201
|
Hong AW, Meng Z, Yuan HX, Plouffe SW, Moon S, Kim W, Jho EH, Guan KL. Osmotic stress-induced phosphorylation by NLK at Ser128 activates YAP. EMBO Rep 2016; 18:72-86. [PMID: 27979971 DOI: 10.15252/embr.201642681] [Citation(s) in RCA: 125] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 11/07/2016] [Accepted: 11/11/2016] [Indexed: 01/09/2023] Open
Abstract
YAP is the major downstream effector of the Hippo pathway, which controls cell growth, tissue homeostasis, and organ size. Aberrant YAP activation, resulting from dysregulation of the Hippo pathway, is frequently observed in human cancers. YAP is a transcription co-activator, and the key mechanism of YAP regulation is its nuclear and cytoplasmic translocation. The Hippo pathway component, LATS, inhibits YAP by phosphorylating YAP at Ser127, leading to 14-3-3 binding and cytoplasmic retention of YAP Here, we report that osmotic stress stimulates transient YAP nuclear localization and increases YAP activity even when YAP Ser127 is phosphorylated. Osmotic stress acts via the NLK kinase to induce YAP Ser128 phosphorylation. Phosphorylation of YAP at Ser128 interferes with its ability to bind to 14-3-3, resulting in YAP nuclear accumulation and induction of downstream target gene expression. This osmotic stress-induced YAP activation enhances cellular stress adaptation. Our findings reveal a critical role for NLK-mediated Ser128 phosphorylation in YAP regulation and a crosstalk between osmotic stress and the Hippo pathway.
Collapse
Affiliation(s)
- Audrey W Hong
- Department of Pharmacology and Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - Zhipeng Meng
- Department of Pharmacology and Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - Hai-Xin Yuan
- Department of Pharmacology and Moores Cancer Center, University of California San Diego, La Jolla, CA, USA.,The Molecular and Cell Biology Laboratory, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Steven W Plouffe
- Department of Pharmacology and Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - Sungho Moon
- Department of Life Science, University of Seoul, Dongdaemun-gu, Seoul, Korea
| | - Wantae Kim
- Department of Life Science, University of Seoul, Dongdaemun-gu, Seoul, Korea
| | - Eek-Hoon Jho
- Department of Life Science, University of Seoul, Dongdaemun-gu, Seoul, Korea
| | - Kun-Liang Guan
- Department of Pharmacology and Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
202
|
Rogers J, Perkins I, van Olphen A, Burdash N, Klein TW, Friedman H. Epigallocatechin Gallate Modulates Cytokine Production by Bone Marrow-Derived Dendritic Cells Stimulated with Lipopolysaccharide or Muramyldipeptide, or Infected with Legionella pneumophila. Exp Biol Med (Maywood) 2016; 230:645-51. [PMID: 16179732 DOI: 10.1177/153537020523000906] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The primary polyphenol in green tea extract is the catechin epigallocatechin gallate (EGCG). Various studies have shown significant suppressive effects of catechin on mammalian cells, either tumor or normal cells, including lymphoid cells. Previous studies from this laboratory reported that EGCG has marked suppressive activity on murine macrophages infected with the intracellular bacterium Legionella pneumophila (Lp), an effect mediated by enhanced production of both tumor necrosis factor-α (TNF-α) and γ-interferon (IFN-γ). In the present study, primary murine bone marrow (BM)-derived dendritic cells (DCs), a phagocytic monocytic cell essential for innate immunity to intracellular microorganisms, such as Lp, were stimulated in vitro with the microbial stimulant lipopolysaccharide (LPS) from gram-negative bacteria, the cell wall component from gram-positive bacteria muramyldipeptide (MDP) or infected with Lp. Production of the T helper cell (Th1)-activating cytokine, interleukin-12 (IL-12) and the proinflammatory cytokine, tumor necrosis factor-α (TNF-α), produced mainly by phagocytic cells and important for antimicrobial immunity, was determined in cell culture supernatants by enzyme-linked immunosorbent assay (ELISA). Treatment of the cells with EGCG inhibited, in a dose-dependent manner, production of IL-12. In contrast, enhanced production of TNF-α occurred in a dose-dependent manner in the DC cultures stimulated with either soluble bacterial product or infected with Lp. Thus, the results of this study show that the EGCG catechin has a marked effect in modulating production of these immunoregulatory cytokines in stimulated DCs, which are important for antimicrobial immunity, especially innate immunity. Further studies are necessary to characterize the physiologic function of the effect of EGCG on TNF-α and IL-12 during Lp infection, and the mechanisms involved.
Collapse
Affiliation(s)
- James Rogers
- Department of Medical Microbiology and Immunology, University of South Florida, Tampa, FL 33612, USA
| | | | | | | | | | | |
Collapse
|
203
|
Ha SK, Sung J, Choi I, Kim Y. Oryza sativa (Rice) Hull Extract Inhibits Lipopolysaccharide-Induced Inflammatory Response in RAW264.7 Macrophages by Suppressing Extracellular Signal-regulated Kinase, c-Jun N-terminal Kinase, and Nuclear Factor-κB Activation. Pharmacogn Mag 2016; 12:295-301. [PMID: 27867272 PMCID: PMC5096276 DOI: 10.4103/0973-1296.192198] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Background: Rice (Oryza sativa) is a major cereal crop in many Asian countries and an important staple food source. Rice hulls have been reported to possess antioxidant activities. Materials and Methods: In this study, we evaluated the antiinflammatory effects of rice hull extract and associated signal transduction mechanisms in lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages. Results: We found that rice hull extract inhibited nitric oxide (NO) and prostaglandin E2 by suppressing the expression of inducible NO synthase and cyclooxygenase-2, respectively. The release of interleukin-1β and tumor necrosis factor-α was also reduced in a dose-dependent manner. Furthermore, rice hull extract attenuated the activation of nuclear factor-kappa B (NF-κB), as well as the phosphorylation of mitogen-activated protein kinases, extracellular signal-regulated kinase (ERK), and c-Jun N-terminal kinase (JNK), in LPS-stimulated RAW264.7 cells. Conclusion: This suggests that rice hull extract decreases the production of inflammatory mediators by downregulating ERK and JNK and the NF-κB signal pathway in RAW 264.7 cells. SUMMARY Rice hull extract inhibits the lipopolysaccharide-induced inflammatory response in RAW264.7 macrophages. Rice hull extract inhibited nitric oxide and prostaglandin E2 by suppressing the expression of inducible NO synthase and cyclooxygenase-2, respectively. Rice hull extract exerted anti-inflammatory effect through inhibition of nuclear factor-kappa B, extracellular signal-regulated kinase and c-Jun N-terminal kinase signaling pathways. Rice hull extract may provide a potential therapeutic approach for inflammatory diseases.
Abbreviations used: COX-2: cyclooxygenase-2, ERK: extracellular signal-regulated kinase, IκB: inhibitory kappa B, IL-1β: interleukin-1β, iNOS: inducible NO synthase, JNK: c-Jun N-terminal kinase, LPS: lipopolysaccharide, MAPKs: mitogen-activated protein kinases, NF-κB: nuclear factor-κB, NO: nitric oxide, PGE2: prostaglandin E2, RHE: rice hull extract, ROS: reactive oxygen species, TNF-α: tumor necrosis factor-α
Collapse
Affiliation(s)
- Sang Keun Ha
- Research Group of Nutraceuticals for Metabolic Syndrome, Korea Food Research Institute, Gyeonggi, Republic of Korea; Division of Food Biotechnology, University of Science and Technology, Daejeon, Republic of Korea
| | - Jeehye Sung
- Research Group of Nutraceuticals for Metabolic Syndrome, Korea Food Research Institute, Gyeonggi, Republic of Korea
| | - Inwook Choi
- Research Group of Nutraceuticals for Metabolic Syndrome, Korea Food Research Institute, Gyeonggi, Republic of Korea
| | - Yoonsook Kim
- Research Group of Nutraceuticals for Metabolic Syndrome, Korea Food Research Institute, Gyeonggi, Republic of Korea
| |
Collapse
|
204
|
Lucas C, Ferreira C, Cazzanelli G, Franco-Duarte R, Tulha J, Roelink H, Conway SJ. Yeast Gup1(2) Proteins Are Homologues of the Hedgehog Morphogens Acyltransferases HHAT(L): Facts and Implications. J Dev Biol 2016; 4:E33. [PMID: 29615596 PMCID: PMC5831804 DOI: 10.3390/jdb4040033] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 10/25/2016] [Accepted: 10/27/2016] [Indexed: 12/16/2022] Open
Abstract
In multiple tissues, the Hedgehog secreted morphogen activates in the receiving cells a pathway involved in cell fate, proliferation and differentiation in the receiving cells. This pathway is particularly important during embryogenesis. The protein HHAT (Hedgehog O-acyltransferase) modifies Hh morphogens prior to their secretion, while HHATL (Hh O-acyltransferase-like) negatively regulates the pathway. HHAT and HHATL are homologous to Saccharomyces cerevisiae Gup2 and Gup1, respectively. In yeast, Gup1 is associated with a high number and diversity of biological functions, namely polarity establishment, secretory/endocytic pathway functionality, vacuole morphology and wall and membrane composition, structure and maintenance. Phenotypes underlying death, morphogenesis and differentiation are also included. Paracrine signalling, like the one promoted by the Hh pathway, has not been shown to occur in microbial communities, despite the fact that large aggregates of cells like biofilms or colonies behave as proto-tissues. Instead, these have been suggested to sense the population density through the secretion of quorum-sensing chemicals. This review focuses on Gup1/HHATL and Gup2/HHAT proteins. We review the functions and physiology associated with these proteins in yeasts and higher eukaryotes. We suggest standardisation of the presently chaotic Gup-related nomenclature, which includes KIAA117, c3orf3, RASP, Skinny, Sightless and Central Missing, in order to avoid the disclosure of otherwise unnoticed information.
Collapse
Affiliation(s)
- Cândida Lucas
- CBMA—Centre of Molecular and Environmental Biology, University of Minho, Campus de Gualtar, 4710-054 Braga, Portugal; (G.C.); (R.F.-D.); (J.T.)
| | - Célia Ferreira
- CBMA—Centre of Molecular and Environmental Biology, University of Minho, Campus de Gualtar, 4710-054 Braga, Portugal; (G.C.); (R.F.-D.); (J.T.)
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK;
| | - Giulia Cazzanelli
- CBMA—Centre of Molecular and Environmental Biology, University of Minho, Campus de Gualtar, 4710-054 Braga, Portugal; (G.C.); (R.F.-D.); (J.T.)
| | - Ricardo Franco-Duarte
- CBMA—Centre of Molecular and Environmental Biology, University of Minho, Campus de Gualtar, 4710-054 Braga, Portugal; (G.C.); (R.F.-D.); (J.T.)
| | - Joana Tulha
- CBMA—Centre of Molecular and Environmental Biology, University of Minho, Campus de Gualtar, 4710-054 Braga, Portugal; (G.C.); (R.F.-D.); (J.T.)
| | | | | |
Collapse
|
205
|
Qu F, Xiang Z, Zhang Y, Li J, Xiao S, Zhang Y, Mao F, Ma H, Yu Z. A novel p38 MAPK indentified from Crassostrea hongkongensis and its involvement in host response to immune challenges. Mol Immunol 2016; 79:113-124. [PMID: 27768933 DOI: 10.1016/j.molimm.2016.10.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2016] [Revised: 10/08/2016] [Accepted: 10/11/2016] [Indexed: 01/06/2023]
Abstract
p38 mitogen-activated protein kinases (MAPKs) are conserved serine/threonine-specific kinases that are activated by various extracellular stimuli and play crucial regulatory roles in immunity, development and homeostasis. However, the function of p38s in mollusks, the second most diverse group of animals, is still poorly understood. In this study, a novel molluscan p38 (designated Chp38) was cloned and characterized from the Hong Kong oyster Crassostrea hongkongensis. Its full-length cDNA encoded a putative protein of 353 amino acids with a calculated molecular weight of approximately 40.3kDa. Similar to other reported p38 family proteins, the deduced Chp38 sequence contained a conserved dual phosphorylation TGY motif and a substrate binding site of ATRW. Phylogenetic analysis revealed that Chp38 was closest to its homolog from the Pacific oyster and belonged to the mollusk cluster. Quantitative real-time PCR analysis showed that Chp38 was constitutively expressed in all examined oyster tissues and developmental stages and that its expression in hemocytes was significantly up-regulated after pathogen (Vibrio alginolyticus and Staphylococcus haemolyticus) and PAMP (lipopolysaccharide and peptidoglycan) infections. Moreover, overexpression analysis revealed that Chp38 was localized in both the cytoplasm and nucleus of HEK293T cells and that it could significantly enhance AP-1 reporter gene activation in a dose-dependent manner. Altogether, these results provide the first experimental evidence of a functional p38 in oysters and suggest its involvement in the innate immunity of C. hongkongensis.
Collapse
Affiliation(s)
- Fufa Qu
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301,China; South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Guangzhou 510275, China; Department of Biological and Environmental Engineering, Changsha University, Changsha 410022, China
| | - Zhiming Xiang
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301,China; South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Guangzhou 510275, China.
| | - Yang Zhang
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301,China; South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Guangzhou 510275, China
| | - Jun Li
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301,China; South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Guangzhou 510275, China
| | - Shu Xiao
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301,China; South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Guangzhou 510275, China
| | - Yuehuan Zhang
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301,China; South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Guangzhou 510275, China
| | - Fan Mao
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301,China; South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Guangzhou 510275, China
| | - Haitao Ma
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301,China; South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Guangzhou 510275, China
| | - Ziniu Yu
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301,China; South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Guangzhou 510275, China.
| |
Collapse
|
206
|
Shi Z, Zhan Y, Zhao J, Wang J, Ma H. Effects of Fluoride on the Expression of p38MAPK Signaling Pathway-Related Genes and Proteins in Spleen Lymphocytes of Mice. Biol Trace Elem Res 2016; 173:333-8. [PMID: 26906276 DOI: 10.1007/s12011-016-0656-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 02/16/2016] [Indexed: 10/22/2022]
Abstract
This study investigated the effects of sodium fluoride on the expression of p38MAPK signaling pathway-related genes and proteins in the spleen lymphocytes of mice, revealing the mechanism of the toxicity of fluoride to the immune system. The spleen lymphocytes, isolated from mice consuming different NaF doses (0, 50, 100, and 150 mg/L) for 60 days, were cultured in medium with bacteria lipopolysaccharide, and the cells' proliferation ability was analyzed through MTT; real-time PCR detected the change of MLK3/MKK6/p38MAPK/MSK1/ATF1 on mRNA, and the difference of protein expression of MKK6/p38MAPK were detected through the Western blotting. The results suggested that the proliferation ability of spleen lymphocytes isolated from mice consuming different NaF doses is lower, and the expression of genes and proteins of MKK6/p38MAPK showed a decreasing trend. These results demonstrate that fluoride can suppress the activation of p38MAPK pathway in mice spleen lymphocytes and further influences the function of the immune system.
Collapse
Affiliation(s)
- Zeyu Shi
- College of Animal Science and Veterinary Medicine, Shanxi Agriculture University, Taigu, Jinzhong, Shanxi, (030800), China
| | - Yaqi Zhan
- College of Animal Science and Veterinary Medicine, Shanxi Agriculture University, Taigu, Jinzhong, Shanxi, (030800), China
| | - Junxing Zhao
- College of Animal Science and Veterinary Medicine, Shanxi Agriculture University, Taigu, Jinzhong, Shanxi, (030800), China
| | - Jinming Wang
- College of Animal Science and Veterinary Medicine, Shanxi Agriculture University, Taigu, Jinzhong, Shanxi, (030800), China
| | - Haili Ma
- College of Animal Science and Veterinary Medicine, Shanxi Agriculture University, Taigu, Jinzhong, Shanxi, (030800), China.
| |
Collapse
|
207
|
Kim KN, Ko SC, Ye BR, Kim MS, Kim J, Ko EY, Cho SH, Kim D, Heo SJ, Jung WK. 5-Bromo-2-hydroxy-4-methyl-benzaldehyde inhibited LPS-induced production of pro-inflammatory mediators through the inactivation of ERK, p38, and NF-κB pathways in RAW 264.7 macrophages. Chem Biol Interact 2016; 258:108-14. [PMID: 27569861 DOI: 10.1016/j.cbi.2016.08.022] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 07/27/2016] [Accepted: 08/24/2016] [Indexed: 01/09/2023]
|
208
|
Yi F, Tan XL, Yan X, Liu HB. In silico profiling for secondary metabolites from Lepidium meyenii (maca) by the pharmacophore and ligand-shape-based joint approach. Chin Med 2016; 11:42. [PMID: 27708692 PMCID: PMC5037646 DOI: 10.1186/s13020-016-0112-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2015] [Accepted: 09/19/2016] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Lepidium meyenii Walpers (maca) is an herb known as a traditional nutritional supplement and widely used in Peru, North America, and Europe to enhance human fertility and treat osteoporosis. The secondary metabolites of maca, namely, maca alkaloids, macaenes, and macamides, are bioactive compounds, but their targets are undefined. METHODS The pharmacophore-based PharmaDB targets database screening joint the ligand shape similarity-based WEGA validation approach is proposed to predict the targets of these unique constituents and was performed using Discovery Studio 4.5 and PharmaDB. A compounds-targets-diseases network was established using Cytoscape 3.2. These suitable targets and their genes were calculated and analyzed using ingenuity pathway analysis and GeneMANIA. RESULTS Certain targets were identified in osteoporosis (8 targets), prostate cancer (9 targets), and kidney diseases (11 targets). This was the first study to identify the targets of these bioactive compounds in maca for cardiovascular diseases (29 targets). The compound with the most targets (46) was an amide alkaloid (MA-24). CONCLUSION In silico target fishing identified maca's traditional effects on treatment and prevention of osteoporosis, prostate cancer, and kidney diseases, and its potential function of treating cardiovascular diseases, as the most important of this herb's possible activities.
Collapse
Affiliation(s)
- Fan Yi
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, 151 Malianwa N, Haidian District, Beijing, 100193 China ; Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, 100193 China
| | - Xiao-Lei Tan
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, 151 Malianwa N, Haidian District, Beijing, 100193 China ; Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, 100193 China
| | - Xin Yan
- Research Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, 132 East Circle at University City, Guangzhou, 510006 China
| | - Hai-Bo Liu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, 151 Malianwa N, Haidian District, Beijing, 100193 China ; Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, 100193 China
| |
Collapse
|
209
|
De Wit R, Boonstra J, Verkleij AJ, Post JA. Large Scale Screening Assay for the Phosphorylation of Mitogen-Activated Protein Kinase in Cells. ACTA ACUST UNITED AC 2016. [DOI: 10.1177/108705719800300406] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Mitogen-activated protein (MAP) kinases are serine/threonine kinases that are activated by phosphorylation and are involved in the cellular response to various physiologic stimuli and stress conditions. Because MAP kinases play an important role in cellular functioning, a screening assay to determine the phosphorylation of MAP kinase upon various conditions was desirable. Therefore, we have developed a cellular enzyme-linked immunosorbent assay (Cell-ELISA), in which the phosphorylated forms of p42MAPK and p44MAPK are detected. We show that in this Cell-ELISA, MAP kinase becomes phosphorylated in a dose- and time-dependent manner under proliferative or stress conditions. This dose- and time-dependent phosphorylation agrees with observations using classical gel-electrophoresis and Western blotting techniques. Furthermore, we show that our assay is applicable to different cell types and that serum-starvation is not required for detection of an increase in MAP kinase phosphorylation. From these experiments, it is concluded that the Cell-ELISA is a reliable and fast method for quantitative detection of the phosphorylation, and thus the activation, of MAP kinase. This assay is applicable for a large-scale screening of the effectivity of biological or chemical compounds that modulate the cellular response to physiologic stimuli or stress through phosphorylation and activation of MAP kinase.
Collapse
Affiliation(s)
- Renate De Wit
- Institute of Biomembranes, Department of Molecular Cell Biology, Utrecht University, Utrecht, The Netherlands
| | - Johannes Boonstra
- Institute of Biomembranes, Department of Molecular Cell Biology, Utrecht University, Utrecht, The Netherlands
| | - Arie J. Verkleij
- Institute of Biomembranes, Department of Molecular Cell Biology, Utrecht University, Utrecht, The Netherlands
| | - Jan Andries Post
- Institute of Biomembranes, Department of Molecular Cell Biology, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
210
|
Ferlito M, Romanenko OG, Guyton K, Ashton S, Squadrito F, Halushka PV, Cook JA. Implication of G i proteins and Src tyrosine kinases in endotoxin-induced signal transduction events and mediator production. ACTA ACUST UNITED AC 2016. [DOI: 10.1177/09680519020080061101] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Previous studies have suggested that heterotrimeric G proteins and tyrosine kinases may be involved in lipopolysaccharide (LPS) signaling events. Signal transduction pathways activated by LPS were examined in human promonocytic THP-1 cells. We hypothesized that Gi proteins and Src tyrosine kinase differentially affect mitogen-activated protein (MAP) kinases (MAPK) and nuclear factor kappa (NF- B) activation. Post-receptor coupling to G i proteins were examined using pertussis toxin (PTx), which inhibits G i receptor-coupling. The involvement of the Src family of tyrosine kinases was examined using the selective Src tyrosine kinase inhibitor pyrazolopyrimidine-2 (PP2). Pretreatment of THP-1 cells with PTx attenuated LPS-induced activation of c-Jun-N-terminal kinase (JNK) and p38 kinase, and production of tumor necrosis factor-alpha (TNF-) and thromboxane B2 (TxB2). Pretreatment with PP2 inhibited TNF- and TxB2 production, but had no effect on p38 kinase or JNK signaling. Therefore, the G i-coupled signaling pathways and Src tyrosine kinase-coupled signaling pathways are necessary for LPS-induced TNF- and TxB2 production, but differ in their effects on MAPK activation. Neither PTx nor PP2 inhibited LPS-induced activation of interleukin receptor activated kinase (IRAK) or inhibitedtranslocation of NF- B. However, PP2 inhibitedLPS-inducedNF-B transactivation of a luciferase reporter gene construct in a concentration-dependent manner. Thus, LPS induction of Src tyrosine kinases may be essential in downstream NF- B transactivation of genes following DNA binding. PTx had no effect on NF- B activation of the reporter construct. These data suggest upstream divergence in signaling through G i pathways leading to MAPK activation and other signaling events leading to I B degradation and NF- B DNA binding.
Collapse
Affiliation(s)
- Marcella Ferlito
- Department of Physiology and Neuroscience, Medical University of South Carolina, Charleston, South Carolina, USA, Institute of Pharmacology, Medical University of Messina, Messina, Italy
| | - Olga G. Romanenko
- Department of Physiology and Neuroscience, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Kelly Guyton
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Sarah Ashton
- Department of Physiology and Neuroscience, Medical University of South Carolina, Charleston, South Carolina, USA
| | | | - Perry V. Halushka
- Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
| | - James A. Cook
- Department of Physiology and Neuroscience, Medical University of South Carolina, Charleston, South Carolina, USA
| |
Collapse
|
211
|
Dziarski R, Gupta D. Function of CD14 as a peptidoglycan receptor: differences and similarities with LPS. ACTA ACUST UNITED AC 2016. [DOI: 10.1177/09680519990050010201] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Peptidoglycan (PGN) is a macrophage activator from Gram-positive bacteria. PGN activates cells of hemopoietic origin through CD14 since: (i) PGN-unresponsive CD14-negative cells become PGNresponsive after transfection with CD14 and expression of membrane CD14; (ii) PGN binds to CD14 with high affinity; and (iii) anti-CD14 mAbs inhibit both binding of PGN to CD14 and activation of CD14-positive cells by PGN. However, there are several differences in the function of CD14 as PGN and LPS receptor: (i) the kinetics of binding are different; (ii) the affinity of binding in the absence of LPS-binding protein (LBP) is higher for PGN than LPS; (iii) LBP does not increase the affinity of binding of PGN to CD14 and does not enhance cell activation by PGN (in contrast to LPS); (iv) the regions of CD14 needed for binding and activation are partially similar and partially different for PGN and LPS; (v) sCD14:PGN complexes, in contrast to sCD14:LPS complexes, do not activate CD14-negative cells; (vi) PGN, in contrast to LPS, does not activate CHO cells expressing mCD14; and (vii) PGN and LPS induce differential activation of MAP kinases, but activate similar transcription factors (NF-κB, ATF1/CREB, and AP-1).
Collapse
Affiliation(s)
- Roman Dziarski
- Northwest Center for Medical Education, Indiana University School of Medicine, Gary, Indiana, USA
| | - Dipika Gupta
- Northwest Center for Medical Education, Indiana University School of Medicine, Gary, Indiana, USA
| |
Collapse
|
212
|
Eilertsen KE, Østerud B. The central role of thromboxane and platelet activating factor receptors in ex vivo regulation of endotoxin-induced monocyte tissue factor activity in human whole blood. ACTA ACUST UNITED AC 2016. [DOI: 10.1177/09680519020080040501] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Expression of tissue factor (TF) by activated monocytes may initiate thrombotic episodes associated with diseases, such as thrombosis and atherosclerosis. In this study, steps in the regulatory pathways of lipopolysaccharide (LPS)-induced monocyte TF activity and released TNF-α in human whole blood were probed for using an array of inhibitors, comprising specific inhibitors of cytosolic phospholipase A2 (PLA2) (AACOCF3), secretory PLA (SB-203347), protein kinase (PK) (staurosporine), PKC (GF109203; BIM), and serine protease (Pefabloc SC), antagonists of thromboxane prostanoid (TP) receptor (R) (SQ-29548), platelet activating factor (PAF) R (BN-52021), leukotriene B4 R (SC-41930), serotonin R (cyproheptadine), fibronectin/fibrinogen R (RGDS), and finally, creatine phosphate/creatine phosphokinase (CP/CPK) which removes ADP. Whereas when added alone neither of these agents significantly inhibited LPS-induced TF or TNF-α, when presented as a reference cocktail comprising all the agents, TF activity and TNF-α were reduced by 77% and 49%, respectively. By subsequently testing a series of incomplete inhibitory cocktails equal to the reference except for deleted single agents or combinations of two or three active agents, the inhibitory effect of the reference cocktail could be shown to depend on the presence of the protease inhibitor and the thromboxane A2 and PAF antagonists.
Collapse
Affiliation(s)
- Karl-Erik Eilertsen
- Department of Biochemistry, Institute of Medical Biology, Faculty of Medicine, University of Tromsø, Tromsø, Norway,
| | - Bjarne Østerud
- Department of Biochemistry, Institute of Medical Biology, Faculty of Medicine, University of Tromsø, Tromsø, Norway
| |
Collapse
|
213
|
Wu Chaoqun, Wanleng Deng, Ohmori Y, Hamilton TA. Differential mechanisms of LPS-induced NFκB activation in macrophages and fibroblasts. ACTA ACUST UNITED AC 2016. [DOI: 10.1177/096805199600300102] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Lipopolysaccharide is a prototypic stimulus of inflammatory gene expression which can act on a variety of cell types to produce different patterns of response. In the present report, the ability of LPS to stimulate NFKB activity was investigated in a fibroblast cell line (NIH3T3) and compared to LPS-induced response in a macrophage like cell line (RAW264.7). LPS was a potent stimulus of KB binding activity in both cell types though the protein composition of such binding activity varied. LPS caused nuclear translocation of KB binding activity in RAW 264.7 cells which contained NFKB1 (p50), RelA (p65), and high levels of c-Rel. Nuclei from LPS-stimulated NIH3T3 cells contained only NFKB1 and RelA but little c-Rel. Both cell types contain comparable levels of total c-Rel protein. Using two structurally distinct KB sequence motifs, LPS was shown to produce a different pattern of transacting activity in fibroblasts as compared to macrophages; both KB motifs were sensitive to LPS in RAW264.7 cells while only one of the two was functional in LPS-stimulated NIH3T3 cells. Thus LPS appears to utilize the NFKB family of transcription factors differentially depending upon the cell type being stimulated. Such differential activation of transcription factor family members may be an important determinant of the diverse nature of inflammatory response seen in different tissue settings.
Collapse
Affiliation(s)
- Wu Chaoqun
- Department of Immunology, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| | - Wanleng Deng
- Department of Immunology, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| | - Yoshihiro Ohmori
- Department of Immunology, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| | - Thomas A. Hamilton
- Department of Immunology, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| |
Collapse
|
214
|
Yue X, Wu M, Jiang H, Hao J, Zhao Q, Zhu Q, Saren G, Zhang Y, Zhang X. Endothelial lipase is upregulated by interleukin-6 partly via the p38 MAPK and p65 NF-κB signaling pathways. Mol Med Rep 2016; 14:1979-85. [PMID: 27430252 PMCID: PMC4991746 DOI: 10.3892/mmr.2016.5457] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 04/15/2016] [Indexed: 01/18/2023] Open
Abstract
To investigate the effects of inflammatory factor interleukin (IL)‑6 on the expression of endothelial lipase (EL) and its potential signaling pathways in atherosclerosis, a primary culture of human umbilical vein endothelial cells (HUVECs) was established and treated as follows: i) Control group without any treatment; ii) recombinant human (rh)IL‑6 treatment (10 ng/ml) for 0, 4, 8, 12 and 24 h; iii) p38 mitogen‑activated protein kinases (MAPKs) inhibitor (SB203580, 10 µmol/l) pretreatment for 1 h prior to rhIL‑6 (10 ng/ml) treatment; iv) nuclear factor (NF)‑κB activation inhibitor (pyrrolidine dithiocarbamate, 10 mmol/l) pretreatment for 1 h prior to rhIL‑6 (10 ng/ml) treatment. EL levels were detected by immunocytochemical staining and western blot analysis. Proliferation of HUVECs was detected by immunostaining of proliferating cell nuclear antigen (PCNA) and an MTT assay. p38 MAPK and NF‑κB p65 levels were detected by western blotting. The results showed that rhIL‑6 treatment increased EL expression and proliferation of HUVECs. NF‑κB p65 and MAPK p38 protein levels also increased in a time‑dependent manner in HUVECs after rhIL‑6 treatment. NF‑κB inhibitor and MAPK p38 inhibitor prevented the effects of rhIL‑6 on EL expression. In conclusion, inflammatory factor IL‑6 may participate in the pathogenesis of atherosclerosis by increasing EL expression and the proliferation of endothelial cells via the p38 MAPK and NF-κB signaling pathways.
Collapse
Affiliation(s)
- Xin Yue
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Public Health, Department of Cardiology, Qilu Hospital, Shandong University
| | - Minghui Wu
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Public Health, Department of Cardiology, Qilu Hospital, Shandong University
| | - Hong Jiang
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Public Health, Department of Cardiology, Qilu Hospital, Shandong University
| | - Jing Hao
- Key Laboratory of The Ministry of Education for Experimental Teratology, Department of Histology & Embryology, Medical College, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Qinghao Zhao
- Key Laboratory of The Ministry of Education for Experimental Teratology, Department of Histology & Embryology, Medical College, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Qing Zhu
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Public Health, Department of Cardiology, Qilu Hospital, Shandong University
| | - Gaowa Saren
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Public Health, Department of Cardiology, Qilu Hospital, Shandong University
| | - Yun Zhang
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Public Health, Department of Cardiology, Qilu Hospital, Shandong University
| | - Xiaoli Zhang
- Key Laboratory of The Ministry of Education for Experimental Teratology, Department of Histology & Embryology, Medical College, Shandong University, Jinan, Shandong 250012, P.R. China
| |
Collapse
|
215
|
Wang C, Liu J, Luo F, Hu QN. Multi-fields model for predicting target–ligand interaction. Neurocomputing 2016. [DOI: 10.1016/j.neucom.2016.03.079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
216
|
Jung ME, Metzger DB, Das HK. The Role of Presenilin-1 in the Excitotoxicity of Ethanol Withdrawal. J Pharmacol Exp Ther 2016; 358:516-26. [PMID: 27278235 PMCID: PMC4998674 DOI: 10.1124/jpet.116.233361] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 05/27/2016] [Indexed: 01/02/2023] Open
Abstract
Presenilin-1 (PS1) is a core component of γ-secretase that is involved in neurodegeneration. We have previously shown that PS1 interacts with a mitogen-activated protein kinase [(MAPK) jun-NH2-terminal-kinase], and another MAPK (p38) is activated by ethanol withdrawal (EW), abrupt termination from chronic ethanol exposure. EW is excitotoxic in nature, induces glutamate upregulation, and provokes neuronal damage. Here, we explored a potential mechanistic pathway involving glutamate, p38 (p38α isozyme), and PS1 that may mediate EW-induced excitotoxic stress. We used the prefrontal cortex of male rats withdrawn from a chronic ethanol diet. Additionally, we used ethanol-withdrawn HT22 cells (mouse hippocampal) treated with the inhibitor of glutamate receptors [dizocilpine (MK-801)], p38α (SB203580; 4-[4-(4-fluorophenyl)-2-(4-methylsulfinylphenyl)-1H-imidazol-5-yl]pyridine), or γ-secretase [N-[N- (3,5-difluorophenacetyl)-l-alanyl]-S-phenylglycine t-butyl ester (DAPT)] during EW. Separately, ethanol-free HT22 cells were exposed to glutamate with or without SB203580 or DAPT. Protein levels, mRNA levels, and cell viability were assessed using immunoblotting, qualitative polymerase chain reaction, and calcein assay, respectively. The prefrontal cortex of ethanol-withdrawn rats or HT22 cells showed an increase in PS1 and p38α, which was attenuated by MK-801 and SB203580, but mimicked by glutamate treatment to ethanol-free HT22 cells. DAPT attenuated the toxic effect of EW or glutamate on HT22 cells. These results suggest that PS1 expression is triggered by glutamate through p38α, contributing to the excitotoxic stimulus of EW.
Collapse
Affiliation(s)
- Marianna E Jung
- Institute for Health Aging, Center for Neuroscience Discovery (M.E.J., D.B.M., H.K.D.), and Institute of Cancer Research (H.K.D.), University of North Texas Health Science Center, Fort Worth, Texas
| | - Daniel B Metzger
- Institute for Health Aging, Center for Neuroscience Discovery (M.E.J., D.B.M., H.K.D.), and Institute of Cancer Research (H.K.D.), University of North Texas Health Science Center, Fort Worth, Texas
| | - Hriday K Das
- Institute for Health Aging, Center for Neuroscience Discovery (M.E.J., D.B.M., H.K.D.), and Institute of Cancer Research (H.K.D.), University of North Texas Health Science Center, Fort Worth, Texas
| |
Collapse
|
217
|
Bendamustine increases interleukin-10 secretion from B cells via p38 MAP kinase activation. Int Immunopharmacol 2016; 39:273-279. [PMID: 27500457 DOI: 10.1016/j.intimp.2016.07.033] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2015] [Revised: 07/06/2016] [Accepted: 07/28/2016] [Indexed: 11/20/2022]
Abstract
We investigated the effects of bendamustine on B cell functions and explored potential clinical applications of the drugs to autoimmune diseases. Proliferation of Ramos cells, a human B cell line, was significantly inhibited by 25-100μM of bendamustine in a dose-dependent manner. Concordantly, IgM secretion from Ramos cells was significantly inhibited at these concentrations by up to 70%. Interestingly, however, the production and secretion of interleukin-10 (IL-10) were dramatically (at least >10-fold) increased by bendamustine at growth inhibitory concentrations. Exploration of the molecular mechanism of IL-10 production revealed that bendamustine enhanced the phosphorylation of p38 MAP kinase. Further, Sp1 was identified as a downstream transcription factor, and the inhibition of p38 MAP kinase and Sp1 with their inhibitors led to the abrogation of bendamustine-induced IL-10 production and the DNA binding of Sp1. Importantly, when PBMC from healthy donors were cultured with bendamustine at the concentration of 30μM, under the stimulation with an anti-IgM antibody, an anti-CD40 antibody, recombinant human IL-21 (rhIL-21) and recombinant human soluble BAFF (rhsBAFF), IL-10 production by B cells (CD20+CD4-CD8-CD14-) among peripheral blood mononuclear cell (PBMC) was significantly enhanced by adding bendamustine. These results collectively suggest that the p38 MAP kinase-Sp1 pathway plays a crucial role in bendamustine-induced IL-10 production by B cells. Our findings suggest a novel therapeutic possibility for autoimmune diseases through the upregulation of IL-10 which has an anti-inflammatory effects.
Collapse
|
218
|
Morandi F, Morandi B, Horenstein AL, Chillemi A, Quarona V, Zaccarello G, Carrega P, Ferlazzo G, Mingari MC, Moretta L, Pistoia V, Malavasi F. A non-canonical adenosinergic pathway led by CD38 in human melanoma cells induces suppression of T cell proliferation. Oncotarget 2016; 6:25602-18. [PMID: 26329660 PMCID: PMC4694853 DOI: 10.18632/oncotarget.4693] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 07/13/2015] [Indexed: 12/16/2022] Open
Abstract
Nucleotide-metabolizing ectoenzymes are endowed with an extracellular catalytic domain, which is involved in regulating the extracellular nucleotide/nucleoside balance. The tumor microenvironment contains high levels of adenosine (ADO) generated by this enzymatic network, thus promoting tumor growth by inhibiting anti-tumor immune responses. ADO inhibition in melanoma murine models limits tumor metastases and restores anti-tumor immune responses. This work investigates the expression and function of ectoenzymes in primary human melanoma cell lines. All of latter cells expressed CD38, CD39, CD73, and CD203a/PC-1, and produced ADO from AMP and NAD(+ )T cell proliferation. Accordingly, phosphorylation of S6 ribosomal protein, p38 and Stat1 was lower in activated memory cells than in naïve CD4(+) T lymphocytes. Melanoma cells also inhibited proliferation of naïve, memory and -to a lesser extent- of effector CD8(+) T cells. These different inhibitory effects correlated with distinct patterns of expression of the ADO receptor A2a and A2b. These results show that primary human melanoma cell lines suppress in vitro T cell proliferation through an adenosinergic pathway in which CD38 and CD73 play a prominent role.
Collapse
Affiliation(s)
- Fabio Morandi
- Laboratory of Oncology, Istituto Giannina Gaslini, Genoa, Italy
| | - Barbara Morandi
- Department of Experimental Medicine, University of Genoa, Genoa, Italy
| | - Alberto L Horenstein
- Department of Medical Sciences, Laboratory of Immunogenetics and CeRMS, University of Torino, and Transplant Immunology, Città della Salute e della Scienza, Torino, Italy
| | - Antonella Chillemi
- Department of Medical Sciences, Laboratory of Immunogenetics and CeRMS, University of Torino, and Transplant Immunology, Città della Salute e della Scienza, Torino, Italy
| | - Valeria Quarona
- Department of Medical Sciences, Laboratory of Immunogenetics and CeRMS, University of Torino, and Transplant Immunology, Città della Salute e della Scienza, Torino, Italy
| | - Gianluca Zaccarello
- Department of Medical Sciences, Laboratory of Immunogenetics and CeRMS, University of Torino, and Transplant Immunology, Città della Salute e della Scienza, Torino, Italy
| | | | - Guido Ferlazzo
- Department of Human Pathology, University of Messina, Italy.,Cellular Therapy Program, University Hospital - A.O.U. Policlinico, Messina, Italy
| | | | | | - Vito Pistoia
- Laboratory of Oncology, Istituto Giannina Gaslini, Genoa, Italy
| | - Fabio Malavasi
- Department of Medical Sciences, Laboratory of Immunogenetics and CeRMS, University of Torino, and Transplant Immunology, Città della Salute e della Scienza, Torino, Italy
| |
Collapse
|
219
|
Phosphorylated and Nonphosphorylated PfMAP2 Are Localized in the Nucleus, Dependent on the Stage of Plasmodium falciparum Asexual Maturation. BIOMED RESEARCH INTERNATIONAL 2016; 2016:1645097. [PMID: 27525262 PMCID: PMC4976173 DOI: 10.1155/2016/1645097] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 06/16/2016] [Indexed: 11/30/2022]
Abstract
Plasmodium falciparum mitogen-activated protein (MAP) kinases, a family of enzymes central to signal transduction processes including inflammatory responses, are a promising target for antimalarial drug development. Our study shows for the first time that the P. falciparum specific MAP kinase 2 (PfMAP2) is colocalized in the nucleus of all of the asexual erythrocytic stages of P. falciparum and is particularly elevated in its phosphorylated form. It was also discovered that PfMAP2 is expressed in its highest quantity during the early trophozoite (ring form) stage and significantly reduced in the mature trophozoite and schizont stages. Although the phosphorylated form of the kinase is always more prevalent, its ratio relative to the nonphosphorylated form remained constant irrespective of the parasites' developmental stage. We have also shown that the TSH motif specifically renders PfMAP2 genetically divergent from the other plasmodial MAP kinase activation sites using Neighbour Joining analysis. Furthermore, TSH motif-specific designed antibody is crucial in determining the location of the expression of the PfMAP2 protein. However, by using immunoelectron microscopy, PPfMAP2 were detected ubiquitously in the parasitized erythrocytes. In summary, PfMAP2 may play a far more important role than previously thought and is a worthy candidate for research as an antimalarial.
Collapse
|
220
|
Arnold CP, Merryman MS, Harris-Arnold A, McKinney SA, Seidel CW, Loethen S, Proctor KN, Guo L, Sánchez Alvarado A. Pathogenic shifts in endogenous microbiota impede tissue regeneration via distinct activation of TAK1/MKK/p38. eLife 2016; 5. [PMID: 27441386 PMCID: PMC4993586 DOI: 10.7554/elife.16793] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 07/19/2016] [Indexed: 02/03/2023] Open
Abstract
The interrelationship between endogenous microbiota, the immune system, and tissue regeneration is an area of intense research due to its potential therapeutic applications. We investigated this relationship in Schmidtea mediterranea, a model organism capable of regenerating any and all of its adult tissues. Microbiome characterization revealed a high Bacteroidetes to Proteobacteria ratio in healthy animals. Perturbations eliciting an expansion of Proteobacteria coincided with ectopic lesions and tissue degeneration. The culture of these bacteria yielded a strain of Pseudomonas capable of inducing progressive tissue degeneration. RNAi screening uncovered a TAK1 innate immune signaling module underlying compromised tissue homeostasis and regeneration during infection. TAK1/MKK/p38 signaling mediated opposing regulation of apoptosis during infection versus normal tissue regeneration. Given the complex role of inflammation in either hindering or supporting reparative wound healing and regeneration, this invertebrate model provides a basis for dissecting the duality of evolutionarily conserved inflammatory signaling in complex, multi-organ adult tissue regeneration. DOI:http://dx.doi.org/10.7554/eLife.16793.001 Regeneration, the ability to replace missing or damaged tissue, has fascinated biologists for years and has inspired a new direction for the medical field. Figuring out how some animals easily accomplish this while others do not may help us to develop new therapies that enhance regeneration in humans. Previous work has indicated that the immune system, which is normally used to defend the body against bacteria, plays an important but complicated role in regeneration. By studying the relationships between bacteria, the immune system and regeneration in simple systems, it may be possible to see how their interactions either support or prevent the replacement of lost tissues. Flatworms called planaria can regenerate all of their tissues. Arnold et al. have now investigated what bacteria exist in planaria, how the planarian immune system responds to these bacteria, and how this response affects regeneration. The results reveal that the two main types of bacteria that are present in planaria are also found in humans. In fact, conditions that encourage the growth and spread of one of these types of bacteria (called Proteobacteria, many of which can make humans ill) damaged the worms and prevented them from regenerating. Arnold et al. then looked to see if the worms had genes that were similar to human genes that control the key immune process of inflammation, and found evidence of several such genes. Reducing the activity levels of these genes enabled worms that had been infected with Proteobacteria to regenerate again. However, these genes only seem to be responsible for regeneration when the planaria are infected with bacteria. Thus, planaria could be used as a simple model to discover how changes in resident bacteria can be detected by the immune system and affect the ability to regenerate tissues. Future studies could use planaria to identify even more genes that control regeneration during infection. Also, since the main types of bacteria in planaria are similar to those in humans, planaria may help us to learn how animals can properly balance the levels of these bacteria in order to remain healthy. DOI:http://dx.doi.org/10.7554/eLife.16793.002
Collapse
Affiliation(s)
| | - M Shane Merryman
- Stowers Institute for Medical Research, Kansas City, United States
| | | | - Sean A McKinney
- Stowers Institute for Medical Research, Kansas City, United States
| | - Chris W Seidel
- Stowers Institute for Medical Research, Kansas City, United States
| | | | | | - Longhua Guo
- Stowers Institute for Medical Research, Kansas City, United States
| | | |
Collapse
|
221
|
Kumar A, Sasmal D, Bhaskar A, Mukhopadhyay K, Thakur A, Sharma N. Deltamethrin-induced oxidative stress and mitochondrial caspase-dependent signaling pathways in murine splenocytes. ENVIRONMENTAL TOXICOLOGY 2016; 31:808-819. [PMID: 25534813 DOI: 10.1002/tox.22091] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2014] [Revised: 11/25/2014] [Accepted: 12/01/2014] [Indexed: 06/04/2023]
Abstract
Deltamethrin (DLM) is a well-known pyrethroid insecticide used extensively in pest control. Exposure to DLM has been demonstrated to cause apoptosis in various cells. However, the immunotoxic effects of DLM on mammalian system and its mechanism is still an open question to be explored. To explore these effects, this study has been designed to first observe the interactions of DLM to immune cell receptors and its effects on the immune system. The docking score revealed that DLM has strong binding affinity toward the CD45 and CD28 receptors. In vitro study revealed that DLM induces apoptosis in murine splenocytes in a concentration-dependent manner. The earliest markers of apoptosis such as enhanced reactive oxygen species and caspase 3 activation are evident as early as 1 h by 25 and 50 µM DLM. Western blot analysis demonstrated that p38 MAP kinase and Bax expression is increased in a concentration-dependent manner, whereas Bcl 2 expression is significantly reduced after 3 h of DLM treatment. Glutathione depletion has been also observed at 3 and 6 h by 25 and 50 µM concentration of DLM. Flow cytometry results imply that the fraction of hypodiploid cells has gradually increased with all the concentrations of DLM at 18 h. N-acetyl cysteine effectively reduces the percentage of apoptotic cells, which is increased by DLM. In contrast, buthionine sulfoxamine causes an elevation in the percentage of apoptotic cells. Phenotyping data imply the effect of DLM toxicity in murine splenocytes. In brief, the study demonstrates that DLM causes apoptosis through its interaction with CD45 and CD28 receptors, leading to oxidative stress and activation of the mitochondrial caspase-dependent pathways which ultimately affects the immune functions. This study provides mechanistic information by which DLM causes toxicity in murine splenocytes. © 2014 Wiley Periodicals, Inc. Environ Toxicol 31: 808-819, 2016.
Collapse
Affiliation(s)
- Anoop Kumar
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi-835215, Jharkhand, India
| | - D Sasmal
- Department of Bio-Engineering, Birla Institute of Technology, Mesra, Ranchi-835215, Jharkhand, India
| | - Amand Bhaskar
- Department of Bio-Engineering, Birla Institute of Technology, Mesra, Ranchi-835215, Jharkhand, India
| | - Kunal Mukhopadhyay
- Department of Bio-Engineering, Birla Institute of Technology, Mesra, Ranchi-835215, Jharkhand, India
| | - Aman Thakur
- Institute of Pharmaceutical Sciences, Kurukshetra University, Kurukshetra, Harayana-136119, India
| | - Neelima Sharma
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi-835215, Jharkhand, India
| |
Collapse
|
222
|
García-Cano J, Roche O, Cimas FJ, Pascual-Serra R, Ortega-Muelas M, Fernández-Aroca DM, Sánchez-Prieto R. p38MAPK and Chemotherapy: We Always Need to Hear Both Sides of the Story. Front Cell Dev Biol 2016; 4:69. [PMID: 27446920 PMCID: PMC4928511 DOI: 10.3389/fcell.2016.00069] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 06/13/2016] [Indexed: 12/14/2022] Open
Abstract
The p38MAPK signaling pathway was initially described as a stress response mechanism. In fact, during previous decades, it was considered a pathway with little interest in oncology especially in comparison with other MAPKs such as ERK1/2, known to be target of oncogenes like Ras. However, its involvement in apoptotic cell death phenomena makes this signaling pathway more attractive for many cancer research laboratories. This apoptotic role allows to establish a link between p38MAPK and regular chemotherapeutic agents such as Cisplatin or base analogs (Cytarabine, Gemcitabine or 5-Fluorouracil) which are currently used in hospitals across the world. In fact, and more recently, p38MAPK has also been connected with targeted therapies like tyrosine kinase inhibitors (vg. Imatinib, Sorafenib) and, to a lesser extent, with monoclonal antibodies. In addition, the oncogenic or tumor suppressor potential of this signaling pathway has aroused the interest of the scientific community in evaluating p38MAPK as a novel target for cancer therapy. In this review, we will summarize the role of p38MAPK in chemotherapy as well as the potential that p38MAPK inhibition can bring to cancer therapy. All the evidences suggest that p38MAPK could be a double-edged sword and that the search for the most appropriate candidate patients, depending on their pathology and treatment, will lead to a more rational use of this new therapeutic tool.
Collapse
Affiliation(s)
- Jesús García-Cano
- Unidad de Medicina Molecular, Laboratorio de Oncología, Centro Regional de Investigaciones Biomédicas, Unidad de Biomedicina UCLM-CSIC, Universidad de Castilla-La Mancha/PCTCLM Albacete, Spain
| | - Olga Roche
- Unidad de Medicina Molecular, Laboratorio de Oncología, Centro Regional de Investigaciones Biomédicas, Unidad de Biomedicina UCLM-CSIC, Universidad de Castilla-La Mancha/PCTCLM Albacete, Spain
| | - Francisco J Cimas
- Unidad de Medicina Molecular, Laboratorio de Oncología, Centro Regional de Investigaciones Biomédicas, Unidad de Biomedicina UCLM-CSIC, Universidad de Castilla-La Mancha/PCTCLM Albacete, Spain
| | - Raquel Pascual-Serra
- Unidad de Medicina Molecular, Laboratorio de Oncología, Centro Regional de Investigaciones Biomédicas, Unidad de Biomedicina UCLM-CSIC, Universidad de Castilla-La Mancha/PCTCLM Albacete, Spain
| | - Marta Ortega-Muelas
- Unidad de Medicina Molecular, Laboratorio de Oncología, Centro Regional de Investigaciones Biomédicas, Unidad de Biomedicina UCLM-CSIC, Universidad de Castilla-La Mancha/PCTCLM Albacete, Spain
| | - Diego M Fernández-Aroca
- Unidad de Medicina Molecular, Laboratorio de Oncología, Centro Regional de Investigaciones Biomédicas, Unidad de Biomedicina UCLM-CSIC, Universidad de Castilla-La Mancha/PCTCLM Albacete, Spain
| | - Ricardo Sánchez-Prieto
- Unidad de Medicina Molecular, Laboratorio de Oncología, Centro Regional de Investigaciones Biomédicas, Unidad de Biomedicina UCLM-CSIC, Universidad de Castilla-La Mancha/PCTCLM Albacete, Spain
| |
Collapse
|
223
|
Madonna R, Massaro M, Pandolfi A, Consoli A, De Caterina R. The Prominent Role of P38 Mitogen-Activated Protein Kinase in Insulin-Mediated Enhancement of VCAM-1 Expression in Endothelial Cells. Int J Immunopathol Pharmacol 2016; 20:539-55. [PMID: 17880767 DOI: 10.1177/039463200702000312] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Insulin levels are a marker for cardiovascular events, but the link between hyperinsulinemia and atherosclerosis is poorly understood. We previously showed that insulin increases monocyte-endothelial interactions and the endothelial expression of the pro-atherogenic vascular cell adhesion molecule-1 (VCAM-1). The aim of this study is to examine molecular mechanisms involved in the effect of insulin on VCAM-1 expression. Human umbilical vein endothelial cells (HUVEC) were incubated with insulin (0–24 h) ± inhibitors of signaling pathways potentially involved. At pathophysiological concentrations (10−9-10−7 M), insulin selectively induced VCAM-1 expression. The p38mitogen activated protein(MAP) kinase inhibitors SB203580 and SB202190, and partially the c-Jun NH2-terminal kinase (JNK) inhibitor SP600127, decreased insulin effect on VCAM-1. Gene silencing by small interfering RNA significantly reduced the expression of p38MAP kinase, and this was accompanied by suppression of insulin-stimulated VCAM-1 expression. Treatment with insulin also led to the activation of NF-κB and induction of IκB-α phosphorylation, thus accounting for NF-κB translocation into the nucleus. Co-treatment of HUVEC with insulin and SB202190 strongly reverted the stimulatory effect of insulin on NF-κB activation, thus establishing a link between NF-κB activation and p38MAPkinase-mediated induction of VCAM-1 by insulin. In conclusion, pathophysiological insulin concentrations increase VCAM-1 expression and activate NF-κB. This mostly occurs through stimulation of p38MAP kinase.
Collapse
Affiliation(s)
- R Madonna
- Center of Excellence on Aging, G.d'Annunzio University, Chieti, Italy
| | | | | | | | | |
Collapse
|
224
|
Kyosseva SV. Targeting MAPK Signaling in Age-Related Macular Degeneration. OPHTHALMOLOGY AND EYE DISEASES 2016; 8:23-30. [PMID: 27385915 PMCID: PMC4920203 DOI: 10.4137/oed.s32200] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Revised: 05/08/2016] [Accepted: 05/13/2016] [Indexed: 12/26/2022]
Abstract
Age-related macular degeneration (AMD) is a major cause of irreversible blindness affecting elderly people in the world. AMD is a complex multifactorial disease associated with demographic, genetics, and environmental risk factors. It is well established that oxidative stress, inflammation, and apoptosis play critical roles in the pathogenesis of AMD. The mitogen-activated protein kinase (MAPK) signaling pathways are activated by diverse extracellular stimuli, including growth factors, mitogens, hormones, cytokines, and different cellular stressors such as oxidative stress. They regulate cell proliferation, differentiation, survival, and apoptosis. This review addresses the novel findings from human and animal studies on the relationship of MAPK signaling with AMD. The use of specific MAPK inhibitors may represent a potential therapeutic target for the treatment of this debilitating eye disease.
Collapse
Affiliation(s)
- Svetlana V Kyosseva
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| |
Collapse
|
225
|
Hori T, Moore R, Negishi M. p38 MAP Kinase Links CAR Activation and Inactivation in the Nucleus via Phosphorylation at Threonine 38. Drug Metab Dispos 2016; 44:871-6. [PMID: 27074912 PMCID: PMC4885487 DOI: 10.1124/dmd.116.070235] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 04/01/2016] [Indexed: 12/12/2022] Open
Abstract
Nuclear receptor constitutive androstane receptor (CAR, NR1I3), which regulates hepatic drug and energy metabolisms as well as cell growth and death, is sequestered in the cytoplasm as its inactive form phosphorylated at threonine 38. CAR activators elicit dephosphorylation, and nonphosphorylated CAR translocates into the nucleus to activate its target genes. CAR was previously found to require p38 mitogen-activated protein kinase (MAPK) to transactivate the cytochrome P450 2B (CYP2B) genes. Here we have demonstrated that p38 MAPK forms a complex with CAR, enables it to bind to the response sequence, phenobarbital-responsive enhancer module (PBREM), within the CYP2B promoter, and thus recruits RNA polymerase II to activate transcription. Subsequently, p38 MAPK elicited rephosphorylation of threonine 38 to inactivate CAR and exclude it from the nucleus. Thus, nuclear p38 MAPK exerted dual regulation by sequentially activating and inactivating CAR-mediated transcription through phosphorylation of threonine 38.
Collapse
Affiliation(s)
- Takeshi Hori
- Pharmacogenetics Section, Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina
| | - Rick Moore
- Pharmacogenetics Section, Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina
| | - Masahiko Negishi
- Pharmacogenetics Section, Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina
| |
Collapse
|
226
|
Zhou X, Naguro I, Ichijo H, Watanabe K. Mitogen-activated protein kinases as key players in osmotic stress signaling. Biochim Biophys Acta Gen Subj 2016; 1860:2037-52. [PMID: 27261090 DOI: 10.1016/j.bbagen.2016.05.032] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 05/21/2016] [Indexed: 11/29/2022]
Abstract
BACKGROUND Osmotic stress arises from the difference between intracellular and extracellular osmolality. It induces cell swelling or shrinkage as a consequence of water influx or efflux, which threatens cellular activities. Mitogen-activated protein kinases (MAPKs) play central roles in signaling pathways in osmotic stress responses, including the regulation of intracellular levels of inorganic ions and organic osmolytes. SCOPE OF REVIEW The present review summarizes the cellular osmotic stress response and the function and regulation of the vertebrate MAPK signaling pathways involved. We also describe recent findings regarding apoptosis signal-regulating kinase 3 (ASK3), a MAP3K member, to demonstrate its regulatory effects on signaling molecules beyond MAPKs. MAJOR CONCLUSIONS MAPKs are rapidly activated by osmotic stress and have diverse roles, such as cell volume regulation, gene expression, and cell survival/death. There is significant cell type specificity in the function and regulation of MAPKs. Based on its activity change during osmotic stress and its regulation of the WNK1-SPAK/OSR1 pathway, ASK3 is expected to play important roles in osmosensing mechanisms and cellular functions related to osmoregulation. GENERAL SIGNIFICANCE MAPKs are essential for various cellular responses to osmotic stress; thus, the identification of the upstream regulators of MAPK pathways will provide valuable clues regarding the cellular osmosensing mechanism, which remains elusive in mammals. The elucidation of in vivo MAPK functions is also important because osmotic stress in physiological and pathophysiological conditions often results from changes in the intracellular osmolality. These studies potentially contribute to the establishment of therapeutic strategies against diseases that accompany osmotic perturbation.
Collapse
Affiliation(s)
- Xiangyu Zhou
- Laboratory of Cell Signaling, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Isao Naguro
- Laboratory of Cell Signaling, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hidenori Ichijo
- Laboratory of Cell Signaling, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Kengo Watanabe
- Laboratory of Cell Signaling, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
227
|
Brichkina A, Nguyen NT, Baskar R, Wee S, Gunaratne J, Robinson RC, Bulavin DV. Proline isomerisation as a novel regulatory mechanism for p38MAPK activation and functions. Cell Death Differ 2016; 23:1592-601. [PMID: 27233083 DOI: 10.1038/cdd.2016.45] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Revised: 04/05/2016] [Accepted: 04/15/2016] [Indexed: 12/22/2022] Open
Abstract
The stress-induced p38 mitogen-activated protein kinase (MAPK) pathway plays an essential role in multiple physiological processes, including cancer. In turn, p38MAPK phosphorylation at Thr180 and Tyr182 is a key regulatory mechanism for its activation and functions. Here we show that this mechanism is actively regulated through isomerisation of Pro224. Different cyclophilins can isomerise this proline residue and modulate the ability of upstream kinases to phosphorylate Thr180 and Tyr182. In vivo mutation of Pro224 to Ile in endogenous p38MAPK significantly reduced its phosphorylation and activity. This resulted in attenuation of p38MAPK signalling, which in turn caused an enhanced apoptosis and sensitivity to a DNA-damaging drug, cisplatin. We further found a reduction in size and number of lesions in homozygous mice carrying the p38MAPK P224I substitution in a K-ras model of lung tumorigenesis. We propose that cyclophilin-dependent isomerisation of p38MAPK is an important novel mechanism in regulating p38MAPK phosphorylation and functions. Thus, inhibition of this process, including with drugs that are in clinical trials, may improve the efficacy of current anti-cancer therapeutic regimes.
Collapse
Affiliation(s)
- A Brichkina
- Institute of Molecular and Cell Biology, A*STAR (Agency for Science, Technology and Research), Biopolis, Singapore 138673, Singapore
| | - N Tm Nguyen
- Institute of Molecular and Cell Biology, A*STAR (Agency for Science, Technology and Research), Biopolis, Singapore 138673, Singapore
| | - R Baskar
- Institute of Molecular and Cell Biology, A*STAR (Agency for Science, Technology and Research), Biopolis, Singapore 138673, Singapore
| | - S Wee
- Institute of Molecular and Cell Biology, A*STAR (Agency for Science, Technology and Research), Biopolis, Singapore 138673, Singapore
| | - J Gunaratne
- Institute of Molecular and Cell Biology, A*STAR (Agency for Science, Technology and Research), Biopolis, Singapore 138673, Singapore
| | - R C Robinson
- Institute of Molecular and Cell Biology, A*STAR (Agency for Science, Technology and Research), Biopolis, Singapore 138673, Singapore.,Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - D V Bulavin
- Institute for Research on Cancer and Aging of Nice (IRCAN), INSERM, U1081-UMR CNRS 7284, University of Nice - Sophia Antipolis, Centre Antoine Lacassagne, Nice, France
| |
Collapse
|
228
|
Shahlaei M, Doosti E. Virtual screening based on pharmacophore model followed by docking simulation studies in search of potential inhibitors for p38 map kinase. Biomed Pharmacother 2016; 80:352-372. [DOI: 10.1016/j.biopha.2016.02.041] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2015] [Revised: 02/26/2016] [Accepted: 02/27/2016] [Indexed: 11/24/2022] Open
|
229
|
Cell-permeable p38 MAP kinase promotes migration of adult neural stem/progenitor cells. Sci Rep 2016; 6:24279. [PMID: 27067799 PMCID: PMC4828673 DOI: 10.1038/srep24279] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Accepted: 03/23/2016] [Indexed: 12/18/2022] Open
Abstract
Endogenous neural stem/progenitor cells (NPCs) can migrate toward sites of injury, but the migration activity of NPCs is insufficient to regenerate damaged brain tissue. In this study, we showed that p38 MAP kinase (p38) is expressed in doublecortin-positive adult NPCs. Experiments using the p38 inhibitor SB203580 revealed that endogenous p38 participates in NPC migration. To enhance NPC migration, we generated a cell-permeable wild-type p38 protein (PTD-p38WT) in which the HIV protein transduction domain (PTD) was fused to the N-terminus of p38. Treatment with PTD-p38WT significantly promoted the random migration of adult NPCs without affecting cell survival or differentiation; this effect depended on the cell permeability and kinase activity of the fusion protein. These findings indicate that PTD-p38WT is a novel and useful tool for unraveling the roles of p38, and that this protein provides a reasonable approach for regenerating the injured brain by enhancing NPC migration.
Collapse
|
230
|
Beesu M, Caruso G, Salyer ACD, Shukla NM, Khetani KK, Smith LJ, Fox LM, Tanji H, Ohto U, Shimizu T, David SA. Identification of a Human Toll-Like Receptor (TLR) 8-Specific Agonist and a Functional Pan-TLR Inhibitor in 2-Aminoimidazoles. J Med Chem 2016; 59:3311-30. [PMID: 26966993 DOI: 10.1021/acs.jmedchem.6b00023] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Activation of human toll-like receptor-8 (TLR8), expressed in myeloid dendritic cells, monocytes, and monocyte-derived dendritic cells, evokes a distinct cytokine profile which favors the development of Type 1 helper T cells. Part-structures of the 2-aminobenzimidazole scaffold were examined with a view to identifying structural requisites corresponding to the smallest possible fragment of the benzimidazole core that would allow for retention of TLR8-agonistic activity. TLR8-specific agonistic activity was retained in 1-pentyl-4-phenyl-1H-imidazol-2-amine. The crystal structure of this compound bound to the TLR8 ectodomain displayed binding interactions that are common to other TLR8 agonists. This compound showed markedly attenuated proinflammatory properties in ex vivo human blood models. SAR studies revealed that 4-(2-(benzyloxy)phenyl)-1-pentyl-1H-imidazol-2-amine inhibited TLR signaling in a variety of TLR reporter cell lines, as well as in pharmacologically relevant human blood model systems. A kinase screen of this compound showed relative specificity for calmodulin kinases.
Collapse
Affiliation(s)
- Mallesh Beesu
- Department of Medicinal Chemistry, University of Kansas , Lawrence, Kansas 66047, United States.,Department of Medicinal Chemistry, University of Minnesota , Minneapolis, Minnesota 55455, United States
| | - Giuseppe Caruso
- Department of Medicinal Chemistry, University of Kansas , Lawrence, Kansas 66047, United States
| | - Alex C D Salyer
- Department of Medicinal Chemistry, University of Kansas , Lawrence, Kansas 66047, United States.,Department of Medicinal Chemistry, University of Minnesota , Minneapolis, Minnesota 55455, United States
| | - Nijunj M Shukla
- Department of Medicinal Chemistry, University of Kansas , Lawrence, Kansas 66047, United States.,Department of Medicinal Chemistry, University of Minnesota , Minneapolis, Minnesota 55455, United States
| | - Karishma K Khetani
- Department of Medicinal Chemistry, University of Kansas , Lawrence, Kansas 66047, United States
| | - Luke J Smith
- Department of Medicinal Chemistry, University of Kansas , Lawrence, Kansas 66047, United States
| | - Lauren M Fox
- Department of Medicinal Chemistry, University of Kansas , Lawrence, Kansas 66047, United States
| | - Hiromi Tanji
- Graduate School of Pharmaceutical Sciences, University of Tokyo , Tokyo, Japan
| | - Umeharu Ohto
- Graduate School of Pharmaceutical Sciences, University of Tokyo , Tokyo, Japan
| | - Toshiyuki Shimizu
- Graduate School of Pharmaceutical Sciences, University of Tokyo , Tokyo, Japan
| | - Sunil A David
- Department of Medicinal Chemistry, University of Kansas , Lawrence, Kansas 66047, United States.,Department of Medicinal Chemistry, University of Minnesota , Minneapolis, Minnesota 55455, United States
| |
Collapse
|
231
|
Yuan HX, Wang Z, Yu FX, Li F, Russell RC, Jewell JL, Guan KL. NLK phosphorylates Raptor to mediate stress-induced mTORC1 inhibition. Genes Dev 2016; 29:2362-76. [PMID: 26588989 PMCID: PMC4691891 DOI: 10.1101/gad.265116.115] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Yuan et al. show that the Nemo-like kinase (NLK) phosphorylates Raptor on S863 to disrupt its interaction with the Rag GTPase, which is important for mTORC1 lysosomal recruitment. Cells with Nlk deletion or knock-in of the Raptor S863 phosphorylation mutants are defective in the rapid mTORC1 inhibition upon osmotic stress. The mechanistic target of rapamycin (mTOR) is a central cell growth controller and forms two distinct complexes: mTORC1 and mTORC2. mTORC1 integrates a wide range of upstream signals, both positive and negative, to regulate cell growth. Although mTORC1 activation by positive signals, such as growth factors and nutrients, has been extensively investigated, the mechanism of mTORC1 regulation by stress signals is less understood. In this study, we identified the Nemo-like kinase (NLK) as an mTORC1 regulator in mediating the osmotic and oxidative stress signals. NLK inhibits mTORC1 lysosomal localization and thereby suppresses mTORC1 activation. Mechanistically, NLK phosphorylates Raptor on S863 to disrupt its interaction with the Rag GTPase, which is important for mTORC1 lysosomal recruitment. Cells with Nlk deletion or knock-in of the Raptor S863 phosphorylation mutants are defective in the rapid mTORC1 inhibition upon osmotic stress. Our study reveals a function of NLK in stress-induced mTORC1 modulation and the underlying biochemical mechanism of NLK in mTORC1 inhibition in stress response.
Collapse
Affiliation(s)
- Hai-Xin Yuan
- Key Laboratory of Molecular Medicine of Ministry of Education, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 20032, China; Department of Pharmacology and Moores Cancer Center, University of California at San Diego, La Jolla, California 92130, USA
| | - Zhen Wang
- Key Laboratory of Molecular Medicine of Ministry of Education, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 20032, China
| | - Fa-Xing Yu
- Children's Hospital, Institutes of Biomedical Sciences, Fudan University, Shanghai 20032, China; Department of Pharmacology and Moores Cancer Center, University of California at San Diego, La Jolla, California 92130, USA
| | - Fulong Li
- Key Laboratory of Molecular Medicine of Ministry of Education, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 20032, China
| | - Ryan C Russell
- Department of Pharmacology and Moores Cancer Center, University of California at San Diego, La Jolla, California 92130, USA
| | - Jenna L Jewell
- Department of Pharmacology and Moores Cancer Center, University of California at San Diego, La Jolla, California 92130, USA
| | - Kun-Liang Guan
- Department of Pharmacology and Moores Cancer Center, University of California at San Diego, La Jolla, California 92130, USA
| |
Collapse
|
232
|
Olivera GC, Ren X, Vodnala SK, Lu J, Coppo L, Leepiyasakulchai C, Holmgren A, Kristensson K, Rottenberg ME. Nitric Oxide Protects against Infection-Induced Neuroinflammation by Preserving the Stability of the Blood-Brain Barrier. PLoS Pathog 2016; 12:e1005442. [PMID: 26915097 PMCID: PMC4767601 DOI: 10.1371/journal.ppat.1005442] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2015] [Accepted: 01/15/2016] [Indexed: 01/06/2023] Open
Abstract
Nitric oxide (NO) generated by inducible NO synthase (iNOS) is critical for defense against intracellular pathogens but may mediate inflammatory tissue damage. To elucidate the role of iNOS in neuroinflammation, infections with encephalitogenic Trypanosoma brucei parasites were compared in inos-/- and wild-type mice. Inos-/- mice showed enhanced brain invasion by parasites and T cells, and elevated protein permeability of cerebral vessels, but similar parasitemia levels. Trypanosome infection stimulated T cell- and TNF-mediated iNOS expression in perivascular macrophages. NO nitrosylated and inactivated pro-inflammatory molecules such as NF-κΒp65, and reduced TNF expression and signalling. iNOS-derived NO hampered both TNF- and T cell-mediated parasite brain invasion. In inos-/- mice, TNF stimulated MMP, including MMP9 activity that increased cerebral vessel permeability. Thus, iNOS-generated NO by perivascular macrophages, strategically located at sites of leukocyte brain penetration, can serve as a negative feed-back regulator that prevents unlimited influx of inflammatory cells by restoring the integrity of the blood-brain barrier. Inflammatory responses can lead to harmful effects on the brain during many chronic parasitic infections, including those with African trypanosomes. T. brucei, the causative agent of African trypanosomiasis, that traverse the blood-brain barrier (BBB) to invade the brain, where, together with inflammatory infiltrates, they likely contribute to the neurologic disturbances of the disease. High levels of nitric oxide (NO) released by the inducible NO synthase (iNOS) are critical for defense against parasites, but also mediate inflammatory tissue damage. Using a mouse model of African trypanosomiasis, we uncovered an unexpected role of NO, preserving the integrity of the BBB and limiting the neuroinvasion of leukocytes and parasites, rather than mediating brain damage or killing of trypanosomes. iNOS-derived NO, nitrosylates molecules such as pro-inflammatory transcription factors. iNOS hampered both TNF- and T cell-mediated parasite and leukocyte brain invasion and passage of serum proteins across the BBB. In inos-/- mice, exacerbated TNF secretion and signalling increased MMP9 activity that mediates cerebral vascular permeability. Thus, NO is crucial for maintenance of the integrity of the cerebral vessels and serves as a feed-back regulator by inhibiting leukocyte brain penetration during T. brucei infection. Consequently, therapies could target iNOS to reduce tissue damage during neuroinflammation.
Collapse
Affiliation(s)
- Gabriela C. Olivera
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Xiaoyuan Ren
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Suman K. Vodnala
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Jun Lu
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Lucia Coppo
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | | | - Arne Holmgren
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | | | - Martin E. Rottenberg
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
- * E-mail:
| |
Collapse
|
233
|
Deng W, Zhang Y, Gu L, Cui J, Duan B, Wang Y, Du J. Heat shock protein 27 downstream of P38-PI3K/Akt signaling antagonizes melatonin-induced apoptosis of SGC-7901 gastric cancer cells. Cancer Cell Int 2016; 16:5. [PMID: 26877709 PMCID: PMC4751649 DOI: 10.1186/s12935-016-0283-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2015] [Accepted: 02/03/2016] [Indexed: 01/27/2023] Open
Abstract
Background Despite the fact that melatonin treatment shows some promise in gastric cancer, the molecular mechanisms of gastric cancer cells in response to melatonin remains to be determined. Methods The SGC-7901 gastric cancer cells were treated with different concentrations of melatonin for 24 and 48 h. Cell viability was determined by MTT assay, Hoechst 33258 staining and FACS analysis were used to detect apoptotic cells. The contents and activation of apoptosis-related proteins HSP27, Akt and P38 were evaluated by immunoblotting analysis. Then we treated SGC-7901 cells with HSP27-specific siRNA, PI3K inhibitor LY294002 or P38 inhibitor SB203580 to investigate the role of HSP27, Akt and P38 in the anti-apoptotic response of SGC-7901 cells to melatonin. Results Melatonin suppressed cell viability and stimulated apoptosis of gastric cancer SGC-7901 cells dose-dependently. Mechanistically, the observed apoptosis was accompanied by the melatonin-induced phosphorylation of HSP27. HSP27-specific siRNA transfection effectively reduced HSP27 phosphorylation and augmented melatonin-induced apoptosis, indicating that HSP27 is resistant to melatonin-induced apoptosis. Moreover, melatonin increased PI3K/Akt activation, LY294002 abrogated HSP27 activation and promoted cell apoptosis induced by melatonin. Furthermore, melatonin increased P38 activity, and P38 inhibitor SB203580 inhibited melatonin-induced PI3K/Akt, HSP27 activation and accelerated cell apoptosis. Conclusion In contrast to the well-established anti-cancer properties of melatonin, our study revealed clearly a distinguishable anti-apoptotic pathway induced by melatonin, that is, HSP27 plays a crucial role in apoptotic resistance in melatonin-treated gastric cancer cells, and its activation is most likely via the activation of P38/PI3K/Akt signaling.
Collapse
Affiliation(s)
- Wenjie Deng
- Cancer Center, Nanjing Medical University, 140 Hanzhong Road, Nanjing, Jiangsu 210029 China ; Department of Physiology, Nanjing Medical University, 140 Hanzhong Road, Nanjing, Jiangsu 210029 China
| | - Yujie Zhang
- Cancer Center, Nanjing Medical University, 140 Hanzhong Road, Nanjing, Jiangsu 210029 China
| | - Luo Gu
- Cancer Center, Nanjing Medical University, 140 Hanzhong Road, Nanjing, Jiangsu 210029 China ; Department of Physiology, Nanjing Medical University, 140 Hanzhong Road, Nanjing, Jiangsu 210029 China ; Department of Biochemistry and Molecular Biology, Nanjing Medical University, 140 Hanzhong Road, Nanjing, Jiangsu 210029 China
| | - Jie Cui
- Department of Biochemistry and Molecular Biology, Nanjing Medical University, 140 Hanzhong Road, Nanjing, Jiangsu 210029 China
| | - Biao Duan
- Department of Physiology, Nanjing Medical University, 140 Hanzhong Road, Nanjing, Jiangsu 210029 China
| | - Yueyuan Wang
- Department of Physiology, Nanjing Medical University, 140 Hanzhong Road, Nanjing, Jiangsu 210029 China
| | - Jun Du
- Cancer Center, Nanjing Medical University, 140 Hanzhong Road, Nanjing, Jiangsu 210029 China ; Department of Physiology, Nanjing Medical University, 140 Hanzhong Road, Nanjing, Jiangsu 210029 China
| |
Collapse
|
234
|
Li X, Ma J, Li Y. Molecular Cloning and Expression Determination ofp38 MAPKfrom the Liver and Kidney of Silver Carp. J Biochem Mol Toxicol 2016; 30:224-31. [DOI: 10.1002/jbt.21781] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2015] [Revised: 10/30/2015] [Accepted: 12/11/2015] [Indexed: 12/28/2022]
Affiliation(s)
- Xiaoyu Li
- College of Life Science; Henan Normal University; Xinxiang Henan 453007 People's Republic of China
| | - Junguo Ma
- College of Life Science; Henan Normal University; Xinxiang Henan 453007 People's Republic of China
| | - Yuanyuan Li
- College of Life Science; Henan Normal University; Xinxiang Henan 453007 People's Republic of China
| |
Collapse
|
235
|
Kasai T, Nakanishi T, Ohno Y, Shimada H, Nakamura Y, Arakawa H, Tamai I. Role of OATP2A1 in PGE(2) secretion from human colorectal cancer cells via exocytosis in response to oxidative stress. Exp Cell Res 2016; 341:123-31. [PMID: 26850138 DOI: 10.1016/j.yexcr.2016.02.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 01/29/2016] [Accepted: 02/01/2016] [Indexed: 12/30/2022]
Abstract
Chronic inflammation induced by reactive oxygen species is associated with increased risk of developing colorectal cancer (CRC), and prostaglandin E2 (PGE2), which serves as a key mediator of inflammatory responses, plays an important role in CRC initiation and progression. Therefore, in the present study, we aimed to investigate the role of prostaglandin transporter OATP2A1/SLCO2A1 in the changes of PGE2 disposition in CRC cells in response to oxidative stress. H2O2 induced translocation of cytoplasmic OATP2A1 to plasma membranes in LoVo and COLO 320DM cells, but not in Caco-2 cells. The shift of subcellular OATP2A1 was abolished in the presence of anti-oxidant N-acetyl-L-cysteine or an inhibitor of protein kinase C, which evokes exocytosis. Exposure of LoVo cells to H2O2 caused an increase in the amount of extracellular PGE2 without changing the sum of intra- and extracellular PGE2. OATP2A1 knockdown decreased extracellular PGE2 in LoVo cells. In addition, extracellular PGE2 was significantly reduced by exocytosis inhibitor cytochalasin D, suggesting that H2O2-induced PGE2 release occurs in an exocytotic manner. Furthermore, mRNA expression of vascular endothelial growth factor (VEGF) was significantly reduced in LoVo cells by knockdown of OATP2A1. These results suggest that cytoplasmic OATP2A1 likely facilitates PGE2 loading into suitable intracellular compartment(s) for efficient exocytotic PGE2 release from CRC cells exposed to oxidative stress.
Collapse
Affiliation(s)
- Taku Kasai
- Faculty of Pharmaceutical Science, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Takeo Nakanishi
- Faculty of Pharmaceutical Science, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Yasuhiro Ohno
- Faculty of Pharmaceutical Science, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Hiroaki Shimada
- Faculty of Pharmaceutical Science, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Yoshinobu Nakamura
- Faculty of Pharmaceutical Science, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Hiroshi Arakawa
- Faculty of Pharmaceutical Science, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Ikumi Tamai
- Faculty of Pharmaceutical Science, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan.
| |
Collapse
|
236
|
The Cancer Chemotherapeutic Paclitaxel Increases Human and Rodent Sensory Neuron Responses to TRPV1 by Activation of TLR4. J Neurosci 2015; 35:13487-500. [PMID: 26424893 DOI: 10.1523/jneurosci.1956-15.2015] [Citation(s) in RCA: 181] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Peripheral neuropathy is dose limiting in paclitaxel cancer chemotherapy and can result in both acute pain during treatment and chronic persistent pain in cancer survivors. The hypothesis tested was that paclitaxel produces these adverse effects at least in part by sensitizing transient receptor potential vanilloid subtype 1 (TRPV1) through Toll-like receptor 4 (TLR4) signaling. The data show that paclitaxel-induced behavioral hypersensitivity is prevented and reversed by spinal administration of a TRPV1 antagonist. The number of TRPV1(+) neurons is increased in the dorsal root ganglia (DRG) in paclitaxel-treated rats and is colocalized with TLR4 in rat and human DRG neurons. Cotreatment of rats with lipopolysaccharide from the photosynthetic bacterium Rhodobacter sphaeroides (LPS-RS), a TLR4 inhibitor, prevents the increase in numbers of TRPV1(+) neurons by paclitaxel treatment. Perfusion of paclitaxel or the archetypal TLR4 agonist LPS activated both rat DRG and spinal neurons directly and produced acute sensitization of TRPV1 in both groups of cells via a TLR4-mediated mechanism. Paclitaxel and LPS sensitize TRPV1 in HEK293 cells stably expressing human TLR4 and transiently expressing human TRPV1. These physiological effects also are prevented by LPS-RS. Finally, paclitaxel activates and sensitizes TRPV1 responses directly in dissociated human DRG neurons. In summary, TLR4 was activated by paclitaxel and led to sensitization of TRPV1. This mechanism could contribute to paclitaxel-induced acute pain and chronic painful neuropathy. Significance statement: In this original work, it is shown for the first time that paclitaxel activates peripheral sensory and spinal neurons directly and sensitizes these cells to transient receptor potential vanilloid subtype 1 (TRPV1)-mediated capsaicin responses via Toll-like receptor 4 (TLR4) in multiple species. A direct functional interaction between TLR4 and TRPV1 is shown in rat and human dorsal root ganglion neurons, TLR4/TRPV1-coexpressing HEK293 cells, and in both rat and mouse spinal cord slices. Moreover, this is the first study to show that this interaction plays an important role in the generation of behavioral hypersensitivity in paclitaxel-related neuropathy. The key translational implications are that TLR4 and TRPV1 antagonists may be useful in the prevention and treatment of chemotherapy-induced peripheral neuropathy in humans.
Collapse
|
237
|
Ji GQ, Chen RQ, Wang L. Anti-inflammatory activity of atractylenolide III through inhibition of nuclear factor-κB and mitogen-activated protein kinase pathways in mouse macrophages. Immunopharmacol Immunotoxicol 2015; 38:98-102. [DOI: 10.3109/08923973.2015.1122617] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
238
|
High-Salt Enhances the Inflammatory Response by Retina Pigment Epithelium Cells following Lipopolysaccharide Stimulation. Mediators Inflamm 2015; 2015:197521. [PMID: 26783382 PMCID: PMC4689981 DOI: 10.1155/2015/197521] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 11/10/2015] [Accepted: 11/23/2015] [Indexed: 12/27/2022] Open
Abstract
High-salt has been shown to play a role in the pathogenesis of autoimmune disease. In this study, we investigated the effect of high-salt on the production of inflammatory mediators by ARPE-19 cells and the possible mechanisms involved. ARPE-19 cells were cultured with LPS in DMEM to which extra NaCl had been added (20 mM and 40 mM). NaCl had no influence on the apoptosis and proliferation of ARPE-19. Addition of 40 mM NaCl significantly induced IL-6 and MCP-1 production but had no effect on IL-8 secretion. High mannitol, as an osmotic stress control, did not affect the secretion of inflammatory mediators by ARPE-19 cells indicating that the effect was not mediated by osmolarity. Coculture of ARPE-19 cells with NaCl resulted in significant increases in the phosphorylation of p38 MAPK, Akt, and NF-κB and an upregulation of the transcription factors NFAT5 and SGK1. High-salt significantly promotes IL-6 and MCP-1 production by ARPE-19 cells and is associated with activation of the p38 MAPK, Akt, and NF-κB pathway and NFAT-SGK1 pathways.
Collapse
|
239
|
Umasuthan N, Bathige SDNK, Noh JK, Lee J. Gene structure, molecular characterization and transcriptional expression of two p38 isoforms (MAPK11 and MAPK14) from rock bream (Oplegnathus fasciatus). FISH & SHELLFISH IMMUNOLOGY 2015; 47:331-343. [PMID: 26363230 DOI: 10.1016/j.fsi.2015.09.018] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Revised: 09/07/2015] [Accepted: 09/07/2015] [Indexed: 06/05/2023]
Abstract
The p38 kinases are one of the four subgroups of mitogen-activated protein kinase (MAPK) superfamily which are involved in the innate immunity. The p38 subfamily that includes four members namely p38α (MAPK14), p38β (MAPK11), p38γ (MAPK12) and p38δ (MAPK13), regulates the activation of several transcription factors. In this study, a p38β (OfMAPK11) homolog and a p38α (OfMAPK14) homolog of Oplegnathus fasciatus were identified at genomic level. Results clearly showed that both MAPK11 and MAPK14 are well-conserved at both genomic structural- and amino acid (aa)-levels. Genomic sequences of OfMAPK11 (∼ 15.6 kb) and OfMAPK14 (∼ 13.4 kb) had 12 exons. A comparison of exon-intron structural arrangement of these genes from different vertebrate lineages indicated that all the exon lengths are highly conserved, except their terminal exons. Full-length cDNAs of OfMAPK11 (3957 bp) and OfMAPK14 (2504 bp) encoded corresponding proteins of 361 aa and 360 aa, respectively. Both OfMAPK proteins harbored a Ser/Thr protein kinases catalytic domain (S_TKc domain) which includes an activation loop with a dual phosphorylation site (TGY motif) and several specific-binding sites for ATP and substrates. Molecular modeling of the activation loop and substrate binding sites of rock bream MAPKs revealed the conservation of crucial residues and their orientation in 3D space. Transcripts of OfMAPKs were ubiquitously detected in eleven tissues examined, however at different levels. The modulation of OfMAPKs' transcription upon pathogen-associated molecular patterns (PAMPs: flagellin, lipopolysaccharide and poly I:C) and pathogens (Edwardsiella tarda, Streptococcus iniae and rock bream iridovirus) was investigated. Among the seven examined tissues, the flagellin-challenge upregulated the mRNA level of both OfMAPKs in the head kidney. Meanwhile, modulation of OfMAPK mRNA expression in the liver upon other immune-challenges varied in a time-dependent manner. Collectively, these results suggest that OfMAPKs are true members of p38 subfamily, which might be induced by different immune stimuli.
Collapse
Affiliation(s)
- Navaneethaiyer Umasuthan
- Department of Marine Life Sciences, School of Marine Biomedical Sciences, Jeju National University, Jeju Self-Governing Province 690-756, Republic of Korea; Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province 690-756, Republic of Korea
| | - S D N K Bathige
- Department of Marine Life Sciences, School of Marine Biomedical Sciences, Jeju National University, Jeju Self-Governing Province 690-756, Republic of Korea; Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province 690-756, Republic of Korea
| | - Jae Koo Noh
- Genetics & Breeding Research Center, National Fisheries Research & Development Institute, Geoje 656-842, Republic of Korea
| | - Jehee Lee
- Department of Marine Life Sciences, School of Marine Biomedical Sciences, Jeju National University, Jeju Self-Governing Province 690-756, Republic of Korea; Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province 690-756, Republic of Korea.
| |
Collapse
|
240
|
Steinbrecher TB, Dahlgren M, Cappel D, Lin T, Wang L, Krilov G, Abel R, Friesner R, Sherman W. Accurate Binding Free Energy Predictions in Fragment Optimization. J Chem Inf Model 2015; 55:2411-20. [PMID: 26457994 DOI: 10.1021/acs.jcim.5b00538] [Citation(s) in RCA: 103] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Predicting protein-ligand binding free energies is a central aim of computational structure-based drug design (SBDD)--improved accuracy in binding free energy predictions could significantly reduce costs and accelerate project timelines in lead discovery and optimization. The recent development and validation of advanced free energy calculation methods represents a major step toward this goal. Accurately predicting the relative binding free energy changes of modifications to ligands is especially valuable in the field of fragment-based drug design, since fragment screens tend to deliver initial hits of low binding affinity that require multiple rounds of synthesis to gain the requisite potency for a project. In this study, we show that a free energy perturbation protocol, FEP+, which was previously validated on drug-like lead compounds, is suitable for the calculation of relative binding strengths of fragment-sized compounds as well. We study several pharmaceutically relevant targets with a total of more than 90 fragments and find that the FEP+ methodology, which uses explicit solvent molecular dynamics and physics-based scoring with no parameters adjusted, can accurately predict relative fragment binding affinities. The calculations afford R(2)-values on average greater than 0.5 compared to experimental data and RMS errors of ca. 1.1 kcal/mol overall, demonstrating significant improvements over the docking and MM-GBSA methods tested in this work and indicating that FEP+ has the requisite predictive power to impact fragment-based affinity optimization projects.
Collapse
Affiliation(s)
| | - Markus Dahlgren
- Schrödinger Inc., 120 West 45th Street, 17th Floor, New York, New York 10036, United States
| | - Daniel Cappel
- Schrödinger GmbH, Dynamostrasse 13, 68165 Mannheim, Baden-Württemberg, Germany
| | - Teng Lin
- Schrödinger Inc., 120 West 45th Street, 17th Floor, New York, New York 10036, United States
| | - Lingle Wang
- Schrödinger Inc., 120 West 45th Street, 17th Floor, New York, New York 10036, United States
| | - Goran Krilov
- Schrödinger Inc., 120 West 45th Street, 17th Floor, New York, New York 10036, United States
| | - Robert Abel
- Schrödinger Inc., 120 West 45th Street, 17th Floor, New York, New York 10036, United States
| | - Richard Friesner
- Department of Chemistry, Columbia University , 3000 Broadway New York, New York 10027, United States
| | - Woody Sherman
- Schrödinger Inc., 120 West 45th Street, 17th Floor, New York, New York 10036, United States
| |
Collapse
|
241
|
Guarnieri F. Designing an orally available nontoxic p38 inhibitor with a fragment-based strategy. Methods Mol Biol 2015; 1289:211-26. [PMID: 25709042 DOI: 10.1007/978-1-4939-2486-8_15] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The MAPK p38 became a focal point of inflammatory research when it was recognized that it played a key role in the production of the pro-inflammatory molecules TNF-alpha, IL-beta, and cyclooxygenase-2 (COX-2). The pharmaceutical industry devoted enormous efforts to creating p38 inhibitors, because blocking p38 had the potential of downregulating a group of pro-inflammatory mediators, and thus, one drug could have a cocktail effect. The market potential seemed to be clearly established (Bonafede et al., Clinicoecon Outcomes Res 6:381-388, 2014) with a multiplicity of TNF-alpha antibodies and a soluble receptor (Mewar and Wilson, Br J Pharmacol 162:785-791, 2011) already on the market, although the relationship between TNF-alpha production and p38 activation is a complicated two-way (Sabio and Davis, Semin Immunol 26:237-245, 2014) signal transduction process. With the discovery that activated p38 stabilizes (Mancini and Di Battista, Inflamm Res 60:1083-1092, 2011) COX-2 mRNA and upregulates expression of IL-beta (Bachstetter and Van Eldik, Aging Dis 1:199-211, 2010) probably in a similar manner, inhibiting p38 appeared to be a way of blocking TNF-alpha, COX-2, and IL-beta simultaneously. At Locus Pharmaceuticals we jumped on this opportunity, because we believed that our fragment-based drug discovery approach was ideally suited for making a potent small molecule p38 inhibitor that did not bind in the ATP site, but also had the solubility, lack of planarity, and low molecular weight required of a clinical candidate. Just to be clear, in our experience highly planar compounds often result in poor pharmacokinetics, because they tend to bind strongly to plasma proteins. At Locus we typically repeated assays by adding increasing amounts of plasma to check for potency degradation in the presence of blood. We found this to be a useful early indicator of pharmacokinetics and in vivo behavior. It became clear from our work and the work of others that binding to the ATP site resulted in nonspecific isoform toxicities, but binding in the adjacent allosteric DFG-site resulted in molecules that were too planar and too hydrophobic. Applying the computational method of Simulated Annealing of Chemical Potential (SACP) to this problem, we at Locus were able to come up with surprising fragment substitution patterns that led to potent non-ATP p38 inhibitors with the solubility and lack of planarity that resulted in potent in vivo efficacy in rodents with 33 % oral bioavailability. By using the simulations, we made only a small number of molecules and created a high quality clinical candidate. We also did extensive co-crystallography work, which demonstrated that the compounds bound in the mode predicted by the simulations. Unfortunately, all p38 programs ultimately shut down, because compelling evidence emerged that inhibiting p38 had no long-term clinical (Genovese, Arthritis Rheum 60:317-320, 2009) benefit. Devoting a large amount of limited resources to a target that ultimately turns out to be a mistake because it was not properly validated is a fatal error for a small company, and this is one of the reasons that Locus ultimately failed.
Collapse
Affiliation(s)
- Frank Guarnieri
- Department of Physiology & Biophysics, Virginia Commonwealth University School of Medicine, Richmond, VA, 23298, USA,
| |
Collapse
|
242
|
Du M, Chen M, Shen H, Wang W, Li Z, Wang W, Huang J, Chen J. CyHV-2 ORF104 activates the p38 MAPK pathway. FISH & SHELLFISH IMMUNOLOGY 2015; 46:268-273. [PMID: 26072141 DOI: 10.1016/j.fsi.2015.06.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Revised: 06/03/2015] [Accepted: 06/07/2015] [Indexed: 06/04/2023]
Abstract
Cyprinid herpesvirus 2 (CyHV-2) is the pathogen responsible for herpesviral hematopoietic necrosis disease, which causes huge losses on aquaculture. So far the studies of CyHV-2 mainly focus on the identification and detection of this virus, but little is known about the role of specific CyHV-2 genes in the infection process. Based on the genomic information, CyHV-2 ORF104 encodes a kinase-like protein, which is highly conserved among the three CyHVs. Our study was initiated to investigate the role of kinase-like protein ORF104 during virus infection. Subcellular localization study showed that ORF104 was mainly expressed in the nucleus in both human HEK293T and fish EPC cells. However, deletion of the putative nuclear localization signal of ORF104 (ORF104M) resulted in the cytoplasmic distribution in HEK293T. We then examined whether MAPKs were involved in the ORF104-mediated signaling pathway by overexpressing ORF104 and ORF104M in HEK293T. Overexpression of ORF104 and ORF104M resulted in the up-regulation of p38 phosphorylation, but not JNK or ERK, indicating that ORF104 specifically activates p38 signaling pathway. In vivo study showed that CyHV-2 infection enhanced p38 phosphorylation in gibel carp (Carassius auratus gibelio). Interestingly, p38 inhibitor SB203580 strongly reduced fish death caused by CyHV-2 infection. Therefore, our study for the first time reveals the function of ORF104 during CyHV-2 infection, indicating that ORF104 is a potential vaccine candidate for CyHV-2.
Collapse
Affiliation(s)
- Mi Du
- School of Marine Sciences, Ningbo University, Ningbo, 315211 Zhejiang, China; State Key Laboratory Breeding Base of Marine Genetic Resources, South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Third Institute of Oceanography, State Oceanic Administration, Xiamen, 361005 Fujian, China
| | - Mingliang Chen
- State Key Laboratory Breeding Base of Marine Genetic Resources, South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Third Institute of Oceanography, State Oceanic Administration, Xiamen, 361005 Fujian, China
| | - Haifeng Shen
- State Key Laboratory Breeding Base of Marine Genetic Resources, South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Third Institute of Oceanography, State Oceanic Administration, Xiamen, 361005 Fujian, China
| | - Wei Wang
- State Key Laboratory Breeding Base of Marine Genetic Resources, South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Third Institute of Oceanography, State Oceanic Administration, Xiamen, 361005 Fujian, China
| | - Zengpeng Li
- State Key Laboratory Breeding Base of Marine Genetic Resources, South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Third Institute of Oceanography, State Oceanic Administration, Xiamen, 361005 Fujian, China
| | - Weiyi Wang
- State Key Laboratory Breeding Base of Marine Genetic Resources, South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Third Institute of Oceanography, State Oceanic Administration, Xiamen, 361005 Fujian, China
| | - Jianhui Huang
- Putian Aquatic Products, Technical Extension Station, Putian, 351100 Fujian, China
| | - Jianming Chen
- State Key Laboratory Breeding Base of Marine Genetic Resources, South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Third Institute of Oceanography, State Oceanic Administration, Xiamen, 361005 Fujian, China.
| |
Collapse
|
243
|
Levkovitch-Verbin H. Retinal ganglion cell apoptotic pathway in glaucoma: Initiating and downstream mechanisms. PROGRESS IN BRAIN RESEARCH 2015; 220:37-57. [PMID: 26497784 DOI: 10.1016/bs.pbr.2015.05.005] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Apoptosis of retinal ganglion cells (RGCs) in glaucoma causes progressive visual field loss, making it the primary cause of irreversible blindness worldwide. Elevated intraocular pressure and aging, the main risk factors for glaucoma, accelerate RGC apoptosis. Numerous pathways and mechanisms were found to be involved in RGC death in glaucoma. Neurotrophic factors deprivation is an early event. Oxidative stress, mitochondrial dysfunction, inflammation, glial cell dysfunction, and activation of apoptotic pathways and prosurvival pathways play a significant role in RGC death in glaucoma. The most important among the involved pathways are the MAP-kinase pathway, PI-3 kinase/Akt pathway, Bcl-2 family, caspase family, and IAP family.
Collapse
Affiliation(s)
- Hani Levkovitch-Verbin
- Glaucoma Service, Goldschleger Eye Institute, Sheba Medical Center, Tel-Hashomer, Israel; Sackler Faculty of Medicine, Tel-Aviv University, Tel-Hashomer, Israel.
| |
Collapse
|
244
|
Li Y, Zhang H, Kosturakis AK, Cassidy RM, Zhang H, Kennamer-Chapman RM, Jawad AB, Colomand CM, Harrison DS, Dougherty PM. MAPK signaling downstream to TLR4 contributes to paclitaxel-induced peripheral neuropathy. Brain Behav Immun 2015; 49:255-66. [PMID: 26065826 PMCID: PMC4567501 DOI: 10.1016/j.bbi.2015.06.003] [Citation(s) in RCA: 109] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Revised: 06/02/2015] [Accepted: 06/02/2015] [Indexed: 01/07/2023] Open
Abstract
Toll-like receptor 4 (TLR4) has been implicated as a locus for initiation of paclitaxel related chemotherapy induced peripheral neuropathy (CIPN). This project explores the involvement of the immediate down-stream signal molecules in inducing paclitaxel CIPN. Mitogen-activated protein kinases (MAPKs) and nuclear factor-κB (NFκB) were measured in dorsal root ganglia (DRG) and the spinal cord over time using Western blot and immunohistochemistry in a rat model of paclitaxel CIPN. The effects of MAPK inhibitors in preventing and reversing behavioral signs of CIPN were also measured (group sizes 4-9). Extracellular signal related kinase (ERK1/2) and P38 but not c-Jun N terminal kinase (JNK) or PI3K-Akt signaling expression was increased in DRG. Phospho-ERK1/2 staining was co-localized to small CGRP-positive DRG neurons in cell profiles surrounding large DRG neurons consistent with satellite glial cells. The expression of phospho-P38 was co-localized to small IB4-positive and CGRP-positive DRG neurons. The TLR4 antagonist LPS derived from Rhodobacter sphaeroides (LPS-RS) inhibited paclitaxel-induced phosphorylation of ERK1/2 and P38. The MAPK inhibitors PD98059 (MEK1/2), U0126 (MEK1/2) and SB203580 (P38) prevented but did not reverse paclitaxel-induced behavioral hypersensitivity. Paclitaxel treatment resulted in phosphorylation of Inhibitor α of NFκB (IκBα) in DRG resulting in an apparent release of NFκB from the IκBα-NFκB complex as increased expression of nuclear NFκB was also observed. LPS-RS inhibited paclitaxel-induced translocation of NFκB in DRG. No change was observed in spinal NFκB. These results implicate TLR4 signaling via MAP kinases and NFκB in the induction and maintenance of paclitaxel-related CIPN.
Collapse
Affiliation(s)
- Yan Li
- Department of Anesthesia and Pain Medicine Research, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| | - Hongmei Zhang
- Department of Anesthesia and Pain Medicine Research, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| | - Alyssa K. Kosturakis
- Department of Anesthesia and Pain Medicine Research, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030,The University of Texas Health Science Center, San Antonio, Texas 78229
| | - Ryan M. Cassidy
- The University of Texas Health Science Center, Houston, Texas 77030
| | - Haijun Zhang
- Department of Anesthesia and Pain Medicine Research, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030,Department of Anesthesiology, The University of Texas Medical School at Houston, Houston, Texas 77030
| | | | | | | | | | - Patrick M. Dougherty
- Department of Anesthesia and Pain Medicine Research, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| |
Collapse
|
245
|
Yokota T, Wang Y. p38 MAP kinases in the heart. Gene 2015; 575:369-376. [PMID: 26390817 DOI: 10.1016/j.gene.2015.09.030] [Citation(s) in RCA: 108] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 07/31/2015] [Accepted: 09/15/2015] [Indexed: 12/28/2022]
Abstract
p38 kinases are members of the mitogen-activated protein kinases (MAPK) with established contribution to a wide range of signaling pathways and different biological processes. The prototypic p38 MAPK, p38α was originally identified as an essential signaling kinase for inflammatory cytokine production Extensive studies have now revealed that p38s have critical roles in many different tissues far beyond immune regulation and inflammatory responses. In this review, we will focus on the structure and molecular biology of p38s, and their specific roles in heart, especially regarding myocyte proliferation, apoptosis, and hypertrophic responses.
Collapse
Affiliation(s)
- Tomohiro Yokota
- Department of Anesthesiology, Cardiovascular Research Laboratories, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA; Department of Physiology and Medicine, Cardiovascular Research Laboratories, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Yibin Wang
- Department of Anesthesiology, Cardiovascular Research Laboratories, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA; Department of Physiology and Medicine, Cardiovascular Research Laboratories, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA.
| |
Collapse
|
246
|
Fuller HR, Slade R, Jovanov-Milošević N, Babić M, Sedmak G, Šimić G, Fuszard MA, Shirran SL, Botting CH, Gates MA. Stathmin is enriched in the developing corticospinal tract. Mol Cell Neurosci 2015; 69:12-21. [PMID: 26370173 DOI: 10.1016/j.mcn.2015.09.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Revised: 09/02/2015] [Accepted: 09/07/2015] [Indexed: 01/28/2023] Open
Abstract
Understanding the intra- and extracellular proteins involved in the development of the corticospinal tract (CST) may offer insights into how the pathway could be regenerated following traumatic spinal cord injury. Currently, however, little is known about the proteome of the developing corticospinal system. The present study, therefore, has used quantitative proteomics and bioinformatics to detail the protein profile of the rat CST during its formation in the spinal cord. This analysis identified increased expression of 65 proteins during the early ingrowth of corticospinal axons into the spinal cord, and 36 proteins at the period of heightened CST growth. A majority of these proteins were involved in cellular assembly and organization, with annotations being most highly associated with cytoskeletal organization, microtubule dynamics, neurite outgrowth, and the formation, polymerization and quantity of microtubules. In addition, 22 proteins were more highly expressed within the developing CST in comparison to other developing white matter tracts of the spinal cord of age-matched animals. Of these differentially expressed proteins, only one, stathmin 1 (a protein known to be involved in microtubule dynamics), was both highly enriched in the developing CST and relatively sparse in other developing descending and ascending spinal tracts. Immunohistochemical analyses of the developing rat spinal cord and fetal human brain stem confirmed the enriched pattern of stathmin expression along the developing CST, and in vitro growth assays of rat corticospinal neurons showed a reduced length of neurite processes in response to pharmacological perturbation of stathmin activity. Combined, these findings suggest that stathmin activity may modulate axonal growth during development of the corticospinal projection, and reinforces the notion that microtubule dynamics could play an important role in the generation and regeneration of the CST.
Collapse
Affiliation(s)
- Heidi R Fuller
- Wolfson Centre for Inherited Neuromuscular Disease, RJAH Orthopaedic Hospital, Oswestry SY10 7AG, UK; Institute for Science and Technology in Medicine, Keele University, Keele, Staffordshire ST5 5BG, UK; Postgraduate Medicine, Keele University, Staffordshire ST5 5BG, UK
| | - Robert Slade
- Institute for Science and Technology in Medicine, Keele University, Keele, Staffordshire ST5 5BG, UK; Postgraduate Medicine, Keele University, Staffordshire ST5 5BG, UK
| | | | - Mirjana Babić
- Croatian Institute for Brain Research, Zagreb 10000, Croatia
| | - Goran Sedmak
- Croatian Institute for Brain Research, Zagreb 10000, Croatia
| | - Goran Šimić
- Croatian Institute for Brain Research, Zagreb 10000, Croatia
| | - Matthew A Fuszard
- BSRC Mass Spectrometry and Proteomics Facility, Biomedical Sciences Research Complex, University of St Andrews, North Haugh, St Andrews, Fife KY16 9ST, UK
| | - Sally L Shirran
- BSRC Mass Spectrometry and Proteomics Facility, Biomedical Sciences Research Complex, University of St Andrews, North Haugh, St Andrews, Fife KY16 9ST, UK
| | - Catherine H Botting
- BSRC Mass Spectrometry and Proteomics Facility, Biomedical Sciences Research Complex, University of St Andrews, North Haugh, St Andrews, Fife KY16 9ST, UK
| | - Monte A Gates
- Institute for Science and Technology in Medicine, Keele University, Keele, Staffordshire ST5 5BG, UK.
| |
Collapse
|
247
|
Amodio G, Annoni A, Gregori S. Dendritic Cell Immune Therapy to Break or Induce Tolerance. CURRENT STEM CELL REPORTS 2015. [DOI: 10.1007/s40778-015-0024-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
248
|
Ben Messaoud N, Katzarova I, López JM. Basic Properties of the p38 Signaling Pathway in Response to Hyperosmotic Shock. PLoS One 2015; 10:e0135249. [PMID: 26335493 PMCID: PMC4559375 DOI: 10.1371/journal.pone.0135249] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Accepted: 07/20/2015] [Indexed: 11/18/2022] Open
Abstract
Some properties of signaling systems, like ultrasensitivity, hysteresis (a form of biochemical memory), and all-or-none responses at a single cell level, are important to understand the regulation of irreversible processes. Xenopus oocytes are a suitable cell model to study these properties. The p38 MAPK (mitogen-activated protein kinase) pathway is activated by different stress stimuli, including osmostress, and regulates multiple biological processes, from immune response to cell cycle. Recently, we have reported that activation of p38 and JNK regulate osmostress-induced apoptosis in Xenopus oocytes and that sustained activation of p38 accelerates cytochrome c release and caspase-3 activation. However, the signaling properties of p38 in response to hyperosmotic shock have not been studied. Here we show, using Xenopus oocytes as a cell model, that hyperosmotic shock activates the p38 signaling pathway with an ultrasensitive and bimodal response in a time-dependent manner, and with low hysteresis. At a single cell level, p38 activation is not well correlated with cytochrome c release 2 h after hyperosmotic shock, but a good correlation is observed at 4 h after treatment. Interestingly, cytochrome c microinjection induces p38 phosphorylation through caspase-3 activation, and caspase inhibition reduces p38 activation induced by osmostress, indicating that a positive feedback loop is engaged by hyperosmotic shock. To know the properties of the stress protein kinases activated by hyperosmotic shock will facilitate the design of computational models to predict cellular responses in human diseases caused by perturbations in fluid osmolarity.
Collapse
Affiliation(s)
- Nabil Ben Messaoud
- Institut de Neurociències, Departament de Bioquímica i Biología Molecular, Unitat de Bioquímica, Facultad de Medicina, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Barcelona, Spain
| | - Ilina Katzarova
- Institut de Neurociències, Departament de Bioquímica i Biología Molecular, Unitat de Bioquímica, Facultad de Medicina, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Barcelona, Spain
| | - José M. López
- Institut de Neurociències, Departament de Bioquímica i Biología Molecular, Unitat de Bioquímica, Facultad de Medicina, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Barcelona, Spain
- * E-mail:
| |
Collapse
|
249
|
Prashanth Kumar B, Rajput S, Bharti R, Parida S, Mandal M. BI2536 – A PLK inhibitor augments paclitaxel efficacy in suppressing tamoxifen induced senescence and resistance in breast cancer cells. Biomed Pharmacother 2015; 74:124-32. [DOI: 10.1016/j.biopha.2015.07.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2015] [Accepted: 07/09/2015] [Indexed: 02/02/2023] Open
|
250
|
Simm A, Klotz LO. Stress and biological aging: A double-edged sword. Z Gerontol Geriatr 2015; 48:505-10. [PMID: 26206469 DOI: 10.1007/s00391-015-0928-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 06/22/2015] [Indexed: 11/29/2022]
Abstract
It is well accepted that aging is the basis of most degenerative diseases in the elderly. Biological aging is characterized by a gradual accumulation of cellular and molecular defects. An important cause of defects is intense stress, such as oxidative or glycotoxic stress. Genes affecting cellular and organismal longevity are frequently associated with the regulation of cellular anti-oxidative defense and/or with repair functions. Damage, combined with an age-dependent decline in defense and repair systems, results in disturbed homeostasis, leading to aging and diseases. Whereas intense stress induces premature aging, mild stress can induce adaptive processes, stimulating the expression of genetic repair/defense systems, which positively influences life span.
Collapse
Affiliation(s)
- Andreas Simm
- Heart Centre of the University Hospital Halle (Saale), Martin-Luther University Halle-Wittenberg, Ernst-Grube Str. 40, 06120, Halle (Saale), Germany,
| | | |
Collapse
|