201
|
Abstract
Over 30 million people in tropical regions suffer from Chagas disease, African sleeping sickness or leishmaniasis. The causative agents of these diseases, flagellated protozoa collectively known as kinetoplastids, represent an ancient lineage of eukaryotes. These unusual organisms carry out a large number of unique biochemical processes, one striking example being the sequence editing of mitochondrial messenger RNAs. In this review, Scott Seiwert focuses on recent studies that examine the reaction mechanism, molecular machinery and evolutionary history of this unusual RNA processing reaction.
Collapse
Affiliation(s)
- S D Seiwert
- Seattle Biomedical Research Institute, WA 98109, USA.
| |
Collapse
|
202
|
Champion-Arnaud P, Gozani O, Palandjian L, Reed R. Accumulation of a novel spliceosomal complex on pre-mRNAs containing branch site mutations. Mol Cell Biol 1995; 15:5750-6. [PMID: 7565727 PMCID: PMC230826 DOI: 10.1128/mcb.15.10.5750] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Pre-mRNA assembles into spliceosomal complexes in the stepwise pathway E-->A-->B-->C. We show that mutations in the metazoan branchpoint sequence (BPS) have no apparent effect on E complex formation but block the assembly of the A complex and the UV cross-linking of U2 small nuclear ribonucleoprotein particle (snRNP) proteins. Unexpectedly, a novel complex, designated E*, assembles on pre-mRNAs containing BPS mutations. Unlike the E complex, the E* complex accumulates in the presence of ATP. U1 snRNP and U2AF, which are tightly bound to pre-mRNA in the E complex, are not tightly bound in the E* complex. Significantly, previous work showed that U1 snRNP and U2AF become destabilized from pre-mRNA after E complex assembly on normal pre-mRNAs. Thus, our data are consistent with a model in which there are two steps in the transition from the E complex to the A complex (E-->E*-->A). In the first step, U1 snRNP and U2AF are destabilized in an ATP-dependent, BPS-independent reaction. In the second step, the stable binding of U2 snRNP occurs in a BPS-dependent reaction.
Collapse
Affiliation(s)
- P Champion-Arnaud
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | |
Collapse
|
203
|
Crispino JD, Sharp PA. A U6 snRNA:pre-mRNA interaction can be rate-limiting for U1-independent splicing. Genes Dev 1995; 9:2314-23. [PMID: 7557384 DOI: 10.1101/gad.9.18.2314] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The full set of consensus sequences at the 5' splice site is recognized during splicing of pre-mRNA in extracts depleted of U1 snRNP. High concentrations of HeLa SR proteins or purified SC35 alone promote the splicing of specific RNA substrates, bypassing the requirement for U1 snRNP in formation of the U2 snRNP-pre-mRNA complex. Under these conditions, mutations in the substrate that increase the sequence complementarity between U6 snRNA and the 5' splice site region can facilitate splicing. This provides additional strong evidence that U1 snRNP is not essential for splicing. Thus, the consensus sequence at the 5' splice site is probably recognized twice during splicing of most introns; however, some pre-mRNAs could potentially be processed in the absence of interactions with U1 snRNP in regions of the nucleus containing high concentrations of SR protein.
Collapse
Affiliation(s)
- J D Crispino
- Massachusetts Institute of Technology, Center for Cancer Research, Cambridge 02139-4307, USA
| | | |
Collapse
|
204
|
Jaruzelska J, Abadie V, d'Aubenton-Carafa Y, Brody E, Munnich A, Marie J. In vitro splicing deficiency induced by a C to T mutation at position -3 in the intron 10 acceptor site of the phenylalanine hydroxylase gene in a patient with phenylketonuria. J Biol Chem 1995; 270:20370-5. [PMID: 7657610 DOI: 10.1074/jbc.270.35.20370] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
A previous study has identified a C-->U mutation at position -3 in the 3' splice site of intron 10 of the phenylalanine hydroxylase pre-mRNA in a patient with phenylketonuria. In vivo, this mutation induces the skipping of the downstream exon. This result is puzzling because both CAG and UAG have been reported to function equally as 3' splice sites. In this report, we show that the C-->U mutation affects predominantly the first step of the splicing reaction and that it blocks spliceosome assembly at an early stage. The 3' region of the phenylalanine hydroxylase intron 10 has two unusual characteristic features: multiple potential branch sites and a series of four guanosine residues, which interrupt the polypyrimidine tract at positions -8 to -11 from the 3' splice site. We show that the mutation precludes the use of the proximal branch site, while having no effect on the remote one. We also show that in the UAG transcript, the four guanosine residues inhibit the splicing of intron 10. The substitution of these purine residues by one cytosine residue, regardless of the position, increases the splicing efficiency of the mutant UAG precursor while having no effect on the wild-type CAG precursor. Substituting the four purine residues by four pyrimidines relieves the inhibition and rescues the use of the proximal branch site. These results demonstrate that according to the context, the C and U nucleotides preceding the AG are not equivalent for the splicing reaction.
Collapse
Affiliation(s)
- J Jaruzelska
- Unité 12 INSERM, Hôpital des Enfants Malades, Paris, France
| | | | | | | | | | | |
Collapse
|
205
|
Chabot B, Bisotto S, Vincent M. The nuclear matrix phosphoprotein p255 associates with splicing complexes as part of the [U4/U6.U5] tri-snRNP particle. Nucleic Acids Res 1995; 23:3206-13. [PMID: 7667097 PMCID: PMC307179 DOI: 10.1093/nar/23.16.3206] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The monoclonal antibody CC3 recognizes a phosphorylated epitope present on an interphase protein of 255 kDa. Previous work has shown that p255 is localized mainly to nuclear speckles and remains associated with the nuclear matrix scaffold following extraction with non-ionic detergents, nucleases and high salt. The association of p255 with splicing complexes is suggested by the finding that mAb CC3 can inhibit in vitro splicing and immunoprecipitate pre-messenger RNA and splicing products. Small nuclear RNA immunoprecipitation assays show that p255 is a component of the U5 small nuclear ribonucleoprotein (snRNP) and the [U4/U6.U5] tri-snRNP complex. In RNase protection assays, mAb CC3 immunoprecipitates fragments containing branch site and 3' splice site sequences. As predicted for a [U4/U6.U5]-associated component, the recovery of the branch site-protected fragment requires binding of U2 snRNP and is inhibited by EDTA. p255 may correspond to the previously identified p220 protein, the mammalian analogue of the yeast PRP8 protein. Our results suggest that changes in the phosphorylation of p255 may be part of control mechanisms that interface splicing activity with nuclear organization.
Collapse
Affiliation(s)
- B Chabot
- Département de Microbiologie, Faculté de Médecine, Université de Sherbrooke, Québec, Canada
| | | | | |
Collapse
|
206
|
Jamison SF, Pasman Z, Wang J, Will C, Lührmann R, Manley JL, Garcia-Blanco MA. U1 snRNP-ASF/SF2 interaction and 5' splice site recognition: characterization of required elements. Nucleic Acids Res 1995; 23:3260-7. [PMID: 7667103 PMCID: PMC307186 DOI: 10.1093/nar/23.16.3260] [Citation(s) in RCA: 95] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Members of the SR family of proteins, can collaborate with U1 snRNP in the recognition of 5' splice sites in pre-messenger RNAs. We have previously shown that purified U1 snRNP and ASF/SF2 form a ternary complex with pre-mRNA, which is dependent on a functional 5' splice site. In this manuscript we dissect the requirements for the formation of this complex. Sequences in the pre-mRNA, domains in ASF/SF2 and components of the U1 snRNP particle are shown to be required for complex formation. We had shown that sequences at the 5' splice site of PIP7. A are necessary and now we show these are sufficient for complex formation. Furthermore, we show that one functional RNA binding domain and the RS domain are both required for ASF/SF2 to participate in complex formation. The RNA binding domains were redundant in this assay, suggesting that either domain can interact with the pre-messenger RNA. Finally, our experiments show no function for the U1-specific A protein in complex formation, whereas a function for U1-specific C protein was strongly suggested. The study of the earliest interactions between pre-mRNA and splicing factors suggests a model for 5' splice site recognition.
Collapse
Affiliation(s)
- S F Jamison
- Department of Molecular Cancer Biology, Levine Science Research Center, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | | | | | | | |
Collapse
|
207
|
Forné T, Rossi F, Labourier E, Antoine E, Cathala G, Brunel C, Tazi J. Disruption of base-paired U4.U6 small nuclear RNAs induced by mammalian heterogeneous nuclear ribonucleoprotein C protein. J Biol Chem 1995; 270:16476-81. [PMID: 7608220 DOI: 10.1074/jbc.270.27.16476] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Due to 3' end modifications, mammalian U6 small nuclear RNA (snRNA) is heterogeneous in size. The major form terminates with five U residues and a 2',3'-cyclic phosphate, but multiple RNAs containing up to 12 U residues have a 3'-OH end. They are labeled in the presence of [alpha-32P]UTP by the terminal uridylyl transferase activity present in HeLa cell nuclear extracts. That these forms all enter the U6 snRNA-containing particles, U4.U6, U4.U5.U6, and the spliceosome, has been demonstrated previously. Here, we report an interaction between the heterogeneous nuclear ribonucleoprotein (hnRNP) C protein, an abundant nuclear pre-mRNA binding protein, and the U6 snRNAs that have the longest uridylate stretches. This U6 snRNA subset is free of any one of the other snRNPs, since anti-Sm antibodies failed to immunoprecipitate hnRNP C protein. Furthermore, isolated U4.U6 snRNPs containing U6 snRNAs with long oligouridylate stretches are disrupted upon binding of hnRNP C protein either purified from HeLa cells or produced as recombinant protein from Escherichia coli. In view of these data and our previous proposal that the U6 snRNA active in splicing has 3'-OH end, we discuss a model where the hnRNP C protein has a decisive function in the catalytic activation of the spliceosome by allowing the release of U4 snRNP.
Collapse
Affiliation(s)
- T Forné
- Institut de Génétique Moléculaire Unité Mixte de Recherche 9942 CNRS, Universités de Montpellier I et II, France
| | | | | | | | | | | | | |
Collapse
|
208
|
Abstract
5'-end maturation of messenger RNAs via acquisition of a trans-spliced leader sequence occurs in several primitive eukaryotes, some of which are parasitic. This type of trans-splicing proceeds though a two-step reaction pathway directly analogous to that of cis-splicing and like cis-splicing it requires multiple U snRNP cofactors. This minireview attempts to provide a brief synopsis of our current understanding of the evolution and biological significance of trans-splicing. Progress in deciphering the mechanism of trans-splicing, particularly as it relates to current models of cis-splicing, is also discussed.
Collapse
Affiliation(s)
- T W Nilsen
- Department of Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| |
Collapse
|
209
|
Abstract
A fundamental question in the splicing of precursor messenger RNA is how the 5' and 3' splice sites are recognized and paired during the splicing reaction. It has been proposed that spliceosome assembly in metazoan pre-mRNAs can be initiated through interaction between the 3' splice site and specific sequence elements on the downstream exon (an exonic enhancer or a 5' splice site). Pairing of the intronic 5' and 3' splice sites occurs subsequently. We report here that 5' and 3' splice sites located on separate synthetic pre-mRNA substrates can be efficiently trans-spliced if the 3' trans-splicing substrate contains these downstream sequence elements. Moreover, selection of the trans 5' splice site can occur after the second pre-spliceosomal complex A has assembled on the 3' trans-splicing substrate. Thus our data demonstrate that 5' and 3' splice-site pairing in metazoans can occur in two distinct steps.
Collapse
Affiliation(s)
- M D Chiara
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
210
|
Abstract
We have tested the fate of a circularized synthetic pre-mRNA transcript in a whole cell splicing extract of Saccharomyces cerevisiae. Our results demonstrate that this circular precursor RNA is able to induce spliceosome formation in vitro and that the products of the following splicing reaction are the lariat-shaped intron, and a mature circular mRNA. Thus, it would appear that free 5' and/or 3' ends are not obligatory for a splicing reaction to occur, although we find its efficiency to be strongly influenced by the presence or lack of free ends. To our knowledge, this is the first demonstration that a circular pre-mRNA molecule is recognized as a suitable substrate by an eukaryotic mRNA splicing apparatus.
Collapse
MESH Headings
- Base Sequence
- DNA, Fungal/genetics
- Electrophoresis, Gel, Two-Dimensional
- Genes, Fungal
- Molecular Sequence Data
- RNA/genetics
- RNA/isolation & purification
- RNA/metabolism
- RNA Precursors/genetics
- RNA Precursors/isolation & purification
- RNA Precursors/metabolism
- RNA Processing, Post-Transcriptional
- RNA Splicing
- RNA, Circular
- RNA, Fungal/genetics
- RNA, Fungal/isolation & purification
- RNA, Fungal/metabolism
- Saccharomyces cerevisiae/genetics
- Saccharomyces cerevisiae/metabolism
- Spliceosomes/metabolism
- Transcription, Genetic
Collapse
Affiliation(s)
- C A Schindewolf
- Institut für Biochemie, Genzentrum, Ludwig-Maximilians-Universität München, Germany
| | | |
Collapse
|
211
|
Abstract
The choice of a 3' splice site in Saccharomyces cerevisiae introns involves recognition of a uridine-rich tract upstream of the AG dinucleotide splice junction. By isolating mutants that eliminate the normal preference for uridine-containing 3' splice sites in a cis-competition, we identified a mutation that is an allele of PRP8, prp8-101. This was unexpected because previous analysis has demonstrated that the U5 snRNP protein encoded by PRP8 is required for spliceosome assembly prior to the first catalytic step of splicing. In contrast, the uridine recognition defect caused by the prp8-101 mutation selectively inhibits the second catalytic step of splicing. This defect is seen not only in 3' splice site cis-competitions but also in the splicing of an unusual intron in the TUB3 gene and in the ACT1 intron when utilization of its 3' splice site is rate limiting for splicing. Consistent with a direct role in 3' splice site selection, Prp8 can be cross-linked to the 3' splice site during the splicing reaction. These data demonstrate a novel function for Prp8 in 3' splice site recognition and utilization.
Collapse
Affiliation(s)
- J G Umen
- Department of Biochemistry and Biophysics, University of California at San Francisco 94143, USA
| | | |
Collapse
|
212
|
Abstract
Splicing of mRNA precursors requires a complex and dynamic set of RNA-RNA base-pairing interactions in which the U2 and U6 snRNAs play central roles. Using a genetic suppression assay, we refine and extend a U2-U6 snRNA structure that may comprise the catalytic center of the spliceosome. We first show that a critical U2-U6 helix proven in yeast, helix Ia, is also essential for mammalian splicing. Mutations in the adjacent helix Ib, however, cannot be similarly suppressed, and relevant residues in both U2 and U6 are shown to participate in intramolecular, rather than intermolecular, base-pairing. We next demonstrate the requirement for a novel U2-U6 helix, helix III, which involves bases extending 3' from the branch site recognition sequence in U2 and 5' from an evolutionarily invariant sequence in U6 implicated previously in 5' splice site recognition. This configuration suggests that helix III may help juxtapose the pre-mRNA 5' splice site and branch site. We provide evidence for this by demonstrating that a branch site mutation can be suppressed by a mutation in the 5' splice site, provided that compensatory changes are made in the appropriate bases in U2 and U6. Our results provide new insights into how U2 and U6 snRNAs interact with each other and with the pre-mRNA to initiate the first catalytic step in splicing.
Collapse
Affiliation(s)
- J S Sun
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| | | |
Collapse
|
213
|
Zahler AM, Roth MB. Distinct functions of SR proteins in recruitment of U1 small nuclear ribonucleoprotein to alternative 5' splice sites. Proc Natl Acad Sci U S A 1995; 92:2642-6. [PMID: 7708698 PMCID: PMC42274 DOI: 10.1073/pnas.92.7.2642] [Citation(s) in RCA: 80] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Alternative splicing of precursor messenger RNAs (pre-mRNAs) is an important mechanism for the regulation of gene expression. The members of the SR protein family of pre-mRNA splicing factors have distinct functions in promoting alternative splice site usage. Here we show that SR proteins are required for the first step of spliceosome assembly, interaction of the U1 small nuclear ribonucleoprotein complex (U1 snRNP) with the 5' splice site of the pre-mRNA. Further, we find that individual SR proteins have distinct abilities to promote interaction of U1 snRNP with alternative 5' splice junctions. These results suggest that SR proteins direct 5' splice site selection by regulation of U1 snRNP assembly onto the pre-mRNA.
Collapse
Affiliation(s)
- A M Zahler
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98104, USA
| | | |
Collapse
|
214
|
Teigelkamp S, Whittaker E, Beggs JD. Interaction of the yeast splicing factor PRP8 with substrate RNA during both steps of splicing. Nucleic Acids Res 1995; 23:320-6. [PMID: 7885825 PMCID: PMC306678 DOI: 10.1093/nar/23.3.320] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
PRP8 protein of Saccharomyces cerevisiae interacts directly with pre-mRNA in spliceosomes, shown previously by UV-crosslinking. To analyse at which steps of splicing and with which precursor-derived RNA species the interaction(s) take place, UV-crosslinking was combined with PRP8-specific immunoprecipitation and the coprecipitated RNA species were analysed. Specific precipitation of intron-exon 2 and excised intron species was observed. PRP8 protein could be UV-crosslinked to pre-mRNA in PRP2-depleted spliceosomes stalled before initiation of the splicing reaction. Thus, the interaction of PRP8 protein with substrate RNA is established prior to the first transesterification reaction, is maintained during both steps of splicing and continues with the excised intron after completion of the splicing reaction. RNase T1 treatment of spliceosomes revealed that substrate RNA fragments of the 5' splice site region and the branchpoint-3' splice site region could be coimmunoprecipitated with PRP8 specific antibodies, indicating that these are potential sites of interaction for PRP8 protein with substrate RNA. Protection of the branch-point-3' splice site region was detected only after step 1 of splicing. The results allow a first glimpse at the pattern of PRP8 protein-RNA interactions during splicing and provide a fundamental basis for future analysis of these interactions.
Collapse
Affiliation(s)
- S Teigelkamp
- Institute of Cell and Molecular Biology, University of Edinburgh, UK
| | | | | |
Collapse
|
215
|
Knowlton AA. Current concepts in transcription, translation, and the regulation of gene expression. A primer for the clinician. Chest 1995; 107:241-8. [PMID: 7813285 DOI: 10.1378/chest.107.1.241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Affiliation(s)
- A A Knowlton
- Cardiology Section, Baylor College of Medicine, Houston, TX
| |
Collapse
|
216
|
Szkukalek A, Myslinski E, Mougin A, Luhrmann R, Branlant C. Phylogenetic conservation of modified nucleotides in the terminal loop 1 of the spliceosomal U5 snRNA. Biochimie 1995; 77:16-21. [PMID: 7599272 DOI: 10.1016/0300-9084(96)88099-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
In order to study the phylogenetic conservation of modified nucleotides in the spliceosomal U5 snRNA, we determined the nucleotide sequences of the U5 snRNAs from the slime mold Physarum polycephalum (EMBL data bank accession numbers: X74440 and X74441) and we identified the pseudouridine and 2'-O-methylated residues. From a comparison of all the U5 snRNAs studied at the level of nucleotide modifications, we concluded that the modified nucleotides in U5 snRNA can be divided into three classes according to their degree of conservation: i) the modified nucleotides of the 5' terminal cap structure that display some variations from one species to the other; ii) the modified nucleotides located in the helical part of the stem/loop structure I that vary greatly in number, position and identity from one species to the other; and iii) the modified nucleotides of the terminal loop 1, that are almost identical in all the species studied. Taking into account the recent discovery of a crucial role played by this terminal loop of U5 snRNA in 5' and 3' splice site definition, we postulate that the numerous modified nucleotides it contains, five out of a total of 11, play an important role in spliceosome assembly and function. Their possible role is discussed.
Collapse
Affiliation(s)
- A Szkukalek
- Laboratoire d'Enzymologie et de Génie Génétique, URA-CNRS 457, Université de Nancy I, Faculté des Sciences, Vandoeuvre-les-Nancy, France
| | | | | | | | | |
Collapse
|
217
|
Ares M, Weiser B. Rearrangement of snRNA structure during assembly and function of the spliceosome. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 1995; 50:131-59. [PMID: 7754032 DOI: 10.1016/s0079-6603(08)60813-2] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- M Ares
- Biology Department, Sinsheimer Laboratories, University of California, Santa Cruz 95064, USA
| | | |
Collapse
|
218
|
|
219
|
|
220
|
Muchhal US, Schwartzbach SD. Characterization of the unique intron-exon junctions of Euglena gene(s) encoding the polyprotein precursor to the light-harvesting chlorophyll a/b binding protein of photosystem II. Nucleic Acids Res 1994; 22:5737-44. [PMID: 7838730 PMCID: PMC310141 DOI: 10.1093/nar/22.25.5737] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The precursor to the Euglena light harvesting chlorophyll a/b binding protein of photosystem II (LHCPII) is a polyprotein containing multiple copies of LHCPII covalently joined by a decapeptide linker. cDNA and genomic clones encoding the 5' and 3' end of a 6.6 kb LHCPII mRNA were sequenced. A 3.1 kb genomic region encoding 1.05 kb of the 5' end of LHCPII mRNA contains 4 introns. A 7.6 kb genomic region encoding 3.3 kb of the 3' end of LHCPII mRNA contains 10 introns. The 5' and 3' ends of the 14 identified Euglena introns lacked the conserved dinucleotides (5'-GT and AG-3') found at the termini of virtually every characterized nuclear pre-mRNA intron. A common consensus splice site selection sequence could not be identified. The Euglena introns do not have the structural characteristics of group I and group II introns. The only structural feature common to all Euglena introns was the ability of short stretches of nucleotides at the 5' and 3' ends of the introns to base pair, forming a stable stem-loop with the 5' and 3' splice site juxtaposed for splicing but displaced by 2 nucleotides. The 26 nucleotide sequence at the 5' end of LHCPII mRNA is absent from the genomic sequence and identical to the 5' end of one of the small Euglena SL-RNAs indicating that it is post-transcriptionally added by trans-splicing.
Collapse
Affiliation(s)
- U S Muchhal
- School of Biological Sciences, University of Nebraska-Lincoln 68588-0343
| | | |
Collapse
|
221
|
Identification and characterization by antisense oligonucleotides of exon and intron sequences required for splicing. Mol Cell Biol 1994. [PMID: 7935459 DOI: 10.1128/mcb.14.11.7445] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Certain thalassemic human beta-globin pre-mRNAs carry mutations that generate aberrant splice sites and/or activate cryptic splice sites, providing a convenient and clinically relevant system to study splice site selection. Antisense 2'-O-methyl oligoribonucleotides were used to block a number of sequences in these pre-mRNAs and were tested for their ability to inhibit splicing in vitro or to affect the ratio between aberrantly and correctly spliced products. By this approach, it was found that (i) up to 19 nucleotides upstream from the branch point adenosine are involved in proper recognition and functioning of the branch point sequence; (ii) whereas at least 25 nucleotides of exon sequences at both 3' and 5' ends are required for splicing, this requirement does not extend past the 5' splice site sequence of the intron; and (iii) improving the 5' splice site of the internal exon to match the consensus sequence strongly decreases the accessibility of the upstream 3' splice site to antisense 2'-O-methyl oligoribonucleotides. This result most likely reflects changes in the strength of interactions near the 3' splice site in response to improvement of the 5' splice site and further supports the existence of communication between these sites across the exon.
Collapse
|
222
|
Abstract
SR proteins are essential splicing factors that also influence 5' splice site choice. We show that addition of excess mixed SR proteins to a HeLa in vitro splicing system stimulates utilization of a novel 5' splice site (site 125) within the intron of the standard adenovirus pre-mRNA substrate. When U1 snRNPs are debilitated by sequestering the 5' end of U1 snRNA with a 2'-O-methyl oligoribonucleotide, excess SR proteins not only rescue splicing at the normal site and site 125 but also activate yet another 5' splice site (site 47) in the adenovirus intron. One SR protein, SC35, is sufficient to exhibit the above activities. The possibility that excess SR proteins recruit residual unblocked U1 snRNPs to participate in 5' splice site recognition has been ruled out by psoralen cross-linking studies, which demonstrate that the 2'-O-methyl oligoribonucleotide effectively blocks 5' splice site/U1 interaction. Native gel analysis reveals a nearly normal splicing complex profile in the 2'-O-methyl oligoribonucleotide pretreated, SR protein-supplemented extract. These results indicate that SR proteins can replace some functions of the U1 snRNP but underscore the contribution of U1 to the fidelity of 5' splice site selection.
Collapse
Affiliation(s)
- W Y Tarn
- Department of Molecular Biophysics and Biochemistry, Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, Connecticut
| | | |
Collapse
|
223
|
Dominski Z, Kole R. Identification and characterization by antisense oligonucleotides of exon and intron sequences required for splicing. Mol Cell Biol 1994; 14:7445-54. [PMID: 7935459 PMCID: PMC359280 DOI: 10.1128/mcb.14.11.7445-7454.1994] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Certain thalassemic human beta-globin pre-mRNAs carry mutations that generate aberrant splice sites and/or activate cryptic splice sites, providing a convenient and clinically relevant system to study splice site selection. Antisense 2'-O-methyl oligoribonucleotides were used to block a number of sequences in these pre-mRNAs and were tested for their ability to inhibit splicing in vitro or to affect the ratio between aberrantly and correctly spliced products. By this approach, it was found that (i) up to 19 nucleotides upstream from the branch point adenosine are involved in proper recognition and functioning of the branch point sequence; (ii) whereas at least 25 nucleotides of exon sequences at both 3' and 5' ends are required for splicing, this requirement does not extend past the 5' splice site sequence of the intron; and (iii) improving the 5' splice site of the internal exon to match the consensus sequence strongly decreases the accessibility of the upstream 3' splice site to antisense 2'-O-methyl oligoribonucleotides. This result most likely reflects changes in the strength of interactions near the 3' splice site in response to improvement of the 5' splice site and further supports the existence of communication between these sites across the exon.
Collapse
Affiliation(s)
- Z Dominski
- Department of Pharmacology, University of North Carolina, Chapel Hill 27599
| | | |
Collapse
|
224
|
Cohen JB, Snow JE, Spencer SD, Levinson AD. Suppression of mammalian 5' splice-site defects by U1 small nuclear RNAs from a distance. Proc Natl Acad Sci U S A 1994; 91:10470-4. [PMID: 7937977 PMCID: PMC45042 DOI: 10.1073/pnas.91.22.10470] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
One of the earliest events in the process of intron removal from mRNA precursors is the establishment of a base-pairing interaction between U1 small nuclear (sn) RNA and the 5' splice site. Mutations at the 5' splice site that prevent splicing can often be suppressed by coexpression of U1 snRNAs with compensatory changes, but in yeast, accurate splicing is not restored when the universally conserved first intron base is changed. In our mammalian system as well, such a mutation could not be suppressed, but the complementary U1 caused aberrant splicing 12 bases downstream. This result is reminiscent of observations in yeast that aberrant 5' splice sites can be activated by U1 snRNA from a distance. Using a rapid, qualitative protein expression assay, we provide evidence that 5' splice-site mutations can be suppressed in mammalian cells by U1 snRNAs with complementarity to a range of sequences upstream or downstream of the site. Our approach uncouples in vivo the commitment-activation step of mammalian splicing from the process of 5' splice-site definition and as such will facilitate the genetic characterization of both.
Collapse
Affiliation(s)
- J B Cohen
- Department of Molecular Genetics and Biochemistry, University of Pittsburgh, School of Medicine, PA 15261
| | | | | | | |
Collapse
|
225
|
Abstract
Evidence that folding of the Tetrahymena pre-rRNA follows a defined path and is rate-determining for splicing at physiological temperatures is presented. Structural isomers were separated by native polyacrylamide gel electrophoresis and their splicing activities were compared. GTP binding selectively shifts the active form of the pre-RNA to an electrophoretic band containing both spliced and unspliced RNA. In situ chemical modification provides evidence for base-pair rearrangements in the 5' exon and structural alterations in the intron core of partially and fully active forms. Transition to the fully active precursor requires high temperature, but the activation energy is lower than expected for opening of RNA helices. Implications for control of RNA conformation during splicing are discussed.
Collapse
Affiliation(s)
- V L Emerick
- Department of Chemistry and Biochemistry, University of Maryland, College Park 20742-2021
| | | |
Collapse
|
226
|
Champion-Arnaud P, Reed R. The prespliceosome components SAP 49 and SAP 145 interact in a complex implicated in tethering U2 snRNP to the branch site. Genes Dev 1994; 8:1974-83. [PMID: 7958871 DOI: 10.1101/gad.8.16.1974] [Citation(s) in RCA: 94] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The mammalian spliceosome-associated protein, SAP 49, is associated specifically with U2 snRNP and is the most efficiently UV cross-linked protein in the spliceosomal complexes A, B, and C. We show here that SAP 49 cross-links to a region in the pre-mRNA immediately upstream of the branchpoint sequence in the prespliceosomal complex A. In addition to the RNA-binding activity of SAP 49, we show that this protein interacts directly and highly specifically with another U2 snRNP-associated spliceosomal protein, SAP 145. We have isolated a cDNA-encoding SAP 49 and find that it contains two amino-terminal RNA-recognition motifs (RRMs), consistent with the observation that SAP 49 binds directly to pre-mRNA. The remainder of the protein is highly proline-glycine rich (39% proline and 17% glycine). Unexpectedly, the SAP 49-SAP 145 protein-protein interaction requires the amino-terminus of SAP 49 that contains the two RRMs. The observation that SAP 49 and SAP 145 interact directly with both U2 snRNP and the pre-mRNA suggests that this protein complex plays a role in tethering U2 snRNP to the branch site.
Collapse
Affiliation(s)
- P Champion-Arnaud
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115
| | | |
Collapse
|
227
|
Abstract
Using an in vitro system in which a 5' splice site (5'SS) RNA oligo (AAG decreases GUAAGUAdT) is capable of inducing formation of U2/U4/U5/U6 snRNP complex we show that this oligo specifically binds to U4/U5/U6 snRNP and cross-links to U6 snRNA in the absence of U2 snRNP. Moreover, 5'SS RNA oligo bound to U4/U5/U6 snRNP is chased to U2/U4/U5/U6 snRNP complex upon addition of U2 snRNP. Recognition of the 5'SS by U4/U5/U6 snRNP correlates with the 5'SS consensus sequence. Unlike the interaction with U1 snRNP, this recognition depends largely on interactions other than RNA-RNA base pairing. Finally, the region of U6 snRNA required for this interaction with U4/U5/U6 snRNP is positioned upstream of stem I in the U4-U6 structure. We propose that the 5'SS-U4/U5/U6 snRNP complex is an intermediate in spliceosome assembly and that recognition of the 5'SS by U4/U5/U6 snRNP occurs after the 5'SS-U1 snRNA base pairing is disrupted but before the U4-U6 snRNA structure is destabilized.
Collapse
Affiliation(s)
- B B Konforti
- Rockefeller University, New York, New York 10021
| | | |
Collapse
|
228
|
Miriami E, Sperling J, Sperling R. Heat shock affects 5' splice site selection, cleavage and ligation of CAD pre-mRNA in hamster cells, but not its packaging in InRNP particles. Nucleic Acids Res 1994; 22:3084-91. [PMID: 7915031 PMCID: PMC310279 DOI: 10.1093/nar/22.15.3084] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The effect of heat shock on the packaging and splicing of nuclear CAD pre-mRNA, a transcript expressed constitutively from a non heat-inducible promoter, was studied in vivo in Syrian hamster cells. While mild heat shock did not affect significantly the packaging of CAD RNA in 200S InRNP particles, it caused perturbation to splicing. First, the heat shock inhibited splicing of CAD pre-mRNA. Second, it affected 5' splice site selection by activating cleavage at a cryptic 5' splice site; yet ligation of the cryptic exon to the downstream proximal exon was not observed. Base complementarities of the cryptic site with U1, U5, or U6 snRNAs are comparable, or even better, than those with the neighboring normal site. Hence, the exclusion of the cryptic site under normal growth conditions cannot be attributed to weaker base pairing with these snRNAs. On the other hand, these results imply the involvement of a heat labile factor in the selection of the 5' cleavage site. The exclusion of the cryptic site at 37 degrees C and the aborted splicing at this site after heat shock may also be explained by a proposed nuclear checking mechanism that detects in-frame stop codons upstream of the 5' splice site, and aborts splicing at such sites to prevent the production of a defective message.
Collapse
Affiliation(s)
- E Miriami
- Department of Genetics, Hebrew University of Jerusalem, Givat Ram, Israel
| | | | | |
Collapse
|
229
|
Abstract
We have shown previously that the influenza virus NS1 protein inhibits the nuclear export of mRNAs. Here we demonstrate that the NS1 protein also regulates another post-transcriptional step: It inhibits pre-mRNA splicing both in vivo and in vitro. The mode by which the NS1 protein inhibits pre-mRNA splicing is novel. The pre-mRNA forms spliceosomes, but subsequent catalytic steps in splicing are inhibited. Affinity selection experiments establish that the NS1 protein is associated with the spliceosomes that are formed. The RNA-binding domain of the NS1 protein is required for the inhibition of splicing and for the interaction of the protein with spliceosomes. Because the NS1 protein is associated with U6 snRNA in influenza virus-infected cells as well as in splicing extracts from uninfected cells, it is likely that the NS1 protein also inhibits pre-mRNA splicing in infected cells. Surprisingly, the splicing of the viral ns1 mRNA, the very mRNA that encodes the NS1 protein, was resistant to inhibition by the NS1 protein. This resistance is conferred by sequences in ns1 mRNA.
Collapse
Affiliation(s)
- Y Lu
- Rutgers University, Department of Molecular Biology and Biochemistry, Piscataway, New Jersey 08855-1179
| | | | | |
Collapse
|
230
|
Affiliation(s)
- T W Nilsen
- Department of Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106
| |
Collapse
|
231
|
Hong L, Hallick RB. A group III intron is formed from domains of two individual group II introns. Genes Dev 1994; 8:1589-99. [PMID: 7958842 DOI: 10.1101/gad.8.13.1589] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
A 1352-nucleotide intron within the Euglena gracilis chloroplast ycf8 gene has been characterized as a complex twintron with overlapping internal introns and alternative splicing pathways. Partially spliced pre-mRNAs were characterized by a combination of cDNA cloning and sequencing, Northern hybridization, and S1 nuclease protection analyses. In the predominant pathway, two internal group II introns (601 and 392 nucleotides) are spliced from subdomain ID of an external group II intron (359 nucleotides). In an alternative pathway, following excision of the 601-nucleotide intron, splicing of a group III intron occurs. This group III intron is recruited from sequences of the external intron and the 392-nucleotide intron. This is the first evidence that a group III intron can be derived from portions of existing group II introns. The mechanism of group III intron formation may also be relevant to the evolution of nuclear introns from putative group II intron ancestors.
Collapse
Affiliation(s)
- L Hong
- Department of Biochemistry, University of Arizona, Tucson 85721
| | | |
Collapse
|
232
|
Bartholomew B, Braun B, Kassavetis G, Geiduschek E. Probing close DNA contacts of RNA polymerase III transcription complexes with the photoactive nucleoside 4-thiodeoxythymidine. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)32421-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
233
|
Affiliation(s)
- E J Sontheimer
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, Howard Hughes Medical Institute, New Haven, CT 06536-0812
| |
Collapse
|
234
|
Chanfreau G, Legrain P, Dujon B, Jacquier A. Interaction between the first and last nucleotides of pre-mRNA introns is a determinant of 3' splice site selection in S. cerevisiae. Nucleic Acids Res 1994; 22:1981-7. [PMID: 8029003 PMCID: PMC308110 DOI: 10.1093/nar/22.11.1981] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The splicing of group II and nuclear pre-mRNAs introns occurs via a similar splicing pathway and some of the RNA-RNA interactions involved in these splicing reactions show structural similarities. Recently, genetic analyses performed in a group II intron and the yeast nuclear actin gene suggested that non Watson-Crick interactions between intron boundaries are important for the second splicing step efficiency in both classes of introns. We here show that, in the yeast nuclear rp51A intron, a G to A mutation at the first position activates cryptic 3' splice sites with the sequences UAC/ or UAA/. Moreover, the natural 3' splice site could be reactivated by a G to C substitution of the last intron nucleotide. These results demonstrate that the interaction between the first and last intron nucleotides is a conserved feature of nuclear pre-mRNA splicing in yeast and is involved in the mechanism of 3' splice site selection.
Collapse
Affiliation(s)
- G Chanfreau
- Département de Biologie Moléculaire, Institut Pasteur, Paris, France
| | | | | | | |
Collapse
|
235
|
Abstract
Genetic and biochemical studies have recently shown that the splice sites in nuclear pre-mRNAs are aligned for the transesterification reactions through a collaboration between U5 and U6 small nuclear RNAs, which form the heart of a network of RNA-based interactions in the active spliceosome.
Collapse
Affiliation(s)
- A Newman
- MRC Laboratory of Molecular Biology, Cambridge, UK
| |
Collapse
|
236
|
|
237
|
Downs WD, Cech TR. A tertiary interaction in the Tetrahymena intron contributes to selection of the 5' splice site. Genes Dev 1994; 8:1198-211. [PMID: 7926724 DOI: 10.1101/gad.8.10.1198] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The utilization of cryptic splice sites has been observed in a number of RNA splicing reactions. In the self-splicing group I intron of Tetrahymena thermophila, point mutations of either A57 or A95 promote cleavage at two sites other than the normal 5' splice site, suggesting that these nucleotides are involved in a common tertiary interaction. These results are unusual since A57 and A95 are neither at nor near the 5' splice site in the sequence or secondary structure. Cleavage at the alternative sites appears to occur by intron cyclization, a reaction with well-established structural and mechanistic similarities to the first step of RNA self-splicing. Alternative docking of P1 (the helix containing the 5' splice site paired to the internal guide sequence of the intron) into the catalytic core accounts for cleavage at the cryptic reaction sites. We propose that the A57/A95 interaction, along with an element implicated previously (J1/2), provide structural connectivity from the reaction site in P1 to the catalytic core of the Tetrahymena intron. It seems likely that RNA splicing in general will require such tertiary interactions to position RNA helices.
Collapse
Affiliation(s)
- W D Downs
- Department of Molecular, Cellular, and Developmental Biology, Howard Hughes Medical Institute, University of Colorado, Boulder 80309-0215
| | | |
Collapse
|
238
|
Cheng SC. Formation of the yeast splicing complex A1 and association of the splicing factor PRP19 with the pre-mRNA are independent of the 3' region of the intron. Nucleic Acids Res 1994; 22:1548-54. [PMID: 8202353 PMCID: PMC308028 DOI: 10.1093/nar/22.9.1548] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Assembly of the spliceosome is a step-wise process and involves sequential binding of snRNAs to the pre-mRNA to form pre-splicing complex A2-1. Subsequent dissociation of U4 from the spliceosome is accompanied by formation of complex A1 (Genes Dev. 1, 1014-1027, 1987). We show that the 3' region of the intron sequence is not required for efficient assembly of the yeast spliceosome. Truncated precursor mRNA retaining only four or five nucleotides 3' to the TACTAAC box formed pre-splicing complex A1, kinetically the last pre-mRNA containing splicing complex identified. The subsequent cleavage--ligation reaction requires at least 23 nucleotides on the 3' side of the TACTAAC box in a sequence-independent manner. Immunoprecipitation with anti-PRP19 antibody showed that association of PRP19 with the spliceosome was also independent of the 3' region of the intron.
Collapse
Affiliation(s)
- S C Cheng
- Institute of Molecular Biology, Academia Sinica, Nankang, Taiwan, ROC
| |
Collapse
|
239
|
Stamm S, Zhang MQ, Marr TG, Helfman DM. A sequence compilation and comparison of exons that are alternatively spliced in neurons. Nucleic Acids Res 1994; 22:1515-26. [PMID: 8202349 PMCID: PMC308024 DOI: 10.1093/nar/22.9.1515] [Citation(s) in RCA: 82] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Alternative splicing is an important regulatory mechanism to create protein diversity. In order to elucidate possible regulatory elements common to neuron specific exons, we created and statistically analysed a database of exons that are alternatively spliced in neurons. The splice site comparison of alternatively and constitutively spliced exons reveals that some, but not all alternatively spliced exons have splice sites deviating from the consensus sequence, implying diverse patterns of regulation. The deviation from the consensus is most evident at the -3 position of the 3' splice site and the +4 and -3 position of the 5' splice site. The nucleotide composition of alternatively and constitutively spliced exons is different, with alternatively spliced exons being more AU rich. We performed overlapping k-tuple analysis to identify common motifs. We found that alternatively and constitutively spliced exons differ in the frequency of several trinucleotides that cannot be explained by the amino acid composition and may be important for splicing regulation.
Collapse
Affiliation(s)
- S Stamm
- Cold Spring Harbor Laboratory, NY 11724
| | | | | | | |
Collapse
|
240
|
Abstract
In the active spliceosome, U2, U5 and U6 small nuclear RNAs form a network of interactions with the RNA substrate. U6 snRNA is closely implicated in the catalysis of splicing.
Collapse
Affiliation(s)
- A Newman
- MRC Laboratory of Molecular Biology, Cambridge, UK
| |
Collapse
|
241
|
Madhani HD, Guthrie C. Randomization-selection analysis of snRNAs in vivo: evidence for a tertiary interaction in the spliceosome. Genes Dev 1994; 8:1071-86. [PMID: 7926788 DOI: 10.1101/gad.8.9.1071] [Citation(s) in RCA: 88] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Putative components of the spliceosomal active site include a bulged helix between U2 and U6 snRNAs (U2-U6 helix I) and the adjacent ACAGAG hexanucleotide in U6. We have developed an in vivo, bimolecular randomization-selection method to functionally dissect these elements. Although a portion of U2-U6 helix I resembles the G-binding site of group I introns, the data are inconsistent with an analogous functional role for this structure in the spliceosome. Instead, analysis of several novel covariants supports the existence of a structure in which the helix I bulge engages in a tertiary interaction with the terminal residue of the U6 hexanucleotide (ACAGAG). Such a higher order structure, together with other known interactions, would juxtapose the two clusters of residues of the U2-U6 complex that are specifically required for the second chemical step of pre-mRNA splicing with the 3' splice site. Indeed, mutations in the residues that participate in the tertiary interaction affect both the efficiency and fidelity of 3' splice site usage.
Collapse
Affiliation(s)
- H D Madhani
- Department of Biochemistry and Biophysics, University of California at San Francisco 94143-0448
| | | |
Collapse
|
242
|
Hodges D, Bernstein SI. Genetic and biochemical analysis of alternative RNA splicing. ADVANCES IN GENETICS 1994; 31:207-81. [PMID: 8036995 DOI: 10.1016/s0065-2660(08)60399-5] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- D Hodges
- Biology Department, San Diego State University, California 92182-0057
| | | |
Collapse
|
243
|
Lesser CF, Guthrie C. Mutations in U6 snRNA that alter splice site specificity: implications for the active site. Science 1993; 262:1982-8. [PMID: 8266093 DOI: 10.1126/science.8266093] [Citation(s) in RCA: 208] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
What determines the precise sites of cleavage in the two transesterification reactions of messenger RNA (mRNA) splicing is a major unsolved question. Mutation of the invariant G (guanosine) at position 5 of 5' splice sites in Saccharomyces cerevisiae introns activates cleavage at nearby aberrant sites. A genetic approach was used to test the hypothesis that a base-pairing interaction between the 5' splice site and the invariant ACAGAG sequence of U6 is a determinant of 5' splice site choice. Mutations in U6 or the intron (or both) that were predicted to stabilize the interaction suppressed aberrant cleavage and increased normal cleavage. In addition, a mutation in the ACAGAG sequence suppressed mutations of the 3' splice site dinucleotide. These data can fit a model for the spliceosomal active site comprised of a set of RNA-RNA interactions between the intron, U2 and U6.
Collapse
Affiliation(s)
- C F Lesser
- Medical Scientist Training Program, University of California, San Francisco 94143
| | | |
Collapse
|
244
|
Abstract
Two models describing the interaction between U6 small nuclear RNA (snRNA) and the 5' splice site of introns have been proposed on the basis of cross-linking experiments. Here it is shown that a conserved sequence present in U6 snRNA forms base pairs with conserved nucleotides at the 5' splice junction and that this interaction is involved in 5' splice site choice. These results demonstrate a specific function for U6 snRNA in splicing and suggest that U6 snRNA has a proofreading role during splice site selection. A model is presented in which this new interaction, in concert with previously described interactions between U6 snRNA, U2 snRNA, and the pre-messenger RNA, would position the branch point near the 5' splice site for the catalysis of the first splicing step.
Collapse
|
245
|
Affiliation(s)
- J A Wise
- Department of Biochemistry, University of Illinois, Roger Adams Laboratory, Urbana 61801
| |
Collapse
|