201
|
Butini S, Brogi S, Novellino E, Campiani G, Ghosh AK, Brindisi M, Gemma S. The structural evolution of β-secretase inhibitors: a focus on the development of small-molecule inhibitors. Curr Top Med Chem 2013; 13:1787-807. [PMID: 23931442 PMCID: PMC6034716 DOI: 10.2174/15680266113139990137] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Accepted: 05/11/2013] [Indexed: 12/12/2022]
Abstract
Effective treatment of Alzheimer's disease (AD) remains a critical unmet need in medicine. The lack of useful treatment for AD led to an intense search for novel therapies based on the amyloid hypothesis, which states that amyloid β-42 (Aβ42) plays an early and crucial role in all cases of AD. β-Secretase (also known as BACE-1 β-site APP-cleaving enzyme, Asp-2 or memapsin-2) is an aspartyl protease representing the rate limiting step in the generation of Aβ peptide fragments, therefore it could represent an important target in the steady hunt for a disease-modifying treatment. Generally, β-secretase inhibitors are grouped into two families: peptidomimetic and nonpeptidomimetic inhibitors. However, irrespective of the class, serious challenges with respect to blood-brain barrier (BBB) penetration and selectivity still remain. Discovering a small molecule inhibitor of β-secretase represents an unnerving challenge but, due to its significant potential as a therapeutic target, growing efforts in this task are evident from both academic and industrial laboratories. In this frame, the rising availability of crystal structures of β-secretase-inhibitor complexes represents an invaluable opportunity for optimization. Nevertheless, beyond the inhibitory activity, the major issue of the current research approaches is about problems associated with BBB penetration and pharmacokinetic properties. This review follows the structural evolution of the early β-secretase inhibitors and gives a snap-shot of the hottest chemical templates in the literature of the last five years, showing research progress in this field.
Collapse
Affiliation(s)
- Stefania Butini
- European Research Centre for Drug Discovery and Development (NatSynDrugs), University of Siena, Italy
| | - Simone Brogi
- European Research Centre for Drug Discovery and Development (NatSynDrugs), University of Siena, Italy
| | - Ettore Novellino
- European Research Centre for Drug Discovery and Development (NatSynDrugs), University of Siena, Italy
- Dipartimento di Farmacia, University of Naples Federico II, Italy
| | - Giuseppe Campiani
- European Research Centre for Drug Discovery and Development (NatSynDrugs), University of Siena, Italy
| | - Arun K. Ghosh
- Department of Chemistry and Department of Medicinal Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Margherita Brindisi
- European Research Centre for Drug Discovery and Development (NatSynDrugs), University of Siena, Italy
| | - Sandra Gemma
- European Research Centre for Drug Discovery and Development (NatSynDrugs), University of Siena, Italy
| |
Collapse
|
202
|
Alemán J, Cabrera S. Applications of asymmetric organocatalysis in medicinal chemistry. Chem Soc Rev 2013; 42:774-93. [DOI: 10.1039/c2cs35380f] [Citation(s) in RCA: 325] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
203
|
Ozbil M, Barman A, Bora RP, Prabhakar R. Computational Insights into Dynamics of Protein Aggregation and Enzyme-Substrate Interactions. J Phys Chem Lett 2012; 3:3460-3469. [PMID: 26290973 DOI: 10.1021/jz301597k] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
In this Perspective, the roles of protein dynamics have been discussed in the aggregation of amyloid beta (Aβ) peptides and formation of enzyme-substrate complexes of beta-secretase (BACE1) and insulin-degrading enzyme (IDE). The studies regarding the influence of individual amino acid residues and specific regions on the structures and oligomerization of early Aβ aggregates and computations of their translational and rotational diffusion coefficients and order parameters exhibited that even the short-time-scale molecular dynamics simulations can reproduce certain experimental parameters with reasonable accuracy. The simulations elucidating the enzyme-substrate interactions of BACE1 and IDE successfully showed that the chemical nature and length of the substrates influence the dynamics and plasticity of both the enzyme and substrate. An atomic-level understanding of these processes will advance our efforts to develop therapeutic strategies for several deadly diseases through the design of small molecules with antiaggregation properties and substrate-specific "designer" forms of enzymes.
Collapse
Affiliation(s)
- Mehmet Ozbil
- Department of Chemistry, University of Miami, Coral Gables, Florida 33146, United States
| | - Arghya Barman
- Department of Chemistry, University of Miami, Coral Gables, Florida 33146, United States
| | - Ram Prasad Bora
- Department of Chemistry, University of Miami, Coral Gables, Florida 33146, United States
| | - Rajeev Prabhakar
- Department of Chemistry, University of Miami, Coral Gables, Florida 33146, United States
| |
Collapse
|
204
|
Nastase AF, Boyd DB. Simple structure-based approach for predicting the activity of inhibitors of beta-secretase (BACE1) associated with Alzheimer's disease. J Chem Inf Model 2012. [PMID: 23198745 DOI: 10.1021/ci300331d] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Beta-site amyloid precursor protein cleaving enzyme-1 (BACE1) is a target of interest for treating patients with Alzheimer's disease (AD). Inhibition of BACE1 may prevent amyloid-ß (Aß) plaque formation and the development or progression of Alzheimer's disease. Known BACE1 inhibitors were analyzed using computational chemistry and cheminformatics techniques to search for quantitative structure-activity relationships (QSAR). A remarkable relationship was found with only two simple descriptors. The square of the linear correlation coefficient r(2) is 0.75. The main descriptor is the number of hydrophobic contacts in the range 4-5 Å between the atoms of the ligand and active site. The other descriptor is the number of short (<2.8 Å) hydrogen bonds. Our approach uses readily available structural data on protein-inhibitor complexes in the Protein Data Bank (PDB) but would be equally applicable to proprietary structural biology data. The findings can aid structure-based design of improved BACE-1 inhibitors. If an inhibitor has less observed activity than predicted by our correlation, the compound should be retested because the first assay may have underestimated the compound's true activity.
Collapse
Affiliation(s)
- Anthony F Nastase
- Department of Chemistry and Chemical Biology, School of Science, Indiana University-Purdue University-Indianapolis, 402 North Blackford Street, Indianapolis, Indiana 46202, USA
| | | |
Collapse
|
205
|
Lu Q, Chen WY, Zhu ZY, Chen J, Xu YC, Kaewpet M, Rukachaisirikul V, Chen LL, Shen X. L655,240, acting as a competitive BACE1 inhibitor, efficiently decreases β-amyloid peptide production in HEK293-APPswe cells. Acta Pharmacol Sin 2012; 33:1459-68. [PMID: 22842730 DOI: 10.1038/aps.2012.74] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
AIM To identify a small molecule L655,240 as a novel β-secretase (BACE1) inhibitor and to investigate its effects on β-amyloid (Aβ) generation in vitro. METHODS Fluorescence resonance energy transfer (FRET) was used to characterize the inhibitory effect of L655,240 on BACE1. Surface plasmon resonance (SPR) technology-based assay was performed to study the binding affinity of L655,240 for BACE1. The selectivity of L655,240 toward BACE1 over other aspartic proteases was determined with enzymatic assay. The effects of L655,240 on Aβ40, Aβ42, and sAPPβ production were studied in HEK293 cells stably expressing APP695 Swedish mutant(K595N/M596L) (HEK293-APPswe cells). The activities of BACE1, γ-secretase and α-secretase were assayed, and both the mRNA and protein levels of APP and BACE1 were evaluated using real-time PCR (RT-PCR) and Western blot analysis. RESULTS L655,240 was determined to be a competitive, selective BACE1 inhibitor (IC(50)=4.47±1.37 μmol/L), which bound to BACE1 directly (K(D)=17.9±0.72 μmol/L). L655,240 effectively reduced Aβ40, Aβ42, and sAPPβ production by inhibiting BACE1 without affecting the activities of γ-secretase and α-secretase in HEK293-APPswe cells. L655,240 has no effect on APP and BACE1 mRNA or protein levels in HEK293-APPswe cells. CONCLUSION The small molecule L655,240 is a novel BACE1 inhibitor that can effectively decreases Aβ production in vitro, thereby highlighting its therapeutic potential for the treatment of Alzheimer's disease.
Collapse
|
206
|
Tamagno E, Guglielmotto M, Monteleone D, Vercelli A, Tabaton M. Transcriptional and post-transcriptional regulation of β-secretase. IUBMB Life 2012. [DOI: 10.1002/iub.1099] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
207
|
Liu Y, Zhang W, Li L, Salvador LA, Chen T, Chen W, Felsenstein KM, Ladd TB, Price AR, Golde TE, He J, Xu Y, Li Y, Luesch H. Cyanobacterial Peptides as a Prototype for the Design of Potent β-Secretase Inhibitors and the Development of Selective Chemical Probes for Other Aspartic Proteases. J Med Chem 2012. [DOI: 10.1021/jm301630s] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Yanxia Liu
- Department of Medicinal Chemistry, University of Florida, Gainesville, Florida 32610,
United States
| | - Wei Zhang
- Department of Medicinal Chemistry, University of Florida, Gainesville, Florida 32610,
United States
- School of
Pharmacy, Fudan University, Shanghai 201203,
China
| | - Li Li
- Drug Discovery and
Design Center, Shanghai Institute of Materia Medica, Chinese Academy
of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Lilibeth A. Salvador
- Department of Medicinal Chemistry, University of Florida, Gainesville, Florida 32610,
United States
| | - Tiantian Chen
- Drug Discovery and
Design Center, Shanghai Institute of Materia Medica, Chinese Academy
of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Wuyan Chen
- Drug Discovery and
Design Center, Shanghai Institute of Materia Medica, Chinese Academy
of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Kevin M. Felsenstein
- Department of Neuroscience,
Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, Florida 32610,
United States
| | - Thomas B. Ladd
- Department of Neuroscience,
Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, Florida 32610,
United States
| | - Ashleigh R. Price
- Department of Neuroscience,
Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, Florida 32610,
United States
| | - Todd E. Golde
- Department of Neuroscience,
Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, Florida 32610,
United States
| | - Jianhua He
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai
201800, China
| | - Yechun Xu
- Drug Discovery and
Design Center, Shanghai Institute of Materia Medica, Chinese Academy
of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Yingxia Li
- School of
Pharmacy, Fudan University, Shanghai 201203,
China
| | - Hendrik Luesch
- Department of Medicinal Chemistry, University of Florida, Gainesville, Florida 32610,
United States
| |
Collapse
|
208
|
Holsinger RMD, Goense N, Bohorquez J, Strappe P. Splice variants of the Alzheimer's disease beta-secretase, BACE1. Neurogenetics 2012; 14:1-9. [PMID: 23142975 DOI: 10.1007/s10048-012-0348-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Accepted: 10/15/2012] [Indexed: 10/27/2022]
Abstract
Cleavage of the amyloid precursor protein by enzymes commonly referred to as β- and γ-secretase constitute an important process in the pathogenesis of Alzheimer's disease (AD). The regulation of this process is therefore an important subject of investigation. Numerous sources of endogenous regulation have been identified, and one of these is the relative abundance and regulation of splice variants of the β-secretase, BACE1 (β-site amyloid precursor protein cleaving enzyme 1). In this review, we will briefly discuss the main characteristics of BACE1, review the different variants of this enzyme that have been identified to date, and highlight their possible implication in AD.
Collapse
Affiliation(s)
- R M Damian Holsinger
- Laboratory of Molecular Neuroscience, Brain and Mind Research Institute, The University of Sydney, Camperdown, NSW 2050, Australia.
| | | | | | | |
Collapse
|
209
|
Kang EL, Biscaro B, Piazza F, Tesco G. BACE1 protein endocytosis and trafficking are differentially regulated by ubiquitination at lysine 501 and the Di-leucine motif in the carboxyl terminus. J Biol Chem 2012; 287:42867-80. [PMID: 23109336 DOI: 10.1074/jbc.m112.407072] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
β-Site amyloid precursor protein-cleaving enzyme (BACE1) is a membrane-tethered member of the aspartyl proteases that has been identified as β-secretase. BACE1 is targeted through the secretory pathway to the plasma membrane and then is internalized to endosomes. Sorting of membrane proteins to the endosomes and lysosomes is regulated by the interaction of signals present in their carboxyl-terminal fragment with specific trafficking molecules. The BACE1 carboxyl-terminal fragment contains a di-leucine sorting signal ((495)DDISLL(500)) and a ubiquitination site at Lys-501. Here, we report that lack of ubiquitination at Lys-501 (BACE1K501R) does not affect the rate of endocytosis but produces BACE1 stabilization and accumulation of BACE1 in early and late endosomes/lysosomes as well as at the cell membrane. In contrast, the disruption of the di-leucine motif (BACE1LLAA) greatly impairs BACE1 endocytosis and produces a delayed retrograde transport of BACE1 to the trans-Golgi network (TGN) and a delayed delivery of BACE1 to the lysosomes, thus decreasing its degradation. Moreover, the combination of the lack of ubiquitination at Lys-501 and the disruption of the di-leucine motif (BACE1LLAA/KR) produces additive effects on BACE1 stabilization and defective internalization. Finally, BACE1LLAA/KR accumulates in the TGN, while its levels are decreased in EEA1-positive compartments indicating that both ubiquitination at Lys-501 and the di-leucine motif are necessary for the trafficking of BACE1 from the TGN to early endosomes. Our studies have elucidated a differential role for the di-leucine motif and ubiquitination at Lys-501 in BACE1 endocytosis, trafficking, and degradation and suggest the involvement of multiple adaptor molecules.
Collapse
Affiliation(s)
- Eugene L Kang
- Alzheimer's Disease Research Laboratory, Department of Neuroscience, Tufts University School of Medicine, Boston, Massachusetts 02111, USA
| | | | | | | |
Collapse
|
210
|
Membrane proteases in the bacterial protein secretion and quality control pathway. Microbiol Mol Biol Rev 2012; 76:311-30. [PMID: 22688815 DOI: 10.1128/mmbr.05019-11] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Proteolytic cleavage of proteins that are permanently or transiently associated with the cytoplasmic membrane is crucially important for a wide range of essential processes in bacteria. This applies in particular to the secretion of proteins and to membrane protein quality control. Major progress has been made in elucidating the structure-function relationships of many of the responsible membrane proteases, including signal peptidases, signal peptide hydrolases, FtsH, the rhomboid protease GlpG, and the site 1 protease DegS. These enzymes employ very different mechanisms to cleave substrates at the cytoplasmic and extracytoplasmic membrane surfaces or within the plane of the membrane. This review highlights the different ways that bacterial membrane proteases degrade their substrates, with special emphasis on catalytic mechanisms and substrate delivery to the respective active sites.
Collapse
|
211
|
Cosconati S, Marinelli L, Di Leva FS, La Pietra V, De Simone A, Mancini F, Andrisano V, Novellino E, Goodsell DS, Olson AJ. Protein flexibility in virtual screening: the BACE-1 case study. J Chem Inf Model 2012; 52:2697-704. [PMID: 23005250 DOI: 10.1021/ci300390h] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Simulating protein flexibility is a major issue in the docking-based drug-design process for which a single methodological solution does not exist. In our search of new anti-Alzheimer ligands, we were faced with the challenge of including receptor plasticity in a virtual screening campaign aimed at finding new β-secretase inhibitors. To this aim, we incorporated protein flexibility in our simulations by using an ensemble of static X-ray enzyme structures to screen the National Cancer Institute database. A unified description of the protein motion was also generated by computing and combining a set of grid maps using an energy weighting scheme. Such a description was used in an energy-weighted virtual screening experiment on the same molecular database. Assessment of the enrichment factors from these two virtual screening approaches demonstrated comparable predictive powers, with the energy-weighted method being faster than the ensemble method. The in vitro evaluation demonstrated that out of the 32 tested ligands, 17 featured the predicted enzyme inhibiting property. Such an impressive success rate (53.1%) demonstrates the enhanced power of the two methodologies and suggests that energy-weighted virtual screening is a more than valid alternative to ensemble virtual screening given its reduced computational demands and comparable performance.
Collapse
Affiliation(s)
- Sandro Cosconati
- Dipartimento Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Seconda Università di Napoli, Via Vivaldi 43, 81100 Caserta, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
212
|
Gravenfors Y, Viklund J, Blid J, Ginman T, Karlström S, Kihlström J, Kolmodin K, Lindström J, von Berg S, von Kieseritzky F, Bogar K, Slivo C, Swahn BM, Olsson LL, Johansson P, Eketjäll S, Fälting J, Jeppsson F, Strömberg K, Janson J, Rahm F. New aminoimidazoles as β-secretase (BACE-1) inhibitors showing amyloid-β (Aβ) lowering in brain. J Med Chem 2012; 55:9297-311. [PMID: 23017051 DOI: 10.1021/jm300991n] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Amino-2H-imidazoles are described as a new class of BACE-1 inhibitors for the treatment of Alzheimer's disease. Synthetic methods, crystal structures, and structure-activity relationships for target activity, permeability, and hERG activity are reported and discussed. Compound (S)-1m was one of the most promising compounds in this report, with high potency in the cellular assay and a good overall profile. When guinea pigs were treated with compound (S)-1m, a concentration and time dependent decrease in Aβ40 and Aβ42 levels in plasma, brain, and CSF was observed. The maximum reduction of brain Aβ was 40-50%, 1.5 h after oral dosing (100 μmol/kg). The results presented highlight the potential of this new class of BACE-1 inhibitors with good target potency and with low effect on hERG, in combination with a fair CNS exposure in vivo.
Collapse
Affiliation(s)
- Ylva Gravenfors
- Department of Medicinal Chemistry, AstraZeneca R&D Södertälje, SE-151 85 Södertälje, Sweden.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
213
|
Wang W, Fan L, Xu D, Wen Z, Yu R, Ma Q. Immunotherapy for Alzheimer's disease. Acta Biochim Biophys Sin (Shanghai) 2012; 44:807-14. [PMID: 22899646 DOI: 10.1093/abbs/gms065] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Alzheimer's disease (AD) is characterized by β-amyloid (Aβ) plaques consisted primarily of aggregated Aβ proteins and neurofibrillary tangles formed by hyperphosphorylated tau protein. Both Aβ and hyperphosphorylated tau are toxic both in vivo and in vitro. Immunotherapy targeting Aβ seems to provide a promising approach to reduce the toxic species in the brain. However, there is little evidence from clinical trials so far indicating the efficacy of Aβ immunotherapy in cognitive improvement. Immunization with tau peptides or anti-tau antibodies could remove the tau aggregates and improve the cognitive function in preclinical study, which provides a novel strategy of AD therapy. In this article, we will summarize the immunotherapeutic strategies targeting either Aβ or tau.
Collapse
Affiliation(s)
- Weihua Wang
- Institute of Neuroscience, Soochow University, Suzhou, China
| | | | | | | | | | | |
Collapse
|
214
|
Swahn BM, Kolmodin K, Karlström S, von Berg S, Söderman P, Holenz J, Berg S, Lindström J, Sundström M, Turek D, Kihlström J, Slivo C, Andersson L, Pyring D, Rotticci D, Öhberg L, Kers A, Bogar K, von Kieseritzky F, Bergh M, Olsson LL, Janson J, Eketjäll S, Georgievska B, Jeppsson F, Fälting J. Design and Synthesis of β-Site Amyloid Precursor Protein Cleaving Enzyme (BACE1) Inhibitors with in Vivo Brain Reduction of β-Amyloid Peptides. J Med Chem 2012; 55:9346-61. [DOI: 10.1021/jm3009025] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Lise-Lotte Olsson
- Discovery Sciences, AstraZeneca R&D Mölndal, SE-43183 Mölndal, Sweden
| | | | | | | | | | | |
Collapse
|
215
|
Ghosh AK, Venkateswara Rao K, Yadav ND, Anderson DD, Gavande N, Huang X, Terzyan S, Tang J. Structure-based design of highly selective β-secretase inhibitors: synthesis, biological evaluation, and protein-ligand X-ray crystal structure. J Med Chem 2012; 55:9195-207. [PMID: 22954357 DOI: 10.1021/jm3008823] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The structure-based design, synthesis, and X-ray structure of protein-ligand complexes of exceptionally potent and selective β-secretase inhibitors are described. The inhibitors are designed specifically to interact with S(1)' active site residues to provide selectivity over memapsin 1 and cathepsin D. Inhibitor 5 has exhibited exceedingly potent inhibitory activity (K(i) = 17 pM) and high selectivity over BACE 2 (>7000-fold) and cathepsin D (>250000-fold). A protein-ligand crystal structure revealed important molecular insight into these selectivities. These interactions may serve as an important guide to design selectivity over the physiologically important aspartic acid proteases.
Collapse
Affiliation(s)
- Arun K Ghosh
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907, United States.
| | | | | | | | | | | | | | | |
Collapse
|
216
|
Schenk D, Basi GS, Pangalos MN. Treatment strategies targeting amyloid β-protein. Cold Spring Harb Perspect Med 2012; 2:a006387. [PMID: 22951439 DOI: 10.1101/cshperspect.a006387] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
With the advent of the key discovery in the mid-1980s that the amyloid β-protein (Aβ) is the core constituent of the amyloid plaque pathology found in Alzheimer disease (AD), an intensive effort has been underway to attempt to mitigate its role in the hope of treating the disease. This effort fully matured when it was clarified that the Aβ is a normal product of cleavage of the amyloid precursor protein, and well-defined proteases for this process were identified. Further therapeutic options have been developed around the concept of anti-Aβ aggregation inhibitors and the surprising finding that immunization with Aβ itself leads to reduction of pathology in animal models of the disease. Here we review the progress in this field toward the goal of targeting Aβ for treatment and prevention of AD and identify some of the major challenges for the future of this area of medicine.
Collapse
Affiliation(s)
- Dale Schenk
- Netotope Biosciences Inc., San Francisco, CA 94080, USA
| | | | | |
Collapse
|
217
|
Surface plasmon resonance, fluorescence, and circular dichroism studies for the characterization of the binding of BACE-1 inhibitors. Anal Bioanal Chem 2012; 405:827-35. [DOI: 10.1007/s00216-012-6312-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2012] [Revised: 07/21/2012] [Accepted: 07/30/2012] [Indexed: 10/28/2022]
|
218
|
Liu S, Fu R, Cheng X, Chen SP, Zhou LH. Exploring the binding of BACE-1 inhibitors using comparative binding energy analysis (COMBINE). BMC STRUCTURAL BIOLOGY 2012; 12:21. [PMID: 22925713 PMCID: PMC3533579 DOI: 10.1186/1472-6807-12-21] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2011] [Accepted: 08/03/2012] [Indexed: 01/14/2023]
Abstract
BACKGROUND The inhibition of the activity of β-secretase (BACE-1) is a potentially important approach for the treatment of Alzheimer disease. To explore the mechanism of inhibition, we describe the use of 46 X-ray crystallographic BACE-1/inhibitor complexes to derive quantitative structure-activity relationship (QSAR) models. The inhibitors were aligned by superimposing 46 X-ray crystallographic BACE-1/inhibitor complexes, and gCOMBINE software was used to perform COMparative BINding Energy (COMBINE) analysis on these 46 minimized BACE-1/inhibitor complexes. The major advantage of the COMBINE analysis is that it can quantitatively extract key residues involved in binding the ligand and identify the nature of the interactions between the ligand and receptor. RESULTS By considering the contributions of the protein residues to the electrostatic and van der Waals intermolecular interaction energies, two predictive and robust COMBINE models were developed: (i) the 3-PC distance-dependent dielectric constant model (built from a single X-ray crystal structure) with a q2 value of 0.74 and an SDEC value of 0.521; and (ii) the 5-PC sigmoidal electrostatic model (built from the actual complexes present in the Brookhaven Protein Data Bank) with a q2 value of 0.79 and an SDEC value of 0.41. CONCLUSIONS These QSAR models and the information describing the inhibition provide useful insights into the design of novel inhibitors via the optimization of the interactions between ligands and those key residues of BACE-1.
Collapse
Affiliation(s)
- Shu Liu
- Guangdong Province Key Laboratory of Functional Molecules in Oceanic Microorganism, Zhong Shan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, People’s Republic of China
- Department of Anatomy, Zhong Shan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, People’s Republic of China
| | - Rao Fu
- Department of Anatomy, Zhong Shan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, People’s Republic of China
| | - Xiao Cheng
- Department of Anatomy, Zhong Shan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, People’s Republic of China
| | - Sheng-Ping Chen
- Guangdong Province Key Laboratory of Functional Molecules in Oceanic Microorganism, Zhong Shan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, People’s Republic of China
| | - Li-Hua Zhou
- Department of Anatomy, Zhong Shan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, People’s Republic of China
| |
Collapse
|
219
|
Wood S, Wen PH, Zhang J, Zhu L, Luo Y, Babu-Khan S, Chen K, Pham R, Esmay J, Dineen TA, Kaller MR, Weiss MM, Hitchcock SA, Citron M, Zhong W, Hickman D, Williamson T. Establishing the Relationship between In Vitro Potency, Pharmacokinetic, and Pharmacodynamic Parameters in a Series of Orally Available, Hydroxyethylamine-Derived β-Secretase Inhibitors. J Pharmacol Exp Ther 2012; 343:460-7. [DOI: 10.1124/jpet.112.197954] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
|
220
|
Sathya M, Premkumar P, Karthick C, Moorthi P, Jayachandran KS, Anusuyadevi M. BACE1 in Alzheimer's disease. Clin Chim Acta 2012; 414:171-8. [PMID: 22926063 DOI: 10.1016/j.cca.2012.08.013] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2012] [Revised: 08/08/2012] [Accepted: 08/15/2012] [Indexed: 12/18/2022]
Abstract
Targeting BACE1 (β-site APP cleaving enzyme 1 or β-secretase) is the focus of Alzheimer's disease (AD) research because this aspartyl protease is involved in the abnormal production of β amyloid plaques (Aβ), the hallmark of its pathophysiology. Evidence suggests that there is a strong connection between AD and BACE1. As such, strategies to inhibit Aβ formation in the brain should prove beneficial for AD treatment. Aβ, the product of the large type1 trans-membrane protein amyloid precursor protein (APP), is produced in a two-step proteolytic process initiated by BACE1 (β-secretase) and followed by γ-secretase. Due to its apparent rate limiting function, BACE1 appears to be a prime target to prevent Aβ generation in AD. Following its discovery, the BACE1 has been cloned, its structure solved, novel physiologic substrates discovered and numerous inhibitors developed. This review focuses on elucidating the role of BACE1 to facilitate drug development in the treatment of AD.
Collapse
Affiliation(s)
- M Sathya
- Department of Biochemistry, Bharathidasan University, Trichy 24, India
| | | | | | | | | | | |
Collapse
|
221
|
What have we learned from the streptozotocin-induced animal model of sporadic Alzheimer’s disease, about the therapeutic strategies in Alzheimer’s research. J Neural Transm (Vienna) 2012; 120:233-52. [DOI: 10.1007/s00702-012-0877-9] [Citation(s) in RCA: 145] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Accepted: 07/26/2012] [Indexed: 12/30/2022]
|
222
|
Hamada Y, Kiso Y. The application of bioisosteres in drug design for novel drug discovery: focusing on acid protease inhibitors. Expert Opin Drug Discov 2012; 7:903-22. [PMID: 22873630 DOI: 10.1517/17460441.2012.712513] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION A bioisostere is a powerful concept for medicinal chemistry. It allows the improvement of the stability; oral absorption; membrane permeability; and absorption, distribution, metabolism and excretion (ADME) of drug candidate, while retaining their biological properties. The term 'bioisostere' is derived from 'isostere', whose physical and chemical properties, such as steric size, hydrophobicity, and electronegativity, are similar to those of a functional or atomic group, and is considered to possess biological properties. Here, the authors highlight the recent applications of bioisosteres in drug design, mainly based on our drug discovery studies. AREAS COVERED This review discusses the application of bioisosteres for novel drug discovery with focus on the authors' drug discovery studies such as renin, HIV-protease, and β-secretase inhibitors. The authors highlight that some bioisosteres can form the scaffolding for drug candidates, namely substrate transition state, amide/ester, and carboxylic acid bioisosteres. Moreover, the authors propose the new terms 'electron-donor bioisostere' and 'conformational bioisostere' for drug discovery. EXPERT OPINION The authors discuss the importance of bioisostere's design concept based on specific interaction with the corresponding biomolecule. In addition, some strategies for drug discovery based on the bioisostere concept are introduced. Many bioisosteres, which are recognized by corresponding target biomolecules as exhibiting similar biological properties, have been reported to date; most of the recently developed bioisosteres were designed by cheminformatics approaches. Some molecular design softwares and databases are introduced.
Collapse
Affiliation(s)
- Yoshio Hamada
- Faculty of Pharmaceutical Sciences , Kobe Gakuin University, Minatojima, Chuo-ku, Kobe, Japan
| | | |
Collapse
|
223
|
Gulati V, Wallace R. Rafts, Nanoparticles and Neural Disease. NANOMATERIALS (BASEL, SWITZERLAND) 2012; 2:217-250. [PMID: 28348305 PMCID: PMC5304588 DOI: 10.3390/nano2030217] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Revised: 07/19/2012] [Accepted: 07/20/2012] [Indexed: 11/17/2022]
Abstract
This review examines the role of membrane rafts in neural disease as a rationale for drug targeting utilizing lipid-based nanoparticles. The article begins with an overview of methodological issues involving the existence, sizes, and lifetimes of rafts, and then examines raft function in the etiologies of three major neural diseases-epilepsy, Parkinson's disease, and Alzheimer's disease-selected as promising candidates for raft-based therapeutics. Raft-targeting drug delivery systems involving liposomes and solid lipid nanoparticles are then examined in detail.
Collapse
Affiliation(s)
- Vishal Gulati
- Ross University School of Medicine, Miami Beach Community Health Center, 11645 Biscayne Boulevard, North Miami, FL 33181, USA.
| | - Ron Wallace
- Department of Anthropology, University of Central Florida, Orlando, FL 32816, USA.
| |
Collapse
|
224
|
Experimental and ‘in silico’ analysis of the effect of pH on HIV-1 protease inhibitor affinity: Implications for the charge state of the protein ionogenic groups. Bioorg Med Chem 2012; 20:4838-47. [DOI: 10.1016/j.bmc.2012.05.070] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Revised: 05/21/2012] [Accepted: 05/25/2012] [Indexed: 11/21/2022]
|
225
|
Ghosh AK, Pandey S, Gangarajula S, Kulkarni S, Xu X, Rao KV, Huang X, Tang J. Structure-based design, synthesis, and biological evaluation of dihydroquinazoline-derived potent β-secretase inhibitors. Bioorg Med Chem Lett 2012; 22:5460-5. [PMID: 22863204 DOI: 10.1016/j.bmcl.2012.07.043] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2012] [Revised: 07/06/2012] [Accepted: 07/09/2012] [Indexed: 11/25/2022]
Abstract
Structure-based design, synthesis, and biological evaluation of a series of dihydroquinazoline-derived β-secretase inhibitors incorporating thiazole and pyrazole-derived P2-ligands are described. We have identified inhibitor 4f which has shown potent enzyme inhibitory (K(i)=13 nM) and cellular (IC(50)=21 nM in neuroblastoma cells) assays. A model of 4f was created based upon the X-ray structure of 3a-bound β-secretase. The model suggested possible interactions in the active site.
Collapse
Affiliation(s)
- Arun K Ghosh
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, United States.
| | | | | | | | | | | | | | | |
Collapse
|
226
|
Zhou T, Caflisch A. Distribution of Reciprocal of Interatomic Distances: A Fast Structural Metric. J Chem Theory Comput 2012; 8:2930-7. [PMID: 26592131 DOI: 10.1021/ct3003145] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
We present a structural metric based on the Distribution of Reciprocal of Interatomic Distances (DRID) for evaluating geometrical similarity between two conformations of a molecule. A molecular conformation is described by a vector of 3N orientation-independent DRID descriptors where N is the number of molecular centroids, for example, the non-hydrogen atoms in all nonsymmetric groups of a peptide. For two real-world applications (pairwise comparison of snapshots from an explicit solvent simulation of a protease/peptide substrate complex and implicit solvent simulations of reversible folding of a 20-residue β-sheet peptide), the DRID-based metric is shown to be about 5 and 15 times faster than coordinate root-mean-square deviation (cRMSD) and distance root-mean-square deviation (dRMSD), respectively. A single core of a mainstream processor can perform about 10(8) DRID comparisons in one-half a minute. Importantly, the DRID metric has closer similarity to kinetic distance than does either cRMSD or dRMSD. Therefore, DRID is suitable for clustering molecular dynamics trajectories for kinetic analysis, for example, by Markov state models. Moreover, conformational space networks and free energy profiles derived by DRID-based clustering preserve the kinetic information.
Collapse
Affiliation(s)
- Ting Zhou
- Department of Biochemistry, University of Zurich , CH-8057 Zurich, Switzerland
| | - Amedeo Caflisch
- Department of Biochemistry, University of Zurich , CH-8057 Zurich, Switzerland
| |
Collapse
|
227
|
Hamley IW. The Amyloid Beta Peptide: A Chemist’s Perspective. Role in Alzheimer’s and Fibrillization. Chem Rev 2012; 112:5147-92. [DOI: 10.1021/cr3000994] [Citation(s) in RCA: 670] [Impact Index Per Article: 55.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- I. W. Hamley
- Department
of Chemistry, University of Reading, Whiteknights, Reading RG6 6AD,
U.K
| |
Collapse
|
228
|
Jiaranaikulwanitch J, Govitrapong P, Fokin VV, Vajragupta O. From BACE1 inhibitor to multifunctionality of tryptoline and tryptamine triazole derivatives for Alzheimer's disease. Molecules 2012; 17:8312-33. [PMID: 22781443 PMCID: PMC3618987 DOI: 10.3390/molecules17078312] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2012] [Revised: 06/25/2012] [Accepted: 07/05/2012] [Indexed: 02/04/2023] Open
Abstract
Efforts to discover new drugs for Alzheimer’s disease emphasizing multiple targets was conducted seeking to inhibit amyloid oligomer formation and to prevent radical formation. The tryptoline and tryptamine cores of BACE1 inhibitors previously identified by virtual screening were modified in silico for additional modes of action. These core structures were readily linked to different side chains using 1,2,3-triazole rings as bridges by copper catalyzed azide-alkyne cycloaddition reactions. Three compounds among the sixteen designed compounds exerted multifunctional activities including β-secretase inhibitory action, anti-amyloid aggregation, metal chelating and antioxidant effects at micromolar levels. The neuroprotective effects of the multifunctional compounds 6h, 12c and 12h on Aβ1-42 induced neuronal cell death at 1 μM were significantly greater than those of the potent single target compound, BACE1 inhibitor IV and were comparable to curcumin. The observed synergistic effect resulting from the reduction of the Aβ1-42 neurotoxicity cascade substantiates the validity of our multifunctional strategy in drug discovery for Alzheimer’s disease.
Collapse
Affiliation(s)
- Jutamas Jiaranaikulwanitch
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Mahidol University, 447 Sri-Ayudhya Road, Bangkok 10400, Thailand
| | - Piyarat Govitrapong
- Center for Neuroscience, Faculty of Science, Mahidol University, 272 Rama VI Road, Rajathevi, Bangkok 10400, Thailand
| | - Valery V. Fokin
- Department of Chemistry, The Scripps Research Institute, 10500 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Opa Vajragupta
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Mahidol University, 447 Sri-Ayudhya Road, Bangkok 10400, Thailand
- Author to whom correspondence should be addressed; ; Tel.: +66-2-644-8677; Fax: +66-2-644-8695
| |
Collapse
|
229
|
Kumar AB, Anderson JM, Melendez AL, Manetsch R. Synthesis and structure-activity relationship studies of 1,3-disubstituted 2-propanols as BACE-1 inhibitors. Bioorg Med Chem Lett 2012; 22:4740-4. [PMID: 22727644 DOI: 10.1016/j.bmcl.2012.05.072] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2012] [Revised: 05/16/2012] [Accepted: 05/18/2012] [Indexed: 12/11/2022]
Abstract
A library of 1,3-disubstituted 2-propanols was synthesized and evaluated as low molecular weight probes for β-secretase inhibition. By screening a library of 121 1,3-disubstituted 2-propanol derivatives, we identified few compounds inhibiting the enzyme at low micromolar concentrations. The initial hits were optimized to yield a potent BACE-1 inhibitor exhibiting an IC(50) constant in the nanomolar range. Exploration of the pharmacological properties revealed that these small molecular inhibitors possessed a high selectivity over cathepsin D and desirable physicochemical properties beneficial to cross the blood-brain barrier.
Collapse
Affiliation(s)
- Arun Babu Kumar
- Department of Chemistry, University of South Florida, CHE 205, 4202 E. Fowler Ave, Tampa, FL 33620, USA
| | | | | | | |
Collapse
|
230
|
Hamada Y, Nakanishi T, Suzuki K, Yamaguchi R, Hamada T, Hidaka K, Ishiura S, Kiso Y. Novel BACE1 inhibitors possessing a 5-nitroisophthalic scaffold at the P2 position. Bioorg Med Chem Lett 2012; 22:4640-4. [PMID: 22726930 DOI: 10.1016/j.bmcl.2012.05.089] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2012] [Revised: 05/23/2012] [Accepted: 05/24/2012] [Indexed: 11/19/2022]
Abstract
Recently, we reported substrate-based pentapeptidic BACE1 inhibitors possessing a hydroxymethylcarbonyl isostere as a substrate transition-state mimic. These inhibitors showed potent inhibitory activities in enzymatic and cell assays. We also designed and synthesized non-peptidic and small-sized inhibitors possessing a heterocyclic scaffold at the P(2) position. By studying the structure-activity relationship of these inhibitors, we found that the σ-π interaction of an inhibitor with the BACE1-Arg235 side chain played a key role in the inhibition mechanism. Hence, we optimized the inhibitors with a focus on their P(2) regions. In this Letter, a series of novel BACE1 inhibitors possessing a 5-nitroisophthalic scaffold at the P(2) position are described along with the results of the related structure-activity relationship study. These small-sized inhibitors are expected improved membrane permeability and bioavailability.
Collapse
Affiliation(s)
- Yoshio Hamada
- Faculty of Pharmaceutical Sciences, Kobe Gakuin University, Minatojima, Chuo-ku, Kobe 650-8586, Japan
| | | | | | | | | | | | | | | |
Collapse
|
231
|
Barman A, Prabhakar R. Protonation states of the catalytic dyad of β-secretase (BACE1) in the presence of chemically diverse inhibitors: a molecular docking study. J Chem Inf Model 2012; 52:1275-87. [PMID: 22545704 DOI: 10.1021/ci200611t] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
In this molecular docking study, the protonation states of the catalytic Asp dyad of the beta-secretase (BACE1) enzyme in the presence of eight chemically diverse inhibitors have been predicted. BACE1 catalyzes the rate-determining step in the generation of Alzheimer amyloid beta peptides and is widely considered as a promising therapeutic target. All the inhibitors were redocked into their corresponding X-ray structures using a combination of eight different protonation states of the Asp dyad for each inhibitor. Five inhibitors were primarily found to favor two different monoprotonated states, and the remaining three favor a dideprotonated state. In addition, five of them exhibited secondary preference for a diprotonated state. These results show that the knowledge of a single protonation state of the Asp dyad is not sufficient to search for the novel inhibitors of BACE1 and the most plausible state for each inhibitor must be determined prior to conducting in-silico screening.
Collapse
Affiliation(s)
- Arghya Barman
- Department of Chemistry, University of Miami, 1301 Memorial Drive, Coral Gables, Florida 33146, USA
| | | |
Collapse
|
232
|
Kacker P, Masetti M, Mangold M, Bottegoni G, Cavalli A. Combining dyad protonation and active site plasticity in BACE-1 structure-based drug design. J Chem Inf Model 2012; 52:1079-85. [PMID: 22313091 DOI: 10.1021/ci200366z] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The ability of the BACE-1 catalytic dyad to adopt multiple protonation states and the conformational flexibility of the active site have hampered the reliability of computational screening campaigns carried out on this drug target for Alzheimer's disease. Here, we propose a protocol that, for the first time, combining quantum mechanical calculations, molecular dynamics, and conformational ensemble virtual ligand screening addresses these issues simultaneously. The encouraging results prefigure this approach as a valuable tool for future drug discovery campaigns.
Collapse
|
233
|
Efremov IV, Vajdos FF, Borzilleri KA, Capetta S, Chen H, Dorff PH, Dutra JK, Goldstein SW, Mansour M, McColl A, Noell S, Oborski CE, O’Connell TN, O’Sullivan TJ, Pandit J, Wang H, Wei B, Withka JM. Discovery and Optimization of a Novel Spiropyrrolidine Inhibitor of β-Secretase (BACE1) through Fragment-Based Drug Design. J Med Chem 2012; 55:9069-88. [DOI: 10.1021/jm201715d] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Ivan V. Efremov
- Pfizer Worldwide Research, Groton Laboratories, Eastern Point Road,
Groton, Connecticut 06340, United States
| | - Felix F. Vajdos
- Pfizer Worldwide Research, Groton Laboratories, Eastern Point Road,
Groton, Connecticut 06340, United States
| | - Kris A. Borzilleri
- Pfizer Worldwide Research, Groton Laboratories, Eastern Point Road,
Groton, Connecticut 06340, United States
| | - Steven Capetta
- Pfizer Worldwide Research, Groton Laboratories, Eastern Point Road,
Groton, Connecticut 06340, United States
| | - Hou Chen
- Pfizer Worldwide Research, Groton Laboratories, Eastern Point Road,
Groton, Connecticut 06340, United States
| | - Peter H. Dorff
- Pfizer Worldwide Research, Groton Laboratories, Eastern Point Road,
Groton, Connecticut 06340, United States
| | - Jason K. Dutra
- Pfizer Worldwide Research, Groton Laboratories, Eastern Point Road,
Groton, Connecticut 06340, United States
| | - Steven W. Goldstein
- Pfizer Worldwide Research, Groton Laboratories, Eastern Point Road,
Groton, Connecticut 06340, United States
| | - Mahmoud Mansour
- Pfizer Worldwide Research, Groton Laboratories, Eastern Point Road,
Groton, Connecticut 06340, United States
| | - Alexander McColl
- Pfizer Worldwide Research, Groton Laboratories, Eastern Point Road,
Groton, Connecticut 06340, United States
| | - Stephen Noell
- Pfizer Worldwide Research, Groton Laboratories, Eastern Point Road,
Groton, Connecticut 06340, United States
| | - Christine E. Oborski
- Pfizer Worldwide Research, Groton Laboratories, Eastern Point Road,
Groton, Connecticut 06340, United States
| | - Thomas N. O’Connell
- Pfizer Worldwide Research, Groton Laboratories, Eastern Point Road,
Groton, Connecticut 06340, United States
| | - Theresa J. O’Sullivan
- Pfizer Worldwide Research, Groton Laboratories, Eastern Point Road,
Groton, Connecticut 06340, United States
| | - Jayvardhan Pandit
- Pfizer Worldwide Research, Groton Laboratories, Eastern Point Road,
Groton, Connecticut 06340, United States
| | - Hong Wang
- Pfizer Worldwide Research, Groton Laboratories, Eastern Point Road,
Groton, Connecticut 06340, United States
| | - BinQing Wei
- Pfizer Worldwide Research, Groton Laboratories, Eastern Point Road,
Groton, Connecticut 06340, United States
| | - Jane M. Withka
- Pfizer Worldwide Research, Groton Laboratories, Eastern Point Road,
Groton, Connecticut 06340, United States
| |
Collapse
|
234
|
Haass C, Kaether C, Thinakaran G, Sisodia S. Trafficking and proteolytic processing of APP. Cold Spring Harb Perspect Med 2012; 2:a006270. [PMID: 22553493 PMCID: PMC3331683 DOI: 10.1101/cshperspect.a006270] [Citation(s) in RCA: 746] [Impact Index Per Article: 62.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Accumulations of insoluble deposits of amyloid β-peptide are major pathological hallmarks of Alzheimer disease. Amyloid β-peptide is derived by sequential proteolytic processing from a large type I trans-membrane protein, the β-amyloid precursor protein. The proteolytic enzymes involved in its processing are named secretases. β- and γ-secretase liberate by sequential cleavage the neurotoxic amyloid β-peptide, whereas α-secretase prevents its generation by cleaving within the middle of the amyloid domain. In this chapter we describe the cell biological and biochemical characteristics of the three secretase activities involved in the proteolytic processing of the precursor protein. In addition we outline how the precursor protein maturates and traffics through the secretory pathway to reach the subcellular locations where the individual secretases are preferentially active. Furthermore, we illuminate how neuronal activity and mutations which cause familial Alzheimer disease affect amyloid β-peptide generation and therefore disease onset and progression.
Collapse
Affiliation(s)
- Christian Haass
- DZNE-German Center for Neurodegenerative Diseases, 80336 Munich, Germany; Adolf Butenandt-Institute, Biochemistry, Ludwig-Maximilians University, 80336 Munich, Germany.
| | | | | | | |
Collapse
|
235
|
Niu Y, Ma C, Jin H, Xu F, Gao H, Liu P, Li Y, Wang C, Yang G, Xu P. The Discovery of Novel β-Secretase Inhibitors: Pharmacophore Modeling, Virtual Screening, and Docking Studies. Chem Biol Drug Des 2012; 79:972-80. [DOI: 10.1111/j.1747-0285.2012.01367.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
236
|
Fehler SK, Pratsch G, Huber W, Gast A, Hochstrasser R, Hennig M, Heinrich MR. Synthesis and biological evaluation of 3-aryltyramines as fragments binding to BACE-1 and BACE-2. Tetrahedron Lett 2012. [DOI: 10.1016/j.tetlet.2012.02.070] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
237
|
Dislich B, Lichtenthaler SF. The Membrane-Bound Aspartyl Protease BACE1: Molecular and Functional Properties in Alzheimer's Disease and Beyond. Front Physiol 2012; 3:8. [PMID: 22363289 PMCID: PMC3281277 DOI: 10.3389/fphys.2012.00008] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Accepted: 01/11/2012] [Indexed: 12/31/2022] Open
Abstract
The β-site APP cleaving enzyme 1 (BACE1) is a transmembrane aspartyl protease involved in Alzheimer’s disease (AD) pathogenesis and in myelination. BACE1 initiates the generation of the pathogenic amyloid β-peptide, which makes BACE1 a major drug target for AD. BACE1 also cleaves and activates neuregulin 1, thereby contributing to postnatal myelination, in particular in the peripheral nervous system. Additional proteins are also cleaved by BACE1, but less is known about the physiological consequences of their cleavage. Recently, new phenotypes were described in BACE1-deficient mice. Although it remains unclear through which BACE1 substrates they are mediated, the phenotypes suggest a versatile role of this protease for diverse physiological processes. This review summarizes the enzymatic and cellular properties of BACE1 as well as its regulation by lipids, by transcriptional, and by translational mechanisms. The main focus will be on the recent progress in understanding BACE1 function and its implication for potential mechanism-based side effects upon therapeutic inhibition.
Collapse
Affiliation(s)
- Bastian Dislich
- German Center for Neurodegenerative Diseases (DZNE) Munich, Germany
| | | |
Collapse
|
238
|
Structure based design of iminohydantoin BACE1 inhibitors: identification of an orally available, centrally active BACE1 inhibitor. Bioorg Med Chem Lett 2012; 22:2444-9. [PMID: 22390835 DOI: 10.1016/j.bmcl.2012.02.013] [Citation(s) in RCA: 100] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Revised: 02/03/2012] [Accepted: 02/06/2012] [Indexed: 11/21/2022]
Abstract
From an initial lead 1, a structure-based design approach led to identification of a novel, high-affinity iminohydantoin BACE1 inhibitor that lowers CNS-derived Aβ following oral administration to rats. Herein we report SAR development in the S3 and F' subsites of BACE1 for this series, the synthetic approaches employed in this effort, and in vivo data for the optimized compound.
Collapse
|
239
|
Chiriano G, De Simone A, Mancini F, Perez DI, Cavalli A, Bolognesi ML, Legname G, Martinez A, Andrisano V, Carloni P, Roberti M. A small chemical library of 2-aminoimidazole derivatives as BACE-1 inhibitors: Structure-based design, synthesis, and biological evaluation. Eur J Med Chem 2012; 48:206-13. [DOI: 10.1016/j.ejmech.2011.12.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2011] [Revised: 11/03/2011] [Accepted: 12/09/2011] [Indexed: 10/14/2022]
|
240
|
Fernández-Bachiller MI, Pérez C, Monjas L, Rademann J, Rodríguez-Franco MI. New Tacrine–4-Oxo-4H-chromene Hybrids as Multifunctional Agents for the Treatment of Alzheimer’s Disease, with Cholinergic, Antioxidant, and β-Amyloid-Reducing Properties. J Med Chem 2012; 55:1303-17. [DOI: 10.1021/jm201460y] [Citation(s) in RCA: 210] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- María Isabel Fernández-Bachiller
- Instituto de Química
Médica, Consejo Superior de Investigaciones Científicas (IQM-CSIC), Juan de la Cierva 3, 28006 Madrid, Spain
- Medicinal Chemistry, Institut für Molekulare Pharmakologie (FMP),
Campus Berlin-Buch, Robert-Rössle Strasse 10, 13125 Berlin,
Germany
| | - Concepción Pérez
- Instituto de Química
Médica, Consejo Superior de Investigaciones Científicas (IQM-CSIC), Juan de la Cierva 3, 28006 Madrid, Spain
| | - Leticia Monjas
- Instituto de Química
Médica, Consejo Superior de Investigaciones Científicas (IQM-CSIC), Juan de la Cierva 3, 28006 Madrid, Spain
| | - Jörg Rademann
- Medicinal Chemistry, Institut für Molekulare Pharmakologie (FMP),
Campus Berlin-Buch, Robert-Rössle Strasse 10, 13125 Berlin,
Germany
- Medicinal Chemistry,
Institute
of Pharmacy, Leipzig University, Brüderstrasse
34, 04103 Leipzig, Germany
| | - María Isabel Rodríguez-Franco
- Instituto de Química
Médica, Consejo Superior de Investigaciones Científicas (IQM-CSIC), Juan de la Cierva 3, 28006 Madrid, Spain
| |
Collapse
|
241
|
Abstract
β-Site APP-cleaving enzyme (BACE1) cleaves the amyloid precursor protein (APP) at the β-secretase site to initiate the production of Aβ peptides. These accumulate to form toxic oligomers and the amyloid plaques associated with Alzheimer's disease (AD). An increase of BACE1 levels in the brain of AD patients has been mostly attributed to alterations of its intracellular trafficking. Golgi-associated adaptor proteins, GGA sort BACE1 for export to the endosomal compartment, which is the major cellular site of BACE1 activity. BACE1 undergoes recycling between endosome, trans-Golgi network (TGN), and the plasma membrane, from where it is endocytosed and either further recycled or retrieved to the endosome. Phosphorylation of Ser498 facilitates BACE1 recognition by GGA1 for retrieval to the endosome. Ubiquitination of BACE1 C-terminal Lys501 signals GGA3 for exporting BACE1 to the lysosome for degradation. In addition, the retromer mediates the retrograde transport of BACE1 from endosome to TGN. Decreased levels of GGA proteins and increased levels of retromer-associated sortilin have been associated with AD. Both would promote the co-localization of BACE1 and the amyloid precursor protein in the TGN and endosomes. Decreased levels of GGA3 also impair BACE1 degradation. Further understanding of BACE1 trafficking and its regulation may offer new therapeutic approaches for the treatment of Alzheimer's disease.
Collapse
Affiliation(s)
- Jiangli Tan
- Department of Pathology, and Mental Health Research Institute, The University of Melbourne, Parkville, Australia
| | | |
Collapse
|
242
|
Atwal JK, Chen Y, Chiu C, Mortensen DL, Meilandt WJ, Liu Y, Heise CE, Hoyte K, Luk W, Lu Y, Peng K, Wu P, Rouge L, Zhang Y, Lazarus RA, Scearce-Levie K, Wang W, Wu Y, Tessier-Lavigne M, Watts RJ. A therapeutic antibody targeting BACE1 inhibits amyloid-β production in vivo. Sci Transl Med 2011; 3:84ra43. [PMID: 21613622 DOI: 10.1126/scitranslmed.3002254] [Citation(s) in RCA: 209] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Reducing production of amyloid-β (Aβ) peptide by direct inhibition of the enzymes that process amyloid precursor protein (APP) is a central therapeutic strategy for treating Alzheimer's disease. However, small-molecule inhibitors of the β-secretase (BACE1) and γ-secretase APP processing enzymes have shown a lack of target selectivity and poor penetrance of the blood-brain barrier (BBB). Here, we have developed a high-affinity, phage-derived human antibody that targets BACE1 (anti-BACE1) and is anti-amyloidogenic. Anti-BACE1 reduces endogenous BACE1 activity and Aβ production in human cell lines expressing APP and in cultured primary neurons. Anti-BACE1 is highly selective and does not inhibit the related enzymes BACE2 or cathepsin D. Competitive binding assays and x-ray crystallography indicate that anti-BACE1 binds noncompetitively to an exosite on BACE1 and not to the catalytic site. Systemic dosing of mice and nonhuman primates with anti-BACE1 resulted in sustained reductions in peripheral Aβ peptide concentrations. Anti-BACE1 also reduces central nervous system Aβ concentrations in mouse and monkey, consistent with a measurable uptake of antibody across the BBB. Thus, BACE1 can be targeted in a highly selective manner through passive immunization with anti-BACE1, providing a potential approach for treating Alzheimer's disease. Nevertheless, therapeutic success with anti-BACE1 will depend on improving antibody uptake into the brain.
Collapse
Affiliation(s)
- Jasvinder K Atwal
- Neurodegeneration Labs, Department of Neuroscience, Genentech, 1 DNA Way, South San Francisco, CA 94080, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
243
|
Xu Y, Li MJ, Greenblatt H, Chen W, Paz A, Dym O, Peleg Y, Chen T, Shen X, He J, Jiang H, Silman I, Sussman JL. Flexibility of the flap in the active site of BACE1 as revealed by crystal structures and molecular dynamics simulations. ACTA CRYSTALLOGRAPHICA SECTION D: BIOLOGICAL CRYSTALLOGRAPHY 2011; 68:13-25. [DOI: 10.1107/s0907444911047251] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2011] [Accepted: 11/08/2011] [Indexed: 11/10/2022]
|
244
|
Rational design and synthesis of aminopiperazinones as β-secretase (BACE) inhibitors. Bioorg Med Chem Lett 2011; 21:7255-60. [DOI: 10.1016/j.bmcl.2011.10.050] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2011] [Revised: 10/13/2011] [Accepted: 10/14/2011] [Indexed: 11/23/2022]
|
245
|
Pharmacopore hypothesis generation of BACE-1 inhibitors and pharmacophore-driven identification of potent multi-target neuroprotective agents. Med Chem Res 2011. [DOI: 10.1007/s00044-011-9885-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
246
|
Sun X, Bromley-Brits K, Song W. Regulation of β-site APP-cleaving enzyme 1 gene expression and its role in Alzheimer's disease. J Neurochem 2011; 120 Suppl 1:62-70. [PMID: 22122349 DOI: 10.1111/j.1471-4159.2011.07515.x] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disorder leading to dementia. Neuritic plaques are the hallmark neuropathology in AD brains. Proteolytic processing of amyloid-β precursor protein at the β site by beta-site amyloid-β precursor protein-cleaving enzyme 1 (BACE1) is essential to generate Aβ, a central component of the neuritic plaques. BACE1 is increased in some sporadic AD brains, and dysregulation of BACE1 gene expression plays an important role in AD pathogenesis. This review will focus on the regulation of BACE1 gene expression at the transcriptional, post-transcriptional, translation initiation, translational and post-translational levels, and its role in AD pathogenesis. Further studies on BACE1 gene expression regulation will greatly contribute to our understanding of AD pathogenesis and reveal potential novel approaches for AD prevention and drug development.
Collapse
Affiliation(s)
- Xiulian Sun
- Townsend Family Laboratories, Department of Psychiatry, Brain Research Center, Graduate Program in Neuroscience, The University of British Columbia, Vancouver, BC, Canada.,Qilu Hospital of Shandong University, Jinan, China
| | - Kelley Bromley-Brits
- Townsend Family Laboratories, Department of Psychiatry, Brain Research Center, Graduate Program in Neuroscience, The University of British Columbia, Vancouver, BC, Canada
| | - Weihong Song
- Townsend Family Laboratories, Department of Psychiatry, Brain Research Center, Graduate Program in Neuroscience, The University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
247
|
Ghosh AK, Brindisi M, Tang J. Developing β-secretase inhibitors for treatment of Alzheimer's disease. J Neurochem 2011; 120 Suppl 1:71-83. [PMID: 22122681 DOI: 10.1111/j.1471-4159.2011.07476.x] [Citation(s) in RCA: 204] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
β-Secretase (memapsin 2; BACE-1) is the first protease in the processing of amyloid precursor protein leading to the production of amyloid-β (Aβ) in the brain. It is believed that high levels of brain Aβ are responsible for the pathogenesis of Alzheimer's disease (AD). Therefore, β-secretase is a major therapeutic target for the development of inhibitor drugs. During the past decade, steady progress has been made in the evolution of β-secretase inhibitors toward better drug properties. Recent inhibitors are potent, selective and have been shown to penetrate the blood-brain barrier to inhibit Aβ levels in the brains of experimental animals. Moreover, continuous administration of a β-secretase inhibitor was shown to rescue age-related cognitive decline in transgenic AD mice. A small number of β-secretase inhibitors have also entered early phase clinical trials. These developments offer some optimism for the clinical development of a disease-modifying drug for AD.
Collapse
Affiliation(s)
- Arun K Ghosh
- Departments of Chemistry and Medicinal Chemistry, Purdue University, West Lafayette, Indiana, USA
| | - Margherita Brindisi
- Departments of Chemistry and Medicinal Chemistry, Purdue University, West Lafayette, Indiana, USA
| | - Jordan Tang
- Protein Studies Program, Oklahoma Medical Research Foundation, University of Oklahoma Health Science Center, Oklahoma City, Oklahoma, USA
| |
Collapse
|
248
|
May PC, Dean RA, Lowe SL, Martenyi F, Sheehan SM, Boggs LN, Monk SA, Mathes BM, Mergott DJ, Watson BM, Stout SL, Timm DE, Smith LaBell E, Gonzales CR, Nakano M, Jhee SS, Yen M, Ereshefsky L, Lindstrom TD, Calligaro DO, Cocke PJ, Greg Hall D, Friedrich S, Citron M, Audia JE. Robust central reduction of amyloid-β in humans with an orally available, non-peptidic β-secretase inhibitor. J Neurosci 2011; 31:16507-16. [PMID: 22090477 PMCID: PMC6633289 DOI: 10.1523/jneurosci.3647-11.2011] [Citation(s) in RCA: 288] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2011] [Revised: 09/01/2011] [Accepted: 09/09/2011] [Indexed: 01/02/2023] Open
Abstract
According to the amyloid cascade hypothesis, cerebral deposition of amyloid-β peptide (Aβ) is critical for Alzheimer's disease (AD) pathogenesis. Aβ generation is initiated when β-secretase (BACE1) cleaves the amyloid precursor protein. For more than a decade, BACE1 has been a prime target for designing drugs to prevent or treat AD. However, development of such agents has turned out to be extremely challenging, with major hurdles in cell penetration, oral bioavailability/metabolic clearance, and brain access. Using a fragment-based chemistry strategy, we have generated LY2811376 [(S)-4-(2,4-difluoro-5-pyrimidin-5-yl-phenyl)-4-methyl-5,6-dihydro-4H-[1,3]thiazin-2-ylamine], the first orally available non-peptidic BACE1 inhibitor that produces profound Aβ-lowering effects in animals. The biomarker changes obtained in preclinical animal models translate into man at doses of LY2811376 that were safe and well tolerated in healthy volunteers. Prominent and long-lasting Aβ reductions in lumbar CSF were measured after oral dosing of 30 or 90 mg of LY2811376. This represents the first translation of BACE1-driven biomarker changes in CNS from preclinical animal models to man. Because of toxicology findings identified in longer-term preclinical studies, this compound is no longer progressing in clinical development. However, BACE1 remains a viable target because the adverse effects reported here were recapitulated in LY2811376-treated BACE1 KO mice and thus are unrelated to BACE1 inhibition. The magnitude and duration of central Aβ reduction obtainable with BACE1 inhibition positions this protease as a tractable small-molecule target through which to test the amyloid hypothesis in man.
Collapse
Affiliation(s)
- Patrick C. May
- Lilly Research Laboratories, Eli Lilly & Co., Indianapolis, Indiana 46285
| | - Robert A. Dean
- Lilly Research Laboratories, Eli Lilly & Co., Indianapolis, Indiana 46285
| | - Stephen L. Lowe
- Lilly–National University of Singapore Centre for Clinical Pharmacology, Singapore 117597, Singapore
| | - Ferenc Martenyi
- Lilly Research Laboratories, Eli Lilly & Co., Indianapolis, Indiana 46285
| | - Scott M. Sheehan
- Lilly Research Laboratories, Eli Lilly & Co., Indianapolis, Indiana 46285
| | - Leonard N. Boggs
- Lilly Research Laboratories, Eli Lilly & Co., Indianapolis, Indiana 46285
| | - Scott A. Monk
- Lilly Research Laboratories, Eli Lilly & Co., Indianapolis, Indiana 46285
| | - Brian M. Mathes
- Lilly Research Laboratories, Eli Lilly & Co., Indianapolis, Indiana 46285
| | - Dustin J. Mergott
- Lilly Research Laboratories, Eli Lilly & Co., Indianapolis, Indiana 46285
| | - Brian M. Watson
- Lilly Research Laboratories, Eli Lilly & Co., Indianapolis, Indiana 46285
| | - Stephanie L. Stout
- Lilly Research Laboratories, Eli Lilly & Co., Indianapolis, Indiana 46285
| | - David E. Timm
- Lilly Research Laboratories, Eli Lilly & Co., Indianapolis, Indiana 46285
| | | | | | | | - Stanford S. Jhee
- PAREXEL International Early Phase Los Angeles, Glendale, California 91206
| | - Mark Yen
- PAREXEL International Early Phase Los Angeles, Glendale, California 91206
- California Clinical Trials Medical Group, Glendale, California 91206, and
| | - Larry Ereshefsky
- PAREXEL International Early Phase Los Angeles, Glendale, California 91206
- University of Texas Health Science Center, San Antonio, Texas 98284
| | - Terry D. Lindstrom
- Lilly Research Laboratories, Eli Lilly & Co., Indianapolis, Indiana 46285
| | - David O. Calligaro
- Lilly Research Laboratories, Eli Lilly & Co., Indianapolis, Indiana 46285
| | - Patrick J. Cocke
- Lilly Research Laboratories, Eli Lilly & Co., Indianapolis, Indiana 46285
| | - D. Greg Hall
- Lilly Research Laboratories, Eli Lilly & Co., Indianapolis, Indiana 46285
| | - Stuart Friedrich
- Lilly Research Laboratories, Eli Lilly & Co., Indianapolis, Indiana 46285
| | - Martin Citron
- Lilly Research Laboratories, Eli Lilly & Co., Indianapolis, Indiana 46285
| | - James E. Audia
- Lilly Research Laboratories, Eli Lilly & Co., Indianapolis, Indiana 46285
| |
Collapse
|
249
|
Thompson LA, Shi J, Decicco CP, Tebben AJ, Olson RE, Boy KM, Guernon JM, Good AC, Liauw A, Zheng C, Copeland RA, Combs AP, Trainor GL, Camac DM, Muckelbauer JK, Lentz KA, Grace JE, Burton CR, Toyn JH, Barten DM, Marcinkeviciene J, Meredith JE, Albright CF, Macor JE. Synthesis and in vivo evaluation of cyclic diaminopropane BACE-1 inhibitors. Bioorg Med Chem Lett 2011; 21:6909-15. [DOI: 10.1016/j.bmcl.2011.06.116] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2011] [Revised: 06/24/2011] [Accepted: 06/27/2011] [Indexed: 11/26/2022]
|
250
|
Mishra S, Caflisch A. Dynamics in the Active Site of β-Secretase: A Network Analysis of Atomistic Simulations. Biochemistry 2011; 50:9328-39. [DOI: 10.1021/bi2011948] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
| | - Amedeo Caflisch
- Department
of Biochemistry, University of Zurich, Zurich, Switzerland
| |
Collapse
|