15/2015] [Indexed: 02/06/2023] Open
Abstract
Prion diseases are transmissible neurodegenerative disorders associated with the conversion of the cellular prion protein, PrP(C), to a misfolded isoform called PrP(Sc). Although PrP(Sc) is a necessary component of the infectious prion, additional factors, or cofactors, have been shown to contribute to the efficient formation of transmissible PrP(Sc). Glycosaminoglycans (GAGs) are attractive cofactor candidates as they can be found associated with PrP(Sc) deposits, have been shown to enhance PrP misfolding in vitro, are found in the same cellular compartments as PrP(C) and have been shown to be disease modifying in vivo. Here we investigated the effects of the sulfated GAGs, heparin and heparan sulfate (HS), on disease associated misfolding of full-length recombinant PrP. More specifically, the degree of sulfation of these molecules was investigated for its role in modulating the disease-associated characteristics of PrP. Both heparin and HS induced a β-sheet conformation in recombinant PrP that was associated with the formation of aggregated species; however, the biochemical properties of the aggregates formed in the presence of heparin or HS varied in solubility and protease resistance. Furthermore, these properties could be modified by changes in GAG sulfation, indicating that subtle changes in the properties of prion disease cofactors could initiate disease associated misfolding.
Collapse
Affiliation(s)
| | - Bradley M Coleman
- Department of Biochemistry and Molecular Biology and Bio21 Molecular Science and Biotechnology Institute
| | - Mitch C Shambrook
- Department of Biochemistry and Molecular Biology and Bio21 Molecular Science and Biotechnology Institute
| | | | | | - Colin L Masters
- The Florey Institute of Neuroscience and Mental Health, The University Of Melbourne, Parkville, VIC 3010, Australia
| | - Andrew F Hill
- Department of Biochemistry and Molecular Biology and Bio21 Molecular Science and Biotechnology Institute
| | | |
Collapse
|