201
|
Identification and characterization of broadly neutralizing human monoclonal antibodies directed against the E2 envelope glycoprotein of hepatitis C virus. J Virol 2009; 83:12473-82. [PMID: 19759151 DOI: 10.1128/jvi.01138-09] [Citation(s) in RCA: 151] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Nearly all livers transplanted into hepatitis C virus (HCV)-positive patients become infected with HCV, and 10 to 25% of reinfected livers develop cirrhosis within 5 years. Neutralizing monoclonal antibody could be an effective therapy for the prevention of infection in a transplant setting. To pursue this treatment modality, we developed human monoclonal antibodies (HuMAbs) directed against the HCV E2 envelope glycoprotein and assessed the capacity of these HuMAbs to neutralize a broad panel of HCV genotypes. HuMAb antibodies were generated by immunizing transgenic mice containing human antibody genes (HuMAb mice; Medarex Inc.) with soluble E2 envelope glycoprotein derived from a genotype 1a virus (H77). Two HuMAbs, HCV1 and 95-2, were selected for further study based on initial cross-reactivity with soluble E2 glycoproteins derived from genotypes 1a and 1b, as well as neutralization of lentivirus pseudotyped with HCV 1a and 1b envelope glycoproteins. Additionally, HuMAbs HCV1 and 95-2 potently neutralized pseudoviruses from all genotypes tested (1a, 1b, 2b, 3a, and 4a). Epitope mapping with mammalian and bacterially expressed proteins, as well as synthetic peptides, revealed that HuMAbs HCV1 and 95-2 recognize a highly conserved linear epitope spanning amino acids 412 to 423 of the E2 glycoprotein. The capacity to recognize and neutralize a broad range of genotypes, the highly conserved E2 epitope, and the fully human nature of the antibodies make HuMAbs HCV1 and 95-2 excellent candidates for treatment of HCV-positive individuals undergoing liver transplantation.
Collapse
|
202
|
Tellinghuisen TL, Lindenbach BD. Reverse transcription PCR-based sequence analysis of hepatitis C virus replicon RNA. Methods Mol Biol 2009; 510:165-75. [PMID: 19009260 DOI: 10.1007/978-1-59745-394-3_12] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Since the advent of efficient cell-culture methods for HCV replication and, more recently, infection, there has been a need to efficiently sequence the viral RNA in these systems. This need is especially urgent in light of the error-prone nature of HCV RNA replication, which leads to a variety of interesting mutations. The adaptation of hepatitis C replicons to cell culture, which greatly increased their replication capacity, and the subsequent identification of viral point mutations responsible for this adaptation are prime examples of the type of phenotype-genotype connection that viral RNA sequencing methods can provide. More recently, researchers have used similar sequencing methods to identify changes in replicons that represent viral adaptation to engineered mutations, adaptation to a variety of host cells, and viral evasion of antiviral compound susceptibility. Here, we describe the cloning and isolation of HCV replicon-bearing cells, the extraction of total RNA, the generation of cDNA, and the amplification of specific HCV replicon sequences for sequence analysis. The methods we describe permit rapid and robust determination of HCV RNA sequences from cell culture.
Collapse
|
203
|
Inhibition of hepatitis C virus IRES-mediated translation by oligonucleotides. Virus Res 2009; 146:29-35. [PMID: 19720092 DOI: 10.1016/j.virusres.2009.08.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2009] [Revised: 08/11/2009] [Accepted: 08/21/2009] [Indexed: 02/08/2023]
Abstract
Two oligodeoxynucleotides (ODNs) were found to have a strong inhibition on the hepatitis C virus (HCV) internal ribosomal entry sites (IRES)-mediated translation but not the rabbit globin mRNA translation. Specific inhibition of those ODNs on HCV IRES-mediated translation was confirmed with heat treatment of ODNs in formic acid and dosage-dependent manners. Heat treatment of ODNs presented a decreasing inhibitory effect on HCV IRES-mediated translation. A dosage-dependent decrease of HCV IRES-mediated translation was observed with increasing amount of these ODNs in HeLa cell extracts. The minimal sequences of ODNs (A11) were identified as 5'-CGCGTTACG-3' with the strongest inhibition of the HCV IRES-mediated translation. In a search for cellular factors, two cellular factors (p68 and p70) were identified to interact with ODNs A1 and A11, but not A5 (CT-oligo). This data showed new kinds of cellular proteins involved in HCV IRES-mediated translation. Further study of ODNs and these cellular proteins will provide important information for understanding the mechanistic basis and molecular regulation of HCV IRES-mediated translation.
Collapse
|
204
|
An amphipathic alpha-helix at the C terminus of hepatitis C virus nonstructural protein 4B mediates membrane association. J Virol 2009; 83:11378-84. [PMID: 19692468 DOI: 10.1128/jvi.01122-09] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Nonstructural protein 4B (NS4B) plays an essential role in the formation of the hepatitis C virus (HCV) replication complex. It is an integral membrane protein that has been only poorly characterized to date. It is believed to comprise a cytosolic N-terminal part, a central part harboring four transmembrane passages, and a cytosolic C-terminal part. Here, we describe an amphipathic alpha-helix at the C terminus of NS4B (amino acid residues 229 to 253) that mediates membrane association and is involved in the formation of a functional HCV replication complex.
Collapse
|
205
|
A novel yeast-based recombination method to clone and propagate diverse HIV-1 isolates. Biotechniques 2009; 46:458-67. [PMID: 19480640 DOI: 10.2144/000113119] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Replication studies on human immunodeficiency virus 1 (HIV-1) rely on a few laboratory strains that are divergent from dominant HIV-1 subtypes in the epidemic. Several phenotypic differences between diverse HIV-1 isolates and subtypes could affect vaccine development and treatment, but this research field lacks robust cloning/virus production systems to study drug sensitivity, replication kinetics, or to develop personalized vaccines. Extreme HIV-1 heterogeneity leaves few restriction enzyme sites for bacterial cloning strategies. In this study, we describe an alternative approach that involves direct introduction of any HIV-1 coding regions (e.g., any gene from a patient sample) into an HIV-1 DNA vector using yeast recombination. This technique uses positive and negative selectable markers in yeast and avoids the need for purification and screening of the DNA substrates and cloning products. Replication-competent virus is then produced from a modified mammalian 293T packaging cell line transfected with this yeast-derived HIV-1 vector. Although HIV-1 served as the prototype, this cloning strategy is now being developed for other diverse virus species such as hepatitis C virus and influenza virus.
Collapse
|
206
|
Lobo FP, Mota BEF, Pena SDJ, Azevedo V, Macedo AM, Tauch A, Machado CR, Franco GR. Virus-host coevolution: common patterns of nucleotide motif usage in Flaviviridae and their hosts. PLoS One 2009; 4:e6282. [PMID: 19617912 PMCID: PMC2707012 DOI: 10.1371/journal.pone.0006282] [Citation(s) in RCA: 145] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2009] [Accepted: 06/17/2009] [Indexed: 12/18/2022] Open
Abstract
Virus-host biological interaction is a continuous coevolutionary process involving both host immune system and viral escape mechanisms. Flaviviridae family is composed of fast evolving RNA viruses that infects vertebrate (mammals and birds) and/or invertebrate (ticks and mosquitoes) organisms. These host groups are very distinct life forms separated by a long evolutionary time, so lineage-specific anti-viral mechanisms are likely to have evolved. Flaviviridae viruses which infect a single host lineage would be subjected to specific host-induced pressures and, therefore, selected by them. In this work we compare the genomic evolutionary patterns of Flaviviridae viruses and their hosts in an attempt to uncover coevolutionary processes inducing common features in such disparate groups. Especially, we have analyzed dinucleotide and codon usage patterns in the coding regions of vertebrate and invertebrate organisms as well as in Flaviviridae viruses which specifically infect one or both host types. The two host groups posses very distinctive dinucleotide and codon usage patterns. A pronounced CpG under-representation was found in the vertebrate group, possibly induced by the methylation-deamination process, as well as a prominent TpA decrease. The invertebrate group displayed only a TpA frequency reduction bias. Flaviviridae viruses mimicked host nucleotide motif usage in a host-specific manner. Vertebrate-infecting viruses possessed under-representation of CpG and TpA, and insect-only viruses displayed only a TpA under-representation bias. Single-host Flaviviridae members which persistently infect mammals or insect hosts (Hepacivirus and insect-only Flavivirus, respectively) were found to posses a codon usage profile more similar to that of their hosts than to related Flaviviridae. We demonstrated that vertebrates and mosquitoes genomes are under very distinct lineage-specific constraints, and Flaviviridae viruses which specifically infect these lineages appear to be subject to the same evolutionary pressures that shaped their host coding regions, evidencing the lineage-specific coevolutionary processes between the viral and host groups.
Collapse
Affiliation(s)
- Francisco P Lobo
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.
| | | | | | | | | | | | | | | |
Collapse
|
207
|
Rehermann B. Hepatitis C virus versus innate and adaptive immune responses: a tale of coevolution and coexistence. J Clin Invest 2009; 119:1745-54. [PMID: 19587449 DOI: 10.1172/jci39133] [Citation(s) in RCA: 418] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Since the identification of the hepatitis C virus (HCV) 20 years ago, much progress has been made in our understanding of its life cycle and interaction with the host immune system. Much has been learned from HCV itself, which, via decades of coevolution, gained an intricate knowledge of host innate and adaptive immune responses and developed sophisticated ways to preempt, subvert, and antagonize them. This review discusses the clinical, virological, and immunological features of acute and chronic hepatitis C and the role of the immune response in spontaneous and treatment-induced HCV clearance.
Collapse
Affiliation(s)
- Barbara Rehermann
- Immunology Section, Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, NIH/DHHS, Bethesda, MD 20892, USA.
| |
Collapse
|
208
|
Abstract
HCV (hepatitis C virus) infects nearly 3% of the population worldwide and has emerged as a major causative agent of liver disease, resulting in acute and chronic infections that can lead to fibrosis, cirrhosis and hepatocellular carcinoma. Hepatitis C represents the leading cause of liver transplantation in the United States and Europe. A positive-strand RNA virus of the Flaviviridae family, HCV contains a single-stranded RNA genome of approx. 9600 nucleotides. The genome RNA serves as both mRNA for translation of viral proteins and the template for RNA replication. Cis-acting RNA elements within the genome regulate RNA replication by forming secondary structures that interact with each other and trans-acting factors. Although structural proteins are clearly dispensable for RNA replication, recent evidence points to an important role of several non-structural proteins in particle assembly and release, turning their designation on its head. HCV enters host cells through receptor-mediated endocytosis, and the process requires the co-ordination of multiple cellular receptors and co-receptors. RNA replication takes place at specialized intracellular membrane structures called 'membranous webs' or 'membrane-associated foci', whereas viral assembly probably occurs on lipid droplets and endoplasmic reticulum. Liver inflammation plays a central role in the liver damage seen in hepatitis C, but many HCV proteins also directly contribute to HCV pathogenesis. In the present review, the molecular and cellular aspects of the HCV life cycle and the role of viral proteins in pathological liver conditions caused by HCV infection are described.
Collapse
|
209
|
Wu TY, Hsieh CC, Hong JJ, Chen CY, Tsai YS. IRSS: a web-based tool for automatic layout and analysis of IRES secondary structure prediction and searching system in silico. BMC Bioinformatics 2009; 10:160. [PMID: 19473520 PMCID: PMC2698906 DOI: 10.1186/1471-2105-10-160] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2008] [Accepted: 05/27/2009] [Indexed: 12/21/2022] Open
Abstract
Background Internal ribosomal entry sites (IRESs) provide alternative, cap-independent translation initiation sites in eukaryotic cells. IRES elements are important factors in viral genomes and are also useful tools for bi-cistronic expression vectors. Most existing RNA structure prediction programs are unable to deal with IRES elements. Results We designed an IRES search system, named IRSS, to obtain better results for IRES prediction. RNA secondary structure prediction and comparison software programs were implemented to construct our two-stage strategy for the IRSS. Two software programs formed the backbone of IRSS: the RNAL fold program, used to predict local RNA secondary structures by minimum free energy method; and the RNA Align program, used to compare predicted structures. After complete viral genome database search, the IRSS have low error rate and up to 72.3% sensitivity in appropriated parameters. Conclusion IRSS is freely available at this website . In addition, all source codes, precompiled binaries, examples and documentations are downloadable for local execution. This new search approach for IRES elements will provide a useful research tool on IRES related studies.
Collapse
Affiliation(s)
- Tzong-Yuan Wu
- Department of Bioscience Technology, Chung Yuan Christian University, Chung-Li, Taiwan.
| | | | | | | | | |
Collapse
|
210
|
Belon CA, Frick DN. Helicase inhibitors as specifically targeted antiviral therapy for hepatitis C. Future Virol 2009; 4:277-293. [PMID: 20161209 PMCID: PMC2714653 DOI: 10.2217/fvl.09.7] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The hepatitis C virus (HCV) leads to chronic liver disease and affects more than 2% of the world's population. Complications of the disease include fibrosis, cirrhosis and hepatocellular carcinoma. Current therapy for chronic HCV infection, a combination of ribavirin and pegylated IFN-alpha, is expensive, causes profound side effects and is only moderately effective against several common HCV strains. Specifically targeted antiviral therapy for hepatitis C (STAT-C) will probably supplement or replace present therapies. Leading compounds for STAT-C target the HCV nonstructural (NS)5B polymerase and NS3 protease, however, owing to the constant threat of viral resistance, other targets must be continually developed. One such underdeveloped target is the helicase domain of the HCV NS3 protein. The HCV helicase uses energy derived from ATP hydrolysis to separate based-paired RNA or DNA. This article discusses unique features of the HCV helicase, recently discovered compounds that inhibit HCV helicase catalyzed reactions and HCV cellular replication, and new methods to monitor helicase action in a high-throughput format.
Collapse
Affiliation(s)
- Craig A Belon
- New York Medical College, Department of Biochemistry & Molecular Biology, Valhalla, NY 10595, USA, Tel.: +1 914 594 3537; Fax: +1 914 594 4058;
| | - David N Frick
- New York Medical College, Department of Biochemistry & Molecular Biology, Valhalla, NY 10595, USA, Tel.: +1 914 594 4190; Fax: +1 914 594 4058;
| |
Collapse
|
211
|
Identification of a novel determinant for membrane association in hepatitis C virus nonstructural protein 4B. J Virol 2009; 83:6257-68. [PMID: 19357161 DOI: 10.1128/jvi.02663-08] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Nonstructural protein 4B (NS4B) plays an essential role in the formation of the hepatitis C virus (HCV) replication complex. It is a relatively poorly characterized integral membrane protein predicted to comprise four transmembrane segments in its central portion. Here, we describe a novel determinant for membrane association represented by amino acids (aa) 40 to 69 in the N-terminal portion of NS4B. This segment was sufficient to target and tightly anchor the green fluorescent protein to cellular membranes, as assessed by fluorescence microscopy as well as membrane extraction and flotation analyses. Circular dichroism and nuclear magnetic resonance structural analyses showed that this segment comprises an amphipathic alpha-helix extending from aa 42 to 66. Attenuated total reflection infrared spectroscopy and glycosylation acceptor site tagging revealed that this amphipathic alpha-helix has the potential to traverse the phospholipid bilayer as a transmembrane segment, likely upon oligomerization. Alanine substitution of the fully conserved aromatic residues on the hydrophobic helix side abrogated membrane association of the segment comprising aa 40 to 69 and disrupted the formation of a functional replication complex. These results provide the first atomic resolution structure of an essential membrane-associated determinant of HCV NS4B.
Collapse
|
212
|
Advances in genomic research on hepatitis C virus with a useful tool, replicon system. Keio J Med 2009; 57:75-83. [PMID: 18677087 DOI: 10.2302/kjm.57.75] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The research for hepatitis C virus (HCV) has long delayed by missing of in vitro culture system. Since the development of replicon system, a replication system of subgenomic HCV RNAs in a hepatoma cell line, has been reported, many virological and clinical findings have been discovered. Recently, in addition of subgenomic replication system, hepatitis C virus full-length RNA replication has been possible, and a few cell culture systems producing viral particles have been produced. These developments enabled us to investigate the life cycle or intracellular circumstance of HCV production. By screening of newly synthesized drugs with this replicon system, several possible medicines have been established and clinical researches are now running. Among them, VX950 and SCH503034 are nearest to clinical use. Other possible agents for reducing viral replication such as cyclophyllin inhibitors, inhibitors of sphingomyelin synthesis, HMG-CoA reductase inhibitors, or RNA-dependent RNA polymerase inhibitors have been also investigated. Furthermore the mechanism for development of hepatocellular carcinoma in the HCV infected liver has been vigorously studied using the HCV replicon system.
Collapse
|
213
|
Ji J, Glaser A, Wernli M, Berke JM, Moradpour D, Erb P. Suppression of short interfering RNA-mediated gene silencing by the structural proteins of hepatitis C virus. J Gen Virol 2009; 89:2761-2766. [PMID: 18931073 DOI: 10.1099/vir.0.2008/002923-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Viruses have evolved strategies to overcome the antiviral effects of the host at different levels. Besides specific defence mechanisms, the host responds to viral infection via the interferon pathway and also by RNA interference (RNAi). However, several viruses have been identified that suppress RNAi. We addressed the question of whether hepatitis C virus (HCV) suppresses RNAi, using cell lines constitutively expressing green fluorescent protein (GFP) and inducibly expressing HCV proteins. It was found that short interfering RNA-mediated GFP gene silencing was inhibited when the entire HCV polyprotein was expressed. Further studies showed that HCV structural proteins, and in particular envelope protein 2 (E2), were responsible for this inhibition. Co-precipitation assays demonstrated that E2 bound to Argonaute-2 (Ago-2), a member of the RNA-induced silencing complex, RISC. Thus, HCV E2 that interacts with Ago-2 is able to suppress RNAi.
Collapse
Affiliation(s)
- Jingmin Ji
- Department of Biomedicine, Institute for Medical Microbiology, University of Basel, Petersplatz 10, CH-4003 Basel, Switzerland
| | - Andrea Glaser
- Department of Biomedicine, Institute for Medical Microbiology, University of Basel, Petersplatz 10, CH-4003 Basel, Switzerland
| | - Marion Wernli
- Department of Biomedicine, Institute for Medical Microbiology, University of Basel, Petersplatz 10, CH-4003 Basel, Switzerland
| | - Jan Martin Berke
- Division of Gastroenterology and Hepatology, Centre Hospitalier Universitaire Vaudois, University of Lausanne, CH-1011 Lausanne, Switzerland
| | - Darius Moradpour
- Division of Gastroenterology and Hepatology, Centre Hospitalier Universitaire Vaudois, University of Lausanne, CH-1011 Lausanne, Switzerland
| | - Peter Erb
- Department of Biomedicine, Institute for Medical Microbiology, University of Basel, Petersplatz 10, CH-4003 Basel, Switzerland
| |
Collapse
|
214
|
Abstract
After nearly 6 years of intensive investigations between 1982 and 1988 in my laboratory at Chiron corporation, in which numerous molecular biological methods were used to investigate the viral aetiology of parenterally transmitted non-A, non-B viral hepatitis (NANBH), a single cDNA clone (5-1-1) was isolated that was shown to be derived from a new flavi-like virus, termed the hepatitis C virus (HCV). After screening hundreds of millions of bacterial cDNA clones derived from different liver and plasma samples obtained from experimentally infected chimpanzees, a single HCV clone was eventually isolated using a novel, blind immunoscreening method in which antibodies derived from a clinically diagnosed NANBH patient were used to identify a cDNA clone encoding an immunodominant epitope within HCV nonstructural protein 4. Its viral origin was demonstrated by its specific hybridization to a large single-stranded RNA molecule of approximately 10,000 nucleotides found only in NANBH-infected samples that shared distant sequence identity with flaviviruses. Further, HCV clone 5-1-1 was shown to be extrachromosomal and to encode an antigen eliciting antibody seroconversion only in NANBH-infected chimpanzees and humans. Subsequent work demonstrated that HCV was the principal cause of parenterally transmitted NANBH around the world, with an estimated 170 million global carriers and that blood screening tests detecting circulating HCV antibodies and viral RNA could effectively eradicate the transmission of transfusion-associated NANBH. Key viral-encoded enzymes essential to its life cycle are now the targets of vigorous, ongoing drug development activities, and the feasibility of successful vaccination strategies has been demonstrated using the valuable chimpanzee model, without which any progress on HCV would not have been possible. My colleagues and coworkers who made essential contributions to the discovery of HCV were George Kuo, who had his own laboratory at Chiron and who provided intellectual and practical input, Dan Bradley of the Centers for Disease Control and Prevention, who provided a large supply of well-characterized chimpanzee samples and knowledge of the NANBH field, and Qui-Lim Choo, in my own laboratory, who provided many years of outstandingly dedicated and precise molecular biology expertise.
Collapse
|
215
|
Abstract
Since the molecular cloning of the hepatitis C virus (HCV) genome for the first time in 1989, there has been tremendous progress in our understanding of the multiple facets of the replication cycle of this virus. Key to this progress has been the development of systems to propagate the virus in cell culture, which turned out to be a notoriously difficult task. A major breakthrough has been the construction of subgenomic replicons that self-amplify in cultured human hepatoma cells. These RNAs recapitulate the intracellular steps of the HCV replication cycle and have been instrumental to decipher details of the RNA amplification steps including the identification of key host cell factors. However, reproduction of the complete viral replication cycle only became possible with the advent of a particular molecular HCV clone designated JFH-1 that replicates to very high levels and supports the production of infectious virus particles. The availability of this new culture system raises the question, whether the use of replicons is still justified. In this review, we will discuss the pros and cons of both systems.
Collapse
|
216
|
Ruebsam F, Tran CV, Li LS, Kim SH, Xiang AX, Zhou Y, Blazel JK, Sun Z, Dragovich PS, Zhao J, McGuire HM, Murphy DE, Tran MT, Stankovic N, Ellis DA, Gobbi A, Showalter RE, Webber SE, Shah AM, Tsan M, Patel RA, Lebrun LA, Hou HJ, Kamran R, Sergeeva MV, Bartkowski DM, Nolan TG, Norris DA, Kirkovsky L. 5,6-Dihydro-1H-pyridin-2-ones as potent inhibitors of HCV NS5B polymerase. Bioorg Med Chem Lett 2008; 19:451-8. [PMID: 19054673 DOI: 10.1016/j.bmcl.2008.11.048] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2008] [Revised: 11/12/2008] [Accepted: 11/13/2008] [Indexed: 11/27/2022]
Abstract
5,6-Dihydro-1H-pyridin-2-one analogs were discovered as a novel class of inhibitors of genotype 1 HCV NS5B polymerase. Among these, compound 4ad displayed potent inhibitory activities in biochemical and replicon assays (IC(50) (1b)<10nM; IC(50) (1a)<25nM, EC(50) (1b)=16nM), good in vitro DMPK properties, as well as moderate oral bioavailability in monkeys (F=24%).
Collapse
Affiliation(s)
- Frank Ruebsam
- Department of Medicinal Chemistry, Anadys Pharmaceuticals, Inc., 3115 Merryfield Row, San Diego, CA 92121, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
217
|
Structural determinants for membrane association and dynamic organization of the hepatitis C virus NS3-4A complex. Proc Natl Acad Sci U S A 2008; 105:14545-50. [PMID: 18799730 DOI: 10.1073/pnas.0807298105] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Hepatitis C virus (HCV) NS3-4A is a membrane-associated multifunctional protein harboring serine protease and RNA helicase activities. It is an essential component of the HCV replication complex and a prime target for antiviral intervention. Here, we show that membrane association and structural organization of HCV NS3-4A are ensured in a cooperative manner by two membrane-binding determinants. We demonstrate that the N-terminal 21 amino acids of NS4A form a transmembrane alpha-helix that may be involved in intramembrane protein-protein interactions important for the assembly of a functional replication complex. In addition, we demonstrate that amphipathic helix alpha(0), formed by NS3 residues 12-23, serves as a second essential determinant for membrane association of NS3-4A, allowing proper positioning of the serine protease active site on the membrane. These results allowed us to propose a dynamic model for the membrane association, processing, and structural organization of NS3-4A on the membrane. This model has implications for the functional architecture of the HCV replication complex, proteolytic targeting of host factors, and drug design.
Collapse
|
218
|
Role of the hepatitis C virus core+1 open reading frame and core cis-acting RNA elements in viral RNA translation and replication. J Virol 2008; 82:11503-15. [PMID: 18799568 DOI: 10.1128/jvi.01640-08] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Four conserved RNA stem-loop structures designated SL47, SL87, SL248, and SL443 have been predicted in the hepatitis C virus (HCV) core encoding region. Moreover, alternative translation products have been detected from a reading frame overlapping the core gene (core+1/ARFP/F). To study the importance of the core+1 frame and core-RNA structures for HCV replication in cell culture and in vivo, a panel of core gene silent mutations predicted to abolish core+1 translation and affecting core-RNA stem-loops were introduced into infectious-HCV genomes of the isolate JFH1. A mutation disrupting translation of all known forms of core+1 and affecting SL248 did not alter virus production in Huh7 cells and in mice xenografted with human liver tissue. However, a combination of mutations affecting core+1 at multiple codons and at the same time, SL47, SL87, and SL248, delayed RNA replication kinetics and substantially reduced virus titers. The in vivo infectivity of this mutant was impaired, and in virus genomes recovered from inoculated mice, SL87 was restored by reversion and pseudoreversion. Mutations disrupting the integrity of this stem-loop, as well as that of SL47, were detrimental for virus viability, whereas mutations disrupting SL248 and SL443 had no effect. This phenotype was not due to impaired RNA stability but to reduced RNA translation. Thus, SL47 and SL87 are important RNA elements contributing to HCV genome translation and robust replication in cell culture and in vivo.
Collapse
|
219
|
Murray CL, Jones CT, Rice CM. Architects of assembly: roles of Flaviviridae non-structural proteins in virion morphogenesis. Nat Rev Microbiol 2008; 6:699-708. [PMID: 18587411 PMCID: PMC2764292 DOI: 10.1038/nrmicro1928] [Citation(s) in RCA: 183] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Viruses of the Flaviviridae family, including hepatitis C, dengue and bovine viral diarrhoea, are responsible for considerable morbidity and mortality worldwide. Recent advances in our understanding of virion assembly have uncovered commonalities among distantly related members of this family. We discuss the emerging hypothesis that physical virion components are not alone in forming the infectious particle, but that non-structural proteins are intimately involved in orchestrating morphogenesis. Pinpointing the roles of Flaviviridae proteins in virion production could reveal new avenues for antiviral therapeutics.
Collapse
|
220
|
Kato T, Choi Y, Elmowalid G, Sapp RK, Barth H, Furusaka A, Mishiro S, Wakita T, Krawczynski K, Liang TJ. Hepatitis C virus JFH-1 strain infection in chimpanzees is associated with low pathogenicity and emergence of an adaptive mutation. Hepatology 2008; 48:732-40. [PMID: 18712792 PMCID: PMC2535917 DOI: 10.1002/hep.22422] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
UNLABELLED The identification of the hepatitis C virus (HCV) strain JFH-1 enabled the successful development of infectious cell culture systems. Although this strain replicates efficiently and produces infectious virus in cell culture, the replication capacity and pathogenesis in vivo are still undefined. To assess the in vivo phenotype of the JFH-1 virus, cell culture-generated JFH-1 virus (JFH-1cc) and patient serum from which JFH-1 was isolated were inoculated into chimpanzees. Both animals became HCV RNA-positive 3 days after inoculation but showed low-level viremia and no evidence of hepatitis. HCV viremia persisted 8 and 34 weeks in JFH-1cc and patient serum-infected chimpanzees, respectively. Immunological analysis revealed that HCV-specific immune responses were similarly induced in both animals. Sequencing of HCV at various times of infection indicated more substitutions in the patient serum-inoculated chimpanzee, and the higher level of sequence variations seemed to be associated with a prolonged infection in this animal. A common mutation G838R in the NS2 region emerged early in both chimpanzees. This mutation enhances viral assembly, leading to an increase in viral production in transfected or infected cells. CONCLUSION Our study shows that the HCV JFH-1 strain causes attenuated infection and low pathogenicity in chimpanzees and is capable of adapting in vivo with a unique mutation conferring an enhanced replicative phenotype.
Collapse
Affiliation(s)
- Takanobu Kato
- Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
221
|
Hexahydro-pyrrolo- and hexahydro-1H-pyrido[1,2-b]pyridazin-2-ones as potent inhibitors of HCV NS5B polymerase. Bioorg Med Chem Lett 2008; 18:5002-5. [DOI: 10.1016/j.bmcl.2008.08.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2008] [Revised: 08/05/2008] [Accepted: 08/06/2008] [Indexed: 11/19/2022]
|
222
|
Dragovich PS, Blazel JK, Ellis DA, Han Q, Kamran R, Kissinger CR, LeBrun LA, Li LS, Murphy DE, Noble M, Patel RA, Ruebsam F, Sergeeva MV, Shah AM, Showalter RE, Tran CV, Tsan M, Webber SE, Kirkovsky L, Zhou Y. Novel HCV NS5B polymerase inhibitors derived from 4-(1',1'-dioxo-1',4'-dihydro-1'lambda(6)-benzo[1',2',4']thiadiazin-3'-yl)-5-hydroxy-2H-pyridazin-3-ones. Part 5: Exploration of pyridazinones containing 6-amino-substituents. Bioorg Med Chem Lett 2008; 18:5635-9. [PMID: 18796353 DOI: 10.1016/j.bmcl.2008.08.094] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2008] [Revised: 08/24/2008] [Accepted: 08/26/2008] [Indexed: 10/21/2022]
Abstract
The synthesis of 4-(1',1'-dioxo-1',4'-dihydro-1'lambda(6)-benzo[1',2',4']thiadiazin-3'-yl)-5-hydroxy-2H-pyridazin-3-ones bearing 6-amino substituents as potent inhibitors of the HCV RNA-dependent RNA polymerase (NS5B) is described. Several of these agents also display potent antiviral activity in cell culture experiments (EC(50)<0.10 microM). In vitro DMPK data (microsome t(1/2), Caco-2 P(app)) for many of the compounds are also disclosed, and a crystal structure of a representative inhibitor complexed with the NS5B protein is discussed.
Collapse
Affiliation(s)
- Peter S Dragovich
- Anadys Pharmaceuticals, Inc., 3115 Merryfield Row, San Diego, CA 92121, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
223
|
Gottwein JM, Bukh J. Cutting the gordian knot-development and biological relevance of hepatitis C virus cell culture systems. Adv Virus Res 2008; 71:51-133. [PMID: 18585527 DOI: 10.1016/s0065-3527(08)00002-x] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Worldwide approximately 180 million people are chronically infected with hepatitis C virus (HCV). HCV isolates exhibit extensive genetic heterogeneity and have been grouped in six genotypes and various subtypes. Additionally, several naturally occurring intergenotypic recombinants have been described. Research on the viral life cycle, efficient therapeutics, and a vaccine has been hampered by the absence of suitable cell culture systems. The first system permitting studies of the full viral life cycle was intrahepatic transfection of RNA transcripts of HCV consensus complementary DNA (cDNA) clones into chimpanzees. However, such full-length clones were not infectious in vitro. The development of the replicon system and HCV pseudo-particles allowed in vitro studies of certain aspects of the viral life cycle, RNA replication, and viral entry, respectively. Identification of the genotype 2 isolate JFH1, which for unknown reasons showed an exceptional replication capability and resulted in formation of infectious viral particles in the human hepatoma cell line Huh7, led in 2005 to the development of the first full viral life cycle in vitro systems. JFH1-based systems now enable in vitro studies of the function of viral proteins, their interaction with each other and host proteins, new antivirals, and neutralizing antibodies in the context of the full viral life cycle. However, several challenges remain, including development of cell culture systems for all major HCV genotypes and identification of other susceptible cell lines.
Collapse
Affiliation(s)
- Judith M Gottwein
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases and Clinical Research Centre, Copenhagen University Hospital, Hvidovre, Denmark
| | | |
Collapse
|
224
|
Ellis DA, Blazel JK, Webber SE, Tran CV, Dragovich PS, Sun Z, Ruebsam F, McGuire HM, Xiang AX, Zhao J, Li LS, Zhou Y, Han Q, Kissinger CR, Showalter RE, Lardy M, Shah AM, Tsan M, Patel R, LeBrun LA, Kamran R, Bartkowski DM, Nolan TG, Norris DA, Sergeeva MV, Kirkovsky L. 4-(1,1-Dioxo-1,4-dihydro-1λ6-benzo[1,4]thiazin-3-yl)-5-hydroxy-2H-pyridazin-3-ones as potent inhibitors of HCV NS5B polymerase. Bioorg Med Chem Lett 2008; 18:4628-32. [DOI: 10.1016/j.bmcl.2008.07.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2008] [Revised: 07/02/2008] [Accepted: 07/07/2008] [Indexed: 11/29/2022]
|
225
|
Lu L, Tatsunori N, Li C, Waheed S, Gao F, Robertson BH. HCV selection and HVR1 evolution in a chimpanzee chronically infected with HCV-1 over 12 years. Hepatol Res 2008; 38:704-16. [PMID: 18328069 DOI: 10.1111/j.1872-034x.2008.00320.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
AIM To study hepatitis C virus (HCV) selection and hypervariable region-1 (HVR1) evolution in a chimpanzee chronically infected with HCV-1 over 12 years after inoculation with a human factor VIII concentrate contaminated with HCV. METHODS From the inoculum, the earliest chimpanzee plasma and 12 annual plasma samples, HCV fragments including HVR1 were amplified followed by cloning and sequencing. RESULTS Five HCV subtypes - 1a, 1b, 2a, 2b, 3a - and multiple 1a strains were identified in the inoculum. Two 1a strains were found in the earliest chimpanzee sample, while a single HCV-1 strain was detected in the 12 annual samples. None of the chimpanzee sequences were identical to those found in the inoculum. Over 12 years, HVR1 patterns changed irregularly, but a few patterns showed identical nucleotide or amino acid sequences. In the last three years, the variety of HVR1 patterns decreased, while the proportion of major patterns increased. These corresponded to a higher virus load and a lower number of amino acid substitutions. Simultaneously, the HVR1 sequences became more similar to the consensus sequence of the 1a subtype. CONCLUSION HCV selection was observed from the inoculum to the inoculated chimpanzee and from the early acute hepatitis to the persistent chronic infection. The selection occurred at three levels: among subtypes after transmission, among isolates during acute hepatitis and among quasispecies in chronic infection.
Collapse
Affiliation(s)
- Ling Lu
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, University of Utah, Utah, USA
| | | | | | | | | | | |
Collapse
|
226
|
Oem JK, Jackel-Cram C, Li YP, Zhou Y, Zhong J, Shimano H, Babiuk LA, Liu Q. Activation of sterol regulatory element-binding protein 1c and fatty acid synthase transcription by hepatitis C virus non-structural protein 2. J Gen Virol 2008; 89:1225-1230. [PMID: 18420801 DOI: 10.1099/vir.0.83491-0] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Transcriptional factor sterol regulatory element-binding protein 1c (SREBP-1c) activates the transcription of lipogenic genes, including fatty acid synthase (FAS). Hepatitis C virus (HCV) infection is often associated with lipid accumulation within the liver, known as steatosis in the clinic. The molecular mechanisms of HCV-associated steatosis are not well characterized. Here, we showed that HCV non-structural protein 2 (NS2) activated SREBP-1c transcription in human hepatic Huh-7 cells as measured by using a human SREBP-1c promoter-luciferase reporter plasmid. We further showed that sterol regulatory element (SRE) and liver X receptor element (LXRE) in the SREBP-1c promoter were involved in SREBP-1c activation by HCV NS2. Furthermore, expression of HCV NS2 resulted in the upregulation of FAS transcription. We also showed that FAS upregulation by HCV NS2 was SREBP-1-dependent since deleting the SRE sequence in a FAS promoter and expressing a dominant-negative SREBP-1 abrogated FAS promoter upregulation by HCV NS2. Taken together, our results suggest that HCV NS2 can upregulate the transcription of SREBP-1c and FAS, and thus is probably a contributing factor for HCV-associated steatosis.
Collapse
Affiliation(s)
- Jae-Ku Oem
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E3, Canada
| | - Candice Jackel-Cram
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E3, Canada
| | - Yi-Ping Li
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E3, Canada
| | - Yan Zhou
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E3, Canada
| | - Jin Zhong
- Institut Pasteur of Shanghai, Shanghai, PR China
| | | | - Lorne A Babiuk
- University of Alberta, Edmonton, Alberta, Canada.,Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E3, Canada
| | - Qiang Liu
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E3, Canada
| |
Collapse
|
227
|
Pyrrolo[1,2-b]pyridazin-2-ones as potent inhibitors of HCV NS5B polymerase. Bioorg Med Chem Lett 2008; 18:3616-21. [PMID: 18487044 DOI: 10.1016/j.bmcl.2008.04.066] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2008] [Revised: 04/23/2008] [Accepted: 04/28/2008] [Indexed: 11/23/2022]
Abstract
Pyrrolo[1,2-b]pyridazin-2-one analogs were discovered as a novel class of inhibitors of genotype 1 HCV NS5B polymerase. Structure-based design led to the discovery of compound 3 k, which displayed potent inhibitory activities in biochemical and replicon assays (IC(50) (1b)<10nM; EC(50) (1b)=12 nM) as well as good stability towards human liver microsomes (HLM t(1/2)>60 min).
Collapse
|
228
|
Ma HC, Lin TW, Li H, Iguchi-Ariga SMM, Ariga H, Chuang YL, Ou JH, Lo SY. Hepatitis C virus ARFP/F protein interacts with cellular MM-1 protein and enhances the gene trans-activation activity of c-Myc. J Biomed Sci 2008; 15:417-25. [PMID: 18398700 DOI: 10.1007/s11373-008-9248-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2008] [Accepted: 03/22/2008] [Indexed: 12/20/2022] Open
Abstract
The ARFP/F protein is synthesized from the +1 reading frame of the hepatitis C virus (HCV) core protein gene. The function of this protein remains unknown. To study the function of the HCV ARFP/F protein, we have conducted the yeast two-hybrid screening experiment to identify cellular proteins that may interact with the ARFP/F protein. MM-1, a c-Myc interacting protein, was found to interact with HCV ARFP/F protein in this experiment. The physical interaction between ARFP/F and MM-1 proteins was further confirmed by the GST pull-down assay, the co-immunoprecipitation assay and confocal microscopy. As MM-1 can inhibit the gene transactivation activity of c-Myc, we have conducted further analysis to examine the possible effect of the ARFP/F protein on c-Myc. Our results indicate that the HCV ARFP/F protein can enhance the gene trans-activation activity of c-Myc, apparently by antagonizing the inhibitory effect of MM-1. The ability of the ARFP/F protein to enhance the activity of c-Myc raises the possibility that ARFP/F protein might play a role in hepatocellular transformation in HCV patients.
Collapse
Affiliation(s)
- Hsin-Chieh Ma
- Graduate Institute of Medical Sciences, Tzu Chi University, Hualien, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
229
|
Wolf M, Dimitrova M, Baumert TF, Schuster C. The major form of hepatitis C virus alternate reading frame protein is suppressed by core protein expression. Nucleic Acids Res 2008; 36:3054-64. [PMID: 18400784 PMCID: PMC2396417 DOI: 10.1093/nar/gkn111] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Hepatitis C virus (HCV) is a human RNA virus encoding 10 proteins in a single open reading frame. In the +1 frame, an ‘alternate reading frame’ (ARF) overlaps with the core protein-encoding sequence and encodes the ARF protein (ARFP). Here, we investigated the molecular regulatory mechanisms of ARFP expression in HCV target cells. Chimeric HCV-luciferase reporter constructs derived from the infectious HCV prototype isolate H77 were transfected into hepatocyte-derived cell lines. Translation initiation was most efficient at the internal AUG codon at position 86/88, resulting in the synthesis of a truncated ARFP named 86/88ARFP. Interestingly, 86/88ARFP synthesis was markedly enhanced in constructs containing an inactivated core protein reading frame. This enhancement was reversed by co-expression of core protein in trans, demonstrating suppression of ARFP synthesis by HCV core protein. In conclusion, our results indicate that translation of ARFP occurs mainly by alternative internal initiation at position 86/88 and is regulated by HCV core protein expression. The suppression of ARFP translation by HCV core protein suggests that ARFP expression is inversely linked to the level of viral replication. These findings define key mechanisms regulating ARFP expression and set the stage for further studies addressing the function of ARFP within the viral life cycle.
Collapse
Affiliation(s)
- Marie Wolf
- Inserm, U748, Université Louis Pasteur, Strasbourg and Service d'Hépatogastroentérologie, Hôpitaux Universitaires de Strasbourg, F-67000, France
| | | | | | | |
Collapse
|
230
|
Abstract
BACKGROUND With 170 million people infected worldwide and an inadequate current standard of care, hepatitis C virus (HCV) infection represents a major unmet medical need. Multiple companies are working on the discovery and development of specific HCV antiviral drugs, including inhibitors of HCV polymerase, protease and NS5A. Because of the error-prone nature of viral RNA replication, resistance mutants will develop that could present a potentially significant challenge to developing antiviral treatment regimens. OBJECTIVE Here, we review the major drug classes currently in preclinical and clinical development and the resistance mutations specific for each class that have been identified from cell culture and/or in vivo studies. METHODS We have analyzed currently available scientific literature to create a comprehensive review of the current state of the art in the field of HCV resistance to specific antiviral agents, in vitro and in vivo. RESULTS/CONCLUSION Most specific HCV inhibitors described in the literature can select resistant viral variants in cell culture and in the clinic. Interplay of a mutant's fitness and its level of resistance will determine its clinical importance. Combinations of non-cross-resistant classes of drugs will be key to successful antiviral therapy. The number of drugs in a combination as well as the optimal duration of antiviral treatment, are important issues that need to be addressed in future studies.
Collapse
Affiliation(s)
- Gennadiy Koev
- Abbott Laboratories, Global Pharmaceutical Research and Development, Department R4CQ, Building AP52N, 200 Abbott Park Road, Abbott Park, IL 60064, USA.
| | | |
Collapse
|
231
|
Li LS, Zhou Y, Murphy DE, Stankovic N, Zhao J, Dragovich PS, Bertolini T, Sun Z, Ayida B, Tran CV, Ruebsam F, Webber SE, Shah AM, Tsan M, Showalter RE, Patel R, Lebrun LA, Bartkowski DM, Nolan TG, Norris DA, Kamran R, Brooks J, Sergeeva MV, Kirkovsky L, Zhao Q, Kissinger CR. Novel HCV NS5B polymerase inhibitors derived from 4-(1',1'-dioxo-1',4'-dihydro-1'lambda(6)-benzo[1',2',4']thiadiazin-3'-yl)-5-hydroxy-2H-pyridazin-3-ones. Part 3: Further optimization of the 2-, 6-, and 7'-substituents and initial pharmacokinetic assessments. Bioorg Med Chem Lett 2008; 18:3446-55. [PMID: 18457949 DOI: 10.1016/j.bmcl.2008.02.072] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2008] [Revised: 02/27/2008] [Accepted: 02/28/2008] [Indexed: 11/30/2022]
Abstract
5-Hydroxy-3(2H)-pyridazinone derivatives were investigated as inhibitors of genotype 1 HCV NS5B polymerase. Lead optimization led to the discovery of compound 3a, which displayed potent inhibitory activities in biochemical and replicon assays [IC(50) (1b)<10nM; IC(50) (1a)=22 nM; EC(50) (1b)=5nM], good stability toward human liver microsomes (HLM t(1/2)>60 min), and high ratios of liver to plasma concentrations 12h after a single oral administration to rats.
Collapse
Affiliation(s)
- Lian-Sheng Li
- Anadys Pharmaceuticals, Inc., 3115 Merryfield Row, San Diego, CA 92121, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
232
|
Shin-I T, Tanaka Y, Tateno Y, Mizokami M. Development and public release of a comprehensive hepatitis virus database. Hepatol Res 2008; 38:234-243. [PMID: 17877727 DOI: 10.1111/j.1872-034x.2007.00262.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
AIM Currently, approximately 44 000 hepatitis C virus (HCV), 11 000 hepatitis B virus (HBV), and 1600 hepatitis E virus (HEV) sequences are available at the International Nucleotide Sequence Database Collaboration (INSDC, previously known as DDBJ/EMBL/GenBank), and the number of these virus sequences is growing rapidly. However, since INDSC is not specialized to hepatitis viruses, it is difficult to retrieve information of virological or clinical interests from it. Thus, it is quite worthwhile to construct a specialized database for the hepatitis virus sequences and to make it accessible to researchers worldwide. METHODS We developed a WWW-based database hepatitis virus database (HVDB), which contains all the HCV, HBV, and HEV sequences available at INSDC. In the HVDB, all piece sequences obtained from INSDC are arranged to the genomesequence of each virus. Also given in the database are the phylogenetic relationships of each locus on the genome among variants for each virus. RESULTS Users of the database can easily retrieve entries (sequences with annotations) of the specific genotype by referring to the phylogenetic relationships or those of specific loci by referring to the genome map information. HVDB provides users with a tool for phylogenetic analysis that can be used in combination with the data retrieval tools. CONCLUSION The latest release is publicly accessible at the HVDB website: http://s2as02.genes.nig.ac.jp.
Collapse
Affiliation(s)
- Tadasu Shin-I
- Department of Clinical Molecular Informative Medicine, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | | | | | | |
Collapse
|
233
|
Zhou Y, Webber SE, Murphy DE, Li LS, Dragovich PS, Tran CV, Sun Z, Ruebsam F, Shah AM, Tsan M, Showalter RE, Patel R, Li B, Zhao Q, Han Q, Hermann T, Kissinger CR, Lebrun L, Sergeeva MV, Kirkovsky L. Novel HCV NS5B polymerase inhibitors derived from 4-(1',1'-dioxo-1',4'-dihydro-1'lambda6-benzo[1',2',4']thiadiazin-3'-yl)-5-hydroxy-2H-pyridazin-3-ones. Part 1: exploration of 7'-substitution of benzothiadiazine. Bioorg Med Chem Lett 2008; 18:1413-8. [PMID: 18242088 DOI: 10.1016/j.bmcl.2008.01.007] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2007] [Revised: 12/23/2007] [Accepted: 01/02/2008] [Indexed: 11/25/2022]
Abstract
5-Hydroxy-3(2H)-pyridazinone derivatives were investigated as inhibitors of genotype 1 HCV NS5B polymerase. The synthesis, structure-activity relationships (SAR), metabolic stability, and structure-based design approach for this new class of compounds are discussed.
Collapse
Affiliation(s)
- Yuefen Zhou
- Anadys Pharmaceuticals, Inc., 3115 Merryfield Row, San Diego, CA 92121, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
234
|
Expression of alternate reading frame protein (F1) of hepatitis C virus in Escherichia coli and detection of antibodies for F1 in Indian patients. INFECTION GENETICS AND EVOLUTION 2008; 8:374-7. [PMID: 18280797 PMCID: PMC7106216 DOI: 10.1016/j.meegid.2007.12.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2007] [Revised: 12/15/2007] [Accepted: 12/26/2007] [Indexed: 12/16/2022]
Abstract
Apart from the core (21 kD), a novel hepatitis C virus (HCV) frame shift protein (F1) is synthesized from the initiation codon of the polyprotein sequence followed by ribosomal frame shift into the −2/+1 reading frame. To date, no information is available on F1 protein of Indian isolates, and hence detection of antibodies for F1 protein in Indian patients assumes great relevance. Specific primers have been designed to amplify sequence coding for 120aa of truncated F1 (tF1). The amplified tF1 has been cloned in bacterial expression vector, pET21b for expression in Escherichia coli. Partially purified expressed protein has been subjected to western blot analysis using patients’ sera. Three HCV positive sera employed in western analysis showed positive signals to tF1, while sera from uninfected individuals failed to give any signals. Further, results of western blots, carried out with patients sera titrated with purified core protein, confirmed the presence of antibodies specific to F1. The positive signal observed for F1 in western analysis with HCV infected sera suggests that F1 protein is synthesized in the natural course of HCV infection in Indian patients as well. Presence of antibodies against F1 protein of subtype 1c has been demonstrated, for the first time, in Indian patients.
Collapse
|
235
|
Oem JK, Jackel-Cram C, Li YP, Kang HN, Zhou Y, Babiuk LA, Liu Q. Hepatitis C virus non-structural protein-2 activates CXCL-8 transcription through NF-kappaB. Arch Virol 2007; 153:293-301. [PMID: 18074095 DOI: 10.1007/s00705-007-1103-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2007] [Accepted: 10/24/2007] [Indexed: 01/27/2023]
Abstract
Hepatitis C is a devastating disease worldwide. Proteins encoded by the etiologic agent, hepatitis C virus (HCV), are believed to play important roles in HCV-associated pathogenesis. However, the biological functions of the non-structural protein-2 (NS2) encoded by HCV are not well characterized. Here, we show that HCV NS2 protein activates CXCL-8 (interleukin-8, IL-8) transcription in HepG2 cells as measured by reverse transcription-polymerase chain reaction and IL-8 promoter-luciferase reporter assays. Furthermore, when the kappaB site on the IL-8 promoter was eliminated by mutagenesis or when intracellular NF-kappaB activity was suppressed by an inhibitor, NS2 did not activate the IL-8 promoter, suggesting a role of NF-kappaB in this process. These results prompted us to hypothesize that HCV NS2 might be able to activate NF-kappaB. This hypothesis was tested by determination of NF-kappaB-driven reporter gene expression and NF-kappaB p65 subunit subcellular localization after HCV NS2 expression. Indeed, NS2 could up-regulate NF-kappaB-driven luciferase activity and was associated with p65 nuclear localization. These results demonstrate that HCV NS2 up-regulates IL-8 transcription through NF-kappaB. This newly identified function increases our understanding of the role of HCV NS2 protein in virus-host interactions.
Collapse
Affiliation(s)
- J-K Oem
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, SK, Canada
| | | | | | | | | | | | | |
Collapse
|
236
|
Washenberger CL, Han JQ, Kechris KJ, Jha BK, Silverman RH, Barton DJ. Hepatitis C virus RNA: dinucleotide frequencies and cleavage by RNase L. Virus Res 2007; 130:85-95. [PMID: 17604869 PMCID: PMC2186174 DOI: 10.1016/j.virusres.2007.05.020] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2006] [Revised: 05/18/2007] [Accepted: 05/22/2007] [Indexed: 12/25/2022]
Abstract
Ribonuclease L (RNase L) is an antiviral endoribonuclease that cleaves hepatitis C virus (HCV) RNA at single-stranded UA and UU dinucleotides throughout the open reading frame (ORF). To determine whether RNase L exerts evolutionary pressure on HCV we examined the frequencies of UA and UU dinucleotides in 162 RNA sequences from the Los Alamos National Labs HCV Database (http://hcv.lanl.gov). Considering the base composition of the HCV ORFs, both UA and UU dinucleotides were less frequent than predicted in each of 162 HCV RNAs. UA dinucleotides were significantly less frequent than predicted at each of the three codon positions while UU dinucleotides were less frequent than predicted predominantly at the wobble position of codons. UA and UU dinucleotides were among the least abundant dinucleotides in HCV RNA ORFs. Furthermore, HCV genotype 1 RNAs have a lower frequency of UA and UU dinucleotides than genotype 2 and 3 RNAs, perhaps contributing to increased resistance of HCV genotype 1 infections to interferon therapy. In vitro, RNase L cleaved both HCV genotype 1 and 2 RNAs efficiently. Thus, RNase L can cleave HCV RNAs efficiently and variably reduced frequencies of UA and UU dinucleotides in HCV RNA ORFs are consistent with the selective pressure of RNase L.
Collapse
Affiliation(s)
| | - Jian-Qiu Han
- Department of Microbiology, University of Colorado at Denver and Health Sciences Center, Aurora, CO 80045
| | - Katherina J. Kechris
- Department of Preventive Medicine and Biometrics, University of Colorado at Denver and Health Sciences Center, Aurora, CO 80045
| | - Babal Kant Jha
- Department of Cancer Biology, The Lerner Research Institute, The Cleveland Clinic Foundation, Cleveland, OH 44195
| | - Robert H. Silverman
- Department of Cancer Biology, The Lerner Research Institute, The Cleveland Clinic Foundation, Cleveland, OH 44195
| | - David J. Barton
- Department of Microbiology, University of Colorado at Denver and Health Sciences Center, Aurora, CO 80045
- Program in Molecular Biology, University of Colorado at Denver and Health Sciences Center, Aurora, CO 80045
| |
Collapse
|
237
|
Abstract
Major advances in the understanding of the molecular biology of hepatitis C virus (HCV) have been made recently. While the chimpanzee is the only established animal model of HCV infection, several in vivo and in vitro models have been established that allow us to study various aspects of the viral life cycle. In particular, the replicon system and the production of recombinant infectious virions revolutionized the investigation of HCV-RNA replication and rendered all steps of the viral life cycle, including entry and release of viral particles, amenable to systematic analysis. In the following we will review the different in vivo and in vitro models of HCV infection.
Collapse
Affiliation(s)
- V Brass
- Department of Medicine II, University of Freiburg, Freiburg, Germany
| | | | | |
Collapse
|
238
|
Noppornpanth S, Smits SL, Lien TX, Poovorawan Y, Osterhaus ADME, Haagmans BL. Characterization of hepatitis C virus deletion mutants circulating in chronically infected patients. J Virol 2007; 81:12496-12503. [PMID: 17728237 PMCID: PMC2168980 DOI: 10.1128/jvi.01059-07] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2007] [Accepted: 08/20/2007] [Indexed: 12/15/2022] Open
Abstract
Hepatitis C virus (HCV) has a linear positive-stranded RNA genome of approximately 9,600 nucleotides in length and displays a high level of sequence diversity caused by high mutation rates and recombination. However, when we performed long distance reverse transcription-PCRs on HCV RNA isolated from serum of chronic HCV patients, not only full-length HCV genomes but also HCV RNAs which varied in size from 7,600 to 8,346 nucleotides and contained large in-frame deletions between E1 and NS2 were amplified. Carefully designed control experiments indicated that these deletion mutants are a bona fide natural RNA species, most likely packaged in virions. Moreover, deletion mutants were detected in sera of patients infected with different HCV genotypes. We observed that 7/37 (18.9%) of genotype 1, 5/43 (11.6%) of genotype 3, and 4/13 (30.7%) of genotype 6 samples contained HCV deletion mutant genomes. These observations further exemplify HCV's huge genetic diversity and warrant studies to explore their biological relevance.
Collapse
Affiliation(s)
- Suwanna Noppornpanth
- Department of Virology, Erasmus Medical Center, Dr Molewaterplein 50, 3015 GE, Rotterdam, The Netherlands
| | | | | | | | | | | |
Collapse
|
239
|
Suzuki T, Ishii K, Aizaki H, Wakita T. Hepatitis C viral life cycle. Adv Drug Deliv Rev 2007; 59:1200-12. [PMID: 17825945 DOI: 10.1016/j.addr.2007.04.014] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2007] [Accepted: 04/11/2007] [Indexed: 12/16/2022]
Abstract
Hepatitis C virus (HCV) has been recognized as a major cause of chronic liver diseases worldwide. Molecular studies of the virus became possible with the successful cloning of its genome in 1989. Although much work remains to be done regarding early and late stages of the HCV life cycle, significant progress has been made with respect to the molecular biology of HCV, especially the viral protein processing and the genome replication. This review summarizes our current understanding of genomic organization of HCV, features of the viral protein characteristics, and the viral life cycle.
Collapse
Affiliation(s)
- Tetsuro Suzuki
- Department of Virology II, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan.
| | | | | | | |
Collapse
|
240
|
Wakita T. HCV research and anti-HCV drug discovery: toward the next generation. Adv Drug Deliv Rev 2007; 59:1196-9. [PMID: 17905463 DOI: 10.1016/j.addr.2007.08.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2007] [Accepted: 08/17/2007] [Indexed: 02/06/2023]
Abstract
Hepatitis C virus (HCV) causes persistent infection and induces chronic hepatitis, liver cirrhosis and finally hepatocellular carcinoma. Current therapies for HCV infection have not been satisfactory, and more effective anti-viral treatments are needed. In this regard, detailed analysis of HCV has been hampered by a lack of appropriate viral culture systems and small animal models of infection. However, rapid progress in HCV research has recently been achieved, such as a subgenomic replicon system, a viral culture system using JFH-1 clone and the Alb-uPA/SCID mouse transplanted with human liver cells. Such progress will propel HCV research and anti-HCV drug discovery toward the next generation.
Collapse
Affiliation(s)
- Takaji Wakita
- Department of Virology II, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku, Tokyo 162-8640, Japan.
| |
Collapse
|
241
|
Saito S, Heller T, Yoneda M, Takahashi H, Nakajima A, Liang JT. Lifestyle-related diseases of the digestive system: a new in vitro model of hepatitis C virion production: application of basic research on hepatitis C virus to clinical medicine. J Pharmacol Sci 2007; 105:138-44. [PMID: 17928740 DOI: 10.1254/jphs.fm0070040] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
The hepatitis C virus (HCV) is an enveloped virus with a single positive-strand RNA genome of about 9.6 kb. It is a major cause of liver disease worldwide. Clear understanding of the viral life cycle has been hampered by the lack of a robust cell culture system. While the development of the HCV replicon system was a major breakthrough, infectious virions could not be produced with the replicon system. Recently, several groups have reported producing HCV virions using in vitro systems. One of these is a replicon system, but with the special genotype 2a strain JFH-1. Another is a DNA transfection system, with the construct containing the cDNA of the known infectious HCV genotype 1b flanked by two ribozymes. The development of these models further extends the repertoire of tools available for the study of HCV biology, and in particular, they may help to elucidate the molecular details of hepatitis C viral assembly and release. This review discusses the progression of experimental strategies related to HCV and how these strategies may be applied to clinical medicine.
Collapse
Affiliation(s)
- Satoru Saito
- Gastroenterology Division, Yokohama City University School of Medicine, Yokohama, Japan.
| | | | | | | | | | | |
Collapse
|
242
|
Delgrange D, Pillez A, Castelain S, Cocquerel L, Rouillé Y, Dubuisson J, Wakita T, Duverlie G, Wychowski C. Robust production of infectious viral particles in Huh-7 cells by introducing mutations in hepatitis C virus structural proteins. J Gen Virol 2007; 88:2495-2503. [PMID: 17698659 DOI: 10.1099/vir.0.82872-0] [Citation(s) in RCA: 128] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Recently, the characterization of a cell culture system allowing the amplification of an authentic virus, named hepatitis C virus cell culture (HCVcc), has been reported by several groups. To obtain higher HCV particle productions, we investigated the potential effect of some amino acid changes on the infectivity of the JFH-1 isolate. As a first approach, successive infections of naïve Huh-7 cells were performed until high viral titres were obtained, and mutations that appeared during this selection were identified by sequencing. Only one major modification, N534K, located in the E2 glycoprotein sequence was found. Interestingly, this mutation prevented core glycosylation of E2 site 6. In addition, JFH-1 generated with this modification facilitated the infection of Huh-7 cells. In a second approach to identify mutations favouring HCVcc infectivity, we exploited the observation that a chimeric virus containing the genotype 1a core protein in the context of JFH-1 background was more infectious than wild-type JFH-1 isolate. Sequence alignment between JFH-1 and our chimera, led us to identify two major positions, 172 and 173, which were not occupied by similar amino acids in these two viruses. Importantly, higher viral titres were obtained by introducing these residues in the context of wild-type JFH-1. Altogether, our data indicate that a more robust production of HCVcc particles can be obtained by introducing a few specific mutations in JFH-1 structural proteins.
Collapse
Affiliation(s)
- David Delgrange
- CNRS-UMR 8161, IBL, Université de Lille I et Lille II, Institut Pasteur de Lille, 59021 Lille cedex, France
| | - André Pillez
- CNRS-UMR 8161, IBL, Université de Lille I et Lille II, Institut Pasteur de Lille, 59021 Lille cedex, France
| | - Sandrine Castelain
- Laboratoire de Virologie, Centre Hospitalier Universitaire-Hôpital Sud, 80054 Amiens cedex, France
- CNRS-UMR 8161, IBL, Université de Lille I et Lille II, Institut Pasteur de Lille, 59021 Lille cedex, France
| | - Laurence Cocquerel
- CNRS-UMR 8161, IBL, Université de Lille I et Lille II, Institut Pasteur de Lille, 59021 Lille cedex, France
| | - Yves Rouillé
- CNRS-UMR 8161, IBL, Université de Lille I et Lille II, Institut Pasteur de Lille, 59021 Lille cedex, France
| | - Jean Dubuisson
- CNRS-UMR 8161, IBL, Université de Lille I et Lille II, Institut Pasteur de Lille, 59021 Lille cedex, France
| | - Takaji Wakita
- Department of Virology II, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku, Tokyo 162-8640, Japan
| | - Gilles Duverlie
- Laboratoire de Virologie, Centre Hospitalier Universitaire-Hôpital Sud, 80054 Amiens cedex, France
- CNRS-UMR 8161, IBL, Université de Lille I et Lille II, Institut Pasteur de Lille, 59021 Lille cedex, France
| | - Czeslaw Wychowski
- CNRS-UMR 8161, IBL, Université de Lille I et Lille II, Institut Pasteur de Lille, 59021 Lille cedex, France
| |
Collapse
|
243
|
Suzuki T, Aizaki H, Murakami K, Shoji I, Wakita T. Molecular biology of hepatitis C virus. J Gastroenterol 2007; 42:411-23. [PMID: 17671755 DOI: 10.1007/s00535-007-2030-3] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2007] [Accepted: 02/10/2007] [Indexed: 02/04/2023]
Abstract
Infection with hepatitis C virus (HCV), which is distributed worldwide, often becomes persistent, causing chronic hepatitis, cirrhosis, and hepatocellular carcinoma. For many years, the characterization of the HCV genome and its products has been done by heterologous expression systems because of the lack of a productive cell culture system. The development of the HCV replicon system is a highlight of HCV research and has allowed examination of the viral RNA replication in cell culture. Recently, a robust system for production of recombinant infectious HCV has been established, and classical virological techniques are now able to be applied to HCV. This development of reverse genetics-based experimental tools in HCV research can bring a greater understanding of the viral life cycle and pathogenesis of HCV-induced diseases. This review summarizes the current knowledge of cell culture systems for HCV research and recent advances in the investigation of the molecular virology of HCV.
Collapse
Affiliation(s)
- Tetsuro Suzuki
- Department of Virology II, National Institute of Infectious Diseases, 1-23-1 Toyama, Tokyo, Japan
| | | | | | | | | |
Collapse
|
244
|
Date T, Miyamoto M, Kato T, Morikawa K, Murayama A, Akazawa D, Tanabe J, Sone S, Mizokami M, Wakita T. An infectious and selectable full-length replicon system with hepatitis C virus JFH-1 strain. Hepatol Res 2007; 37:433-43. [PMID: 17437527 DOI: 10.1111/j.1872-034x.2007.00056.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
AIM The hepatitis C virus (HCV) strain JFH-1 was cloned from a patient with fulminant hepatitis. A JFH-1 subgenomic replicon and full-length JFH-1 RNA efficiently replicate in cultured cells. In this study, an infectious, selectable HCV replicon containing full-length JFH-1 cDNA was constructed. METHODS The full-genome replicon was constructed using the neomycin-resistant gene, EMCV IRES and wild-type JFH-1 cDNA. Huh7 cells were transfected with RNA synthesized in vitro, and then cultured with G418. Independent colonies were cloned to establish cell lines that replicate the full-length HCV replicon. RESULTS HCV RNA replication was detected in each isolated cell line. HCV proteins and HCV RNA were secreted into culture medium, and exhibited identical density profiles. Interestingly, culture supernatants of the replicon cells were infectious for naïve Huh7 cells. Long-term culture did not affect replication of replicon RNA in the replicon cells, but it reduced core protein secretion and infectivity of culture supernatant. Culture supernatant obtained after serial passage of replicon virus was infectious for Huh7 cells. CONCLUSIONS Selectable infection was established using HCV replicon containing full-length genotype 2a JFH-1 cDNA. This system might be useful for HCV research.
Collapse
Affiliation(s)
- Tomoko Date
- Department of Microbiology, Tokyo Metropolitan Institute for Neuroscience, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
245
|
Murayama A, Date T, Morikawa K, Akazawa D, Miyamoto M, Kaga M, Ishii K, Suzuki T, Kato T, Mizokami M, Wakita T. The NS3 helicase and NS5B-to-3'X regions are important for efficient hepatitis C virus strain JFH-1 replication in Huh7 cells. J Virol 2007; 81:8030-40. [PMID: 17522229 PMCID: PMC1951293 DOI: 10.1128/jvi.02088-06] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The JFH-1 strain of hepatitis C virus (HCV) is a genotype 2a strain that can replicate autonomously in Huh7 cells. The J6 strain is also a genotype 2a strain, but its full genomic RNA does not replicate in Huh7 cells. However, chimeric J6/JFH-1 RNA that has J6 structural-protein-coding regions and JFH-1 nonstructural-protein-coding regions can replicate autonomously and produce infectious HCV particles. In order to determine the mechanisms underlying JFH-1 RNA replication, we constructed various J6/JFH-1 chimeras and tested their RNA replication and virus particle production abilities in Huh7 cells. Via subgenomic-RNA-replication assays, we found that both the JFH-1 NS5B-to-3'X (N5BX) and the NS3 helicase (N3H) regions are important for the replication of the J6CF replicon. We applied these results to full-length genomic RNA replication and analyzed replication using Northern blotting. We found that a chimeric J6 clone with JFH-1 N3H and N5BX could replicate autonomously but that a chimeric J6 clone with only JFH-1 N5BX had no replication ability. Finally, we tested the virus production abilities of these clones and found that a chimeric J6 clone with JFH-1 N3H and N5BX could produce infectious HCV particles. In conclusion, the JFH-1 NS3 helicase and NS5B-to-3'X regions are important for efficient replication and virus particle formation of HCV genotype 2a strains.
Collapse
Affiliation(s)
- Asako Murayama
- Department of Virology II, National Institute of Infectious Diseases, Toyama 1-23-1, Shinjuku, Tokyo 162-8640, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
246
|
Tellinghuisen TL, Evans MJ, von Hahn T, You S, Rice CM. Studying hepatitis C virus: making the best of a bad virus. J Virol 2007; 81:8853-67. [PMID: 17522203 PMCID: PMC1951464 DOI: 10.1128/jvi.00753-07] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
247
|
Abstract
Exciting progress has recently been made in understanding the replication of hepatitis C virus, a major cause of chronic hepatitis, liver cirrhosis and hepatocellular carcinoma worldwide. The development of complete cell-culture systems should now enable the systematic dissection of the entire viral lifecycle, providing insights into the hitherto difficult-to-study early and late steps. These efforts have already translated into the identification of novel antiviral targets and the development of new therapeutic strategies, some of which are currently undergoing clinical evaluation.
Collapse
Affiliation(s)
- Darius Moradpour
- Division of Gastroenterology and Hepatology, Centre Hospitalier Universitaire Vaudois, University of Lausanne, CH-1011 Lausanne, Switzerland.
| | | | | |
Collapse
|
248
|
Abstract
Since the discovery of HCV in 1989, the lack of a cell culture system has hampered research progress on this important human pathogen. No robust system has been obtained by empiric approaches, and HCV cell culture remained hypothetical until 2005. The construction of functional molecular clones has served as a starting point to reconstitute a consensus infectious cDNA that was able to transcribe infectious HCV RNAs as shown by intrahepatic inoculation in a chimpanzee. Other consensus clones have been selected and established in a human hepatoma cell line as replicons, i.e. self-replicating subgenomic or genomic viral RNAs. However, these replicons did not support production of infectious virus. Interestingly, some full-length replicons could be established without adaptive mutations and one of them was able to replicate at very high levels and to release virus particles that are infectious in cell culture and in vivo. This new cell culture system represents a major breakthrough in the HCV field and should enable a broad range of basic and applied studies to be achieved.
Collapse
|
249
|
Lutchman G, Danehower S, Song BC, Liang TJ, Hoofnagle JH, Thomson M, Ghany MG. Mutation rate of the hepatitis C virus NS5B in patients undergoing treatment with ribavirin monotherapy. Gastroenterology 2007; 132:1757-66. [PMID: 17484873 DOI: 10.1053/j.gastro.2007.03.035] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2005] [Accepted: 02/15/2007] [Indexed: 02/08/2023]
Abstract
BACKGROUND & AIMS Error catastrophe from an increase in mutation rate may be a possible mechanism of action of ribavirin in chronic hepatitis C (CHC). We sought to evaluate the mutagenic potential of ribavirin in vivo and to determine if conserved regions of hepatitis C virus (HCV) NS5B are mutated during ribavirin therapy. METHODS Thirty-one patients with CHC genotype 1 who participated in a randomized, placebo-controlled trial of ribavirin for 48 weeks were studied. After 48 weeks, patients on placebo were crossed-over to open-label ribavirin for 48 weeks. Viral RNA was extracted from paired, stored sera at day 0 and week 24 during the randomized phase and weeks 48, 52, and 72 during the cross-over phase. The entire NS5B region was sequenced and the mutation rates were calculated. RESULTS An increase in mutation rate was observed after 4 weeks (4.4 x 10(-2) vs 2.1 x 10(-3) per site/y, P = .02) but not after 24 weeks (4.0 x 10(-3) vs. 5.5 x 10(-3) per site/y, P = .1) in patients who crossed over to ribavirin. Similarly, during the randomized phase no increase in the number of mutations or the mutation rate was observed at week 24 between the ribavirin- and placebo-treated patients 6.6 vs 4.3 x 10(-3) per site/y, respectively (P = .4). No mutations were observed in conserved regions of NS5B. CONCLUSIONS Ribavirin therapy is associated with an early, transient increase in the mutation rate of HCV. Lethal mutagenesis and error catastrophe is unlikely to be the sole mechanism of action of ribavirin during therapy for CHC.
Collapse
Affiliation(s)
- Glen Lutchman
- Liver Diseases Branch, National Institutes of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-1800, USA
| | | | | | | | | | | | | |
Collapse
|
250
|
Hiraga N, Imamura M, Tsuge M, Noguchi C, Takahashi S, Iwao E, Fujimoto Y, Abe H, Maekawa T, Ochi H, Tateno C, Yoshizato K, Sakai A, Sakai Y, Honda M, Kaneko S, Wakita T, Chayama K. Infection of human hepatocyte chimeric mouse with genetically engineered hepatitis C virus and its susceptibility to interferon. FEBS Lett 2007; 581:1983-7. [PMID: 17466983 DOI: 10.1016/j.febslet.2007.04.021] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2007] [Revised: 03/31/2007] [Accepted: 04/05/2007] [Indexed: 12/16/2022]
Abstract
We developed a reverse genetics system of hepatitis C virus (HCV) genotypes 1a and 2a using infectious clones and human hepatocyte chimeric mice. We inoculated cell culture-produced genotype 2a (JFH-1) HCV intravenously. We also injected genotype 1a CV-H77C clone RNA intrahepatically. Mice inoculated with HCV by both procedures developed measurable and transmissible viremia. Interferon (IFN) alpha treatment resulted in greater reduction of genotype 2a HCV levels than genotype 1a, as seen in clinical practice. Genetically engineered HCV infection system should be useful for analysis of the mechanisms of resistance of HCV to IFN and other drugs.
Collapse
Affiliation(s)
- Nobuhiko Hiraga
- Department of Medicine and Molecular Science, Division of Frontier Medical Science, Programs for Biomedical Research, Graduate School of Biomedical Sciences, Hiroshima University, Hiroshima, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|