201
|
Kajita Y, O'Neill EM, Zheng Y, Obrycki JJ, Weisrock DW. A population genetic signature of human releases in an invasive ladybeetle. Mol Ecol 2012; 21:5473-83. [PMID: 23043276 DOI: 10.1111/mec.12059] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2011] [Revised: 08/21/2012] [Accepted: 08/30/2012] [Indexed: 11/30/2022]
Abstract
Biological invasions have been accelerated by a variety of human activities. Propagule pressure, the number of introduced individuals and independent introductions, is probably to be influenced by these human activities and may be an important factor for successful range expansion in new environments. We tested whether the current distribution of the predatory ladybeetle Coccinella septempunctata in the introduced range (USA) is the result of multiple historical human introductions or natural range expansion from the first established populations in the USA. To test this hypothesis, we compared historical records of propagule size, propagule number, specific introduction locations and the date of each introduction, with estimates of genetic variation in mitochondrial DNA (cytochrome oxidase I). Our results indicated that genetic diversity in the introduced range was positively correlated with historical records of propagule size and number and negatively correlated with distance to nearest introduction point, suggesting that multiple human releases were successful. Higher genetic diversity in populations found near introduction points suggest that initial founder effects were limited, but lower genetic diversity found farther from introduction points is probably the result of serial founder effects during secondary range expansion. These results suggest that the current distribution of C. septempunctata in the introduced range is the result of a combination of human releases and short-range expansion from multiple established populations in the introduced range.
Collapse
Affiliation(s)
- Yukie Kajita
- Department of Entomology, University of Kentucky, Lexington, KY 40546-0091, USA.
| | | | | | | | | |
Collapse
|
202
|
|
203
|
Pitchers W, Pool JE, Dworkin I. Altitudinal clinal variation in wing size and shape in African Drosophila melanogaster: one cline or many? Evolution 2012; 67:438-52. [PMID: 23356616 DOI: 10.1111/j.1558-5646.2012.01774.x] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Geographical patterns of morphological variation have been useful in addressing hypotheses about environmental adaptation. In particular, latitudinal clines in phenotypes have been studied in a number of Drosophila species. Some environmental conditions along latitudinal clines-for example, temperature-also vary along altitudinal clines, but these have been studied infrequently and it remains unclear whether these environmental factors are similar enough for convergence or parallel evolution. Most clinal studies in Drosophila have dealt exclusively with univariate phenotypes, allowing for the detection of clinal relationships, but not for estimating the directions of covariation between them. We measured variation in wing shape and size in D. melanogaster derived from populations at varying altitudes and latitudes across sub-Saharan Africa. Geometric morphometrics allows us to compare shape changes associated with latitude and altitude, and manipulating rearing temperature allows us to quantify the extent to which thermal plasticity recapitulates clinal effects. Comparing effect vectors demonstrates that altitude, latitude, and temperature are only partly associated, and that the altitudinal shape effect may differ between Eastern and Western Africa. Our results suggest that selection responsible for these phenotypic clines may be more complex than just thermal adaptation.
Collapse
Affiliation(s)
- William Pitchers
- Department of Zoology, Program in Ecology, Evolutionary Biology and Behavior, Michigan State University, East Lansing, Michigan 48823, USA.
| | | | | |
Collapse
|
204
|
Melero Y, Santulli G, Gómez A, Gosàlbez J, Rodriguez-Refojos C, Palazón S. Morphological variation of introduced species: The case of American mink (Neovison vison) in Spain. Mamm Biol 2012. [DOI: 10.1016/j.mambio.2012.02.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
205
|
Samis KE, Murren CJ, Bossdorf O, Donohue K, Fenster CB, Malmberg RL, Purugganan MD, Stinchcombe JR. Longitudinal trends in climate drive flowering time clines in North American Arabidopsis thaliana. Ecol Evol 2012; 2:1162-80. [PMID: 22833792 PMCID: PMC3402192 DOI: 10.1002/ece3.262] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2012] [Revised: 03/21/2012] [Accepted: 03/26/2012] [Indexed: 11/12/2022] Open
Abstract
Introduced species frequently show geographic differentiation, and when differentiation mirrors the ancestral range, it is often taken as evidence of adaptive evolution. The mouse-ear cress (Arabidopsis thaliana) was introduced to North America from Eurasia 150–200 years ago, providing an opportunity to study parallel adaptation in a genetic model organism. Here, we test for clinal variation in flowering time using 199 North American (NA) accessions of A. thaliana, and evaluate the contributions of major flowering time genes FRI, FLC, and PHYC as well as potential ecological mechanisms underlying differentiation. We find evidence for substantial within population genetic variation in quantitative traits and flowering time, and putatively adaptive longitudinal differentiation, despite low levels of variation at FRI, FLC, and PHYC and genome-wide reductions in population structure relative to Eurasian (EA) samples. The observed longitudinal cline in flowering time in North America is parallel to an EA cline, robust to the effects of population structure, and associated with geographic variation in winter precipitation and temperature. We detected major effects of FRI on quantitative traits associated with reproductive fitness, although the haplotype associated with higher fitness remains rare in North America. Collectively, our results suggest the evolution of parallel flowering time clines through novel genetic mechanisms.
Collapse
|
206
|
Rey O, Estoup A, Vonshak M, Loiseau A, Blanchet S, Calcaterra L, Chifflet L, Rossi JP, Kergoat GJ, Foucaud J, Orivel J, Leponce M, Schultz T, Facon B. Where do adaptive shifts occur during invasion? A multidisciplinary approach to unravelling cold adaptation in a tropical ant species invading the Mediterranean area. Ecol Lett 2012; 15:1266-1275. [PMID: 22906215 DOI: 10.1111/j.1461-0248.2012.01849.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Revised: 03/29/2012] [Accepted: 07/17/2012] [Indexed: 11/29/2022]
Abstract
Evolution may improve the invasiveness of populations, but it often remains unclear whether key adaptation events occur after introduction into the recipient habitat (i.e. post-introduction adaptation scenario), or before introduction within the native range (i.e. prior-adaptation scenario) or at a primary site of invasion (i.e. bridgehead scenario). We used a multidisciplinary approach to determine which of these three scenarios underlies the invasion of the tropical ant Wasmannia auropunctata in a Mediterranean region (i.e. Israel). Species distribution models (SDM), phylogeographical analyses at a broad geographical scale and laboratory experiments on appropriate native and invasive populations indicated that Israeli populations followed an invasion scenario in which adaptation to cold occurred at the southern limit of the native range before dispersal to Israel. We discuss the usefulness of combining SDM, genetic and experimental approaches for unambiguous determination of eco-evolutionary invasion scenarios.
Collapse
Affiliation(s)
| | | | - Merav Vonshak
- Department of Zoology, Tel-Aviv University, 69978, Tel-Aviv, Israel
| | | | - Simon Blanchet
- CNRS, Station d'Ecologie Expérimentale du CNRS à Moulis, USR. 2936, 09 200, Moulis, France.,CNRS, Laboratoire Evolution et Diversité Biologique, UMR 5174, 118 route de Narbonne, 31 062, Toulouse Cedex, France
| | - Luis Calcaterra
- US Department of Agriculture, Agricultural Research Service (USDA-ARS), South American Biological Control Laboratory (SABCL), Buenos Aires, Argentina
| | - Lucila Chifflet
- US Department of Agriculture, Agricultural Research Service (USDA-ARS), South American Biological Control Laboratory (SABCL), Buenos Aires, Argentina
| | | | | | | | - Jérôme Orivel
- CNRS, Laboratoire Evolution et Diversité Biologique, UMR 5174, 118 route de Narbonne, 31 062, Toulouse Cedex, France.,CNRS, UMR Ecologie des Forets de Guyane (CIRAD, CNRS, AgroParisTech, INRA, UAG), Campus Agronomique, BP 316, 97379, Kourou Cedex, France
| | - Maurice Leponce
- Royal Belgian Institute of Natural Sciences (IRSNB/KBIN), Brussels, Belgium
| | - Ted Schultz
- Smithsonian Institute, Department of Entomology, Natural Museum of Natural History, Washington, DC, 20013, USA
| | | |
Collapse
|
207
|
Ord TJ. Historical contingency and behavioural divergence in territorial Anolis lizards. J Evol Biol 2012; 25:2047-2055. [PMID: 22862423 DOI: 10.1111/j.1420-9101.2012.02582.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2012] [Revised: 06/19/2012] [Accepted: 06/28/2012] [Indexed: 11/29/2022]
Abstract
The extent that evolution - including adaptation - is historically contingent (dependent on past events) has often been hotly debated, but is still poorly understood. In particular, there are little data on the degree that behaviour, an aspect of the phenotype that is strongly linked to contemporary environments (social or physical), retains the imprint of evolutionary history. In this study, I examined whether differences in the design of the territorial displays among species of Caribbean Anolis lizards reflect island-specific selection regimes, or historically contingent predispositions associated with different clade histories. Adult males advertise territory ownership using a series of headbobs and dewlap extensions, bouts of which vary in duration among species. When display durations were mapped onto the Anolis phylogeny, prominent differences between species belonging to the Western and Eastern Caribbean radiations were apparent. Statistical analyses confirmed that species differences in the duration of headbob displays, and to some extent the duration of dewlap extensions, were historically contingent. The unique evolutionary histories of each clade have seemingly had a profound effect on the subsequent direction of display evolution among descendent taxa. These results combined with those from previous studies on these lizards show that past history can have an important impact on the type of behaviour exhibited by species today, to the point that adaptive evolution can proceed quite differently in lineages originating from different evolutionary starting points.
Collapse
Affiliation(s)
- T J Ord
- Evolution and Ecology Research Centre, and School of Biological, Earth and Environmental Sciences, The University of New South Wales, Kensington, NSW, Australia
| |
Collapse
|
208
|
Rodríguez-Díaz T, Braña F. Altitudinal variation in egg retention and rates of embryonic development in oviparous Zootoca vivipara fits predictions from the cold-climate model on the evolution of viviparity. J Evol Biol 2012; 25:1877-87. [DOI: 10.1111/j.1420-9101.2012.02575.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2012] [Revised: 05/23/2012] [Accepted: 06/24/2012] [Indexed: 11/30/2022]
|
209
|
Li Y, Guo X, Cao X, Deng W, Luo W, Wang W. Population genetic structure and post-establishment dispersal patterns of the red swamp crayfish Procambarus clarkii in China. PLoS One 2012; 7:e40652. [PMID: 22808222 PMCID: PMC3393698 DOI: 10.1371/journal.pone.0040652] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Accepted: 06/11/2012] [Indexed: 11/18/2022] Open
Abstract
The red swamp crayfish (Procambarus clarkii) was introduced to China in the early 20(th) century. It has been spread to almost all forms of fresh water bodies including lakes, rivers and even paddyfields in most provinces of China. To clarify issues such as the initial entry point(s), dispersal pattern, genetic diversity and genetic structure of Procambarus clarkii in China, the genetic structure and diversity of P. clarkii populations at 37 sampling sites (35 from China, one from the USA and one from Japan) were analyzed using both mitochondrial gene sequences (COI and 16S rRNA) and 12 nuclear microsatellites. Multiple tests including phylogenetic analyses, Bayesian assignment and analysis of isolation by distance showed that (i) the population from Japan and those collected from China, particularly from NanJing (BGt and XG) and its some neighboring sites (CJr, NT and NB), have similar genetic composition, (ii) relatively high genetic diversity was detected in Chinese populations, (iii) the P. clarkii populations in China did not experience significant population expansions. Taken together, Nanjing, Jiangsu province is the presumed initial entry point, and human-mediated dispersal and adaptive variation are likely responsible for the observed genetic pattern of P. clarkii in China.
Collapse
Affiliation(s)
- Yanhe Li
- College of Fisheries, Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, People’s Republic of China
- Institute of Fisheries, Anhui Academy of Agricultural Sciences, Hefei, People’s Republic of China
| | - Xianwu Guo
- Laboratorio de Biomedicina Molecular, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Boulevard del Maestro esquina Elías Piña, Colonia Narciso Mendoza, Tamaulipas, Mexico
| | - Xiaojuan Cao
- College of Fisheries, Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, People’s Republic of China
| | - Wei Deng
- College of Fisheries, Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, People’s Republic of China
| | - Wei Luo
- College of Fisheries, Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, People’s Republic of China
| | - Weimin Wang
- College of Fisheries, Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, People’s Republic of China
- * E-mail:
| |
Collapse
|
210
|
Reiskind MH, Zarrabi AA. Is bigger really bigger? Differential responses to temperature in measures of body size of the mosquito, Aedes albopictus. JOURNAL OF INSECT PHYSIOLOGY 2012; 58:911-917. [PMID: 22543181 DOI: 10.1016/j.jinsphys.2012.04.006] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Revised: 04/14/2012] [Accepted: 04/17/2012] [Indexed: 05/31/2023]
Abstract
When confronted with variation in temperature, most ectotherms conform to a growth rule that "hotter is smaller". This phenomenon can have important implications on population dynamics, interactions with other species, and adaptation to new environments for arthropods. However, the impact of other environmental factors and genetics may affect that general rule. Furthermore, most studies measure a single body part, and do not examine how temperature and other factors alter the allometric relationship between measurements of growth. In this study, we test the hypothesis that temperature and nutrition, while strongly affecting growth, do not change the allometric relationship between body mass and wing length in the mosquito Aedes albopictus. We tested this hypothesis by growing larval mosquitoes from two populations at five temperatures with three food levels. Contrary to our hypothesis, we find that temperature has a profound effect on allometry, with higher temperatures resulting in mosquitoes with shorter wings and greater body mass, and that the effects of temperature are dependent upon available food and population origin. We therefore reject our hypothesis and propose several testable mechanisms that will provide greater insight into the relationship between temperature, food, and measures of growth.
Collapse
Affiliation(s)
- Michael H Reiskind
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK 74078, USA.
| | | |
Collapse
|
211
|
Kolbe JJ, Vanmiddlesworth PS, Losin N, Dappen N, Losos JB. Climatic niche shift predicts thermal trait response in one but not both introductions of the Puerto Rican lizard Anolis cristatellus to Miami, Florida, USA. Ecol Evol 2012; 2:1503-16. [PMID: 22957158 PMCID: PMC3434927 DOI: 10.1002/ece3.263] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Revised: 03/23/2012] [Accepted: 03/26/2012] [Indexed: 11/20/2022] Open
Abstract
Global change is predicted to alter environmental conditions for populations in numerous ways; for example, invasive species often experience substantial shifts in climatic conditions during introduction from their native to non-native ranges. Whether these shifts elicit a phenotypic response, and how adaptation and phenotypic plasticity contribute to phenotypic change, are key issues for understanding biological invasions and how populations may respond to local climate change. We combined modeling, field data, and a laboratory experiment to test for changing thermal tolerances during the introduction of the tropical lizard Anolis cristatellus from Puerto Rico to Miami, Florida. Species distribution models and bioclimatic data analyses showed lower minimum temperatures, and greater seasonal and annual variation in temperature for Miami compared to Puerto Rico. Two separate introductions of A. cristatellus occurred in Miami about 12 km apart, one in South Miami and the other on Key Biscayne, an offshore island. As predicted from the shift in the thermal climate and the thermal tolerances of other Anolis species in Miami, laboratory acclimation and field acclimatization showed that the introduced South Miami population of A. cristatellus has diverged from its native-range source population by acquiring low-temperature acclimation ability. By contrast, the introduced Key Biscayne population showed little change compared to its source. Our analyses predicted an adaptive response for introduced populations, but our comparisons to native-range sources provided evidence for thermal plasticity in one introduced population but not the other. The rapid acquisition of thermal plasticity by A. cristatellus in South Miami may be advantageous for its long-term persistence there and expansion of its non-native range. Our results also suggest that the common assumption of no trait variation when modeling non-native species distributions is invalid.
Collapse
|
212
|
Svanbäck R, Schluter D. Niche Specialization Influences Adaptive Phenotypic Plasticity in the Threespine Stickleback. Am Nat 2012; 180:50-9. [DOI: 10.1086/666000] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
213
|
Kristjánsson BK, Skúlason S, Snorrason SS, Noakes DL. Fine-scale parallel patterns in diversity of small benthic Arctic charr (Salvelinus alpinus) in relation to the ecology of lava/groundwater habitats. Ecol Evol 2012; 2:1099-112. [PMID: 22833787 PMCID: PMC3402187 DOI: 10.1002/ece3.235] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2012] [Revised: 02/08/2012] [Accepted: 02/13/2012] [Indexed: 12/22/2022] Open
Abstract
It is critical to study factors that are important for origin and maintenance of biological diversity. A comparative approach involving a large number of populations is particularly useful. We use this approach to study the relationship between ecological factors and phenotypic diversity in Icelandic Arctic charr (Salvelinus alpinus). Numerous populations of small benthic charr have evolved in lava springs in Iceland. These charr appear morphologically similar, but differ in important morphological features related to feeding. We found a clear relationship between diversity in morphology, diet, and ecological factors among populations. In particular, there were clear differences in morphology and diet between fish coming from habitats where the lava spring flowed on as a stream compared to habitats where the lava spring flowed into a pond. Our study shows that ecological factors are important for the origin and maintenance of biological diversity. The relationship between phenotype and ecological factors are observed on a fine scale, when comparing numerous populations that are phenotypically similar. This strongly suggests that for understanding, managing, and conserving biological diversity important ecological variables have to be taken into the account.
Collapse
|
214
|
Zeng FJ, Lu Y, Guo HF, Liu B, Zeng J, Zhang LG. Ecological characteristics of Alhagi sparsifolia Shap. seedling roots under different irrigation treatments. RUSS J ECOL+ 2012. [DOI: 10.1134/s1067413612030083] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
215
|
Woods EC, Hastings AP, Turley NE, Heard SB, Agrawal AA. Adaptive geographical clines in the growth and defense of a native plant. ECOL MONOGR 2012. [DOI: 10.1890/11-1446.1] [Citation(s) in RCA: 127] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
216
|
Differences in body mass, health status and genetic variation between insular and mainland brown hares (Lepus europaeus) in Sweden. EUR J WILDLIFE RES 2012. [DOI: 10.1007/s10344-012-0633-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
217
|
Haider S, Kueffer C, Edwards PJ, Alexander JM. Genetically based differentiation in growth of multiple non-native plant species along a steep environmental gradient. Oecologia 2012; 170:89-99. [PMID: 22434406 DOI: 10.1007/s00442-012-2291-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2011] [Accepted: 02/21/2012] [Indexed: 11/24/2022]
Abstract
A non-native plant species spreading along an environmental gradient may need to adjust its growth to the prevailing conditions that it encounters by a combination of phenotypic plasticity and genetic adaptation. There have been several studies of how non-native species respond to changing environmental conditions along latitudinal gradients, but much less is known about elevational gradients. We conducted a climate chamber experiment to investigate plastic and genetically based growth responses of 13 herbaceous non-native plants along an elevational gradient from 100 to 2,000 m a.s.l. in Tenerife. Conditions in the field ranged from high anthropogenic disturbance but generally favourable temperatures for plant growth in the lower half of the gradient, to low disturbance but much cooler conditions in the upper half. We collected seed from low, mid and high elevations and grew them in climate chambers under the characteristic temperatures at these three elevations. Growth of all species was reduced under lower temperatures along both halves of the gradient. We found consistent genetically based differences in growth over the upper elevational gradient, with plants from high-elevation sites growing more slowly than those from mid-elevation ones, while the pattern in the lower part of the gradient was more mixed. Our data suggest that many non-native plants might respond to climate along elevational gradients by genetically based changes in key traits, especially at higher elevations where low temperatures probably impose a stronger selection pressure. At lower elevations, where anthropogenic influences are greater, higher gene flow and frequent disturbance might favour genotypes with broad ecological amplitudes. Thus the importance of evolutionary processes for invasion success is likely to be context-dependent.
Collapse
Affiliation(s)
- Sylvia Haider
- Department of Ecology and Ecosystem Management, Restoration Ecology, Technische Universität München, Emil-Ramann-Str. 6, 85354, Freising, Germany.
| | | | | | | |
Collapse
|
218
|
DU WEIGUO, WARNER DANIELA, LANGKILDE TRACY, ROBBINS TRAVISR, SHINE RICHARD. The roles of pre- and post-hatching growth rates in generating a latitudinal cline of body size in the eastern fence lizard (Sceloporus undulatus). Biol J Linn Soc Lond 2012. [DOI: 10.1111/j.1095-8312.2011.01846.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
219
|
Amarillo-Suárez AR, Stillwell RC, Fox CW. Natural selection on body size is mediated by multiple interacting factors: a comparison of beetle populations varying naturally and experimentally in body size. Ecol Evol 2012; 1:1-14. [PMID: 22393478 PMCID: PMC3287373 DOI: 10.1002/ece3.1] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2011] [Revised: 05/06/2011] [Accepted: 05/07/2011] [Indexed: 11/28/2022] Open
Abstract
Body size varies considerably among species and among populations within species, exhibiting many repeatable patterns. However, which sources of selection generate geographic patterns, and which components of fitness mediate evolution of body size, are not well understood. For many animals, resource quality and intraspecific competition may mediate selection on body size producing large-scale geographic patterns. In two sequential experiments, we examine how variation in larval competition and resource quality (seed size) affects the fitness consequences of variation in body size in a scramble-competing seed-feeding beetle, Stator limbatus. Specifically, we compared fitness components among three natural populations of S. limbatus that vary in body size, and then among three lineages of beetles derived from a single base population artificially selected to vary in size, all reared on three sizes of seeds at variable larval density. The effects of larval competition and seed size on larval survival and development time were similar for larger versus smaller beetles. However, larger-bodied beetles suffered a greater reduction in adult body mass with decreasing seed size and increasing larval density; the relative advantage of being large decreased with decreasing seed size and increasing larval density. There were highly significant interactions between the effects of seed size and larval density on body size, and a significant three-way interaction (population-by-density-by-seed size), indicating that environmental effects on the fitness consequences of being large are nonadditive. Our study demonstrates how multiple ecological variables (resource availability and resource competition) interact to affect organismal fitness components, and that such interactions can mediate natural selection on body size. Studying individual factors influencing selection on body size may lead to misleading results given the potential for nonlinear interactions among selective agents.
Collapse
|
220
|
Urbanski J, Mogi M, O'Donnell D, DeCotiis M, Toma T, Armbruster P. Rapid adaptive evolution of photoperiodic response during invasion and range expansion across a climatic gradient. Am Nat 2012; 179:490-500. [PMID: 22437178 DOI: 10.1086/664709] [Citation(s) in RCA: 141] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Abstract Understanding the mechanisms of adaptation to spatiotemporal environmental variation is a fundamental goal of evolutionary biology. This issue also has important implications for anticipating biological responses to contemporary climate warming and determining the processes by which invasive species are able to spread rapidly across broad geographic ranges. Here, we compare data from a historical study of latitudinal variation in photoperiodic response among Japanese and U.S. populations of the invasive Asian tiger mosquito Aedes albopictus with contemporary data obtained using comparable methods. Our results demonstrated rapid adaptive evolution of the photoperiodic response during invasion and range expansion across ∼15° of latitude in the United States. In contrast to the photoperiodic response, size-based morphological traits implicated in climatic adaptation in a wide range of other insects did not show evidence of adaptive variation in Ae. albopictus across either the U.S. (invasive) or Japanese (native) range. These results show that photoperiodism has been an important adaptation to climatic variation across the U.S. range of Ae. albopictus and, in conjunction with previous studies, strongly implicate the photoperiodic control of seasonal development as a critical evolutionary response to ongoing contemporary climate change. These results also emphasize that photoperiodism warrants increased attention in studies of the evolution of invasive species.
Collapse
Affiliation(s)
- Jennifer Urbanski
- Department of Biology, Georgetown University, Washington, DC 20057, USA
| | | | | | | | | | | |
Collapse
|
221
|
Kooyers NJ, Olsen KM. Rapid evolution of an adaptive cyanogenesis cline in introduced North American white clover (Trifolium repens L.). Mol Ecol 2012; 21:2455-68. [PMID: 22340190 DOI: 10.1111/j.1365-294x.2012.05486.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
White clover is polymorphic for cyanogenesis (HCN production after tissue damage), and this herbivore defence polymorphism has served as a classic model for studying adaptive variation. The cyanogenic phenotype requires two interacting biochemical components; the presence/absence of each component is controlled by a simple Mendelian gene (Ac/ac and Li/li). Climate-associated cyanogenesis clines occur in both native (Eurasian) and introduced populations worldwide, with cyanogenic plants predominating in warmer locations. Moreover, previous studies have suggested that epistatic selection may act within populations to maintain cyanogenic (AcLi) plants and acyanogenic plants that lack both components (acli plants) at the expense of plants possessing a single component (Acli and acLi plants). Here, we examine the roles of selection, gene flow and demography in the evolution of a latitudinal cyanogenesis cline in introduced North American populations. Using 1145 plants sampled across a 1650 km transect, we determine the distribution of cyanogenesis variation across the central United States and investigate whether clinal variation is adaptive or an artefact of population introduction history. We also test for the evidence of epistatic selection. We detect a clear latitudinal cline, with cyanogenesis frequencies increasing from 11% to 86% across the transect. Population structure analysis using nine microsatellite loci indicates that the cline is adaptive and not a by-product of demographic history. However, we find no evidence for epistatic selection within populations. Our results provide strong evidence for rapid adaptive evolution in these introduced populations, and they further suggest that the mechanisms maintaining adaptive variation may vary among populations of a species.
Collapse
Affiliation(s)
- Nicholas J Kooyers
- Department of Biology, Washington University in St Louis, One Brookings Drive, Campus Box 1137, St. Louis, MO 63130, USA
| | | |
Collapse
|
222
|
Urban MC, De Meester L, Vellend M, Stoks R, Vanoverbeke J. A crucial step toward realism: responses to climate change from an evolving metacommunity perspective. Evol Appl 2012; 5:154-67. [PMID: 25568038 PMCID: PMC3353337 DOI: 10.1111/j.1752-4571.2011.00208.x] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2011] [Accepted: 08/22/2011] [Indexed: 11/29/2022] Open
Abstract
We need to understand joint ecological and evolutionary responses to climate change to predict future threats to biological diversity. The 'evolving metacommunity' framework emphasizes that interactions between ecological and evolutionary mechanisms at both local and regional scales will drive community dynamics during climate change. Theory suggests that ecological and evolutionary dynamics often interact to produce outcomes different from those predicted based on either mechanism alone. We highlight two of these dynamics: (i) species interactions prevent adaptation of nonresident species to new niches and (ii) resident species adapt to changing climates and thereby prevent colonization by nonresident species. The rate of environmental change, level of genetic variation, source-sink structure, and dispersal rates mediate between these potential outcomes. Future models should evaluate multiple species, species interactions other than competition, and multiple traits. Future experiments should manipulate factors such as genetic variation and dispersal to determine their joint effects on responses to climate change. Currently, we know much more about how climates will change across the globe than about how species will respond to these changes despite the profound effects these changes will have on global biological diversity. Integrating evolving metacommunity perspectives into climate change biology should produce more accurate predictions about future changes to species distributions and extinction threats.
Collapse
Affiliation(s)
- Mark C Urban
- Department of Ecology and Evolutionary Biology, University of Connecticut Storrs, CT, USA
| | - Luc De Meester
- Laboratory of Aquatic Ecology and Evolutionary Biology, Katholieke Universiteit Leuven Leuven, Belgium
| | - Mark Vellend
- Department of Biology, Universite de Sherbrooke Sherbrooke, Quebec, Canada
| | - Robby Stoks
- Laboratory of Aquatic Ecology and Evolutionary Biology, Katholieke Universiteit Leuven Leuven, Belgium
| | - Joost Vanoverbeke
- Laboratory of Aquatic Ecology and Evolutionary Biology, Katholieke Universiteit Leuven Leuven, Belgium
| |
Collapse
|
223
|
|
224
|
Mirth CK, Shingleton AW. Integrating body and organ size in Drosophila: recent advances and outstanding problems. Front Endocrinol (Lausanne) 2012; 3:49. [PMID: 22654869 PMCID: PMC3356080 DOI: 10.3389/fendo.2012.00049] [Citation(s) in RCA: 128] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Accepted: 03/12/2012] [Indexed: 11/17/2022] Open
Abstract
OVER THE PAST TWO DECADES, FUNDAMENTAL STRIDES IN PHYSIOLOGY AND GENETICS HAVE ALLOWED US TO FINALLY GRASP THE DEVELOPMENTAL MECHANISMS REGULATING BODY SIZE, PRIMARILY IN ONE MODEL ORGANISM: the fruit fly Drosophila melanogaster. In Drosophila, as in all animals, final body size is regulated by the rate and duration of growth. These studies have identified important roles for the insulin and the target of rapamycin (TOR) signaling pathways in regulating the growth rate of the larva, the stage most important in determining final adult size. Furthermore, they have shown that the insulin/TOR pathway interacts with hormonal systems, like ecdysone and juvenile hormone, to regulate the timing of development and hence the duration of growth. This interaction allows the growing larvae to integrate cues from the environment with environmentally sensitive developmental windows to ensure that optimal size and proportions are reached given the larval rearing conditions. Results from this work have opened up new avenues of studies, including how environmental cues are integrated to regulate developmental time and how organs maintain proportional growth. Other researchers interested in the evolution of body size are beginning to apply these results to studies of body size evolution and the generation of allometry. With these new findings, and with the developments to come, the field of size control finds itself in the fortunate position of finally being able to tackle century old questions of how organisms achieve final adult size and proportions. This review discusses the state of the art of size control from a Drosophila perspective, and outlines an approach to resolving outstanding issues.
Collapse
Affiliation(s)
- Christen Kerry Mirth
- Development, Evolution and the Environment Lab, Instituto Gulbenkian de Ciência, Fundação Calouste GulbenkianOerias, Portugal
- *Correspondence: Christen Kerry Mirth, Development, Evolution and the Environment Lab, Instituto Gulbenkian de Ciência, Fundação Calouste Gulbenkian, Rua da Quinta Grande, 6, 2780-156 Oeiras, Portugal. e-mail: ; Alexander W. Shingleton, Department of Zoology, Michigan State University, East Lansing, 203 Natural Science Building, East Lansing, MI 48824, USA. e-mail:
| | - Alexander W. Shingleton
- Department of Zoology, Michigan State UniversityEast Lansing, MI, USA
- *Correspondence: Christen Kerry Mirth, Development, Evolution and the Environment Lab, Instituto Gulbenkian de Ciência, Fundação Calouste Gulbenkian, Rua da Quinta Grande, 6, 2780-156 Oeiras, Portugal. e-mail: ; Alexander W. Shingleton, Department of Zoology, Michigan State University, East Lansing, 203 Natural Science Building, East Lansing, MI 48824, USA. e-mail:
| |
Collapse
|
225
|
Ibáñez I, Gornish ES, Buckley L, Debinski DM, Hellmann J, Helmuth B, HilleRisLambers J, Latimer AM, Miller-Rushing AJ, Uriarte M. Moving forward in global-change ecology: capitalizing on natural variability. Ecol Evol 2012; 3:170-81. [PMID: 23404535 PMCID: PMC3568852 DOI: 10.1002/ece3.433] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2012] [Revised: 10/22/2012] [Accepted: 10/29/2012] [Indexed: 11/13/2022] Open
Abstract
Natural resources managers are being asked to follow practices that accommodate for the impact of climate change on the ecosystems they manage, while global-ecosystems modelers aim to forecast future responses under different climate scenarios. However, the lack of scientific knowledge about short-term ecosystem responses to climate change has made it difficult to define set conservation practices or to realistically inform ecosystem models. Until recently, the main goal for ecologists was to study the composition and structure of communities and their implications for ecosystem function, but due to the probable magnitude and irreversibility of climate-change effects (species extinctions and loss of ecosystem function), a shorter term focus on responses of ecosystems to climate change is needed. We highlight several underutilized approaches for studying the ecological consequences of climate change that capitalize on the natural variability of the climate system at different temporal and spatial scales. For example, studying organismal responses to extreme climatic events can inform about the resilience of populations to global warming and contribute to the assessment of local extinctions. Translocation experiments and gene expression are particular useful to quantitate a species' acclimation potential to global warming. And studies along environmental gradients can guide habitat restoration and protection programs by identifying vulnerable species and sites. These approaches identify the processes and mechanisms underlying species acclimation to changing conditions, combine different analytical approaches, and can be used to improve forecasts of the short-term impacts of climate change and thus inform conservation practices and ecosystem models in a meaningful way.
Collapse
Affiliation(s)
- Inés Ibáñez
- School of Natural Resources and Environment, University of MichiganAnn Arbor, Michigan
| | - Elise S Gornish
- Department of Biological Science, Florida State UniversityTallahassee, Florida
| | - Lauren Buckley
- Biology Department, University of North CarolinaChapel Hill, North Carolina
| | - Diane M Debinski
- Department of Ecology, Evolution and Organismal Biology, Iowa State UniversityAmes, Iowa
| | - Jessica Hellmann
- Department of Biological Sciences, University of Notre DameNotre Dame, Indiana
| | - Brian Helmuth
- Environment and Sustainability Program and Department of Biological Sciences, University of South CarolinaColumbia, South Carolina
| | | | - Andrew M Latimer
- Department of Plant Sciences, University of California, DavisDavis, California
| | - Abraham J Miller-Rushing
- National Park Service, Schoodic Education and Research Center and Acadia National ParkBar Harbor, Maine
| | - Maria Uriarte
- Department of Ecology, Evolution and Environmental Biology, Columbia UniversityNew York, New York
| |
Collapse
|
226
|
Sadakiyo S, Ishihara M. The role of host seed size in mediating a latitudinal body size cline in an introduced bruchid beetle in Japan. OIKOS 2011. [DOI: 10.1111/j.1600-0706.2011.19593.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
227
|
Dyer KA. LOCAL SELECTION UNDERLIES THE GEOGRAPHIC DISTRIBUTION OF SEX-RATIO DRIVE IN DROSOPHILA NEOTESTACEA. Evolution 2011; 66:973-84. [DOI: 10.1111/j.1558-5646.2011.01497.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
228
|
Hangartner S, Laurila A, Räsänen K. Adaptive divergence in moor frog (Rana arvalis) populations along an acidification gradient: inferences from Q(st) -F(st) correlations. Evolution 2011; 66:867-881. [PMID: 22380445 DOI: 10.1111/j.1558-5646.2011.01472.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Microevolutionary responses to spatial variation in the environment seem ubiquitous, but the relative role of selection and neutral processes in driving phenotypic diversification remain often unknown. The moor frog (Rana arvalis) shows strong phenotypic divergence along an acidification gradient in Sweden. We here used correlations among population pairwise estimates of quantitative trait (P(ST) or Q(ST) from common garden estimates of embryonic acid tolerance and larval life-history traits) and neutral genetic divergence (F(ST) from neutral microsatellite markers), as well as environmental differences (pond pH, predator density, and latitude), to test whether this phenotypic divergence is more likely due to divergent selection or neutral processes. We found that trait divergence was more strongly correlated with environmental differences than the neutral marker divergence, suggesting that divergent natural selection has driven phenotypic divergence along the acidification gradient. Moreover, pairwise P(ST) s of embryonic acid tolerance and Q(ST) s of metamorphic size were strongly correlated with breeding pond pH, whereas pairwise Q(ST) s of larval period and growth rate were more strongly correlated with geographic distance/latitude and predator density, respectively. We suggest that incorporating measurements of environmental variation into Q(ST) -F(ST) studies can improve our inferential power about the agents of natural selection in natural populations.
Collapse
Affiliation(s)
- Sandra Hangartner
- EAWAG, Department of Aquatic Ecology and ETH-Zurich, Institute of Integrative Biology (IBZ), Ueberlandstrasse 133, CH-8600 Duebendorf, Switzerland E-mail: and Conservation Biology/Department of Ecology and Genetics, Evolutionary Biology Center, Uppsala University, Norbyvägen 18D, SE-752 36 Uppsala, Sweden
| | - Anssi Laurila
- EAWAG, Department of Aquatic Ecology and ETH-Zurich, Institute of Integrative Biology (IBZ), Ueberlandstrasse 133, CH-8600 Duebendorf, Switzerland E-mail: and Conservation Biology/Department of Ecology and Genetics, Evolutionary Biology Center, Uppsala University, Norbyvägen 18D, SE-752 36 Uppsala, Sweden
| | - Katja Räsänen
- EAWAG, Department of Aquatic Ecology and ETH-Zurich, Institute of Integrative Biology (IBZ), Ueberlandstrasse 133, CH-8600 Duebendorf, Switzerland E-mail: and Conservation Biology/Department of Ecology and Genetics, Evolutionary Biology Center, Uppsala University, Norbyvägen 18D, SE-752 36 Uppsala, Sweden
| |
Collapse
|
229
|
PIMENTEL CARLA, SANTOS MARCIA, FERREIRA CLAUDIA, NILSSON JANÅKE. Temperature, size, reproductive allocation, and life-history evolution in a gregarious caterpillar. Biol J Linn Soc Lond 2011. [DOI: 10.1111/j.1095-8312.2011.01794.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
230
|
Takahashi Y, Morita S, Yoshimura J, Watanabe M. A geographic cline induced by negative frequency-dependent selection. BMC Evol Biol 2011; 11:256. [PMID: 21917171 PMCID: PMC3185284 DOI: 10.1186/1471-2148-11-256] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2011] [Accepted: 09/14/2011] [Indexed: 11/25/2022] Open
Abstract
Background Establishment of geographic morph frequency clines is difficult to explain in organisms with limited gene flow. Balancing selection, such as negative frequency-dependent selection (NFDS), is instead suggested to establish a morph frequency cline on a geographic scale at least theoretically. Here we tested whether a large-scale smooth cline in morph frequency is established by NFDS in the female-dimorphic damselfly, Ischnura senegalensis, where andromorphs and gynomorphs are maintained by NFDS. Results We found a large-scale latitudinal cline in the morph frequency: andromorph frequency ranged from 0.05 (South) to 0.79 (North). Based on the empirical data on the numbers of eggs, the number of ovariole, abdomen length and latitude, the potential fitness of andromorphs was estimated to be lower than that of gynomorphs in the south, and higher in the north, suggesting the gene-by-environment interaction. From the morph-specific latitudinal cline in potential fitness, the frequency of andromorphs was expected to shift from 0 to 1 without NFDS, because a morph with higher potential fitness wins completely and the two morphs will switch at some point. In contrast, NFDS led to the coexistence of two morphs with different potential fitness in a certain geographic range along latitude due to rare morph advantage, and resulted in a smooth geographic cline of morph frequency. Conclusion Our results provide suggestive evidence that the combination of NFDS and gene-by-environment interaction, i.e., multi-selection pressure on color morphs, can explain the geographic cline in morph frequency in the current system.
Collapse
Affiliation(s)
- Yuma Takahashi
- Division of Ecology and Evolutionary Biology, Graduate School of Life Sciences, Tohoku University, 6-3, Aoba, Aramaki, Aoba, Sendai, Miyagi 980-8578, Japan.
| | | | | | | |
Collapse
|
231
|
Gonzalez-Voyer A, Kolm N. Rates of phenotypic evolution of ecological characters and sexual traits during the Tanganyikan cichlid adaptive radiation. J Evol Biol 2011; 24:2378-88. [PMID: 21848985 DOI: 10.1111/j.1420-9101.2011.02365.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Theory suggests that sexual traits evolve faster than ecological characters. However, characteristics of a species niche may also influence evolution of sexual traits. Hence, a pending question is whether ecological characters and sexual traits present similar tempo and mode of evolution during periods of rapid ecological divergence, such as adaptive radiation. Here, we use recently developed phylogenetic comparative methods to analyse the temporal dynamics of evolution for ecological and sexual traits in Tanganyikan cichlids. Our results indicate that whereas disparity in ecological characters was concentrated early in the radiation, disparity in sexual traits remained high throughout the radiation. Thus, closely related Tanganyikan cichlids presented higher disparity in sexual traits than ecological characters. Sexual traits were also under stronger selection than ecological characters. In sum, our results suggest that ecological characters and sexual traits present distinct evolutionary patterns, and that sexual traits can evolve faster than ecological characters, even during adaptive radiation.
Collapse
Affiliation(s)
- A Gonzalez-Voyer
- Department of Animal Ecology, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden.
| | | |
Collapse
|
232
|
Westley PAH. What invasive species reveal about the rate and form of contemporary phenotypic change in nature. Am Nat 2011; 177:496-509. [PMID: 21460571 DOI: 10.1086/658902] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Biological invasions are opportunities to gain insight into fundamental evolutionary questions, because reproductive isolation and sudden alterations in selection pressures are likely to lead to rapid evolutionary change. Here I investigate the role played by invasive species in revealing the rate and form of contemporary phenotypic change in wild populations by expanding a database of more than 5,500 rates of phenotypic change from 90 species of plants and animals. Invasive species are frequently used as model organisms and thus contribute disproportionately to available rates of phenotypic change. However, the preponderance of these rates is the consequence of extensive study in a small number of species. I found mixed evidence to support the hypothesis that phenotypic change is associated with time depending on the metric of choice (i.e., darwins or haldanes). Insights from both invasive and native species provide evidence for abrupt phenotypic change and suggest that the environment plays a potentially important role in driving trait change in wild populations, although the environmental influence on the observed trajectories remains unclear. Thus, future work should continue to seek an understanding of the mechanistic underpinnings--both genetic and environmental--of how phenotypic variation allows populations to adapt to rapidly changing global environments.
Collapse
Affiliation(s)
- Peter A H Westley
- Ocean Sciences Centre, Memorial University of Newfoundland, 1 Marine Lab Road, St. John's, Newfoundland, Canada.
| |
Collapse
|
233
|
Vittecoq M, Djieto-Lordon C, Buatois B, Dormont L, McKey D, Blatrix R. The Evolution of Communication in Two Ant-Plant Mutualisms. Evol Biol 2011. [DOI: 10.1007/s11692-011-9125-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
234
|
CHEVIN LM, LANDE R. Adaptation to marginal habitats by evolution of increased phenotypic plasticity. J Evol Biol 2011; 24:1462-76. [DOI: 10.1111/j.1420-9101.2011.02279.x] [Citation(s) in RCA: 141] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
235
|
Ayala D, Caro-Riaño H, Dujardin JP, Rahola N, Simard F, Fontenille D. Chromosomal and environmental determinants of morphometric variation in natural populations of the malaria vector Anopheles funestus in Cameroon. INFECTION GENETICS AND EVOLUTION 2011; 11:940-7. [PMID: 21414420 DOI: 10.1016/j.meegid.2011.03.003] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2011] [Revised: 02/27/2011] [Accepted: 03/06/2011] [Indexed: 01/04/2023]
Abstract
Anopheles funestus is one of the most proficient malaria vectors in the world, mainly because of its remarkable ability to populate a wide range of ecological settings across Africa. Its formidable environmental plasticity has been primarily associated to high amounts of genetic and inversion polymorphisms. However, very little is known about the morphological changes that this ecological adaptation entails. Here, we report on wing morphometric variations in karyotyped specimens of this species collected throughout a wide range of eco-geographical conditions in Cameroon (Central Africa). Our results revealed strong selection on mosquito wing traits. Variation of wing size was dependent on temperature and elevation (p < 0.001), while wing shape did not exhibit a specific environmental pattern. On the other hand, we observed a significant correlation of wing shape variation (p < 0.001), but not size (p > 0.05), with regard to karyotype. This pattern was maintained across different environmental conditions. In conclusion, our findings cast strong evidence that change in morphometric traits are under natural selection and contribute to local adaptation in A. funestus populations. Furthermore, the robust relation between chromosome polymorphisms and wing shape suggests new evolutionary hypotheses about the effect of chromosomal inversions on phenotypic variation in this malaria vector.
Collapse
Affiliation(s)
- Diego Ayala
- IRD, UMR 224 MIVEGEC/BEES, 911 Av Agropolis, 34394 Montpellier, France.
| | | | | | | | | | | |
Collapse
|
236
|
Garland T, Kelly SA, Malisch JL, Kolb EM, Hannon RM, Keeney BK, Van Cleave SL, Middleton KM. How to run far: multiple solutions and sex-specific responses to selective breeding for high voluntary activity levels. Proc Biol Sci 2011; 278:574-81. [PMID: 20810439 PMCID: PMC3025687 DOI: 10.1098/rspb.2010.1584] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2010] [Accepted: 08/09/2010] [Indexed: 11/12/2022] Open
Abstract
The response to uniform selection may occur in alternate ways that result in similar performance. We tested for multiple adaptive solutions during artificial selection for high voluntary wheel running in laboratory mice. At generation 43, the four replicate high runner (HR) lines averaged 2.85-fold more revolutions per day as compared with four non-selected control (C) lines, and females ran 1.11-fold more than males, with no sex-by-linetype interaction. Analysis of variance indicated significant differences among C lines but not among HR for revolutions per day. By contrast, average speed varied significantly among HR lines, but not among C, and showed a sex-by-linetype interaction, with the HR/C ratio being 2.02 for males and 2.45 for females. Time spent running varied among both HR and C lines, and showed a sex-by-linetype interaction, with the HR/C ratio being 1.52 for males but only 1.17 for females. Thus, females (speed) and males (speed, but also time) evolved differently, as did the replicate selected lines. Speed and time showed a trade-off among HR but not among C lines. These results demonstrate that uniform selection on a complex trait can cause consistent responses in the trait under direct selection while promoting divergence in the lower-level components of that trait.
Collapse
Affiliation(s)
- Theodore Garland
- Department of Biology, University of California, , Riverside, CA 92521, USA.
| | | | | | | | | | | | | | | |
Collapse
|
237
|
TROTTA VINCENZO, CAVICCHI SANDRO, GUERRA DANIELA, ANDERSEN DITTEH, BABBITT GREGORYA, KRISTENSEN TORSTENN, PEDERSEN KAMILLAS, LOESCHCKE VOLKER, PERTOLDI CINO. Allometric and non-allometric consequences of inbreeding on Drosophila melanogaster wings. Biol J Linn Soc Lond 2011. [DOI: 10.1111/j.1095-8312.2010.01588.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
238
|
Hill JK, Griffiths HM, Thomas CD. Climate change and evolutionary adaptations at species' range margins. ANNUAL REVIEW OF ENTOMOLOGY 2011; 56:143-59. [PMID: 20809802 DOI: 10.1146/annurev-ento-120709-144746] [Citation(s) in RCA: 164] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
During recent climate warming, many insect species have shifted their ranges to higher latitudes and altitudes. These expansions mirror those that occurred after the Last Glacial Maximum when species expanded from their ice age refugia. Postglacial range expansions have resulted in clines in genetic diversity across present-day distributions, with a reduction in genetic diversity observed in a wide range of insect taxa as one moves from the historical distribution core to the current range margin. Evolutionary increases in dispersal at expanding range boundaries are commonly observed in virtually all insects that have been studied, suggesting a positive feedback between range expansion and the evolution of traits that accelerate range expansion. The ubiquity of this phenomenon suggests that it is likely to be an important determinant of range changes. A better understanding of the extent and speed of adaptation will be crucial to the responses of biodiversity and ecosystems to climate change.
Collapse
Affiliation(s)
- Jane K Hill
- Department of Biology, University of York, YO10 5DD, United Kingdom.
| | | | | |
Collapse
|
239
|
North A, Pennanen J, Ovaskainen O, Laine AL. Local adaptation in a changing world: the roles of gene-flow, mutation, and sexual reproduction. Evolution 2011; 65:79-89. [PMID: 20731716 DOI: 10.1111/j.1558-5646.2010.01107.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
In spatially heterogeneous environments, the processes of gene flow, mutation, and sexual reproduction generate local genetic variation and thus provide material for local adaptation. On the other hand, these processes interchange maladapted for adapted genes and so, in each case, the net influence may be to reduce local adaptation. Previous work has indicated that this is the case in stable populations, yet it is less clear how the factors play out during population growth, and in the face of temporal environmental stochasticity. We address this issue with a spatially explicit, stochastic model. We find that dispersal, mutation, and sexual reproduction can all accelerate local adaptation in growing populations, although their respective roles may depend on the genetic make-up of the founding population. All three processes reduce local adaptation, however, in the long term, that is when population growth becomes balanced by density-dependent competition. These relationships are qualitatively maintained, although quantitatively reduced, if the resources are locally ephemeral. Our results suggest that species with high levels of local adaptation within their ranges may not be the same species that harbor potential for rapid local adaptation during population expansion.
Collapse
Affiliation(s)
- Ace North
- Department of Biosciences, University of Helsinki, Finland.
| | | | | | | |
Collapse
|
240
|
Abstract
Many ecologically important traits exhibit latitudinal variation. Body size clines have been described repeatedly in insects across multiple continents, suggesting that similar selective forces are shaping these geographical gradients. It is unknown whether these parallel clinal patterns are controlled by the same or different genetic mechanism(s). We present here, quantitative trait loci (QTL) analysis of wing size variation in Drosophila simulans. Our results show that much of the wing size variation is controlled by a QTL on Chr 3L with relatively minor contribution from other chromosome arms. Comparative analysis of the genomic positions of the QTL indicates that the major QTL on Chr 3 are distinct in D. simulans and D. melanogaster, whereas the QTL on Chr 2R might overlap between species. Our results suggest that parallel evolution of wing size clines could be driven by non-identical genetic mechanisms but in both cases involve a major QTL as well as smaller effects of other genomic regions.
Collapse
|
241
|
Dybdahl MF, Drown DM. The absence of genotypic diversity in a successful parthenogenetic invader. Biol Invasions 2010. [DOI: 10.1007/s10530-010-9923-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
242
|
Dolgova O, Rego C, Calabria G, Balanyà J, Pascual M, Rezende EL, Santos M. Genetic constraints for thermal coadaptation in Drosophila subobscura. BMC Evol Biol 2010; 10:363. [PMID: 21108788 PMCID: PMC3003277 DOI: 10.1186/1471-2148-10-363] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2010] [Accepted: 11/25/2010] [Indexed: 11/23/2022] Open
Abstract
Background Behaviour has been traditionally viewed as a driver of subsequent evolution because behavioural adjustments expose organisms to novel environments, which may result in a correlated evolution on other traits. In Drosophila subobscura, thermal preference and heat tolerance are linked to chromosomal inversion polymorphisms that show parallel latitudinal clines worldwide, such that "cold-climate" ("warm-climate") chromosome arrangements collectively favour a coherent response to colder (warmer) settings as flies carrying them prefer colder (warmer) conditions and have lower (higher) knock out temperatures. Yet, it is not clear whether a genetic correlation between thermal preference and heat tolerance can partially underlie such response. Results We have analyzed the genetic basis of thermal preference and heat tolerance using isochromosomal lines in D. subobscura. Chromosome arrangements on the O chromosome were known to have a biometrical effect on thermal preference in a laboratory temperature gradient, and also harbour several genes involved in the heat shock response; in particular, the genes Hsp68 and Hsp70. Our results corroborate that arrangements on chromosome O affect adult thermal preference in a laboratory temperature gradient, with cold-climate Ost carriers displaying a lower thermal preference than their warm-climate O3+4 and O3+4+8 counterparts. However, these chromosome arrangements did not have any effect on adult heat tolerance and, hence, we putatively discard a genetic covariance between both traits arising from linkage disequilibrium between genes affecting thermal preference and candidate genes for heat shock resistance. Nonetheless, a possible association of juvenile thermal preference and heat resistance warrants further analysis. Conclusions Thermal preference and heat tolerance in the isochromosomal lines of D. subobscura appear to be genetically independent, which might potentially prevent a coherent response of behaviour and physiology (i.e., coadaptation) to thermal selection. If this pattern is general to all chromosomes, then any correlation between thermal preference and heat resistance across latitudinal gradients would likely reflect a pattern of correlated selection rather than genetic correlation.
Collapse
Affiliation(s)
- Olga Dolgova
- Departament de Genètica i de Microbiologia, Grup de Biologia Evolutiva (GBE), Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| | | | | | | | | | | | | |
Collapse
|
243
|
CASSEL-LUNDHAGEN A, KAŇUCH P, LOW M, BERGGREN Å. Limited gene flow may enhance adaptation to local optima in isolated populations of the Roesel’s bush cricket (Metrioptera roeselii). J Evol Biol 2010; 24:381-90. [DOI: 10.1111/j.1420-9101.2010.02174.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
244
|
Zepeda-Paulo FA, Simon JC, Ramírez CC, Fuentes-Contreras E, Margaritopoulos JT, Wilson ACC, Sorenson CE, Briones LM, Azevedo R, Ohashi DV, Lacroix C, Glais L, Figueroa CC. The invasion route for an insect pest species: the tobacco aphid in the New World. Mol Ecol 2010; 19:4738-52. [PMID: 20958814 DOI: 10.1111/j.1365-294x.2010.04857.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Biological invasions are rapid evolutionary events in which populations are usually subject to a founder event during introduction followed by rapid adaptation to the new environment. Molecular tools and Bayesian approaches have shown their utility in exploring different evolutionary scenarios regarding the invasion routes of introduced species. We examined the situation for the tobacco aphid, Myzus persicae nicotianae, a recently introduced aphid species in Chile. Using seven microsatellite loci and approximate Bayesian computation, we studied populations of the tobacco aphid sampled from several American and European countries, identifying the most likely source populations and tracking the route of introduction to Chile. Our population genetic data are consistent with available historical information, pointing to an introduction route of the tobacco aphid from Europe and/or from other putative populations (e.g. Asia) with subsequent introduction through North America to South America. Evidence of multiple introductions to North America from different genetic pools, with successive loss of genetic diversity from Europe towards North America and a strong bottleneck during the southward introduction to South America, was also found. Additionally, we examined the special case of a widespread multilocus genotype that was found in all American countries examined. This case provides further evidence for the existence of highly successful genotypes or 'superclones' in asexually reproducing organisms.
Collapse
Affiliation(s)
- F A Zepeda-Paulo
- Instituto de Ecología y Evolución, Facultad de Ciencias, Universidad Austral de Chile, Casilla 567, Valdivia, Chile
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
245
|
Rand DM, Weinreich DM, Lerman D, Folk D, Gilchrist GW. Three selections are better than one: clinal variation of thermal QTL from independent selection experiments in Drosophila. Evolution 2010; 64:2921-34. [PMID: 20497214 PMCID: PMC3148135 DOI: 10.1111/j.1558-5646.2010.01039.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
We report the results of two independent selection experiments that have exposed distinct populations of Drosophila melanogaster to different forms of thermal selection. A recombinant population derived from Arvin California and Zimbabwe isofemale lines was exposed to laboratory natural selection at two temperatures (T(AZ): 18°C and 28°C). Microsatellite mapping identified quantitative trait loci (QTL) on the X-chromosome between the replicate "Hot" and "Cold" populations. In a separate experiment, disruptive selection was imposed on an outbred California population for the "knockdown" temperature (T(KD)) in a thermal column. Microsatellite mapping of the "High" and "Low" populations also uncovered primarily X-linked QTL. Notably, a marker in the shaggy locus at band 3A was significantly differentiated in both experiments. Finer scale mapping of the 3A region has narrowed the QTL to the shaggy gene region, which contains several candidate genes that function in circadian rhythms. The same allele that was increased in frequency in the High T(KD) populations is significantly clinal in North America and is more common at the warm end of the cline (Florida vs. Maine; however, the cline was not apparent in Australia). Together, these studies show that independent selection experiments can uncover the same target of selection and that evolution in the laboratory can recapitulate putatively adaptive clinal variation in nature.
Collapse
Affiliation(s)
- David M Rand
- Department of Ecology and Evolutionary Biology, Brown University, Providence, Rhode Island 02912, USA.
| | | | | | | | | |
Collapse
|
246
|
Hu Y, Yuan X, Zhu F, Lei C. Development time and size-related traits in the oriental blowfly, Chrysomya megacephala along a latitudinal gradient from China. J Therm Biol 2010. [DOI: 10.1016/j.jtherbio.2010.07.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
247
|
Runemark A, Hansson B, Pafilis P, Valakos ED, Svensson EI. Island biology and morphological divergence of the Skyros wall lizard Podarcis gaigeae: a combined role for local selection and genetic drift on color morph frequency divergence? BMC Evol Biol 2010; 10:269. [PMID: 20813033 PMCID: PMC2939580 DOI: 10.1186/1471-2148-10-269] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2009] [Accepted: 09/02/2010] [Indexed: 05/29/2025] Open
Abstract
BACKGROUND Patterns of spatial variation in discrete phenotypic traits can be used to draw inferences about the adaptive significance of traits and evolutionary processes, especially when compared to patterns of neutral genetic variation. Population divergence in adaptive traits such as color morphs can be influenced by both local ecology and stochastic factors such as genetic drift or founder events. Here, we use quantitative color measurements of males and females of Skyros wall lizard, Podarcis gaigeae, to demonstrate that this species is polymorphic with respect to throat color, and the morphs form discrete phenotypic clusters with limited overlap between categories. We use divergence in throat color morph frequencies and compare that to neutral genetic variation to infer the evolutionary processes acting on islet- and mainland populations. RESULTS Geographically close islet- and mainland populations of the Skyros wall lizard exhibit strong divergence in throat color morph frequencies. Population variation in throat color morph frequencies between islets was higher than that between mainland populations, and the effective population sizes on the islets were small (Ne:s < 100). Population divergence (FST) for throat color morph frequencies fell within the neutral FST-distribution estimated from microsatellite markers, and genetic drift could thus not be rejected as an explanation for the pattern. Moreover, for both comparisons among mainland-mainland population pairs and between mainland-islet population pairs, morph frequency divergence was significantly correlated with neutral divergence, further pointing to some role for genetic drift in divergence also at the phenotypic level of throat color morphs. CONCLUSIONS Genetic drift could not be rejected as an explanation for the pattern of population divergence in morph frequencies. In spite of an expected stabilising selection, throat color frequencies diverged in the islet populations. These results suggest that there is an interaction between selection and genetic drift causing divergence even at a phenotypic level in these small, subdivided populations.
Collapse
Affiliation(s)
- Anna Runemark
- Section for Animal Ecology, Ecology Building, Lund University, SE-223 62 Lund, Sweden.
| | | | | | | | | |
Collapse
|
248
|
OPELL BRENTD. Bergmanns's size cline in New Zealand marine spray zone spiders (Araneae: Anyphaenidae: Amaurobioides). Biol J Linn Soc Lond 2010. [DOI: 10.1111/j.1095-8312.2010.01480.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
249
|
Abstract
Body size of animals often increases with increasing latitude. These latitudinal clines in body size have interested biologists for over 150 years. However, the mechanisms that generate these clines in size are still unclear, though latitudinal gradients in temperature appear to play an important role. More importantly, many studies that examine latitudinal clines in body size and the mechanisms responsible for these clines use phenotypic data, confounding genetic (adaptive) and non-genetic (plasticity) sources of variation. Yet, most of these studies make adaptive conclusions based on phenotypic measures of size. Here I show the dangers of making adaptive inferences from phenotypic measures of size. In addition, I use a specific form of plasticity in body size of ectotherms, called the temperature - size rule, to illustrate how confusion about genetic and non-genetic contributions to phenotypic variation has hampered progress in understanding the evolution of latitudinal clines in size. Field-based measurements of body size can no doubt be influenced by plasticity, but demonstrating that latitudinal clines have a genetic basis is necessary to show that these patterns are adaptive.
Collapse
Affiliation(s)
- R Craig Stillwell
- Dept of Entomology, Univ. of Arizona, Tucson, AZ 85721-0036, USA. ( )
| |
Collapse
|
250
|
Meyer JR, Agrawal AA, Quick RT, Dobias DT, Schneider D, Lenski RE. Parallel changes in host resistance to viral infection during 45,000 generations of relaxed selection. Evolution 2010; 64:3024-34. [PMID: 20550574 DOI: 10.1111/j.1558-5646.2010.01049.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The dynamics of host susceptibility to parasites are often influenced by trade-offs between the costs and benefits of resistance. We assayed changes in the resistance to three viruses in six lines of Escherichia coli that had been evolving for almost 45,000 generations in their absence. The common ancestor of these lines was completely resistant to T6, partially resistant to T6* (a mutant of T6 with altered host range), and sensitive to λ. None of the populations changed with respect to resistance to T6, whereas all six evolved increased susceptibility to T6*, probably ameliorating a cost of resistance. More surprisingly, however, the majority of lines evolved complete resistance to λ, despite not encountering that virus during this period. By coupling our results with previous work, we infer that resistance to λ evolved as a pleiotropic effect of a beneficial mutation that downregulated an unused metabolic pathway. The strong parallelism between the lines implies that selection had almost deterministic effects on the evolution of these patterns of host resistance. The opposite outcomes for resistance to T6* and λ demonstrate that the evolution of host resistance under relaxed selection cannot be fully predicted by simple trade-off models.
Collapse
Affiliation(s)
- Justin R Meyer
- Program in Ecology, Evolutionary Biology & Behavior, Michigan State University, East Lansing, Michigan 48824, USA.
| | | | | | | | | | | |
Collapse
|