201
|
Cao J, Geng X, Wen J, Li Q, Ye L, Zhang A, Feng Z, Guo L, Gu Y. The penetration and phenotype modulation of smooth muscle cells on surface heparin modified poly(ɛ-caprolactone) vascular scaffold. J Biomed Mater Res A 2017. [PMID: 28643432 DOI: 10.1002/jbm.a.36144] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The tubular porous poly(ɛ-caprolactone) (PCL) scaffold was fabricated by electrospinning. After then, the scaffold's surface was firstly eroded by hexyldiamine to endow amine group, and heparin was covalently grafted to the surface to get surface heparin modified scaffold (ShPCL scaffold). It was found that ShPCL scaffold can induce smooth muscle cells (SMCs) to penetrate the scaffold surface, while the SMCs cannot penetrate the surface of PCL scaffold. Subsequently, the rabbit SMCs were seeded on the ShPCL scaffold and cultured for 14 days. It was found the expression of α-smooth muscle actin in ShPCL scaffold maintained much higher level than that in culture plate, which implied the SMC differentiation in ShPCL scaffold. Furthermore, the immunefluorescence staining of the cross-sections of ShPCL scaffold exhibited the expression of calponin in ShPCL scaffold can be detected after 7 and 14 days, whereas the expression of smooth muscle myosin heavy chain can also be detected at 14 days. These results proved that penetrated SMCs preferably differentiated in to contractile phenotype. The successful SMC penetration and the contractile phenotype expression implied ShPCL scaffold is a suitable candidate for regenerating smooth muscle layer in vascular tissue engineering. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 2806-2815, 2017.
Collapse
Affiliation(s)
- Jie Cao
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Xue Geng
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China.,Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, Beijing, 100081, China
| | - Juan Wen
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Qingxuan Li
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Lin Ye
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China.,Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, Beijing, 100081, China
| | - Aiying Zhang
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China.,Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, Beijing, 100081, China
| | - Zengguo Feng
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China.,Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, Beijing, 100081, China
| | - Lianrui Guo
- Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Yongquan Gu
- Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| |
Collapse
|
202
|
Seruya M, Shah A, Pedrotty D, du Laney T, Melgiri R, McKee JA, Young HE, Niklason LE. Clonal Population of Adult Stem Cells: Life Span and Differentiation Potential. Cell Transplant 2017; 13:93-101. [PMID: 15129755 DOI: 10.3727/000000004773301762] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Adult stem cells derived from bone marrow, connective tissue, and solid organs can exhibit a range of differentiation potentials. Some controversy exists regarding the classification of mesenchymal stem cells as bona fide stem cells, which is in part derived from the limited ability to propagate true clonal populations of precursor cells. We isolated putative mesenchymal stem cells from the connective tissue of an adult rat (rMSC), and generated clonal populations via three rounds of dilutional cloning. The replicative potential of the clonal rMSC line far exceeded Hayflick's limit of 50–70 population doublings. The high capacity for self-renewal in vitro correlated with telomerase activity, as demonstrated by telomerase repeat amplification protocol (TRAP) assay. Exposure to nonspecific differentiation culture medium revealed multilineage differentiation potential of rMSC clones. Immunostaining confirmed the appearance of mesodermal phenotypes, including adipocytes possessing lipid-rich vacuoles, chondrocytes depositing pericellular type II collagen, and skeletal myoblasts expressing MyoD1. Importantly, the spectrum of differentiation capability was sustained through repeated passaging. Furthermore, serum-free conditions that led to high-efficiency smooth muscle differentiation were identified. rMSCs plated on collagen IV-coated surfaces and exposed to transforming growth factor-β1 (TGF-β1) differentiated into a homogeneous population expressing α-actin and calponin. Hence, clonogenic analysis confirmed the presence of a putative MSC population derived from the connective tissue of rat skeletal muscle. The ability to differentiate into a smooth muscle cell (SMC) phenotype, combined with a high proliferative capacity, make such a connective tissue-derived MSC population ideal for applications in vascular tissue construction.
Collapse
Affiliation(s)
- Mitchel Seruya
- Columbia University College of Physicians and Surgeons, New York, NY 10032, USA
| | | | | | | | | | | | | | | |
Collapse
|
203
|
Dahl SLM, Koh J, Prabhakar V, Niklason LE. Decellularized Native and Engineered Arterial Scaffolds for Transplantation. Cell Transplant 2017; 12:659-666. [DOI: 10.3727/000000003108747136] [Citation(s) in RCA: 256] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
More than 570,000 coronary artery bypass grafts are implanted each year, creating an important demand for small-diameter vascular grafts. For patients who lack adequate internal mammary artery or saphenous vein, tissue-engineered arteries may prove useful. However, the time needed to tissue engineer arteries (7 weeks or more) is too long for many patients. Decellularized cadaveric human arteries are another possible source of vascular conduit, but limited availability and the potential for disease transmission limit their widespread use. In contrast, decellularized tissue-engineered arteries could serve as grafts for immediate implantation, as scaffolds onto which patients' cells could be seeded, or as carriers for genetically engineered cells to aid cell transplantation. The goal of this study was to quantify the effects of decellularization on vascular matrix and mechanical properties. Specifically, we compared cellular elimination, extracellular matrix retention, and mechanical characteristics of porcine carotid arteries before and after treatment with three decellularization methods. In addition, for the first time, tissue-engineered arteries were decellularized. Decellularized native arteries were also used as a scaffold onto which vascular cells were seeded. These studies identified a decellularization method for native and engineered arteries that maximized cellular elimination, without greatly compromising mechanical integrity. We showed that engineered tissues could be decellularized, and demonstrated the feasibility of reseeding decellularized vessels with vascular cells.
Collapse
Affiliation(s)
| | - Jennifer Koh
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093
| | - Vikas Prabhakar
- Biological Engineering Division, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Laura E. Niklason
- Departments of Biomedical Engineering, Durham, NC 27708
- Anesthesiology, Duke University, Durham, NC 27708
| |
Collapse
|
204
|
Furukawa KS, Ushida T, Toita K, Sakai Y, Tateishi T. Hybrid of Gel-Cultured Smooth Muscle Cells with PLLA Sponge as a Scaffold towards Blood Vessel Regeneration. Cell Transplant 2017. [DOI: 10.3727/000000002783985747] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Although rapid formation of a smooth inner surface is important in constructing an artificial vascular graft, a conventional model that uses a biodegradable polymer such as polyglycolic acid needs long-term culture to form it. In another model, which uses collagen gel, it is reported that prompt formation of the smooth inner surface was achieved. But the mechanical properties were not suitable, resulting in rupture under high pressure at the arterial level. Therefore, we propose a new artificial vascular graft model made of biodegradable polymer, gel, and cells. At first we manufactured an artificial vascular graft (i.d. 5 mm, o.d.7 mm) consisting of poly-l-lactic acid (PLLA) with open pore structures by using gas-forming methods. After mixing human normal aortic smooth muscle cells (SMCs) with type I collagen solution, pores of the PLLA scaffold were filled with the mixture. The collagen mixture was made into gel in the pores of the PLLA scaffold, incubating at 37°C. WET-SEM analysis showed that the prompt formation of a smooth inner surface was achieved in the new model. The ratio of incorporation of SMCs into the artificial vascular graft became approximately 100% by using the cell–collagen mixture, whereas only 40% of SMCs were trapped in the conventional model where SMCs were inoculated as a cell–medium suspension. Therefore, it was suggested that the new artificial vascular graft model was superior in smooth inner surface formation and cell inoculation, compared with conventional models using either biodegradable polymer or gel.
Collapse
Affiliation(s)
- Katsuko S. Furukawa
- Tissue Engineering Laboratory, Department of Mechanical Engineering, Graduate School of Engineering, University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Takashi Ushida
- Tissue Engineering Laboratory, Department of Mechanical Engineering, Graduate School of Engineering, University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Kenshi Toita
- Tissue Engineering Laboratory, Department of Mechanical Engineering, Graduate School of Engineering, University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Yasuyuki Sakai
- Institute of Industrial Science, University of Tokyo, Minato-ku, Tokyo, Japan
| | - Tetsuya Tateishi
- Tissue Engineering Laboratory, Department of Mechanical Engineering, Graduate School of Engineering, University of Tokyo, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
205
|
Xu S, Lu F, Cheng L, Li C, Zhou X, Wu Y, Chen H, Zhang K, Wang L, Xia J, Yan G, Qi Z. Preparation and characterization of small-diameter decellularized scaffolds for vascular tissue engineering in an animal model. Biomed Eng Online 2017; 16:55. [PMID: 28494781 PMCID: PMC5425976 DOI: 10.1186/s12938-017-0344-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 04/28/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The development of a suitable extracellular matrix (ECM) scaffold is the first step in vascular tissue engineering (VTE). Synthetic vascular grafts are available as an alternative to autologous vessels in large-diameter arteries (>8 mm) and medium-diameter arteries (6-8 mm). In small-diameter vessels (<6 mm), synthetic vascular grafts are of limited use due to poor patency rates. Compared with a vascular prosthesis, natural tissue ECM has valuable advantages. Despite considerable progress in recent years, identifying an optimal protocol to create a scaffold for use in small-diameter (<6 mm) fully natural tissue-engineered vascular grafts (TEVG), remains elusive. Although reports on different decellularization techniques have been numerous, combination of and comparison between these methods are scarce; therefore, we have compared five different decellularization protocols for making small-diameter (<6 mm) ECM scaffolds and evaluated their characteristics relative to those of fresh vascular controls. RESULTS The protocols differed in the choice of enzymatic digestion solvent, the use of non-ionic detergent, the durations of the individual steps, and UV crosslinking. Due to their small diameter and ready availability, rabbit arteria carotis were used as the source of the ECM scaffolds. The scaffolds were subcutaneously implanted in rats and the results were evaluated using various microscopy and immunostaining techniques. CONCLUSIONS Our findings showed that a 2 h digestion time with 1× EDTA, replacing non-ionic detergent with double-distilled water for rinsing and the application of UV crosslinking gave rise to an ECM scaffold with the highest biocompatibility, lowest cytotoxicity and best mechanical properties for use in vivo or in situ pre-clinical research in VTE in comparison.
Collapse
Affiliation(s)
- Shuangyue Xu
- Organ Transplantation Institute of Xiamen University, Xiamen, 361102, Fujian Province, People's Republic of China.,Fujian Key Laboratory of Organ and Tissue Regeneration, Xiamen, 361102, Fujian Province, People's Republic of China
| | - Fangna Lu
- Organ Transplantation Institute of Xiamen University, Xiamen, 361102, Fujian Province, People's Republic of China.,Fujian Key Laboratory of Organ and Tissue Regeneration, Xiamen, 361102, Fujian Province, People's Republic of China
| | - Lianna Cheng
- Organ Transplantation Institute of Xiamen University, Xiamen, 361102, Fujian Province, People's Republic of China.,Fujian Key Laboratory of Organ and Tissue Regeneration, Xiamen, 361102, Fujian Province, People's Republic of China.,Department of Laboratory Medicine, Lishui People's Hospital, Lishui, 323000, Zhejiang, People's Republic of China
| | - Chenglin Li
- Organ Transplantation Institute of Xiamen University, Xiamen, 361102, Fujian Province, People's Republic of China.,Fujian Key Laboratory of Organ and Tissue Regeneration, Xiamen, 361102, Fujian Province, People's Republic of China
| | - Xu Zhou
- Medical College, Xiamen University, Xiamen, 361000, Fujian Province, People's Republic of China
| | - Yuan Wu
- Cardiovascular Surgery, Heart CenterXiamen University Affiliated Zhongshan Hospital, Xiamen City, 361000, Fujian Province, People's Republic of China
| | - Hongxing Chen
- Medical College, Xiamen University, Xiamen, 361000, Fujian Province, People's Republic of China
| | - Kaichuang Zhang
- Departmant of Neurosurgery, Fuzhou Second Affiliated Hospital of Xiamen University, Fuzhou, 350007, Fujian Province, People's Republic of China
| | - Lumin Wang
- Organ Transplantation Institute of Xiamen University, Xiamen, 361102, Fujian Province, People's Republic of China.,Fujian Key Laboratory of Organ and Tissue Regeneration, Xiamen, 361102, Fujian Province, People's Republic of China
| | - Junjie Xia
- Organ Transplantation Institute of Xiamen University, Xiamen, 361102, Fujian Province, People's Republic of China.,Fujian Key Laboratory of Organ and Tissue Regeneration, Xiamen, 361102, Fujian Province, People's Republic of China
| | - Guoliang Yan
- Organ Transplantation Institute of Xiamen University, Xiamen, 361102, Fujian Province, People's Republic of China. .,Fujian Key Laboratory of Organ and Tissue Regeneration, Xiamen, 361102, Fujian Province, People's Republic of China. .,Basic Medical Department of Medical College, Xiamen University, Xiamen, 361102, Fujian Province, People's Republic of China.
| | - Zhongquan Qi
- Organ Transplantation Institute of Xiamen University, Xiamen, 361102, Fujian Province, People's Republic of China. .,Fujian Key Laboratory of Organ and Tissue Regeneration, Xiamen, 361102, Fujian Province, People's Republic of China.
| |
Collapse
|
206
|
Abstract
There is a need for bioengineered therapies to improve the overall health of the growing and aging world population. Patients with renal failure have a life-long requirement for a durable form of hemodialysis vascular access. In this article, we review the history of tissue engineering as it pertains to bioengineered grafts and vessels for hemodialysis access. Over the years, various strategies have been utilized to develop ideal, humanized vessels for vascular replacement such as fixation of animal or human vessels, cell seeding of synthetic materials, and the synthesis of completely autologous or allogeneic bioengineered vessels. Tissue engineering technologies from two companies have progressed to reach phase 2 and phase 3 clinical trials, but the prospect of newer strategies on the horizon may offer improved manufacturing efficiency, a greater variety of conduit size and length, and reduce the cost to produce.
Collapse
|
207
|
Stefani I, Asnaghi M, Cooper-White J, Mantero S. A double chamber rotating bioreactor for enhanced tubular tissue generation from human mesenchymal stem cells: a promising tool for vascular tissue regeneration. J Tissue Eng Regen Med 2017; 12:e42-e52. [DOI: 10.1002/term.2341] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 08/18/2016] [Accepted: 10/20/2016] [Indexed: 12/26/2022]
Affiliation(s)
- I. Stefani
- Giulio Natta Department of Chemistry, Materials, and Chemical Engineering; Politecnico di Milano; Milan 20133 Italy
- Australian Institute for Bioengineering and Nanotechnology; The University of Queensland; Brisbane QLD 4072 Australia
| | - M.A. Asnaghi
- Giulio Natta Department of Chemistry, Materials, and Chemical Engineering; Politecnico di Milano; Milan 20133 Italy
- Departments of Surgery and of Biomedicine; University Hospital Basel, University of Basel; Basel 4031 Switzerland
| | - J.J. Cooper-White
- Australian Institute for Bioengineering and Nanotechnology; The University of Queensland; Brisbane QLD 4072 Australia
- School of Chemical Engineering; The University of Queensland; QLD 4072 Australia
- Biomedical Manufacturing, Manufacturing Flagship, CSIRO; Clayton VIC 3169 Australia
| | - S. Mantero
- Giulio Natta Department of Chemistry, Materials, and Chemical Engineering; Politecnico di Milano; Milan 20133 Italy
| |
Collapse
|
208
|
Ravichandran A, Liu Y, Teoh SH. Review: bioreactor design towards generation of relevant engineered tissues: focus on clinical translation. J Tissue Eng Regen Med 2017; 12:e7-e22. [PMID: 28374578 DOI: 10.1002/term.2270] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 07/13/2016] [Accepted: 07/19/2016] [Indexed: 12/27/2022]
Abstract
In tissue engineering and regenerative medicine, studies that utilize 3D scaffolds for generating voluminous tissues are mostly confined in the realm of in vitro research and preclinical animal model testing. Bioreactors offer an excellent platform to grow and develop 3D tissues by providing conditions that mimic their native microenvironment. Aligning the bioreactor development process with a focus on patient care will aid in the faster translation of the bioreactor technology to clinics. In this review, we discuss the various factors involved in the design of clinically relevant bioreactors in relation to their respective applications. We explore the functional relevance of tissue grafts generated by bioreactors that have been designed to provide physiologically relevant mechanical cues on the growing tissue. The review discusses the recent trends in non-invasive sensing of the bioreactor culture conditions. It provides an insight to the current technological advancements that enable in situ, non-invasive, qualitative and quantitative evaluation of the tissue grafts grown in a bioreactor system. We summarize the emerging trends in commercial bioreactor design followed by a short discussion on the aspects that hamper the 'push' of bioreactor systems into the commercial market as well as 'pull' factors for stakeholders to embrace and adopt widespread utility of bioreactors in the clinical setting. Copyright © 2017 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Akhilandeshwari Ravichandran
- School of Chemical and Biomedical Engineering, 70 Nanyang Drive, Nanyang Technological University, Singapore, 637459, Singapore
| | - Yuchun Liu
- School of Chemical and Biomedical Engineering, 70 Nanyang Drive, Nanyang Technological University, Singapore, 637459, Singapore.,Academic Clinical Program (Research), National Dental Centre of Singapore, 5 Second Hospital Ave Singapore, 168938, Singapore
| | - Swee-Hin Teoh
- School of Chemical and Biomedical Engineering, 70 Nanyang Drive, Nanyang Technological University, Singapore, 637459, Singapore
| |
Collapse
|
209
|
Mahara A, Kiick KL, Yamaoka T. In vivo
guided vascular regeneration with a non‐porous elastin‐like polypeptide hydrogel tubular scaffold. J Biomed Mater Res A 2017; 105:1746-1755. [DOI: 10.1002/jbm.a.36018] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 06/13/2016] [Accepted: 01/23/2017] [Indexed: 01/26/2023]
Affiliation(s)
- Atsushi Mahara
- Department of Biomedical EngineeringNational Cerebral and Cardiovascular Center Research Institute, Fujishiro‐dai SuitaOsaka565‐8565 Japan
| | - Kristi L. Kiick
- Department of Materials Science and EngineeringUniversity of Delaware201 DuPont HallNewark Delaware19716‐1501
| | - Tetsuji Yamaoka
- Department of Biomedical EngineeringNational Cerebral and Cardiovascular Center Research Institute, Fujishiro‐dai SuitaOsaka565‐8565 Japan
| |
Collapse
|
210
|
Li X, Xu J, Nicolescu CT, Marinelli JT, Tien J. Generation, Endothelialization, and Microsurgical Suture Anastomosis of Strong 1-mm-Diameter Collagen Tubes. Tissue Eng Part A 2017; 23:335-344. [PMID: 27998245 PMCID: PMC5397228 DOI: 10.1089/ten.tea.2016.0339] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 12/16/2016] [Indexed: 11/12/2022] Open
Abstract
Tissue-engineered vascular grafts that are based on reconstituted extracellular matrices have been plagued by weak mechanical strength that prevents handling or anastomosis to native vessels. In this study, we devise a method for making dense, suturable collagen tubular constructs of diameter ≤1 mm for potential microsurgical applications, by dehydrating tubes of native rat tail type I collagen and crosslinking them with 20 mM genipin. Crosslinked dense collagen tubes with 1 mm inner diameter yielded ultimate tensile strength of 342 ± 15 gF and burst pressure of 1313 ± 156 mm Hg, comparable to the strength of a rat femoral artery, and supported endothelial cell adhesion and growth. End-to-end anastomosis of 0.5-mm-diameter tubes to explanted arteries displayed anastomotic strength of 82 ± 21 gF, which is sufficient for surgical applications. In vivo implantation of cell-free tubes as interpositional grafts in the rat femoral circulation yielded stable anastomosis with blood flow for 20 min. Seeded dense collagen tubes represent a promising alternative to venous graft that can potentially be used to bridge between short artery stubs in replantation surgeries.
Collapse
Affiliation(s)
- Xuanyue Li
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts
| | - Jing Xu
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts
| | - Calin T. Nicolescu
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts
| | | | - Joe Tien
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts
- Division of Materials Science and Engineering, Boston University, Brookline, Massachusetts
| |
Collapse
|
211
|
Abstract
Vascular tissue engineering has significant potential to make a major impact on a wide array of clinical problems. Continued progress in understanding basic vascular biology will be invaluable in making further advancements. Past and current achievements in tissue engineering of microvasculature to perfuse organ specific constructs, small vessels for dialysis grafts, and modified synthetic and pediatric large caliber-vessel grafts will be discussed. An emphasis will be placed on clinical trial results with small and large-caliber vessel grafts. Challenges to achieving engineered constructs that satisfy the physiologic, immunologic, and manufacturing demands of engineered vasculature will be explored.
Collapse
|
212
|
Soares JS, Zhang W, Sacks MS. A mathematical model for the determination of forming tissue moduli in needled-nonwoven scaffolds. Acta Biomater 2017; 51:220-236. [PMID: 28063987 DOI: 10.1016/j.actbio.2016.12.038] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Revised: 12/14/2016] [Accepted: 12/20/2016] [Indexed: 11/17/2022]
Abstract
Formation of engineering tissues (ET) remains an important scientific area of investigation for both clinical translational and mechanobiological studies. Needled-nonwoven (NNW) scaffolds represent one of the most ubiquitous biomaterials based on their well-documented capacity to sustain tissue formation and the unique property of substantial construct stiffness amplification, the latter allowing for very sensitive determination of forming tissue modulus. Yet, their use in more fundamental studies is hampered by the lack of: (1) substantial understanding of the mechanics of the NNW scaffold itself under finite deformations and means to model the complex mechanical interactions between scaffold fibers, cells, and de novo tissue; and (2) rational models with reliable predictive capabilities describing their evolving mechanical properties and their response to mechanical stimulation. Our objective is to quantify the mechanical properties of the forming ET phase in constructs that utilize NNW scaffolds. We present herein a novel mathematical model to quantify their stiffness based on explicit considerations of the modulation of NNW scaffold fiber-fiber interactions and effective fiber stiffness by surrounding de novo ECM. Specifically, fibers in NNW scaffolds are effectively stiffer than if acting alone due to extensive fiber-fiber cross-over points that impart changes in fiber geometry, particularly crimp wavelength and amplitude. Fiber-fiber interactions in NNW scaffolds also play significant role in the bulk anisotropy of the material, mainly due to fiber buckling and large translational out-of-plane displacements occurring to fibers undergoing contraction. To calibrate the model parameters, we mechanically tested impregnated NNW scaffolds with polyacrylamide (PAM) gels with a wide range of moduli with values chosen to mimic the effects of surrounding tissues on the scaffold fiber network. Results indicated a high degree of model fidelity over a wide range of planar strains. Lastly, we illustrated the impact of our modeling approach quantifying the stiffness of engineered ECM after in vitro incubation and early stages of in vivo implantation obtained in a concurrent study of engineered tissue pulmonary valves in an ovine model. STATEMENT OF SIGNIFICANCE Regenerative medicine has the potential to fully restore diseased tissues or entire organs with engineered tissues. Needled-nonwoven scaffolds can be employed to serve as the support for their growth. However, there is a lack of understanding of the mechanics of these materials and their interactions with the forming tissues. We developed a mathematical model for these scaffold-tissue composites to quantify the mechanical properties of the forming tissues. Firstly, these measurements are pivotal to achieve functional requirements for tissue engineering implants; however, the theoretical development yielded critical insight into particular mechanisms and behaviors of these scaffolds that were not possible to conjecture without the insight given by modeling, let alone describe or foresee a priori.
Collapse
Affiliation(s)
- João S Soares
- Institute for Computational Engineering and Sciences, Department of Biomedical Engineering, Center for Cardiovascular Simulation, The University of Texas at Austin, 201 East 24th Street, Stop C0200, Austin, TX 78712-1229, United States
| | - Will Zhang
- Institute for Computational Engineering and Sciences, Department of Biomedical Engineering, Center for Cardiovascular Simulation, The University of Texas at Austin, 201 East 24th Street, Stop C0200, Austin, TX 78712-1229, United States
| | - Michael S Sacks
- Institute for Computational Engineering and Sciences, Department of Biomedical Engineering, Center for Cardiovascular Simulation, The University of Texas at Austin, 201 East 24th Street, Stop C0200, Austin, TX 78712-1229, United States.
| |
Collapse
|
213
|
Qiu X, Lee BLP, Ning X, Murthy N, Dong N, Li S. End-point immobilization of heparin on plasma-treated surface of electrospun polycarbonate-urethane vascular graft. Acta Biomater 2017; 51:138-147. [PMID: 28069505 DOI: 10.1016/j.actbio.2017.01.012] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Revised: 12/09/2016] [Accepted: 01/05/2017] [Indexed: 12/22/2022]
Abstract
Small-diameter synthetic vascular grafts have high failure rate due to primarily surface thrombogenicity, and effective surface chemical modification is critical to maintain the patency of the grafts. In this study, we engineered a small-diameter, elastic synthetic vascular graft with off-the-shelf availability and anti-thrombogenic activity. Polycarbonate-urethane (PCU), was electrospun to produce nanofibrous grafts that closely mimicked a native blood vessel in terms of structural and mechanical strength. To overcome the difficulty of adding functional groups to PCU, we explored various surface modification methods, and determined that plasma treatment was the most effective method to modify the graft surface with functional amine groups, which were subsequently employed to conjugate heparin via end-point immobilization. In addition, we confirmed in vitro that the combination of plasma treatment and end-point immobilization of heparin exhibited the highest surface density and correspondingly the highest anti-thrombogenic activity of heparin molecules. Furthermore, from an in vivo study using a rat common carotid artery anastomosis model, we showed that plasma-heparin grafts had higher patency rate at 2weeks and 4weeks compared to plasma-control (untreated) grafts. More importantly, we observed a more complete endothelialization of the luminal surface with an aligned, well-organized monolayer of endothelial cells, as well as more extensive graft integration in terms of vascularization and cell infiltration from the surrounding tissue. This work demonstrates the feasibility of electrospinning PCU as synthetic elastic material to fabricate nanofibrous vascular grafts, as well as the potential to endow desired functionalization to the graft surface via plasma treatment for the conjugation of heparin or other bioactive molecules. STATEMENT OF SIGNIFICANCE Vascular occlusion remains the leading cause of death all over the world, despite advances made in balloon angioplasty and conventional surgical intervention. Currently, autografts are the gold-standard grafts used to treat vascular occlusive disease. However, many patients with vascular occlusive disease do not have autologous vascular graft available. Therefore, there is a widely recognized need for a readily available, functional, small-diameter vascular graft (inner diameter of <6mm). This work addresses this critical need by developing a method of antithrombogenic modification of synthetic grafts.
Collapse
|
214
|
Peng L, Zhu J, Agarwal S. Self-Rolled Porous Hollow Tubes Made up of Biodegradable Polymers. Macromol Rapid Commun 2017; 38. [DOI: 10.1002/marc.201700034] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 02/02/2017] [Indexed: 11/10/2022]
Affiliation(s)
- Ling Peng
- Macromolecular Chemistry II and Bayreuth Center for Colloids and Interfaces; University of Bayreuth; Universitätsstraße 30 95440 Bayreuth Germany
| | - Jian Zhu
- Macromolecular Chemistry II and Bayreuth Center for Colloids and Interfaces; University of Bayreuth; Universitätsstraße 30 95440 Bayreuth Germany
| | - Seema Agarwal
- Macromolecular Chemistry II and Bayreuth Center for Colloids and Interfaces; University of Bayreuth; Universitätsstraße 30 95440 Bayreuth Germany
| |
Collapse
|
215
|
Abstract
Shortage of autologous blood vessel sources and disadvantages of synthetic grafts have increased interest in the development of tissue-engineered vascular grafts. However, tunica media, which comprises layered elastic laminae, largely determines arterial elasticity, and is difficult to synthesize. Here, we describe a method for fabrication of arterial grafts with elastic layer structure from cultured human vascular SMCs by periodic exposure to extremely high hydrostatic pressure (HP) during repeated cell seeding. Repeated slow cycles (0.002 Hz) between 110 and 180 kPa increased stress-fiber polymerization and fibronectin fibrillogenesis on SMCs, which is required for elastic fiber formation. To fabricate arterial grafts, seeding of rat vascular SMCs and exposure to the periodic HP were repeated alternatively ten times. The obtained medial grafts were highly elastic and tensile rupture strength was 1451 ± 159 mmHg, in which elastic fibers were abundantly formed. The patch medial grafts were sutured at the rat aorta and found to be completely patent and endothelialized after 2.5 months, although tubular medial constructs implanted in rats as interpositional aortic grafts withstood arterial blood pressure only in early acute phase. This novel organized self-assembly method would enable mass production of scaffold-free arterial grafts in vitro and have potential therapeutic applications for cardiovascular diseases.
Collapse
|
216
|
Loneker AE, Luketich SK, Bernstein D, Kalra A, Nugent AW, D'Amore A, Faulk DM. Mechanical and microstructural analysis of a radially expandable vascular conduit for neonatal and pediatric cardiovascular surgery. J Biomed Mater Res B Appl Biomater 2017; 106:659-671. [PMID: 28296198 DOI: 10.1002/jbm.b.33874] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 01/20/2017] [Accepted: 02/20/2017] [Indexed: 01/29/2023]
Abstract
In pediatric cardiovascular surgery, there is a significant need for vascular prostheses that have the potential to grow with the patient following implantation. Current clinical options consist of nonexpanding conduits, requiring repeat surgeries as the patient outgrows the device. To address this issue, PECA Labs has developed a novel ePTFE vascular conduit with the capability of being radially expanded via balloon catheterization. In the described study, a systematic characterization and comparison of two proprietary ePTFE expandable conduits was conducted. Conduit sizes of 8 and 16 mm inner diameters for both conduits were evaluated before and after expansion with a 26 mm balloon. Comprehensive mechanical testing was completed, including quantification of circumferential, and longitudinal tensile strength, suture retention strength, burst strength, water entry pressure, dynamic compliance, and kink radius. Scanning electron microscopy was used to investigate the microstructural properties. Automated extraction of the fiber architectural features for each scanning electron micrograph was achieved with an algorithm for each conduit before and after expansion. Results showed that both conduits were able to expand significantly, to as much as 2.5× their original inner diameter. All mechanical properties were within clinically acceptable values following expansion. Analysis of the microstructure properties of the conduits revealed that the circumferential main angle of orientation, orientation index, and spatial periodicity did not significantly change following expansion, whereas the node area fraction decreased post expansion. Successful proof-of-concept of this novel product represents a critical step toward clinical translation and provides hope for newborns and growing children with congenital heart disease. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 106B: 659-671, 2018.
Collapse
Affiliation(s)
- Abigail E Loneker
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Penninsylvania
| | - Samuel K Luketich
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Penninsylvania.,McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Penninsylvania
| | | | - Arush Kalra
- PECA Labs, Pittsburgh, Penninsylvania, 15224
| | - Alan W Nugent
- University of Texas Southwestern Medical Center, Dallas, Texas
| | - Antonio D'Amore
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Penninsylvania.,McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Penninsylvania.,Department of Surgery, University of Pittsburgh, Pittsburgh, Penninsylvania.,School of Medicine, University of Pittsburgh, Pittsburgh, Penninsylvania.,RiMED Foundation, Palermo, Italy
| | | |
Collapse
|
217
|
Row S, Santandreu A, Swartz DD, Andreadis ST. Cell-free vascular grafts: Recent developments and clinical potential. TECHNOLOGY 2017; 5:13-20. [PMID: 28674697 PMCID: PMC5492388 DOI: 10.1142/s2339547817400015] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Recent advances in vascular tissue engineering have led to the development of cell-free grafts that are available off-the-shelf for on demand surgery. Challenges associated with cell-based technologies including cell sourcing, cell expansion and long-term bioreactor culture motivated the development of completely cell-free vascular grafts. These are based on decellularized arteries, decellularized cultured cell-based tissue engineered grafts or biomaterials functionalized with biological signals that promote in situ tissue regeneration. Clinical trials undertaken to demonstrate the applicability of these grafts are also discussed. This comprehensive review summarizes recent developments in vascular graft technologies, with potential applications in coronary artery bypass procedures, lower extremity bypass, vascular injury and trauma, congenital heart diseases and dialysis access shunts, to name a few.
Collapse
Affiliation(s)
- Sindhu Row
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Amherst, NY 14260-4200, USA
- Angiograft LLC, Amherst NY
| | - Ana Santandreu
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Amherst, NY 14260-4200, USA
| | | | - Stelios T Andreadis
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Amherst, NY 14260-4200, USA
- Department of Biomedical Engineering, University at Buffalo, The State University of New York, Amherst, NY 14260-4200, USA
- New York State Center of Excellence in Bioinformatics and Life Sciences, Buffalo, NY
- Angiograft LLC, Amherst NY
| |
Collapse
|
218
|
A Dual-Mode Bioreactor System for Tissue Engineered Vascular Models. Ann Biomed Eng 2017; 45:1496-1510. [DOI: 10.1007/s10439-017-1813-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 02/11/2017] [Indexed: 12/13/2022]
|
219
|
Xue Y, Sant V, Phillippi J, Sant S. Biodegradable and biomimetic elastomeric scaffolds for tissue-engineered heart valves. Acta Biomater 2017; 48:2-19. [PMID: 27780764 DOI: 10.1016/j.actbio.2016.10.032] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 10/13/2016] [Accepted: 10/22/2016] [Indexed: 01/04/2023]
Abstract
Valvular heart diseases are the third leading cause of cardiovascular disease, resulting in more than 25,000 deaths annually in the United States. Heart valve tissue engineering (HVTE) has emerged as a putative treatment strategy such that the designed construct would ideally withstand native dynamic mechanical environment, guide regeneration of the diseased tissue and more importantly, have the ability to grow with the patient. These desired functions could be achieved by biomimetic design of tissue-engineered constructs that recapitulate in vivo heart valve microenvironment with biomimetic architecture, optimal mechanical properties and possess suitable biodegradability and biocompatibility. Synthetic biodegradable elastomers have gained interest in HVTE due to their excellent mechanical compliance, controllable chemical structure and tunable degradability. This review focuses on the state-of-art strategies to engineer biomimetic elastomeric scaffolds for HVTE. We first discuss the various types of biodegradable synthetic elastomers and their key properties. We then highlight tissue engineering approaches to recreate some of the features in the heart valve microenvironment such as anisotropic and hierarchical tri-layered architecture, mechanical anisotropy and biocompatibility. STATEMENT OF SIGNIFICANCE Heart valve tissue engineering (HVTE) is of special significance to overcome the drawbacks of current valve replacements. Although biodegradable synthetic elastomers have emerged as promising materials for HVTE, a mature HVTE construct made from synthetic elastomers for clinical use remains to be developed. Hence, this review summarized various types of biodegradable synthetic elastomers and their key properties. The major focus that distinguishes this review from the current literature is the thorough discussion on the key features of native valve microenvironments and various up-and-coming approaches to engineer synthetic elastomers to recreate these features such as anisotropic tri-layered architecture, mechanical anisotropy, biodegradability and biocompatibility. This review is envisioned to inspire and instruct the design of functional HVTE constructs and facilitate their clinical translation.
Collapse
|
220
|
Best C, Onwuka E, Pepper V, Sams M, Breuer J, Breuer C. Cardiovascular Tissue Engineering: Preclinical Validation to Bedside Application. Physiology (Bethesda) 2017; 31:7-15. [PMID: 26661524 DOI: 10.1152/physiol.00018.2015] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Advancements in biomaterial science and available cell sources have spurred the translation of tissue-engineering technology to the bedside, addressing the pressing clinical demands for replacement cardiovascular tissues. Here, the in vivo status of tissue-engineered blood vessels, heart valves, and myocardium is briefly reviewed, illustrating progress toward a tissue-engineered heart for clinical use.
Collapse
Affiliation(s)
- Cameron Best
- Tissue Engineering and Surgical Research, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio
| | - Ekene Onwuka
- Tissue Engineering and Surgical Research, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio; Department of Surgery, The Ohio State University, Wexner Medical Center, Columbus, Ohio; and
| | - Victoria Pepper
- Tissue Engineering and Surgical Research, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio; Department of Pediatric Surgery, Nationwide Children's Hospital, Columbus, Ohio
| | - Malik Sams
- Tissue Engineering and Surgical Research, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio
| | - Jake Breuer
- Tissue Engineering and Surgical Research, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio
| | - Christopher Breuer
- Tissue Engineering and Surgical Research, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio; Department of Surgery, The Ohio State University, Wexner Medical Center, Columbus, Ohio; and Department of Pediatric Surgery, Nationwide Children's Hospital, Columbus, Ohio
| |
Collapse
|
221
|
Zhang J, Huang H, Ju R, Chen K, Li S, Wang W, Yan Y. In vivo biocompatibility and hemocompatibility of a polytetrafluoroethylene small diameter vascular graft modified with sulfonated silk fibroin. Am J Surg 2017; 213:87-93. [DOI: 10.1016/j.amjsurg.2016.04.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Revised: 03/30/2016] [Accepted: 04/04/2016] [Indexed: 10/20/2022]
|
222
|
Zhang YS, Yue K, Aleman J, Moghaddam KM, Bakht SM, Yang J, Jia W, Dell’Erba V, Assawes P, Shin SR, Dokmeci MR, Oklu R, Khademhosseini A. 3D Bioprinting for Tissue and Organ Fabrication. Ann Biomed Eng 2017; 45:148-163. [PMID: 27126775 PMCID: PMC5085899 DOI: 10.1007/s10439-016-1612-8] [Citation(s) in RCA: 370] [Impact Index Per Article: 46.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2016] [Accepted: 04/05/2016] [Indexed: 12/15/2022]
Abstract
The field of regenerative medicine has progressed tremendously over the past few decades in its ability to fabricate functional tissue substitutes. Conventional approaches based on scaffolding and microengineering are limited in their capacity of producing tissue constructs with precise biomimetic properties. Three-dimensional (3D) bioprinting technology, on the other hand, promises to bridge the divergence between artificially engineered tissue constructs and native tissues. In a sense, 3D bioprinting offers unprecedented versatility to co-deliver cells and biomaterials with precise control over their compositions, spatial distributions, and architectural accuracy, therefore achieving detailed or even personalized recapitulation of the fine shape, structure, and architecture of target tissues and organs. Here we briefly describe recent progresses of 3D bioprinting technology and associated bioinks suitable for the printing process. We then focus on the applications of this technology in fabrication of biomimetic constructs of several representative tissues and organs, including blood vessel, heart, liver, and cartilage. We finally conclude with future challenges in 3D bioprinting as well as potential solutions for further development.
Collapse
Affiliation(s)
- Yu Shrike Zhang
- Biomaterials Innovation Research Center, Division of Biomedical Engineering, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Kan Yue
- Biomaterials Innovation Research Center, Division of Biomedical Engineering, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Julio Aleman
- Biomaterials Innovation Research Center, Division of Biomedical Engineering, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Kamyar Mollazadeh Moghaddam
- Biomaterials Innovation Research Center, Division of Biomedical Engineering, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Syeda Mahwish Bakht
- Biomaterials Innovation Research Center, Division of Biomedical Engineering, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Comsats Institute of Information and Technology, Islamabad 45550, Pakistan
| | - Jingzhou Yang
- Biomaterials Innovation Research Center, Division of Biomedical Engineering, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- School of Mechanical and Chemical Engineering, University of Western Australia, Perth, WA 6009, Australia
| | - Weitao Jia
- Biomaterials Innovation Research Center, Division of Biomedical Engineering, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Orthopedic Surgery, Shanghai Jiaotong University Affiliated Sixth People's Hospital, Shanghai Jiaotong University, Shanghai 200233, P.R. China
| | - Valeria Dell’Erba
- Biomaterials Innovation Research Center, Division of Biomedical Engineering, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Biomedical Engineering, Politecnico di Torino, 10129 Torino, Italy
| | - Pribpandao Assawes
- Biomaterials Innovation Research Center, Division of Biomedical Engineering, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Su Ryon Shin
- Biomaterials Innovation Research Center, Division of Biomedical Engineering, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Mehmet Remzi Dokmeci
- Biomaterials Innovation Research Center, Division of Biomedical Engineering, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Rahmi Oklu
- Division of Vascular & Interventional Radiology, Mayo Clinic, Scottsdale, AZ 85259, USA
| | - Ali Khademhosseini
- Biomaterials Innovation Research Center, Division of Biomedical Engineering, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
- Department of Bioindustrial Technologies, College of Animal Bioscience and Technology, Konkuk University, Hwayang-dong, Gwangjin-gu, Seoul 143-701, Republic of Korea
- Department of Physics, King Abdulaziz University, Jeddah 21569, Saudi Arabia
| |
Collapse
|
223
|
Hoshiba T. Cultured cell-derived decellularized matrices: a review towards the next decade. J Mater Chem B 2017; 5:4322-4331. [DOI: 10.1039/c7tb00074j] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Summary of recent progress in cell-derived decellularized matrices preparation and application, with perspectives towards the next decade.
Collapse
Affiliation(s)
- T. Hoshiba
- Frontier Center for Organic Materials
- Yamagata University
- Yonezawa
- Japan
- Innovative Flex Course for Frontier Organic Materials Systems
| |
Collapse
|
224
|
Bachmann BJ, Bernardi L, Loosli C, Marschewski J, Perrini M, Ehrbar M, Ermanni P, Poulikakos D, Ferrari A, Mazza E. A Novel Bioreactor System for the Assessment of Endothelialization on Deformable Surfaces. Sci Rep 2016; 6:38861. [PMID: 27941901 PMCID: PMC5150819 DOI: 10.1038/srep38861] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 11/15/2016] [Indexed: 12/28/2022] Open
Abstract
The generation of a living protective layer at the luminal surface of cardiovascular devices, composed of an autologous functional endothelium, represents the ideal solution to life-threatening, implant-related complications in cardiovascular patients. The initial evaluation of engineering strategies fostering endothelial cell adhesion and proliferation as well as the long-term tissue homeostasis requires in vitro testing in environmental model systems able to recapitulate the hemodynamic conditions experienced at the blood-to-device interface of implants as well as the substrate deformation. Here, we introduce the design and validation of a novel bioreactor system which enables the long-term conditioning of human endothelial cells interacting with artificial materials under dynamic combinations of flow-generated wall shear stress and wall deformation. The wall shear stress and wall deformation values obtained encompass both the physiological and supraphysiological range. They are determined through separate actuation systems which are controlled based on validated computational models. In addition, we demonstrate the good optical conductivity of the system permitting online monitoring of cell activities through live-cell imaging as well as standard biochemical post-processing. Altogether, the bioreactor system defines an unprecedented testing hub for potential strategies toward the endothelialization or re-endothelialization of target substrates.
Collapse
Affiliation(s)
- Björn J. Bachmann
- ETH Zurich, Laboratory of Thermodynamics in Emerging Technologies, Sonneggstrasse 3, 8092 Zurich, Switzerland
| | - Laura Bernardi
- ETH Zurich, Institute for Mechanical Systems, Leonhardstrasse 21, 8092 Zurich, Switzerland
| | - Christian Loosli
- ETH Zurich, Laboratory of Composite Materials and Adaptive Structures, Department of Mechanical and Process Engineering, Tannenstrasse 3, CH-8092 Zurich, Switzerland
| | - Julian Marschewski
- ETH Zurich, Laboratory of Thermodynamics in Emerging Technologies, Sonneggstrasse 3, 8092 Zurich, Switzerland
| | - Michela Perrini
- ETH Zurich, Institute for Mechanical Systems, Leonhardstrasse 21, 8092 Zurich, Switzerland
- University Hospital Zurich, Department of Obstetrics, Zurich, Switzerland
| | - Martin Ehrbar
- University Hospital Zurich, Department of Obstetrics, Zurich, Switzerland
| | - Paolo Ermanni
- ETH Zurich, Laboratory of Composite Materials and Adaptive Structures, Department of Mechanical and Process Engineering, Tannenstrasse 3, CH-8092 Zurich, Switzerland
| | - Dimos Poulikakos
- ETH Zurich, Laboratory of Thermodynamics in Emerging Technologies, Sonneggstrasse 3, 8092 Zurich, Switzerland
| | - Aldo Ferrari
- ETH Zurich, Laboratory of Thermodynamics in Emerging Technologies, Sonneggstrasse 3, 8092 Zurich, Switzerland
| | - Edoardo Mazza
- ETH Zurich, Institute for Mechanical Systems, Leonhardstrasse 21, 8092 Zurich, Switzerland
- Empa, Swiss Federal Laboratories for Materials Science & Technology, Überlandstr. 129, 8600 Dübendorf, Switzerland
| |
Collapse
|
225
|
Patel NM, Birla RK. Pulsatile flow conditioning of three-dimensional bioengineered cardiac ventricle. Biofabrication 2016; 9:015003. [DOI: 10.1088/1758-5090/9/1/015003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
226
|
In Vivo Remodeling of Fibroblast-Derived Vascular Scaffolds Implanted for 6 Months in Rats. BIOMED RESEARCH INTERNATIONAL 2016; 2016:3762484. [PMID: 27999795 PMCID: PMC5143784 DOI: 10.1155/2016/3762484] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Revised: 10/10/2016] [Accepted: 10/30/2016] [Indexed: 11/24/2022]
Abstract
There is a clinical need for tissue-engineered small-diameter (<6 mm) vascular grafts since clinical applications are halted by the limited suitability of autologous or synthetic grafts. This study uses the self-assembly approach to produce a fibroblast-derived decellularized vascular scaffold (FDVS) that can be available off-the-shelf. Briefly, extracellular matrix scaffolds were produced using human dermal fibroblasts sheets rolled around a mandrel, maintained in culture to allow for the formation of cohesive and three-dimensional tubular constructs, and decellularized by immersion in deionized water. The FDVSs were implanted as an aortic interpositional graft in six Sprague-Dawley rats for 6 months. Five out of the six implants were still patent 6 months after the surgery. Histological analysis showed the infiltration of cells on both abluminal and luminal sides, and immunofluorescence analysis suggested the formation of neomedia comprised of smooth muscle cells and lined underneath with an endothelium. Furthermore, to verify the feasibility of producing tissue-engineered blood vessels of clinically relevant length and diameter, scaffolds with a 4.6 mm inner diameter and 17 cm in length were fabricated with success and stored for an extended period of time, while maintaining suitable properties following the storage period. This novel demonstration of the potential of the FDVS could accelerate the clinical availability of tissue-engineered blood vessels and warrants further preclinical studies.
Collapse
|
227
|
Longitudinal Stretching for Maturation of Vascular Tissues Using Magnetic Forces. Bioengineering (Basel) 2016; 3:bioengineering3040029. [PMID: 28952591 PMCID: PMC5597272 DOI: 10.3390/bioengineering3040029] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 09/26/2016] [Accepted: 10/31/2016] [Indexed: 12/03/2022] Open
Abstract
Cellular spheroids were studied to determine their use as “bioinks” in the biofabrication of tissue engineered constructs. Specifically, magnetic forces were used to mediate the cyclic longitudinal stretching of tissues composed of Janus magnetic cellular spheroids (JMCSs), as part of a post-processing method for enhancing the deposition and mechanical properties of an extracellular matrix (ECM). The purpose was to accelerate the conventional tissue maturation process via novel post-processing techniques that accelerate the functional, structural, and mechanical mimicking of native tissues. The results of a forty-day study of JMCSs indicated an expression of collagen I, collagen IV, elastin, and fibronectin, which are important vascular ECM proteins. Most notably, the subsequent exposure of fused tissue sheets composed of JMCSs to magnetic forces did not hinder the production of these key proteins. Quantitative results demonstrate that cyclic longitudinal stretching of the tissue sheets mediated by these magnetic forces increased the Young’s modulus and induced collagen fiber alignment over a seven day period, when compared to statically conditioned controls. Specifically, the elastin and collagen content of these dynamically-conditioned sheets were 35- and three-fold greater, respectively, at seven days compared to the statically-conditioned controls at three days. These findings indicate the potential of using magnetic forces in tissue maturation, specifically through the cyclic longitudinal stretching of tissues.
Collapse
|
228
|
Gong T, Zhao K, Liu X, Lu L, Liu D, Zhou S. A Dynamically Tunable, Bioinspired Micropatterned Surface Regulates Vascular Endothelial and Smooth Muscle Cells Growth at Vascularization. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2016; 12:5769-5778. [PMID: 27595865 DOI: 10.1002/smll.201601503] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 06/18/2016] [Indexed: 06/06/2023]
Abstract
Regulation of the growth of vascular endothelial cells (ECs) and smooth muscle cells (SMCs) with artificial vascular grafts at vascularization is well-known to regenerate functional blood vessels for treating cardiovascular disease; however, little research has been published on this subject. Here, a novel polymer vascular graft is presented, whose inner surface contains an assembled circular microgroove pattern decorated with a combination of concentric circular microgrooves and radial, straight microgrooves inspired by the orientation of SMCs and ECs in natural tissues. The surface micropatterns can produce dynamically tunable variations via the thermally switched shape memory. The results from the in vitro EC/SMC co-cultures reveal that the surface micropatterns have a great capacity to regulate the specific distribution of ECs/SMCs because the ECs grow along the radial, straight microgrooves and the SMCs grow along concentric circular microgrooves. The in vivo vascularization is further analyzed by implanting the vascular graft in the rabbit carotid artery. Both histological analysis and immunofluorescence staining demonstrate that it is capable of highly effectively capturing ECs and SMCs in the blood and subsequent regeneration of new blood vessels. Therefore, this study opens a new possibility for regenerating neovessels to replace and repair damaged vessels for cardiovascular diseases treatment.
Collapse
Affiliation(s)
- Tao Gong
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, 610031, P. R. China
| | - Kun Zhao
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, 610031, P. R. China
| | - Xian Liu
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, 610031, P. R. China
| | - Liuxuan Lu
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, 610031, P. R. China
| | - Dian Liu
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, 610031, P. R. China
| | - Shaobing Zhou
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, 610031, P. R. China.
| |
Collapse
|
229
|
Small Diameter Blood Vessels Bioengineered From Human Adipose-derived Stem Cells. Sci Rep 2016; 6:35422. [PMID: 27739487 PMCID: PMC5064394 DOI: 10.1038/srep35422] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 09/23/2016] [Indexed: 12/17/2022] Open
Abstract
Bioengineering of small-diameter blood vessels offers a promising approach to reduce the morbidity associated with coronary artery and peripheral vascular disease. The aim of this study was to construct a two-layered small-diameter blood vessel using smooth muscle cells (SMCs) and endothelial cells (ECs) differentiated from human adipose-derived stem cells (hASCs). The outer layer was constructed with biodegradable polycaprolactone (PCL)-gelatin mesh seeded with SMCs, and this complex was then rolled around a silicone tube under pulsatile stimulation. After incubation for 6 to 8 weeks, the PCL-gelatin degraded and the luminal supporting silicone tube was removed. The smooth muscle layer was subsequently lined with ECs differentiated from hASCs after stimulation with VEGF and BMP4 in combination hypoxia. The phenotype of differentiated SMCs and ECs, and the cytotoxicity of the scaffold and biomechanical assessment were analyzed. Our results demonstrated that the two-layered bioengineered vessels exhibited biomechanical properties similar to normal human saphenous veins (HSV). Therefore, hASCs provide SMCs and ECs for bioengineering of small-diameter blood vessels.
Collapse
|
230
|
Zhang J, Wang J, Wei Y, Gao C, Chen X, Kong W, Kong D, Zhao Q. ECM-mimetic heparin glycosamioglycan-functionalized surface favors constructing functional vascular smooth muscle tissue in vitro. Colloids Surf B Biointerfaces 2016; 146:280-8. [DOI: 10.1016/j.colsurfb.2016.06.023] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 06/03/2016] [Accepted: 06/13/2016] [Indexed: 01/22/2023]
|
231
|
Roberts MA, Kotha SS, Phong KT, Zheng Y. Micropatterning and Assembly of 3D Microvessels. J Vis Exp 2016. [PMID: 27685466 DOI: 10.3791/54457] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
In vitro platforms to study endothelial cells and vascular biology are largely limited to 2D endothelial cell culture, flow chambers with polymer or glass based substrates, and hydrogel-based tube formation assays. These assays, while informative, do not recapitulate lumen geometry, proper extracellular matrix, and multi-cellular proximity, which play key roles in modulating vascular function. This manuscript describes an injection molding method to generate engineered vessels with diameters on the order of 100 µm. Microvessels are fabricated by seeding endothelial cells in a microfluidic channel embedded within a native type I collagen hydrogel. By incorporating parenchymal cells within the collagen matrix prior to channel formation, specific tissue microenvironments can be modeled and studied. Additional modulations of hydrodynamic properties and media composition allow for control of complex vascular function within the desired microenvironment. This platform allows for the study of perivascular cell recruitment, blood-endothelium interactions, flow response, and tissue-microvascular interactions. Engineered microvessels offer the ability to isolate the influence from individual components of a vascular niche and precisely control its chemical, mechanical, and biological properties to study vascular biology in both health and disease.
Collapse
Affiliation(s)
| | - Surya S Kotha
- Department of Bioengineering, University of Washington
| | - Kiet T Phong
- Center for Cardiovascular Biology, Institute for Stem Cell and Regenerative Medicine, University of Washington
| | - Ying Zheng
- Department of Bioengineering, University of Washington; Center for Cardiovascular Biology, Institute for Stem Cell and Regenerative Medicine, University of Washington;
| |
Collapse
|
232
|
Abstract
The demands for repair and renewal of worn out or injured human tissue grow year on year<Eth> it is a demand that cannot be met from live human donors. A partial solution may be found from cadaveric or trans-species transplantation of tissue, but these approaches are steeped in the problems of disease transfer and ethical dilemma. Tissue engineering is a new technology that seeks to meet these increasing demands by utilizing novel cell culture methods in vitro to provide tissue replacements in vivo. This article reviews the current state of tissue engineering and its potential for use in the realms of trauma surgery.
Collapse
Affiliation(s)
- JP Garner
- Biomedical Sciences, Dstl Porton Down, Salisbury, Wiltshire, UK
| |
Collapse
|
233
|
A decade of progress in tissue engineering. Nat Protoc 2016; 11:1775-81. [DOI: 10.1038/nprot.2016.123] [Citation(s) in RCA: 437] [Impact Index Per Article: 48.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 06/08/2016] [Indexed: 12/12/2022]
|
234
|
Gan K, Liu H, Jiang L, Liu X, Song X, Niu D, Chen T, Liu C. Bioactivity and antibacterial effect of nitrogen plasma immersion ion implantation on polyetheretherketone. Dent Mater 2016; 32:e263-e274. [PMID: 27578287 DOI: 10.1016/j.dental.2016.08.215] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 06/20/2016] [Accepted: 08/13/2016] [Indexed: 11/17/2022]
Abstract
OBJECTIVE We aimed to investigate the bioactivity and antibacterial effect of nitrogen plasma immersion ion implantation (PIII) on polyetheretherketone (PEEK). METHODS According to the different modified parameters, the PEEK specimens were randomly divided into four main groups (n=49/group): PEEK-C, PEEK-I, PEEK-L, and PEEK-H. Then, N2-PIII surface modification was conducted using the corresponding parameters. The microstructure and composition of the modified PEEK surface was observed by scanning electron microscope (SEM), atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS). The water contact angle of the PEEK surface was also studied by contact angle meters. The bioactive ability of PEEK samples was evaluated by observing the attachment, proliferation, and differentiation of MG63 cells cultured on the PEEK samples. Antibacterial property of the samples against Staphylococcus aureus was detected with the plate colony-counting methods. RESULTS SEM and AFM analysis shows that PEEK-C surface is relatively smooth with the Ra value of 50.6±2.52nm. PEEK-I and PEEK-L surface is rough with the Ra value of 435.9±6.47nm and 443.23±5.49nm, respectively, and the PEEK-H surface is the most rough with the Ra value of 608.4±3.14nm. XPS element analysis demonstrated that nitrogen functional groups were successfully introduced into the surface of PIII-modified PEEK. Biological evaluation and the antibacterial results showed that nitrogen PIII treatment can significantly improve the biological activity of PEEK, and samples showed antibacterial properties against S. aureus. SIGNIFICANCE PEEK surface subjected to the N2-PIII treatment showed better biological activity and antibacterial effect. Therefore, N2-PIII-treated PEEK surface is promising in bone tissue engineering and dental applications.
Collapse
Affiliation(s)
- Kang Gan
- Department of General Dentistry, School and Hospital of Stomatology, Jilin University, 1500 Qing Hua Road, Changchun 130021, PR China
| | - Hong Liu
- Department of General Dentistry, School and Hospital of Stomatology, Jilin University, 1500 Qing Hua Road, Changchun 130021, PR China.
| | - Lingling Jiang
- Department of General Dentistry, School and Hospital of Stomatology, Jilin University, 1500 Qing Hua Road, Changchun 130021, PR China
| | - Xiuju Liu
- Department of General Dentistry, School and Hospital of Stomatology, Jilin University, 1500 Qing Hua Road, Changchun 130021, PR China
| | - Xiaoqing Song
- Department of General Dentistry, School and Hospital of Stomatology, Jilin University, 1500 Qing Hua Road, Changchun 130021, PR China
| | - Deli Niu
- Department of General Dentistry, School and Hospital of Stomatology, Jilin University, 1500 Qing Hua Road, Changchun 130021, PR China
| | - Tianjie Chen
- Department of General Dentistry, School and Hospital of Stomatology, Jilin University, 1500 Qing Hua Road, Changchun 130021, PR China
| | - Chenchen Liu
- Department of General Dentistry, School and Hospital of Stomatology, Jilin University, 1500 Qing Hua Road, Changchun 130021, PR China
| |
Collapse
|
235
|
Hsia K, Yao CL, Chen WM, Chen JH, Lee H, Lu JH. Scaffolds and Cell-Based Tissue Engineering for Blood Vessel Therapy. Cells Tissues Organs 2016; 202:281-295. [PMID: 27548610 DOI: 10.1159/000448169] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/04/2016] [Indexed: 11/19/2022] Open
Abstract
The increasing morbidity of cardiovascular diseases in modern society has made it crucial to develop a small-caliber blood vessel. In the absence of appropriate autologous vascular grafts, an alternative prosthesis must be constructed for cardiovascular disease patients. The aim of this article is to describe the advances in making cell-seeded cardiovascular prostheses. It also discusses the combinations of types of scaffolds and cells, especially autologous stem cells, which are suitable for application in tissue-engineered vessels with the favorable properties of mechanical strength, antithrombogenicity, biocompliance, anti-inflammation, fatigue resistance and long-term durability. This article highlights the advancements in cellular tissue-engineered vessels in recent years.
Collapse
|
236
|
Heath DE, Kang GCW, Cao Y, Poon YF, Chan V, Chan-Park MB. Biomaterials patterned with discontinuous microwalls for vascular smooth muscle cell culture: biodegradable small diameter vascular grafts and stable cell culture substrates. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2016; 27:1477-94. [PMID: 27444318 DOI: 10.1080/09205063.2016.1213217] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The medial layer of small diameter blood vessels contains circumferentially aligned vascular smooth muscle cells (vSMC) that possess contractile phenotype. In tissue-engineered constructs, these cellular characteristics are usually achieved by seeding planar scaffolds with vSMC, rolling the cell-laden scaffold into a tubular structure, and maturing the construct in a pulsatile bioreactor, a lengthy process that can take up to two months. During the maturation phase, the cells circumferentially orient, their contractile protein expression increases, and they obtain a contractile phenotype. Generating cell culture platforms that enable the rapid production of directionally oriented vSMC with increased contractile protein expression would be a major step forward for blood vessel tissue engineering and would greatly facilitate the in vitro study of vSMC biology. Previously, we developed a micropatterned cell culture surface that promotes orientation and contractile protein expression of vSMC. Herein, we explore two potential applications of this technology. First, we fabricate tubular and biodegradable scaffolds that possess the micropatterning on their exterior surface. When vSMC are seeded on these scaffolds, they initially proliferate in order to fill the microchannels and as confluence is reached the cells align in the direction of the micropatterning resulting in a biodegradable scaffold that is inhabited by circumferentially aligned vSMC within a week. Second, we illustrate that we can generate biostable cell culture surfaces that allow the in vitro study of the cells in a more contractile state. Specifically, we explore contractile protein expression of cells cultured on the micropatterned surfaces with the addition of soluble transforming growth factor beta one (TGFβ1).
Collapse
Affiliation(s)
- Daniel E Heath
- a Department of Chemical and Biomolecular Engineering , University of Melbourne , Parkville , Australia
| | - Gavin C W Kang
- b School of Chemical and Biomedical Engineering , Nanyang Technological University , Singapore
| | - Ye Cao
- b School of Chemical and Biomedical Engineering , Nanyang Technological University , Singapore
| | - Yin Fun Poon
- b School of Chemical and Biomedical Engineering , Nanyang Technological University , Singapore
| | - Vincent Chan
- b School of Chemical and Biomedical Engineering , Nanyang Technological University , Singapore
| | - Mary B Chan-Park
- b School of Chemical and Biomedical Engineering , Nanyang Technological University , Singapore
| |
Collapse
|
237
|
Wengerter BC, Emre G, Park JY, Geibel J. Three-dimensional Printing in the Intestine. Clin Gastroenterol Hepatol 2016; 14:1081-5. [PMID: 27189913 DOI: 10.1016/j.cgh.2016.05.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Revised: 05/02/2016] [Accepted: 05/04/2016] [Indexed: 02/07/2023]
Abstract
Intestinal transplantation remains a life-saving option for patients with severe intestinal failure. With the advent of advanced tissue engineering techniques, great strides have been made toward manufacturing replacement tissues and organs, including the intestine, which aim to avoid transplant-related complications. The current paradigm is to seed a biocompatible support material (scaffold) with a desired cell population to generate viable replacement tissue. Although this technique has now been extended by the three-dimensional (3D) printing of geometrically complex scaffolds, the overall approach is hindered by relatively slow turnover and negative effects of residual scaffold material, which affects final clinical outcome. Methods recently developed for scaffold-free 3D bioprinting may overcome such obstacles and should allow for rapid manufacture and deployment of "bioprinted organs." Much work remains before 3D bioprinted tissues can enter clinical use. In this brief review we examine the present state and future perspectives of this nascent technology before full clinical implementation.
Collapse
Affiliation(s)
- Brian C Wengerter
- Department of Surgery, Yale University School of Medicine, New Haven, Connecticut
| | - Gulus Emre
- Department of Surgery, Yale University School of Medicine, New Haven, Connecticut
| | - Jea Young Park
- Department of Surgery, Yale University School of Medicine, New Haven, Connecticut
| | - John Geibel
- Department of Surgery, Yale University School of Medicine, New Haven, Connecticut.
| |
Collapse
|
238
|
Hosseinkhani H, Hosseinkhani M, Kobayashi H. Design of Tissue-engineered Nanoscaffold Through Self-assembly of Peptide Amphiphile. J BIOACT COMPAT POL 2016. [DOI: 10.1177/0883911506066934] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In order to mimic in vivo topography of the native tissue created by extracellular matrix (ECM) components, which make up all soft tissues, the surface features of each biomaterial should be considered as a nanodimensional structure. In this study, an artificial ECM was designed to mimic the nanostructured topography created by ECM components in native tissue. The proliferation and differentiation of mesenchymal stem cells (MSCs) was investigated in a three dimensional (3-D) network of nanofibers formed by the self-assembly of peptide amphiphile (PA) molecules. PA was synthesized by standard solid phase chemistry that ends with the alkylation of the NH2 terminus of the peptide. The sequence of arginine-glycine-aspartic acid (RGD) was included in peptide design as well. A 3-D network of nanofibers was formed by mixing MSC suspensions in a media with dilute aqueous solution of PA. The attachment, proliferation and osteogenic differentiation of MSCs were influenced by the self-assembled PA nanofibers as the cell scaffold and the values were significantly high compared with those in the static culture (2-D tissue culture plate).
Collapse
Affiliation(s)
- Hossein Hosseinkhani
- International Center for Young Scientists (ICYS), National Institute for Materials Science, Nanobiomaterials Research Building, Namiki 1-1, Tsukuba, Ibaraki 305-0044, Japan
| | - Mohsen Hosseinkhani
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University Hospital, Kyoto 606-8507, Japan
| | - Hisatoshi Kobayashi
- Biomaterials Center, National Institute for Materials Science, Nanobiomaterials Research Building, Namiki 1-1, Tsukuba, Ibaraki 305-0044, Japan
| |
Collapse
|
239
|
Affiliation(s)
- A Bär
- Leibniz Research Labs for Biotechnology and Artificial Organs (LEBAO), Division of Thoracic and Cardiovascular Surgery, Hannover Medical School, Hannover, Germany
| | | | | |
Collapse
|
240
|
Askari F, Solouk A, Shafieian M, Seifalian AM. Stem cells for tissue engineered vascular bypass grafts. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2016; 45:999-1010. [DOI: 10.1080/21691401.2016.1198366] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Forough Askari
- Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Atefeh Solouk
- Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Mehdi Shafieian
- Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Alexander M. Seifalian
- Centre for Nanotechnology and Regenerative Medicine, University College London, London, UK
- Royal Free Hampstead National Health Service Trust Hospital, London, UK
| |
Collapse
|
241
|
Gui L, Dash BC, Luo J, Qin L, Zhao L, Yamamoto K, Hashimoto T, Wu H, Dardik A, Tellides G, Niklason LE, Qyang Y. Implantable tissue-engineered blood vessels from human induced pluripotent stem cells. Biomaterials 2016; 102:120-9. [PMID: 27336184 DOI: 10.1016/j.biomaterials.2016.06.010] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Revised: 05/24/2016] [Accepted: 06/02/2016] [Indexed: 12/24/2022]
Abstract
Derivation of functional vascular smooth muscle cells (VSMCs) from human induced pluripotent stem cells (hiPSCs) to generate tissue-engineered blood vessels (TEBVs) holds great potential in treating patients with vascular diseases. Herein, hiPSCs were differentiated into alpha-smooth muscle actin (α-SMA) and calponin-positive VSMCs, which were seeded onto polymer scaffolds in bioreactors for vascular tissue growth. A functional TEBV with abundant collagenous matrix and sound mechanics resulted, which contained cells largely positive for α-SMA and smooth muscle myosin heavy chain (SM-MHC). Moreover, when hiPSC-derived TEBV segments were implanted into nude rats as abdominal aorta interposition grafts, they remained unruptured and patent with active vascular remodeling, and showed no evidence of teratoma formation during a 2-week proof-of-principle study. Our studies represent the development of the first implantable TEBVs based on hiPSCs, and pave the way for developing autologous or allogeneic grafts for clinical use in patients with vascular disease.
Collapse
Affiliation(s)
- Liqiong Gui
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT 06520, USA; Department of Anesthesiology, Yale University, New Haven, CT 06519, USA
| | - Biraja C Dash
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine Yale School of Medicine, New Haven, CT 06520, USA; Department of Surgery, Yale University, New Haven, CT 06520, USA
| | - Jiesi Luo
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine Yale School of Medicine, New Haven, CT 06520, USA
| | - Lingfeng Qin
- Department of Surgery, Yale University, New Haven, CT 06520, USA
| | - Liping Zhao
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT 06520, USA; Department of Anesthesiology, Yale University, New Haven, CT 06519, USA
| | - Kota Yamamoto
- Department of Surgery, Yale University, New Haven, CT 06520, USA
| | - Takuya Hashimoto
- Department of Surgery, Yale University, New Haven, CT 06520, USA
| | - Hongwei Wu
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine Yale School of Medicine, New Haven, CT 06520, USA
| | - Alan Dardik
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT 06520, USA; Department of Surgery, Yale University, New Haven, CT 06520, USA
| | - George Tellides
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT 06520, USA; Department of Surgery, Yale University, New Haven, CT 06520, USA
| | - Laura E Niklason
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT 06520, USA; Department of Anesthesiology, Yale University, New Haven, CT 06519, USA; Department of Biomedical Engineering, Yale University, New Haven, CT 06519, USA; Yale Stem Cell Center, New Haven, CT 06520, USA
| | - Yibing Qyang
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT 06520, USA; Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine Yale School of Medicine, New Haven, CT 06520, USA; Yale Stem Cell Center, New Haven, CT 06520, USA; Department of Pathology, Yale School of Medicine, New Haven, CT 06520, USA.
| |
Collapse
|
242
|
Angelopoulos I, Southern P, Pankhurst QA, Day RM. Superparamagnetic iron oxide nanoparticles regulate smooth muscle cell phenotype. J Biomed Mater Res A 2016; 104:2412-9. [PMID: 27176658 PMCID: PMC5006844 DOI: 10.1002/jbm.a.35780] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Revised: 03/21/2016] [Accepted: 05/11/2016] [Indexed: 01/12/2023]
Abstract
Superparamagnetic iron oxide nanoparticles (SPION) are used for an increasing range of biomedical applications, from imaging to mechanical actuation of cells and tissue. The aim of this study was to investigate the loading of smooth muscle cells (SMC) with SPION and to explore what effect this has on the phenotype of the cells. Adherent human SMC were loaded with ∼17 pg of unconjugated, negatively charged, 50 nm SPION. Clusters of the internalized SPION particles were held in discrete cytoplasmic vesicles. Internalized SPION did not cause any change in cell morphology, proliferation, metabolic activity, or staining pattern of actin and calponin, two of the muscle contractile proteins involved in force generation. However, internalized SPION inhibited the increased gene expression of actin and calponin normally observed when cells are incubated under differentiation conditions. The observed change in the control of gene expression of muscle contractile apparatus by SPION has not previously been described. This finding could offer novel approaches for regulating the phenotype of SMC and warrants further investigation. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 2412–2419, 2016.
Collapse
Affiliation(s)
- Ioannis Angelopoulos
- Applied Biomedical Engineering Group, Division of Medicine, University College London, WC1E 6DD, UK
| | - Paul Southern
- UCL Institute of Biomedical Engineering, University College London, London, WC1E 6BT, UK
| | - Quentin A Pankhurst
- UCL Institute of Biomedical Engineering, University College London, London, WC1E 6BT, UK
| | - Richard M Day
- Applied Biomedical Engineering Group, Division of Medicine, University College London, WC1E 6DD, UK
| |
Collapse
|
243
|
Kinstlinger IS, Miller JS. 3D-printed fluidic networks as vasculature for engineered tissue. LAB ON A CHIP 2016; 16:2025-43. [PMID: 27173478 DOI: 10.1039/c6lc00193a] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Fabrication of vascular networks within engineered tissue remains one of the greatest challenges facing the fields of biomaterials and tissue engineering. Historically, the structural complexity of vascular networks has limited their fabrication in tissues engineered in vitro. Recently, however, key advances have been made in constructing fluidic networks within biomaterials, suggesting a strategy for fabricating the architecture of the vasculature. These techniques build on emerging technologies within the microfluidics community as well as on 3D printing. The freeform fabrication capabilities of 3D printing are allowing investigators to fabricate fluidic networks with complex architecture inside biomaterial matrices. In this review, we examine the most exciting 3D printing-based techniques in this area. We also discuss opportunities for using these techniques to address open questions in vascular biology and biophysics, as well as for engineering therapeutic tissue substitutes in vitro.
Collapse
Affiliation(s)
| | - Jordan S Miller
- Department of Bioengineering, Rice University, Houston, TX, USA.
| |
Collapse
|
244
|
Lawson JH, Glickman MH, Ilzecki M, Jakimowicz T, Jaroszynski A, Peden EK, Pilgrim AJ, Prichard HL, Guziewicz M, Przywara S, Szmidt J, Turek J, Witkiewicz W, Zapotoczny N, Zubilewicz T, Niklason LE. Bioengineered human acellular vessels for dialysis access in patients with end-stage renal disease: two phase 2 single-arm trials. Lancet 2016; 387:2026-2034. [PMID: 27203778 PMCID: PMC4915925 DOI: 10.1016/s0140-6736(16)00557-2] [Citation(s) in RCA: 257] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
BACKGROUND For patients with end-stage renal disease who are not candidates for fistula, dialysis access grafts are the best option for chronic haemodialysis. However, polytetrafluoroethylene arteriovenous grafts are prone to thrombosis, infection, and intimal hyperplasia at the venous anastomosis. We developed and tested a bioengineered human acellular vessel as a potential solution to these limitations in dialysis access. METHODS We did two single-arm phase 2 trials at six centres in the USA and Poland. We enrolled adults with end-stage renal disease. A novel bioengineered human acellular vessel was implanted into the arms of patients for haemodialysis access. Primary endpoints were safety (freedom from immune response or infection, aneurysm, or mechanical failure, and incidence of adverse events), and efficacy as assessed by primary, primary assisted, and secondary patencies at 6 months. All patients were followed up for at least 1 year, or had a censoring event. These trials are registered with ClinicalTrials.gov, NCT01744418 and NCT01840956. FINDINGS Human acellular vessels were implanted into 60 patients. Mean follow-up was 16 months (SD 7·6). One vessel became infected during 82 patient-years of follow-up. The vessels had no dilatation and rarely had post-cannulation bleeding. At 6 months, 63% (95% CI 47-72) of patients had primary patency, 73% (57-81) had primary assisted patency, and 97% (85-98) had secondary patency, with most loss of primary patency because of thrombosis. At 12 months, 28% (17-40) had primary patency, 38% (26-51) had primary assisted patency, and 89% (74-93) had secondary patency. INTERPRETATION Bioengineered human acellular vessels seem to provide safe and functional haemodialysis access, and warrant further study in randomised controlled trials. FUNDING Humacyte and US National Institutes of Health.
Collapse
Affiliation(s)
- Jeffrey H Lawson
- Humacyte, Durham, NC, USA; Duke University, Durham, North Carolina, USA
| | - Marc H Glickman
- Humacyte, Durham, NC, USA; Sentara Heart Hospital, Norfolk, VA, USA
| | - Marek Ilzecki
- Department of Vascular Surgery and Angiology, Medical University of Lublin, Lublin, Poland
| | - Tomasz Jakimowicz
- Department of General, Vascular and Transplant Surgery, Medical University of Warsaw, Warsaw, Poland
| | | | - Eric K Peden
- Cardiovascular Surgery Associates, Houston, TX, USA
| | | | | | - Malgorzata Guziewicz
- Research and Development Centre, Vascular Surgery Department, General Hospital in Wrocław, Wrocław, Poland
| | - Stanisław Przywara
- Department of Vascular Surgery and Angiology, Medical University of Lublin, Lublin, Poland
| | - Jacek Szmidt
- Department of General, Vascular and Transplant Surgery, Medical University of Warsaw, Warsaw, Poland
| | - Jakub Turek
- Research and Development Centre, Vascular Surgery Department, General Hospital in Wrocław, Wrocław, Poland
| | - Wojciech Witkiewicz
- Research and Development Centre, Vascular Surgery Department, General Hospital in Wrocław, Wrocław, Poland
| | - Norbert Zapotoczny
- Research and Development Centre, Vascular Surgery Department, General Hospital in Wrocław, Wrocław, Poland
| | - Tomasz Zubilewicz
- Department of Vascular Surgery and Angiology, Medical University of Lublin, Lublin, Poland
| | - Laura E Niklason
- Department of Anesthesia & Biomedical Engineering, Yale University, New Haven, CT, USA.
| |
Collapse
|
245
|
Bružauskaitė I, Bironaitė D, Bagdonas E, Bernotienė E. Scaffolds and cells for tissue regeneration: different scaffold pore sizes-different cell effects. Cytotechnology 2016. [PMID: 26091616 DOI: 10.1007/sl0616-0159895-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2023] Open
Abstract
During the last decade biomaterial sciences and tissue engineering have become new scientific fields supplying rising demand of regenerative therapy. Tissue engineering requires consolidation of a broad knowledge of cell biology and modern biotechnology investigating biocompatibility of materials and their application for the reconstruction of damaged organs and tissues. Stem cell-based tissue regeneration started from the direct cell transplantation into damaged tissues or blood vessels. However, it is difficult to track transplanted cells and keep them in one particular place of diseased organ. Recently, new technologies such as cultivation of stem cell on the scaffolds and subsequently their implantation into injured tissue have been extensively developed. Successful tissue regeneration requires scaffolds with particular mechanical stability or biodegradability, appropriate size, surface roughness and porosity to provide a suitable microenvironment for the sufficient cell-cell interaction, cell migration, proliferation and differentiation. Further functioning of implanted cells highly depends on the scaffold pore sizes that play an essential role in nutrient and oxygen diffusion and waste removal. In addition, pore sizes strongly influence cell adhesion, cell-cell interaction and cell transmigration across the membrane depending on the various purposes of tissue regeneration. Therefore, this review will highlight contemporary tendencies in application of non-degradable scaffolds and stem cells in regenerative medicine with a particular focus on the pore sizes significantly affecting final recover of diseased organs.
Collapse
Affiliation(s)
- Ieva Bružauskaitė
- Department of Regenerative Medicine, State Research Institute Centre for Innovative Medicine, Zygimantu 9, 01102, Vilnius, Lithuania
| | - Daiva Bironaitė
- Department of Stem Cell Biology, State Research Institute Centre for Innovative Medicine, Zygimantu 9, 01102, Vilnius, Lithuania.
| | - Edvardas Bagdonas
- Department of Regenerative Medicine, State Research Institute Centre for Innovative Medicine, Zygimantu 9, 01102, Vilnius, Lithuania
| | - Eiva Bernotienė
- Department of Regenerative Medicine, State Research Institute Centre for Innovative Medicine, Zygimantu 9, 01102, Vilnius, Lithuania
| |
Collapse
|
246
|
Bourget JM, Laterreur V, Gauvin R, Guillemette MD, Miville-Godin C, Mounier M, Tondreau MY, Tremblay C, Labbé R, Ruel J, Auger FA, Veres T, Germain L. Microstructured human fibroblast-derived extracellular matrix scaffold for vascular media fabrication. J Tissue Eng Regen Med 2016; 11:2479-2489. [DOI: 10.1002/term.2146] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2015] [Revised: 12/15/2015] [Accepted: 12/22/2015] [Indexed: 11/11/2022]
Affiliation(s)
- Jean-Michel Bourget
- Centre de Recherche en Organogénèse Expérimentale de l'Université Laval/LOEX; FRQS CHU de Quebec Research Centre; Quebec Canada
- Département de Chirurgie, Faculté de Médecine; Université Laval; Québec Canada
- Life Sciences Division; National Research Council (NRC) of Canada; Boucherville Canada
| | - Véronique Laterreur
- Centre de Recherche en Organogénèse Expérimentale de l'Université Laval/LOEX; FRQS CHU de Quebec Research Centre; Quebec Canada
- Département de Génie Mécanique; Université Laval; Québec Canada
| | - Robert Gauvin
- Centre de Recherche en Organogénèse Expérimentale de l'Université Laval/LOEX; FRQS CHU de Quebec Research Centre; Quebec Canada
- Département de Chirurgie, Faculté de Médecine; Université Laval; Québec Canada
| | - Maxime D. Guillemette
- Centre de Recherche en Organogénèse Expérimentale de l'Université Laval/LOEX; FRQS CHU de Quebec Research Centre; Quebec Canada
- Département de Chirurgie, Faculté de Médecine; Université Laval; Québec Canada
| | | | - Maxence Mounier
- Life Sciences Division; National Research Council (NRC) of Canada; Boucherville Canada
| | - Maxime Y. Tondreau
- Centre de Recherche en Organogénèse Expérimentale de l'Université Laval/LOEX; FRQS CHU de Quebec Research Centre; Quebec Canada
- Département de Chirurgie, Faculté de Médecine; Université Laval; Québec Canada
| | - Catherine Tremblay
- Centre de Recherche en Organogénèse Expérimentale de l'Université Laval/LOEX; FRQS CHU de Quebec Research Centre; Quebec Canada
- Département de Génie Mécanique; Université Laval; Québec Canada
| | - Raymond Labbé
- Département de Chirurgie, Faculté de Médecine; Université Laval; Québec Canada
- Service de Chirurgie Vasculaire; CHU de Québec; Québec Canada
| | - Jean Ruel
- Département de Génie Mécanique; Université Laval; Québec Canada
| | - François A. Auger
- Centre de Recherche en Organogénèse Expérimentale de l'Université Laval/LOEX; FRQS CHU de Quebec Research Centre; Quebec Canada
- Département de Chirurgie, Faculté de Médecine; Université Laval; Québec Canada
| | - Teodor Veres
- Life Sciences Division; National Research Council (NRC) of Canada; Boucherville Canada
| | - Lucie Germain
- Centre de Recherche en Organogénèse Expérimentale de l'Université Laval/LOEX; FRQS CHU de Quebec Research Centre; Quebec Canada
- Département de Chirurgie, Faculté de Médecine; Université Laval; Québec Canada
| |
Collapse
|
247
|
Wolf F, Vogt F, Schmitz-Rode T, Jockenhoevel S, Mela P. Bioengineered vascular constructs as living models for in vitro cardiovascular research. Drug Discov Today 2016; 21:1446-1455. [PMID: 27126777 DOI: 10.1016/j.drudis.2016.04.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Revised: 04/01/2016] [Accepted: 04/18/2016] [Indexed: 12/20/2022]
Abstract
Cardiovascular diseases represent the most common cause of morbidity and mortality worldwide. In this review, we explore the potential of bioengineered vascular constructs as living models for in vitro cardiovascular research to advance the current knowledge of pathophysiological processes and support the development of clinical therapies. Bioengineered vascular constructs capable of recapitulating the cellular and mechanical environment of native vessels represent a valuable platform to study cellular interactions and signaling cascades, test drugs and medical devices under (patho)physiological conditions, with the additional potential benefit of reducing the number of animals required for preclinical testing.
Collapse
Affiliation(s)
- Frederic Wolf
- Department of Tissue Engineering & Textile Implants, Applied Medical Engineering, Helmholtz Institute, RWTH Aachen University, Pauwelsstraße 20, 52074 Aachen, Germany
| | - Felix Vogt
- Department of Cardiology, Pulmonology, Intensive Care and Vascular Medicine, Medical Faculty, RWTH Aachen University, Pauwelsstraße 30, 52074 Aachen, Germany
| | - Thomas Schmitz-Rode
- Department of Tissue Engineering & Textile Implants, Applied Medical Engineering, Helmholtz Institute, RWTH Aachen University, Pauwelsstraße 20, 52074 Aachen, Germany; Department of Cardiovascular Engineering, Institute of Applied Medical Engineering, Helmholtz Institute Aachen, RWTH Aachen University, Pauwelsstraße 20, 52074 Aachen, Germany
| | - Stefan Jockenhoevel
- Department of Tissue Engineering & Textile Implants, Applied Medical Engineering, Helmholtz Institute, RWTH Aachen University, Pauwelsstraße 20, 52074 Aachen, Germany; Institut für Textiltechnik, RWTH Aachen University, Otto-Blumenthal-Str. 1, 52074 Aachen, Germany; Aachen-Maastricht Institute for Biobased Materials, Maastricht University at Chemelot Campus, Urmonderbaan 22, 6167 RD Geleen, The Netherlands.
| | - Petra Mela
- Department of Tissue Engineering & Textile Implants, Applied Medical Engineering, Helmholtz Institute, RWTH Aachen University, Pauwelsstraße 20, 52074 Aachen, Germany
| |
Collapse
|
248
|
Tissue engineered vascular grafts: Origins, development, and current strategies for clinical application. Methods 2016. [DOI: 10.1016/j.ymeth.2015.07.014] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
|
249
|
Fernandez CE, Yen RW, Perez SM, Bedell HW, Povsic TJ, Reichert WM, Truskey GA. Human Vascular Microphysiological System for in vitro Drug Screening. Sci Rep 2016; 6:21579. [PMID: 26888719 PMCID: PMC4757887 DOI: 10.1038/srep21579] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 01/27/2016] [Indexed: 01/03/2023] Open
Abstract
In vitro human tissue engineered human blood vessels (TEBV) that exhibit vasoactivity can be used to test human toxicity of pharmaceutical drug candidates prior to pre-clinical animal studies. TEBVs with 400–800 μM diameters were made by embedding human neonatal dermal fibroblasts or human bone marrow-derived mesenchymal stem cells in dense collagen gel. TEBVs were mechanically strong enough to allow endothelialization and perfusion at physiological shear stresses within 3 hours after fabrication. After 1 week of perfusion, TEBVs exhibited endothelial release of nitric oxide, phenylephrine-induced vasoconstriction, and acetylcholine-induced vasodilation, all of which were maintained up to 5 weeks in culture. Vasodilation was blocked with the addition of the nitric oxide synthase inhibitor L-NG-Nitroarginine methyl ester (L-NAME). TEBVs elicited reversible activation to acute inflammatory stimulation by TNF-α which had a transient effect upon acetylcholine-induced relaxation, and exhibited dose-dependent vasodilation in response to caffeine and theophylline. Treatment of TEBVs with 1 μM lovastatin for three days prior to addition of Tumor necrosis factor – α (TNF-α) blocked the injury response and maintained vasodilation. These results indicate the potential to develop a rapidly-producible, endothelialized TEBV for microphysiological systems capable of producing physiological responses to both pharmaceutical and immunological stimuli.
Collapse
Affiliation(s)
- C E Fernandez
- Department of Biomedical Engineering, Duke University, Durham, NC 27708
| | - R W Yen
- Department of Biomedical Engineering, Duke University, Durham, NC 27708
| | - S M Perez
- Department of Biomedical Engineering, Duke University, Durham, NC 27708
| | - H W Bedell
- Department of Biomedical Engineering, Duke University, Durham, NC 27708
| | - T J Povsic
- Duke Clinical Research Institute, Duke University Medical Center, Durham, NC 27708
| | - W M Reichert
- Department of Biomedical Engineering, Duke University, Durham, NC 27708
| | - G A Truskey
- Department of Biomedical Engineering, Duke University, Durham, NC 27708
| |
Collapse
|
250
|
Ma SP, Vunjak-Novakovic G. Tissue-Engineering for the Study of Cardiac Biomechanics. J Biomech Eng 2016; 138:021010. [PMID: 26720588 PMCID: PMC4845250 DOI: 10.1115/1.4032355] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Indexed: 12/13/2022]
Abstract
The notion that both adaptive and maladaptive cardiac remodeling occurs in response to mechanical loading has informed recent progress in cardiac tissue engineering. Today, human cardiac tissues engineered in vitro offer complementary knowledge to that currently provided by animal models, with profound implications to personalized medicine. We review here recent advances in the understanding of the roles of mechanical signals in normal and pathological cardiac function, and their application in clinical translation of tissue engineering strategies to regenerative medicine and in vitro study of disease.
Collapse
Affiliation(s)
- Stephen P. Ma
- Department of Biomedical Engineering,
Columbia University,
622 West 168th Street,
VC12-234,
New York, NY 10032
e-mail:
| | - Gordana Vunjak-Novakovic
- Department of Biomedical Engineering
and Department of Medicine,
Columbia University,
622 West 168th Street,
VC12-234,
New York, NY 10032
e-mail:
| |
Collapse
|