201
|
Cadassou O, Petter Jordheim L. OXPHOS inhibitors, metabolism and targeted therapies in cancer. Biochem Pharmacol 2023; 211:115531. [PMID: 37019188 DOI: 10.1016/j.bcp.2023.115531] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/28/2023] [Accepted: 03/28/2023] [Indexed: 04/05/2023]
Abstract
More and more studies highlight the complex metabolic characteristics and plasticity of cancer cells. To address these specificities and explore the associated vulnerabilities, new metabolism-targeting therapeutic strategies are being developed. It is more and more accepted that cancer cells do not produce their energy only from aerobic glycolysis, as some subtypes strongly rely on mitochondrial respiration (OXPHOS). This review focuses on classical and promising OXPHOS inhibitors (OXPHOSi), unravelling their interest and modes of actions in cancer, particularly in combination with other strategies. Indeed, in monotherapy, OXPHOSi display limited efficiency as they mostly trigger cell death in cancer cell subtypes that strongly depend on mitochondrial respiration and are not able to shift to other metabolic pathways to produce energy. Nevertheless, they remain very interesting in combination with conventional therapeutic strategies such as chemotherapy and radiotherapy, increasing their anti-tumoral actions. In addition, OXPHOSi can be included in even more innovative strategies such as combinations with other metabolic drugs or immunotherapies.
Collapse
|
202
|
Wang D, Li M, Shen H, Yang J, Gao Z, Tang Y. Iron Deficiency Increases Phosphorylation of SP1 to Upregulate SPNS2 Expression in Hepatocellular Carcinoma. Biol Trace Elem Res 2023; 201:1689-1694. [PMID: 35614326 DOI: 10.1007/s12011-022-03296-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 05/20/2022] [Indexed: 11/02/2022]
Abstract
The sphingosine-1-phosphate (S1P) transporter spinster homolog 2 (SPNS2) promotes tumor progression by modulating tumor immunity and enhancing tumor cells migration and invasion. Previously we found that iron deficiency in hepatocellular carcinoma upregulated SPNS2 expression to increase tumor metastasis. The present study aimed to identify the underlying mechanism of SPNS2 upregulation. Since the mRNA of SPNS2 was significantly increased, we used a transcription factor activity microarray to find the transcription factor responsible for this. The results showed that iron deprivation in hepatoma cells increased the transcriptional activities of 14 transcription factors while only 2 were decreased. Among these, 3 transcription factors, HIF1α, SP1, and YY1, were predicted to bind with the transcription promoter region of SPNS2. But only HIF1α and SP1 transcriptional activities on SPNS2 were increased by iron deficiency, and the increase of SP1 transcriptional activity was stronger than HIF1α. The protein level of HIF1α was increased by iron deficiency, while SP1 was not changed at the protein level but the phosphorylation level was increased. The inhibitor of HIF1α, PX478, and the inhibitor of SP1, Mithramycin A, reversed the increased mRNA and protein expressions of SPNS2 by iron deficiency, with a more significant effect by Mithramycin A. These results provided a comprehensive view of changes in transcriptional activities by iron deficiency and identified that SP1 was the main regulator of iron deficiency-inducing SPNS2 expression in hepatoma cells.
Collapse
Affiliation(s)
- Dongyao Wang
- School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Min Li
- Department of Nutrition, Second Military Medical University, No.800, Xiangyin Road, Shanghai, China
| | - Hui Shen
- Department of Nutrition, Second Military Medical University, No.800, Xiangyin Road, Shanghai, China
| | - Jianxin Yang
- Department of Nutrition, Second Military Medical University, No.800, Xiangyin Road, Shanghai, China
| | - Zelong Gao
- Department of Nutrition, Second Military Medical University, No.800, Xiangyin Road, Shanghai, China
| | - Yuxiao Tang
- Department of Nutrition, Second Military Medical University, No.800, Xiangyin Road, Shanghai, China.
| |
Collapse
|
203
|
Nie Y, Chen W, Kang Y, Yuan X, Li Y, Zhou J, Tao W, Ji X. Two-dimensional porous vermiculite-based nanocatalysts for synergetic catalytic therapy. Biomaterials 2023; 295:122031. [PMID: 36731367 DOI: 10.1016/j.biomaterials.2023.122031] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 01/09/2023] [Accepted: 01/27/2023] [Indexed: 01/30/2023]
Abstract
This study reports an ultrasound-mediated and two-dimensional (2D) porous vermiculite nanosheets (VMT NSs)-based nanocatalyst platform (Arg@VMT@PDA-PEG) that synergistically harnessed the Fenton reaction-based chemodynamic therapy (CDT), 2D semiconductor-based sonodynamic therapy (SDT) and nitric oxide (NO)-based gas therapy for combination cancer therapy. The tumor microenvironment responsive degradation of polydopamine (PDA) shell could not only prevent L-Arg, a NO donor, leakage during blood circulation, but also selectively release the active sites of VMT NSs for catalytic reactions in tumor cells. Additionally, the Fenton reactions mediated by the abundant Fe2+/Fe3+ in VMT NSs could efficiently produce ·OH and consume glutathione (GSH) for CDT. Moreover, the reactive oxygen species (ROS, ·OH and ·O2-) produced by ultrasound-triggered Arg@VMT@PDA-PEG could not only execute SDT but also oxidize L-Arg to NO for synergetic gas therapy. The results show that the transformation of ROS to NO can enhance curative efficacy owing to the ability of NO with much longer life-time in freely diffusing into cells from intercellular space. This biodegradable Arg@VMT@PDA-PEG nanocatalytic platform integrating three different catalytic reactions provides a new therapeutic paradigm for combination cancer therapy.
Collapse
Affiliation(s)
- Yichu Nie
- Clinical Research Institute, First People's Hospital of Foshan, Foshan, Guangdong, 528000, China
| | - Wei Chen
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Yong Kang
- Academy of Medical Engineering and Translational Medicine, Medical College, Tianjin University, Tianjin, 300072, China
| | - Xue Yuan
- Academy of Medical Engineering and Translational Medicine, Medical College, Tianjin University, Tianjin, 300072, China
| | - Yongjiang Li
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Jun Zhou
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Wei Tao
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA.
| | - Xiaoyuan Ji
- Academy of Medical Engineering and Translational Medicine, Medical College, Tianjin University, Tianjin, 300072, China; Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
204
|
Jehanno C, Le Page Y, Flouriot G, Le Goff P, Michel D. Synergistic activation of genes promoting invasiveness by dual deprivation in oxygen and nutrients. Int J Exp Pathol 2023; 104:64-75. [PMID: 36694990 PMCID: PMC10009306 DOI: 10.1111/iep.12464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 11/30/2022] [Accepted: 12/13/2022] [Indexed: 01/26/2023] Open
Abstract
By depriving cancer cells of blood supplies of oxygen and nutrients, anti-angiogenic therapy is aimed at simultaneously asphyxiating and starving the cells. But in spite of its apparent logic, this strategy is generally counterproductive over the long term as the treatment seems to elicit malignancy. Since a defect of blood supply is expected to deprive tumours simultaneously of oxygen and nutrients naturally, we examine here these two deprivations, alone or in combination, on the phenotype and signalling pathways of moderately aggressive MCF7 cancer cells. Each deprivation induces some aspects of the aggressive and migratory phenotypes through activating several pathways, including HIF1-alpha as expected, but also SRF/MRTFA and TCF4/beta-catenin. Strikingly, the dual deprivation has strong cooperative effects on the upregulation of genes increasing the metastatic potential, such as four and a half LIM domains 2 (FHL2) and HIF1A-AS2 lncRNA, which have response elements for both pathways. Using anti-angiogenic agents as monotherapy is therefore questionable as it may give falsely promising short-term tumour regression, but could ultimately exacerbate aggressive phenotypes.
Collapse
Affiliation(s)
- Charly Jehanno
- University of Rennes, Inserm, EHESP, Irset UMR 1085, Rennes, France.,Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Yann Le Page
- University of Rennes, Inserm, EHESP, Irset UMR 1085, Rennes, France
| | - Gilles Flouriot
- University of Rennes, Inserm, EHESP, Irset UMR 1085, Rennes, France
| | - Pascale Le Goff
- University of Rennes, Inserm, EHESP, Irset UMR 1085, Rennes, France
| | - Denis Michel
- University of Rennes, Inserm, EHESP, Irset UMR 1085, Rennes, France
| |
Collapse
|
205
|
Chen Q, Chen S, Wang J, Zhao Y, Ye X, Fu Y, Liu Y. Construction and validation of a hypoxia-related risk signature identified EXO1 as a prognostic biomarker based on 12 genes in lung adenocarcinoma. Aging (Albany NY) 2023; 15:2293-2307. [PMID: 36971680 PMCID: PMC10085621 DOI: 10.18632/aging.204613] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 03/15/2023] [Indexed: 03/29/2023]
Abstract
BACKGROUND Increasing evidence has demonstrated the clinical importance of hypoxia and its related factors in lung adenocarcinoma (LUAD). METHODS RNA-seq datasets from The Cancer Genome Atlas (TCGA) were analyzed using the differentially expressed genes in hypoxia pathway by the Least Absolute Shrinkage and Selection Operator (LASSO) model. Applying gene ontology (GO) and gene set enrichment analysis (GSEA), a risk signature associated with the survival of LUAD patients was constructed between LUAD and normal tissue. RESULTS In total, 166 hypoxia-related genes were identified. Based on the LASSO Cox regression, 12 genes were selected for the development of the risk signature. Then, we designed an OS-associated nomogram that included the risk score and clinical factors. The concordance index of the nomogram was 0.724. ROC curve showed better predictive ability using the nomogram (AUC = 0.811 for 5-year OS). Finally, the expressions of the 12 genes were validated in two external datasets and EXO1 was recognized as a potential biomarker in the progression of LUAD patients. CONCLUSIONS Overall, our data suggested that hypoxia is associated with the prognosis, and EXO1 acted as a promising biomarker in LUAD.
Collapse
|
206
|
Zhang X, He C, He X, Fan S, Ding B, Lu Y, Xiang G. HIF-1 inhibitor-based one-stone-two-birds strategy for enhanced cancer chemodynamic-immunotherapy. J Control Release 2023; 356:649-662. [PMID: 36933701 DOI: 10.1016/j.jconrel.2023.03.026] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 03/08/2023] [Accepted: 03/14/2023] [Indexed: 03/20/2023]
Abstract
Based on its ability to induce strong immunogenic cell death (ICD), chemodynamic therapy (CDT) was elaborately designed to combine with immunotherapy for a synergistic anticancer effect. However, hypoxic cancer cells can adaptively regulate hypoxia-inducible factor-1 (HIF-1) pathways, leading to a reactive oxygen species (ROS)-homeostatic and immunosuppressive tumor microenvironment. Consequently, both ROS-dependent CDT efficacy and immunotherapy are largely diminished, further lowering their synergy. Here, a liposomal nanoformulation co-delivering a Fenton catalyst copper oleate and a HIF-1 inhibitor acriflavine (ACF) was reported for breast cancer treatment. Through in vitro and in vivo experiments, copper oleate-initiated CDT was proven to be reinforced by ACF through HIF-1-glutathione pathway inhibition, thus amplifying ICD for better immunotherapeutic outcomes. Meanwhile, ACF as an immunoadjuvant significantly reduced the levels of lactate and adenosine, and downregulated the expression of programmed death ligand-1 (PD-L1), thereby promoting the antitumor immune response in a CDT-independent manner. Hence, the "one stone" ACF was fully taken advantage of to enhance CDT and immunotherapy (two birds), both of which contributed to a better therapeutic outcome.
Collapse
Affiliation(s)
- Xiaojuan Zhang
- Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiahang Road 118, Jiaxing 314001, People's Republic of China.; School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Chuanchuan He
- Jiaxing Maternity and Child Health Care Hospital, Affiliated Women and Children Hospital, Jiaxing University, Jiaxing, Zhejiang, China; School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Xuelian He
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Sijun Fan
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Baoyue Ding
- Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiahang Road 118, Jiaxing 314001, People's Republic of China
| | - Yao Lu
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Guangya Xiang
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; School of Pharmacy, Tongren Polytechnic College, Tongren, Guizhou 554300, China.
| |
Collapse
|
207
|
Xie L, Zhang K, You B, Yin H, Zhang P, Shan Y, Gu Z, Zhang Q. Hypoxic nasopharyngeal carcinoma-derived exosomal miR-455 increases vascular permeability by targeting ZO-1 to promote metastasis. Mol Carcinog 2023; 62:803-819. [PMID: 36929868 DOI: 10.1002/mc.23525] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 01/28/2023] [Accepted: 02/20/2023] [Indexed: 03/18/2023]
Abstract
Nasopharyngeal carcinoma (NPC), the most frequent reason for treatment failure in head and neck tumors, has the greatest incidence of distant metastases. Increased vascular permeability facilitates metastasis. Exosomal microRNAs (miRNAs) have been implicated in the development of the premetastatic niche and are emerging as prospective biomarkers in cancer patients. We discovered that a higher level of miR-455 was connected to a larger propensity for NPC metastasis based on deep sequencing and RT-qPCR. We found that hypoxia promoted NPC exosomes release and increased miR-455 expression in a way that was hypoxia-inducible factor 1-alpha (HIF-1α) dependent. Exosomes from NPC cells with high levels of miR-455 were found to specifically target zonula occludens 1 (ZO-1), increasing the permeability of endothelial monolayers in vitro vascular permeability and transendothelial invasion experiments. Additional in vivo studies showed that zebrafish with sustained miR-455-overexpressing NPC cell xenografts displayed increased tumor cell mass throughout the body. In vivo, zebrafish vascular tight junction integrity was disrupted by exosomes produced by NPC cells with elevated miR-455 expression. Mice-bearing xenografts further supported the finding that exosomes containing miR-455 might reduce ZO-1 expression in addition to promote NPC cell growth. These findings suggest that in a hypoxic microenvironment, exosomal miR-455 released by NPC cells enhances vascular permeability and promotes metastasis by targeting ZO-1. The HIF-1α-miR-455-ZO-1 signaling pathway may be a promising predictor and potential therapeutic target for NPC with metastasis.
Collapse
Affiliation(s)
- Lixiao Xie
- Department of Otorhinolaryngology-Head and Neck Surgery, The Otolaryngology Research Institute and Clinical Research Center, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu Province, China.,Institute of Otolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Kaiwen Zhang
- Department of Otorhinolaryngology-Head and Neck Surgery, The Otolaryngology Research Institute and Clinical Research Center, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu Province, China.,Institute of Otolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Bo You
- Department of Otorhinolaryngology-Head and Neck Surgery, The Otolaryngology Research Institute and Clinical Research Center, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu Province, China.,Institute of Otolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Haimeng Yin
- Department of Otorhinolaryngology-Head and Neck Surgery, The Otolaryngology Research Institute and Clinical Research Center, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu Province, China.,Institute of Otolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Panpan Zhang
- Department of Otorhinolaryngology-Head and Neck Surgery, The Otolaryngology Research Institute and Clinical Research Center, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu Province, China.,Institute of Otolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Ying Shan
- Department of Otorhinolaryngology-Head and Neck Surgery, The Otolaryngology Research Institute and Clinical Research Center, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu Province, China.,Institute of Otolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Zhifeng Gu
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Qicheng Zhang
- Department of Otorhinolaryngology-Head and Neck Surgery, The Otolaryngology Research Institute and Clinical Research Center, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu Province, China.,Institute of Otolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| |
Collapse
|
208
|
Ceranski AK, Carreño-Gonzalez MJ, Ehlers AC, Colombo MV, Cidre-Aranaz F, Grünewald TGP. Hypoxia and HIFs in Ewing sarcoma: new perspectives on a multi-facetted relationship. Mol Cancer 2023; 22:49. [PMID: 36915100 PMCID: PMC10010019 DOI: 10.1186/s12943-023-01750-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 02/20/2023] [Indexed: 03/16/2023] Open
Abstract
Hypoxia develops during the growth of solid tumors and influences tumoral activity in multiple ways. Low oxygen tension is also present in the bone microenvironment where Ewing sarcoma (EwS) - a highly aggressive pediatric cancer - mainly arises. Hypoxia inducible factor 1 subunit alpha (HIF-1-a) is the principal molecular mediator of the hypoxic response in cancer whereas EWSR1::FLI1 constitutes the oncogenic driver of EwS. Interaction of the two proteins has been shown in EwS. Although a growing body of studies investigated hypoxia and HIFs in EwS, their precise role for EwS pathophysiology is not clarified to date. This review summarizes and structures recent findings demonstrating that hypoxia and HIFs play a role in EwS at multiple levels. We propose to view hypoxia and HIFs as independent protagonists in the story of EwS and give a perspective on their potential clinical relevance as prognostic markers and therapeutic targets in EwS treatment.
Collapse
Affiliation(s)
- A Katharina Ceranski
- Hopp-Children's Cancer Center (KiTZ), Heidelberg, Germany.,Division of Translational Pediatric Sarcoma Research (B410), German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Martha J Carreño-Gonzalez
- Hopp-Children's Cancer Center (KiTZ), Heidelberg, Germany.,Division of Translational Pediatric Sarcoma Research (B410), German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Anna C Ehlers
- Hopp-Children's Cancer Center (KiTZ), Heidelberg, Germany.,Division of Translational Pediatric Sarcoma Research (B410), German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Maria Vittoria Colombo
- Hopp-Children's Cancer Center (KiTZ), Heidelberg, Germany.,Division of Translational Pediatric Sarcoma Research (B410), German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany.,Regenerative Medicine Technologies Laboratory, Laboratories for Translational Research (LRT), Ente Ospedaliero Cantonale (EOC), Via F. Chiesa 5, CH-6500, Bellinzona, Switzerland.,Department of Surgery, Service of Orthopaedics and Traumatology, EOC, Lugano, Switzerland.,Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico Di Milano, Via Mancinelli 7, 20131, Milan, Italy
| | - Florencia Cidre-Aranaz
- Hopp-Children's Cancer Center (KiTZ), Heidelberg, Germany.,Division of Translational Pediatric Sarcoma Research (B410), German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Thomas G P Grünewald
- Hopp-Children's Cancer Center (KiTZ), Heidelberg, Germany. .,Division of Translational Pediatric Sarcoma Research (B410), German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany. .,Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany.
| |
Collapse
|
209
|
Wu X, Tan Y, Zhang J, Cui R, Liao C, Zhang S. Nanodrug constructed using dietary antioxidants for immunotherapy of metastatic tumors. J Mater Chem B 2023; 11:2916-2926. [PMID: 36892505 DOI: 10.1039/d2tb02773a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
Abstract
Immunogenic cell death (ICD) induced by reactive oxygen species (ROS) represents a particular form of tumor cell death for approaching the problem of low immunogenicity of tumors in immunotherapy, while the oxidative damage to normal cells of current ICD inducers hinders their clinical application. Herein, a new ICD inducer VC@cLAV constructed solely by dietary antioxidants, lipoic acid (LA) and vitamin C (VC), is developed, which could promote heavy intracellular ROS production in cancer cells for ICD induction while acting as an anti-oxidant in non-cancer cells for cytoprotection, and thus hold high biosafety. In vitro studies show that VC@cLAV induced a release of antigens and a maturation rate of DCs up to 56.5%, approaching the positive control (58.4%). In vivo combined with αPD-1, VC@cLAV showed excellent antitumor activity against both primary and distant metastatic tumors with an inhibition rate of 84.8% and 79.0% compared to 14.2% and 10.0% in the αPD-1 alone group. Notably, VC@cLAV established a long-term antitumor immune memory effect against tumor rechallenging. This study not only presents a new kind of ICD inducer but also provides an impetus for the development of dietary antioxidant-based cancer drugs.
Collapse
Affiliation(s)
- Xiao Wu
- College of Biomedical Engineering and National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, China.
| | - Yifeng Tan
- College of Biomedical Engineering and National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, China.
| | - Jing Zhang
- College of Biomedical Engineering and National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, China.
| | - Rong Cui
- College of Biomedical Engineering and National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, China.
| | - Chunyan Liao
- College of Biomedical Engineering and National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, China.
| | - Shiyong Zhang
- College of Biomedical Engineering and National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, China.
| |
Collapse
|
210
|
Kim TH, Kwak Y, Song C, Lee HS, Kim DW, Oh HK, Kim JW, Lee KW, Kang SB, Kim JS. GLUT-1 may predict metastases and death in patients with locally advanced rectal cancer. Front Oncol 2023; 13:1094480. [PMID: 36968998 PMCID: PMC10036037 DOI: 10.3389/fonc.2023.1094480] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 02/20/2023] [Indexed: 03/11/2023] Open
Abstract
Introduction Glucose transporter-1 (GLUT-1) has been studied as a possible predictor for survival outcomes in locally advanced rectal cancer (LARC). Methods We aimed to investigate the prognostic role of GLUT-1 in LARC using the data of 208 patients with clinical T3-4 stage and/or node-positive rectal adenocarcinoma, all of whom underwent neoadjuvant chemoradiotherapy (CRT) and subsequent total mesorectal excision (TME). Both pre-CRT and post-CRT specimens were immunohistologically stained for GLUT-1. Patients were classified into GLUT-1-positive and GLUT-1-negative groups and distant metastasis-free survival (DMFS) and overall survival (OS) was analyzed and compared. Results At a median follow-up of 74 months, post-CRT GLUT-1 status showed a significant correlation with worse DMFS (p=0.027, HR 2.26) and OS (p=0.030, HR 2.30). When patients were classified into 4 groups according to yp stage II/III status and post-CRT GLUT-1 positivity [yp stage II & GLUT-1 (-), yp stage II & GLUT-1 (+), yp stage III & GLUT-1 (-), yp stage III & GLUT-1 (+)], the 5-year DMFS rates were 92.3%, 63.9%, 65.4%, and 46.5%, respectively (p=0.013). GLUT-1 (-) groups showed markedly better outcomes for both yp stage II and III patients compared to GLUT-1 (+) groups. A similar tendency was observed for OS. Discussion In conclusion, post-CRT GLUT-1 may serve as a prognostic marker in LARC.
Collapse
Affiliation(s)
- Tae Hyun Kim
- Department of Radiation Oncology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Yoonjin Kwak
- Department of Pathology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Changhoon Song
- Department of Radiation Oncology, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Hye Seung Lee
- Department of Pathology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Duck-Woo Kim
- Department of Surgery, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Heung-Kwon Oh
- Department of Surgery, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Jin Won Kim
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Keun-Wook Lee
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Sung-Bum Kang
- Department of Surgery, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Jae-Sung Kim
- Department of Radiation Oncology, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| |
Collapse
|
211
|
Zhang J, Tang K, Fang R, Liu J, Liu M, Ma J, Wang H, Ding M, Wang X, Song Y, Yang D. Nanotechnological strategies to increase the oxygen content of the tumor. Front Pharmacol 2023; 14:1140362. [PMID: 36969866 PMCID: PMC10034070 DOI: 10.3389/fphar.2023.1140362] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 03/01/2023] [Indexed: 03/12/2023] Open
Abstract
Hypoxia is a negative prognostic indicator of solid tumors, which not only changes the survival state of tumors and increases their invasiveness but also remarkably reduces the sensitivity of tumors to treatments such as radiotherapy, chemotherapy and photodynamic therapy. Thus, developing therapeutic strategies to alleviate tumor hypoxia has recently been considered an extremely valuable target in oncology. In this review, nanotechnological strategies to elevate oxygen levels in tumor therapy in recent years are summarized, including (I) improving the hypoxic tumor microenvironment, (II) oxygen delivery to hypoxic tumors, and (III) oxygen generation in hypoxic tumors. Finally, the challenges and prospects of these nanotechnological strategies for alleviating tumor hypoxia are presented.
Collapse
Affiliation(s)
- Junjie Zhang
- School of Fundamental Sciences, Bengbu Medical College, Bengbu, China
| | - Kaiyuan Tang
- School of Fundamental Sciences, Bengbu Medical College, Bengbu, China
| | - Runqi Fang
- School of Fundamental Sciences, Bengbu Medical College, Bengbu, China
| | - Jiaming Liu
- School of Fundamental Sciences, Bengbu Medical College, Bengbu, China
| | - Ming Liu
- School of Fundamental Sciences, Bengbu Medical College, Bengbu, China
| | - Jiayi Ma
- School of Fundamental Sciences, Bengbu Medical College, Bengbu, China
| | - Hui Wang
- School of Fundamental Sciences, Bengbu Medical College, Bengbu, China
| | - Meng Ding
- Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
- *Correspondence: Meng Ding, ; Xiaoxiao Wang, ; Dongliang Yang,
| | - Xiaoxiao Wang
- Biochemical Engineering Research Center, School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma’anshan, China
- *Correspondence: Meng Ding, ; Xiaoxiao Wang, ; Dongliang Yang,
| | - Yanni Song
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM), School of Physical and Mathematical Sciences, Nanjing Tech University (NanjingTech), Nanjing, China
| | - Dongliang Yang
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM), School of Physical and Mathematical Sciences, Nanjing Tech University (NanjingTech), Nanjing, China
- *Correspondence: Meng Ding, ; Xiaoxiao Wang, ; Dongliang Yang,
| |
Collapse
|
212
|
Cusenza VY, Tameni A, Neri A, Frazzi R. The lncRNA epigenetics: The significance of m6A and m5C lncRNA modifications in cancer. Front Oncol 2023; 13:1063636. [PMID: 36969033 PMCID: PMC10033960 DOI: 10.3389/fonc.2023.1063636] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 02/10/2023] [Indexed: 03/12/2023] Open
Abstract
Most of our transcribed RNAs are represented by non-coding sequences. Long non-coding RNAs (lncRNAs) are transcripts with no or very limited protein coding ability and a length >200nt. They can be epigenetically modified. N6-methyladenosine (m6A), N1-methyladenosine (m1A), 5-methylcytosine (m5C), 7-methylguanosine (m7G) and 2’-O-methylation (Nm) are some of the lncRNAs epigenetic modifications. The epigenetic modifications of RNA are controlled by three classes of enzymes, each playing a role in a specific phase of the modification. These enzymes are defined as “writers”, “readers” and “erasers”. m6A and m5C are the most studied epigenetic modifications in RNA. These modifications alter the structure and properties, thus modulating the functions and interactions of lncRNAs. The aberrant expression of several lncRNAs is linked to the development of a variety of cancers and the epigenetic signatures of m6A- or m5C-related lncRNAs are increasingly recognized as potential biomarkers of prognosis, predictors of disease stage and overall survival. In the present manuscript, the most up to date literature is reviewed with the focus on m6A and m5C modifications of lncRNAs and their significance in cancer.
Collapse
Affiliation(s)
- Vincenza Ylenia Cusenza
- Laboratory of Translational Research, Azienda Unità Sanitaria Locale - IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Annalisa Tameni
- Laboratory of Translational Research, Azienda Unità Sanitaria Locale - IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Antonino Neri
- Scientific Directorate, Azienda Unità Sanitaria Locale - IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Raffaele Frazzi
- Scientific Directorate, Azienda Unità Sanitaria Locale - IRCCS di Reggio Emilia, Reggio Emilia, Italy
- *Correspondence: Raffaele Frazzi,
| |
Collapse
|
213
|
Yamamoto A, Huang Y, Krajina BA, McBirney M, Doak AE, Qu S, Wang CL, Haffner MC, Cheung KJ. Metastasis from the tumor interior and necrotic core formation are regulated by breast cancer-derived angiopoietin-like 7. Proc Natl Acad Sci U S A 2023; 120:e2214888120. [PMID: 36853945 PMCID: PMC10013750 DOI: 10.1073/pnas.2214888120] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 01/06/2023] [Indexed: 03/01/2023] Open
Abstract
Necrosis in the tumor interior is a common feature of aggressive cancers that is associated with poor clinical prognosis and the development of metastasis. How the necrotic core promotes metastasis remains unclear. Here, we report that emergence of necrosis inside the tumor is correlated temporally with increased tumor dissemination in a rat breast cancer model and in human breast cancer patients. By performing spatially focused transcriptional profiling, we identified angiopoietin-like 7 (Angptl7) as a tumor-specific factor localized to the perinecrotic zone. Functional studies showed that Angptl7 loss normalizes central necrosis, perinecrotic dilated vessels, metastasis, and reduces circulating tumor cell counts to nearly zero. Mechanistically, Angptl7 promotes vascular permeability and supports vascular remodeling in the perinecrotic zone. Taken together, these findings show that breast tumors actively produce factors controlling central necrosis formation and metastatic dissemination from the tumor core.
Collapse
Affiliation(s)
- Ami Yamamoto
- Translational Research Program, Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA98109
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA98109
- Molecular and Cellular Biology Graduate Program, University of Washington, Seattle, WA98195
| | - Yin Huang
- Translational Research Program, Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA98109
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA98109
| | - Brad A. Krajina
- Translational Research Program, Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA98109
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA98109
| | - Margaux McBirney
- Translational Research Program, Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA98109
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA98109
| | - Andrea E. Doak
- Translational Research Program, Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA98109
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA98109
- Molecular and Cellular Biology Graduate Program, University of Washington, Seattle, WA98195
| | - Sixuan Qu
- Translational Research Program, Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA98109
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA98109
| | - Carolyn L. Wang
- Department of Radiology, University of Washington School of Medicine, Seattle, WA98195
| | - Michael C. Haffner
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA98109
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, WA98109
- Division of Clinical Research, Fred Hutchinson Cancer Center, Seattle, WA98109
| | - Kevin J. Cheung
- Translational Research Program, Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA98109
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA98109
| |
Collapse
|
214
|
Hoque S, Dhar R, Kar R, Mukherjee S, Mukherjee D, Mukerjee N, Nag S, Tomar N, Mallik S. Cancer stem cells (CSCs): key player of radiotherapy resistance and its clinical significance. Biomarkers 2023; 28:139-151. [PMID: 36503350 DOI: 10.1080/1354750x.2022.2157875] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Cancer stem cells (CSCs) are self-renewing and slow-multiplying micro subpopulations in tumour microenvironments. CSCs contribute to cancer's resistance to radiation (including radiation) and other treatments. CSCs control the heterogeneity of the tumour. It alters the tumour's microenvironment cellular singling and promotes epithelial-to-mesenchymal transition (EMT). Current research decodes the role of extracellular vesicles (EVs) and CSCs interlink in radiation resistance. Exosome is a subpopulation of EVs and originated from plasma membrane. It is secreted by several active cells. It involed in cellular communication and messenger of healthly and multiple pathological complications. Exosomal biological active cargos (DNA, RNA, protein, lipid and glycan), are capable to transform recipient cells' nature. The molecular signatures of CSCs and CSC-derived exosomes are potential source of cancer theranostics development. This review discusse cancer stem cells, radiation-mediated CSCs development, EMT associated with CSCs, the role of exosomes in radioresistance development, the current state of radiation therapy and the use of CSCs and CSCs-derived exosomes biomolecules as a clinical screening biomarker for cancer. This review gives new researchers a reason to keep an eye on the next phase of scientific research into cancer theranostics that will help mankind.
Collapse
Affiliation(s)
- Saminur Hoque
- Department of Radiology, SRM Institute of Science and Technology, Kattankulathur, Tamilnadu, India
| | - Rajib Dhar
- Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur, Tamilnadu, India
| | - Rishav Kar
- Department of Medical Biotechnology, Ramakrishna Mission Vivekananda Educational and Research Institute
| | - Sayantanee Mukherjee
- Centre for Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi, Kerala, India
| | | | - Nobendu Mukerjee
- Department of Microbiology, West Bengal State University, Kolkata, West Bengal, India.,Department of Health Sciences, Novel Global Community Educational Foundation, Australia
| | - Sagnik Nag
- Department of Biotechnology, School of Biosciences & Technology, Vellore Institute of Technology (VIT), Tamil Nadu, India
| | - Namrata Tomar
- Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Saurav Mallik
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX, USA.,Department of Environmental Health, Harvard T H Chan School of Public Health, Boston, MA, USA
| |
Collapse
|
215
|
Zuo Q, Yang Y, Lyu Y, Yang C, Chen C, Salman S, Huang TYT, Wicks EE, Jackson W, Datan E, Qin W, Semenza GL. Plexin-B3 expression stimulates MET signaling, breast cancer stem cell specification, and lung metastasis. Cell Rep 2023; 42:112164. [PMID: 36857181 DOI: 10.1016/j.celrep.2023.112164] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 12/21/2022] [Accepted: 02/09/2023] [Indexed: 03/02/2023] Open
Abstract
Intratumoral hypoxia is a microenvironmental feature that promotes breast cancer progression and is associated with cancer mortality. Plexin B3 (PLXNB3) is highly expressed in estrogen receptor-negative breast cancer, but the underlying mechanisms and consequences have not been thoroughly investigated. Here, we report that PLXNB3 expression is increased in response to hypoxia and that PLXNB3 is a direct target gene of hypoxia-inducible factor 1 (HIF-1) in human breast cancer cells. PLXNB3 expression is correlated with HIF-1α immunohistochemistry, breast cancer grade and stage, and patient mortality. Mechanistically, PLXNB3 is required for hypoxia-induced MET/SRC/focal adhesion kinase (FAK) and MET/SRC/STAT3/NANOG signaling as well as hypoxia-induced breast cancer cell migration, invasion, and cancer stem cell specification. PLXNB3 knockdown impairs tumor formation and lung metastasis in orthotopic breast cancer mouse models.
Collapse
Affiliation(s)
- Qiaozhu Zuo
- Armstrong Oxygen Biology Research Center and Vascular Program, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200032, China
| | - Yongkang Yang
- Armstrong Oxygen Biology Research Center and Vascular Program, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD 21205, USA
| | - Yajing Lyu
- Armstrong Oxygen Biology Research Center and Vascular Program, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Chen Yang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200032, China
| | - Chelsey Chen
- Armstrong Oxygen Biology Research Center and Vascular Program, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Shaima Salman
- Armstrong Oxygen Biology Research Center and Vascular Program, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Tina Yi-Ting Huang
- Armstrong Oxygen Biology Research Center and Vascular Program, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Elizabeth E Wicks
- Armstrong Oxygen Biology Research Center and Vascular Program, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Walter Jackson
- Armstrong Oxygen Biology Research Center and Vascular Program, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Emmanuel Datan
- Armstrong Oxygen Biology Research Center and Vascular Program, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Wenxin Qin
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200032, China
| | - Gregg L Semenza
- Armstrong Oxygen Biology Research Center and Vascular Program, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD 21205, USA; Departments of Biological Chemistry, Medicine, Pediatrics, and Radiation Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
216
|
Nano-Electrochemical Characterization of a 3D Bioprinted Cervical Tumor Model. Cancers (Basel) 2023; 15:cancers15041327. [PMID: 36831668 PMCID: PMC9954750 DOI: 10.3390/cancers15041327] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/31/2023] [Accepted: 02/13/2023] [Indexed: 02/22/2023] Open
Abstract
Current cancer research is limited by the availability of reliable in vivo and in vitro models that are able to reproduce the fundamental hallmarks of cancer. Animal experimentation is of paramount importance in the progress of research, but it is becoming more evident that it has several limitations due to the numerous differences between animal tissues and real, in vivo human tissues. 3D bioprinting techniques have become an attractive tool for many basic and applied research fields. Concerning cancer, this technology has enabled the development of three-dimensional in vitro tumor models that recreate the characteristics of real tissues and look extremely promising for studying cancer cell biology. As 3D bioprinting is a relatively recently developed technique, there is still a lack of characterization of the chemical cellular microenvironment of 3D bioprinted constructs. In this work, we fabricated a cervical tumor model obtained by 3D bioprinting of HeLa cells in an alginate-based matrix. Characterization of the spheroid population obtained as a function of culturing time was performed by phase-contrast and confocal fluorescence microscopies. Scanning electrochemical microscopy and platinum nanoelectrodes were employed to characterize oxygen concentrations-a fundamental characteristic of the cellular microenvironment-with a high spatial resolution within the 3D bioprinted cervical tumor model; we also demonstrated that the diffusion of a molecular model of drugs in the 3D bioprinted construct, in which the spheroids were embedded, could be measured quantitatively over time using scanning electrochemical microscopy.
Collapse
|
217
|
Shigeta K, Hasegawa M, Hishiki T, Naito Y, Baba Y, Mikami S, Matsumoto K, Mizuno R, Miyajima A, Kikuchi E, Saya H, Kosaka T, Oya M. IDH2 stabilizes HIF-1α-induced metabolic reprogramming and promotes chemoresistance in urothelial cancer. EMBO J 2023; 42:e110620. [PMID: 36637036 PMCID: PMC9929641 DOI: 10.15252/embj.2022110620] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 11/26/2022] [Accepted: 11/29/2022] [Indexed: 01/14/2023] Open
Abstract
Drug resistance contributes to poor therapeutic response in urothelial carcinoma (UC). Metabolomic analysis suggested metabolic reprogramming in gemcitabine-resistant urothelial carcinoma cells, whereby increased aerobic glycolysis and metabolic stimulation of the pentose phosphate pathway (PPP) promoted pyrimidine biosynthesis to increase the production of the gemcitabine competitor deoxycytidine triphosphate (dCTP) that diminishes its therapeutic effect. Furthermore, we observed that gain-of-function of isocitrate dehydrogenase 2 (IDH2) induced reductive glutamine metabolism to stabilize Hif-1α expression and consequently stimulate aerobic glycolysis and PPP bypass in gemcitabine-resistant UC cells. Interestingly, IDH2-mediated metabolic reprogramming also caused cross resistance to CDDP, by elevating the antioxidant defense via increased NADPH and glutathione production. Downregulation or pharmacological suppression of IDH2 restored chemosensitivity. Since the expression of key metabolic enzymes, such as TIGAR, TKT, and CTPS1, were affected by IDH2-mediated metabolic reprogramming and related to poor prognosis in patients, IDH2 might become a new therapeutic target for restoring chemosensitivity in chemo-resistant urothelial carcinoma.
Collapse
Affiliation(s)
- Keisuke Shigeta
- Department of UrologyKeio University School of MedicineTokyoJapan
| | | | - Takako Hishiki
- Department of Clinical and Translational Research centerKeio University School of MedicineTokyoJapan
- Department of BiochemistryKeio University School of MedicineTokyoJapan
| | - Yoshiko Naito
- Department of Clinical and Translational Research centerKeio University School of MedicineTokyoJapan
| | - Yuto Baba
- Department of UrologyKeio University School of MedicineTokyoJapan
| | - Shuji Mikami
- Division of PathologyKeio University School of MedicineTokyoJapan
| | | | - Ryuichi Mizuno
- Department of UrologyKeio University School of MedicineTokyoJapan
| | - Akira Miyajima
- Department of UrologyTokai University School of MedicineTokyoJapan
| | - Eiji Kikuchi
- Department of UrologyKeio University School of MedicineTokyoJapan
- Department of UrologySt. Marianna University School of MedicineKanagawaJapan
| | - Hideyuki Saya
- Department of Clinical and Translational Research centerKeio University School of MedicineTokyoJapan
- Division of Gene RegulationInstitute for Advanced Medical Research, Keio University School of MedicineTokyoJapan
| | - Takeo Kosaka
- Department of UrologyKeio University School of MedicineTokyoJapan
| | - Mototsugu Oya
- Department of UrologyKeio University School of MedicineTokyoJapan
| |
Collapse
|
218
|
Hashemi M, Nadafzadeh N, Imani MH, Rajabi R, Ziaolhagh S, Bayanzadeh SD, Norouzi R, Rafiei R, Koohpar ZK, Raei B, Zandieh MA, Salimimoghadam S, Entezari M, Taheriazam A, Alexiou A, Papadakis M, Tan SC. Targeting and regulation of autophagy in hepatocellular carcinoma: revisiting the molecular interactions and mechanisms for new therapy approaches. Cell Commun Signal 2023; 21:32. [PMID: 36759819 PMCID: PMC9912665 DOI: 10.1186/s12964-023-01053-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 01/15/2023] [Indexed: 02/11/2023] Open
Abstract
Autophagy is an evolutionarily conserved process that plays a role in regulating homeostasis under physiological conditions. However, dysregulation of autophagy is observed in the development of human diseases, especially cancer. Autophagy has reciprocal functions in cancer and may be responsible for either survival or death. Hepatocellular carcinoma (HCC) is one of the most lethal and common malignancies of the liver, and smoking, infection, and alcohol consumption can lead to its development. Genetic mutations and alterations in molecular processes can exacerbate the progression of HCC. The function of autophagy in HCC is controversial and may be both tumor suppressive and tumor promoting. Activation of autophagy may affect apoptosis in HCC and is a regulator of proliferation and glucose metabolism. Induction of autophagy may promote tumor metastasis via induction of EMT. In addition, autophagy is a regulator of stem cell formation in HCC, and pro-survival autophagy leads to cancer cell resistance to chemotherapy and radiotherapy. Targeting autophagy impairs growth and metastasis in HCC and improves tumor cell response to therapy. Of note, a large number of signaling pathways such as STAT3, Wnt, miRNAs, lncRNAs, and circRNAs regulate autophagy in HCC. Moreover, regulation of autophagy (induction or inhibition) by antitumor agents could be suggested for effective treatment of HCC. In this paper, we comprehensively review the role and mechanisms of autophagy in HCC and discuss the potential benefit of targeting this process in the treatment of the cancer. Video Abstract.
Collapse
Affiliation(s)
- Mehrdad Hashemi
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Niloufar Nadafzadeh
- Faculty of Veterinary Medicine, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Mohammad Hassan Imani
- Department of Clinical Science, Faculty of Veterinary Medicine, Shahr-E Kord Branch, Islamic Azad University, Tehran, Chaharmahal and Bakhtiari, Iran
| | - Romina Rajabi
- Faculty of Veterinary Medicine, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Setayesh Ziaolhagh
- Faculty of Veterinary Medicine, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | | | - Raheleh Norouzi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Reihaneh Rafiei
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Zeinab Khazaei Koohpar
- Department of Cell and Molecular Biology, Faculty of Biological Sciences, Tonekabon Branch, Islamic Azad University, Tonekabon, Iran
| | - Behnaz Raei
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mohammad Arad Zandieh
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran.
| | - Shokooh Salimimoghadam
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Maliheh Entezari
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
- Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Athanasios Alexiou
- Department of Science and Engineering, Novel Global Community Educational Foundation, Hebersham, Australia
- AFNP Med Austria, Vienna, Austria
| | - Marios Papadakis
- Department of Surgery II, University Hospital Witten-Herdecke, University of Witten-Herdecke, Heusnerstrasse 40, 42283, Wuppertal, Germany.
| | - Shing Cheng Tan
- UKM Medical Molecular Biology Institute, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| |
Collapse
|
219
|
Xiao C, Liu S, Ge G, Jiang H, Wang L, Chen Q, Jin C, Mo J, Li J, Wang K, Zhang Q, Zhou J. Roles of hypoxia-inducible factor in hepatocellular carcinoma under local ablation therapies. Front Pharmacol 2023; 14:1086813. [PMID: 36814489 PMCID: PMC9939531 DOI: 10.3389/fphar.2023.1086813] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 01/18/2023] [Indexed: 02/09/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common digestive malignancies. HCC It ranges as the fifth most common cause of cancer mortality worldwide. While The prognosis of metastatic or advanced HCC is still quite poor. Recently, locoregional treatment, especially local ablation therapies, plays an important role in the treatment of HCC. Radiofrequency ablation (RFA) and high-intensity focused ultrasound (HIFU) ablation are the most common-used methods effective and feasible for treating HCC. However, the molecular mechanisms underlying the actions of ablation in the treatments for HCC and the HCC recurrence after ablation still are poorly understood. Hypoxia-inducible factor (HIF), the key gene switch for adaptive responses to hypoxia, has been found to play an essential role in the rapid aggressive recurrence of HCC after ablation treatment. In this review, we summarized the current evidence of the roles of HIF in the treatment of HCC with ablation. Fifteen relevant studies were included and further analyzed. Among them, three clinical studies suggested that HIF-1α might serve as a crucial role in the RAF treatment of HCC or the local recurrence of HCC after RFA. The remainder included experimental studies demonstrated that HIF-1, 2α might target the different molecules (e.g., BNIP3, CA-IX, and arginase-1) and signaling cascades (e.g., VEGFA/EphA2 pathway), constituting a complex network that promoted HCC invasion and metastasis after ablation. Currently, the inhibitors of HIF have been developed, providing important proof of targeting HIF for the prevention of HCC recurrence after IRFA and HIFU ablation. Further confirmation by prospective clinical and in-depth experimental studies is still warranted to illustrate the effects of HIF in HCC recurrence followed ablation treatment in the future.
Collapse
Affiliation(s)
- Chunying Xiao
- Department of Ultrasound, Taizhou Central Hospital (Taizhou University, Hospital), Taizhou, Zhejiang, China
| | - Sheng Liu
- Department of Hepatobiliary Surgery, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ge Ge
- Department of Ultrasound, Taizhou Central Hospital (Taizhou University, Hospital), Taizhou, Zhejiang, China
| | - Hao Jiang
- Department of General Surgery, Taizhou Central Hospital (Taizhou University, Hospital), Taizhou, Zhejiang, China
| | - Liezhi Wang
- Department of General Surgery, Taizhou Central Hospital (Taizhou University, Hospital), Taizhou, Zhejiang, China
| | - Qi Chen
- Precision Medicine Center, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, Zhejiang, China
| | - Chong Jin
- Department of General Surgery, Taizhou Central Hospital (Taizhou University, Hospital), Taizhou, Zhejiang, China
| | - Jinggang Mo
- Department of General Surgery, Taizhou Central Hospital (Taizhou University, Hospital), Taizhou, Zhejiang, China
| | - Jin Li
- Department of Ultrasound, Taizhou Central Hospital (Taizhou University, Hospital), Taizhou, Zhejiang, China
| | - Kunpeng Wang
- Department of General Surgery, Taizhou Central Hospital (Taizhou University, Hospital), Taizhou, Zhejiang, China
| | - Qianqian Zhang
- Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jianyu Zhou
- Department of Ultrasound, Taizhou Central Hospital (Taizhou University, Hospital), Taizhou, Zhejiang, China
| |
Collapse
|
220
|
Evans ET, Horst B, Arend RC, Mythreye K. Evolving roles of activins and inhibins in ovarian cancer pathophysiology. Am J Physiol Cell Physiol 2023; 324:C428-C437. [PMID: 36622068 PMCID: PMC9902228 DOI: 10.1152/ajpcell.00178.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 12/14/2022] [Accepted: 12/15/2022] [Indexed: 01/10/2023]
Abstract
Activins and inhibins are unique members of the transforming growth factor-β (TGFβ) family of growth factors, with the ability to exert autocrine, endocrine, and paracrine effects in a wide range of complex physiologic and pathologic processes. Although first isolated within the pituitary, emerging evidence suggests broader influence beyond reproductive development and function. Known roles of activin and inhibin in angiogenesis and immunity along with correlations between gene expression and cancer prognosis suggest potential roles in tumorigenesis. Here, we present a review of the current understanding of the biological role of activins and inhibins as it relates to ovarian cancers, summarizing the underlying signaling mechanisms and physiologic influence, followed by detailing their roles in cancer progression, diagnosis, and treatment.
Collapse
Affiliation(s)
- Elizabeth T Evans
- Department of Gynecologic Oncology, Heersink School of Medicine, University of Alabama School of Medicine, Birmingham, Alabama
| | - Ben Horst
- Department of Pathology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Rebecca C Arend
- Department of Gynecologic Oncology, Heersink School of Medicine, University of Alabama School of Medicine, Birmingham, Alabama
| | - Karthikeyan Mythreye
- Department of Pathology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
221
|
Zhuang Y, Liu K, He Q, Gu X, Jiang C, Wu J. Hypoxia signaling in cancer: Implications for therapeutic interventions. MedComm (Beijing) 2023; 4:e203. [PMID: 36703877 PMCID: PMC9870816 DOI: 10.1002/mco2.203] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 12/14/2022] [Accepted: 12/18/2022] [Indexed: 01/25/2023] Open
Abstract
Hypoxia is a persistent physiological feature of many different solid tumors and a key driver of malignancy, and in recent years, it has been recognized as an important target for cancer therapy. Hypoxia occurs in the majority of solid tumors due to a poor vascular oxygen supply that is not sufficient to meet the needs of rapidly proliferating cancer cells. A hypoxic tumor microenvironment (TME) can reduce the effectiveness of other tumor therapies, such as radiotherapy, chemotherapy, and immunotherapy. In this review, we discuss the critical role of hypoxia in tumor development, including tumor metabolism, tumor immunity, and tumor angiogenesis. The treatment methods for hypoxic TME are summarized, including hypoxia-targeted therapy and improving oxygenation by alleviating tumor hypoxia itself. Hyperoxia therapy can be used to improve tissue oxygen partial pressure and relieve tumor hypoxia. We focus on the underlying mechanisms of hyperoxia and their impact on current cancer therapies and discuss the prospects of hyperoxia therapy in cancer treatment.
Collapse
Affiliation(s)
- Yan Zhuang
- State Key Laboratory of Pharmaceutical BiotechnologyNational Institute of Healthcare Data Science at Nanjing UniversityJiangsu Key Laboratory of Molecular MedicineMedicineMedical School of Nanjing UniversityNanjing UniversityNanjingChina
| | - Kua Liu
- State Key Laboratory of Pharmaceutical BiotechnologyNational Institute of Healthcare Data Science at Nanjing UniversityJiangsu Key Laboratory of Molecular MedicineMedicineMedical School of Nanjing UniversityNanjing UniversityNanjingChina
| | - Qinyu He
- State Key Laboratory of Pharmaceutical BiotechnologyNational Institute of Healthcare Data Science at Nanjing UniversityJiangsu Key Laboratory of Molecular MedicineMedicineMedical School of Nanjing UniversityNanjing UniversityNanjingChina
| | - Xiaosong Gu
- Microecological, Regenerative and Microfabrication Technical Platform for Biomedicine and Tissue EngineeringJinan Microecological Biomedicine Shandong LaboratoryJinan CityChina
| | - Chunping Jiang
- State Key Laboratory of Pharmaceutical BiotechnologyNational Institute of Healthcare Data Science at Nanjing UniversityJiangsu Key Laboratory of Molecular MedicineMedicineMedical School of Nanjing UniversityNanjing UniversityNanjingChina
- Microecological, Regenerative and Microfabrication Technical Platform for Biomedicine and Tissue EngineeringJinan Microecological Biomedicine Shandong LaboratoryJinan CityChina
| | - Junhua Wu
- State Key Laboratory of Pharmaceutical BiotechnologyNational Institute of Healthcare Data Science at Nanjing UniversityJiangsu Key Laboratory of Molecular MedicineMedicineMedical School of Nanjing UniversityNanjing UniversityNanjingChina
- Microecological, Regenerative and Microfabrication Technical Platform for Biomedicine and Tissue EngineeringJinan Microecological Biomedicine Shandong LaboratoryJinan CityChina
| |
Collapse
|
222
|
Chen L, Kong Q, Tian M, Zhang Q, Xia C, Deng C. Zn 0.4Mg 0.6Fe 2O 4 nanoenzyme: a novel chemo-sensitizer for the chemotherapy treatment of oral squamous cell carcinoma. NANOSCALE ADVANCES 2023; 5:851-860. [PMID: 36756528 PMCID: PMC9890649 DOI: 10.1039/d2na00750a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 12/21/2022] [Indexed: 06/10/2023]
Abstract
Hypoxic and acidic environments are the two main components of the microenvironment contributing to the poor efficacy of chemotherapy drugs in the treatment of oral squamous cell carcinoma (OSCC). In this study, we synthesized a series of Zn1-x Mg x Fe2O4 nanomaterials with enzyme-like properties, including catalase (CAT)-like, peroxidase (POD)-like, and glutathione (GSH)-like activity in an acidic environment. Among them, Zn0.4Mg0.6Fe2O4 performed the best and effectively increased the efficacy of doxorubicin (DOX) chemotherapy for the treatment of OSCC with reduced cardiotoxicity. Therefore, Zn0.4Mg0.6Fe2O4 could serve as a novel chemosensitizer in the treatment of OSCC.
Collapse
Affiliation(s)
- Liang Chen
- Department of Oral and Maxillofacial Surgery, Yi Ji Shan Hospital of Wannan Medical College Wuhu Anhui China
| | - Qingmei Kong
- Department of Oral and Maxillofacial Surgery, Nanjing Stomatology Hospital, Medical School of Nanjing University Nanjing China
| | - Mingxing Tian
- Department of Oral and Maxillofacial Surgery, Yi Ji Shan Hospital of Wannan Medical College Wuhu Anhui China
| | - Qian Zhang
- Department of Oral and Maxillofacial Surgery, Nanjing Stomatology Hospital, Medical School of Nanjing University Nanjing China
| | - Chengwan Xia
- Department of Oral and Maxillofacial Surgery, Nanjing Stomatology Hospital, Medical School of Nanjing University Nanjing China
| | - Chao Deng
- Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education, School of Stomatology, Wannan Medical College Anhui China
| |
Collapse
|
223
|
Zhang L, Sun J, Huang W, Zhang S, Deng X, Gao W. Hypoxia-Triggered Bioreduction of Poly( N-oxide)-Drug Conjugates Enhances Tumor Penetration and Antitumor Efficacy. J Am Chem Soc 2023; 145:1707-1713. [PMID: 36601987 DOI: 10.1021/jacs.2c10188] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
PEGylation prolongs the blood circulation time of drugs; however, it simultaneously reduces the tumor penetration of drugs due to the nonfouling function and bulky hydrodynamic volume of PEG, leading to unsatisfactory outcomes in the treatment of solid tumors. Herein, we report the in situ growth of a bioreducible polymer of poly(N-oxide) from an important protein drug of interferon alpha (IFN) to generate site-specific IFN-poly(N-oxide) conjugates with higher bioactivity than a clinically used PEGylated IFN of PEGASYS. An IFN-poly(N-oxide) conjugate is screened out to have a circulating half-life as long as 51 h, which is similar to that of PEGASYS but 96-fold greater than that of IFN. However, the conjugate greatly outperforms PEGASYS and IFN in tumor penetration and antitumor efficacy in mice bearing melanoma. This enhanced tumor penetration is ascribed to the adsorption-mediated transcytosis of the conjugate whose poly(N-oxide) is biologically reduced into poly(tertiary amine), under hypoxia, which can be further protonated in the acidic tumor microenvironment. These novel findings demonstrate that poly(N-oxide)s are not only long-circulating but also bioreducible under hypoxia and are of great promise as next-generation carriers to deliver drugs into the interior of solid tumors to enhance their antitumor efficacy.
Collapse
Affiliation(s)
- Longshuai Zhang
- Department of Geriatric Dentistry, Beijing Laboratory of Biomedical Materials, Peking University School and Hospital of Stomatology, Beijing100081, China.,Biomedical Engineering Department, Peking University, Beijing100191, China.,Peking University International Cancer Institute, Beijing100191, China.,Peking University-Yunnan Baiyao International Medical Research Center, Beijing100191, China
| | - Jiawei Sun
- Department of Geriatric Dentistry, Beijing Laboratory of Biomedical Materials, Peking University School and Hospital of Stomatology, Beijing100081, China.,Biomedical Engineering Department, Peking University, Beijing100191, China.,Peking University International Cancer Institute, Beijing100191, China.,Peking University-Yunnan Baiyao International Medical Research Center, Beijing100191, China.,Institute of Medical Technology, Health Science Center of Peking University, Beijing100191, China
| | - Wenchao Huang
- Biomedical Engineering Department, Peking University, Beijing100191, China
| | - Sanke Zhang
- Department of Geriatric Dentistry, Beijing Laboratory of Biomedical Materials, Peking University School and Hospital of Stomatology, Beijing100081, China.,Biomedical Engineering Department, Peking University, Beijing100191, China.,Peking University International Cancer Institute, Beijing100191, China.,Peking University-Yunnan Baiyao International Medical Research Center, Beijing100191, China.,Institute of Medical Technology, Health Science Center of Peking University, Beijing100191, China
| | - Xuliang Deng
- Department of Geriatric Dentistry, Beijing Laboratory of Biomedical Materials, Peking University School and Hospital of Stomatology, Beijing100081, China.,Biomedical Engineering Department, Peking University, Beijing100191, China
| | - Weiping Gao
- Department of Geriatric Dentistry, Beijing Laboratory of Biomedical Materials, Peking University School and Hospital of Stomatology, Beijing100081, China.,Biomedical Engineering Department, Peking University, Beijing100191, China.,Peking University International Cancer Institute, Beijing100191, China.,Peking University-Yunnan Baiyao International Medical Research Center, Beijing100191, China.,Institute of Medical Technology, Health Science Center of Peking University, Beijing100191, China
| |
Collapse
|
224
|
Chen N, Wang J, Zhou L, Hu B, Chen Y, Zhu Z. GPBAR1 is associated with asynchronous bone metastasis and poor prognosis of hepatocellular carcinoma. Front Oncol 2023; 12:1113785. [PMID: 36755861 PMCID: PMC9899898 DOI: 10.3389/fonc.2022.1113785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 12/30/2022] [Indexed: 01/24/2023] Open
Abstract
Background Hepatocellular carcinoma (HCC) is the second leading cause of cancer-related death in China. Asynchronous metastasis is the main reason for HCC recurrence, but the current assessment of HCC metastasis and prognosis is far from clinically satisfactory. Materials In our study, we investigated the expression of G-protein-coupled bile acid receptor (GPBAR1) in HCC tissues and tumor-adjacent tissues by qRT-PCR and immunohistochemistry. The associations between GPBAR1 expression, clinicopathological factors, and asynchronous metastases were assessed by the Chi-square test. The overall survival curves of different variables were plotted with the Kaplan-Meier method, and the statistical significance between different subgroups was analyzed with the log-rank test. The independent prognostic factors were identified by the Cox regression hazard model. Results GPBAR1 was more highly expressed in HCC tissues than in tumor-adjacent tissues. GPBAR1 expression in HCC was significantly higher than that in liver cirrhosis, followed by normal liver tissues. GPBAR1 was significantly associated with poor prognosis in HCC and can be regarded as an independent prognostic biomarker. Interestingly, GPBAR1 expression in HCC was significantly correlated with asynchronous metastasis to the bone but not to the liver or lung. Conclusions GPBAR1 was found to be an independent, unfavorable prognostic factor of HCC, as well as an indicator of asynchronous bone metastasis but not liver or lung metastases. Our results could provide a new aspect for HCC metastasis studies and help identify high-risk HCC patients, which helps ameliorate the prognostic assessment of HCC.
Collapse
Affiliation(s)
- Nan Chen
- Department of Orthopaedic Surgery, The Second Affiliated Hospital of Shandong First Medical University, Tai'an, Shandong, China
| | - Jieqing Wang
- Department of Pharmacy, The Affiliated Taian City Central Hospital of Qingdao University, Tai'an, Shandong, China
| | - Lei Zhou
- Department of Orthopaedic Surgery, The Second Affiliated Hospital of Shandong First Medical University, Tai'an, Shandong, China
| | - Baiqiang Hu
- Department of Orthopaedic Surgery, Yantai Yuhuangding Hospital, Yantai, Shandong, China
| | - Yinzhong Chen
- Department of Orthopaedic Surgery, The Second Affiliated Hospital of Shandong First Medical University, Tai'an, Shandong, China
| | - Zhuangchen Zhu
- Department of Orthopaedic Surgery, The Second Affiliated Hospital of Shandong First Medical University, Tai'an, Shandong, China,*Correspondence: Zhuangchen Zhu,
| |
Collapse
|
225
|
Coates HW, Capell-Hattam IM, Olzomer EM, Du X, Farrell R, Yang H, Byrne FL, Brown AJ. Hypoxia truncates and constitutively activates the key cholesterol synthesis enzyme squalene monooxygenase. eLife 2023; 12:82843. [PMID: 36655986 PMCID: PMC9851614 DOI: 10.7554/elife.82843] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 12/13/2022] [Indexed: 01/20/2023] Open
Abstract
Cholesterol synthesis is both energy- and oxygen-intensive, yet relatively little is known of the regulatory effects of hypoxia on pathway enzymes. We previously showed that the rate-limiting and first oxygen-dependent enzyme of the committed cholesterol synthesis pathway, squalene monooxygenase (SM), can undergo partial proteasomal degradation that renders it constitutively active. Here, we show hypoxia is a physiological trigger for this truncation, which occurs through a two-part mechanism: (1) increased targeting of SM to the proteasome via stabilization of the E3 ubiquitin ligase MARCHF6 and (2) accumulation of the SM substrate, squalene, which impedes the complete degradation of SM and liberates its truncated form. This preserves SM activity and downstream pathway flux during hypoxia. These results uncover a feedforward mechanism that allows SM to accommodate fluctuating substrate levels and may contribute to its widely reported oncogenic properties.
Collapse
Affiliation(s)
- Hudson W Coates
- School of Biotechnology and Biomolecular Sciences, UNSW SydneySydneyAustralia
| | | | - Ellen M Olzomer
- School of Biotechnology and Biomolecular Sciences, UNSW SydneySydneyAustralia
| | - Ximing Du
- School of Biotechnology and Biomolecular Sciences, UNSW SydneySydneyAustralia
| | - Rhonda Farrell
- Prince of Wales Private HospitalRandwickAustralia
- Chris O’Brien LifehouseCamperdownAustralia
| | - Hongyuan Yang
- School of Biotechnology and Biomolecular Sciences, UNSW SydneySydneyAustralia
| | - Frances L Byrne
- School of Biotechnology and Biomolecular Sciences, UNSW SydneySydneyAustralia
| | - Andrew J Brown
- School of Biotechnology and Biomolecular Sciences, UNSW SydneySydneyAustralia
| |
Collapse
|
226
|
Hu L, Hu J, Huang Y, Zheng S, Yin J, Li X, Li D, Lv C, Li S, Hu W. Hypoxia-mediated activation of hypoxia-inducible factor-1α in head and neck squamous cell carcinoma: A review. Medicine (Baltimore) 2023; 102:e32533. [PMID: 36607847 PMCID: PMC9829281 DOI: 10.1097/md.0000000000032533] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Since the 1950s, hypoxia has been recognized as a crucial characteristic of cancer cells and their microenvironment. Indeed, hypoxia promotes the growth, survival, and metastasis of cancer cells. In the early 1990s, we found that as many phenomena in hypoxia can occur through hypoxia-inducible factor-1α (HIF1α). HIF1α is known as an angiogenesis converter in hypoxia, which promotes tumorigenesis, development, immune escape, recurrence, etc; This page goes into great detail on how HIF1α is activated during hypoxia and how the 2 signaling channels interact. It specifically emphasizes the significance of reactive oxygen species, the function of the PI3K/the serine/threonine kinase Akt/mammalian target of rapamycin cascade, and outlines the similarities between the 2 important factors (reactive oxygen species and PI3K/the serine/threonine kinase Akt/mammalian target of rapamycin cascade), nuclear factor κB, for HIF1α Important implications, in an effort to offer fresh views for the treatment of head and neck squamous cell carcinoma and HIF1α research.
Collapse
Affiliation(s)
- Lanxin Hu
- The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| | - Jinwei Hu
- Clinical Medicine, Nanchang University Queen Mary School, Nanchang, China
| | - Yanlin Huang
- The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| | - Sihan Zheng
- The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| | - Ji Yin
- The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| | - Xiaohui Li
- The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| | - Daiying Li
- The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| | - Caifeng Lv
- The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| | - Sen Li
- The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| | - Wenjian Hu
- The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
- * Correspondence: Wenjian Hu, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, O.182 Chunhui Road Longmatan District Luzhou Sichuan 646000, China (e-mail: )
| |
Collapse
|
227
|
Bassiouni R, Idowu MO, Gibbs LD, Robila V, Grizzard PJ, Webb MG, Song J, Noriega A, Craig DW, Carpten JD. Spatial Transcriptomic Analysis of a Diverse Patient Cohort Reveals a Conserved Architecture in Triple-Negative Breast Cancer. Cancer Res 2023; 83:34-48. [PMID: 36283023 PMCID: PMC9812886 DOI: 10.1158/0008-5472.can-22-2682] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 10/18/2022] [Accepted: 10/20/2022] [Indexed: 02/03/2023]
Abstract
Triple-negative breast cancer (TNBC) is an aggressive disease that disproportionately affects African American (AA) women. Limited targeted therapeutic options exist for patients with TNBC. Here, we employ spatial transcriptomics to interrogate tissue from a racially diverse TNBC cohort to comprehensively annotate the transcriptional states of spatially resolved cellular populations. A total of 38,706 spatial features from a cohort of 28 sections from 14 patients were analyzed. Intratumoral analysis of spatial features from individual sections revealed heterogeneous transcriptional substructures. However, integrated analysis of all samples resulted in nine transcriptionally distinct clusters that mapped across all individual sections. Furthermore, novel use of join count analysis demonstrated nonrandom directional spatial dependencies of the transcriptionally defined shared clusters, supporting a conserved spatio-transcriptional architecture in TNBC. These findings were substantiated in an independent validation cohort comprising 17,861 spatial features representing 15 samples from 8 patients. Stratification of samples by race revealed race-associated differences in hypoxic tumor content and regions of immune-rich infiltrate. Overall, this study combined spatial and functional molecular analyses to define the tumor architecture of TNBC, with potential implications in understanding TNBC disparities. SIGNIFICANCE Spatial transcriptomics profiling of a diverse cohort of triple-negative breast cancers and innovative informatics approaches reveal a conserved cellular architecture across cancers and identify proportional differences in tumor cell composition by race.
Collapse
Affiliation(s)
- Rania Bassiouni
- Department of Translational Genomics, Keck School of Medicine, University of Southern California; Los Angeles, CA
| | - Michael O. Idowu
- Department of Pathology, Virginia Commonwealth University; Richmond, VA
| | - Lee D. Gibbs
- Department of Translational Genomics, Keck School of Medicine, University of Southern California; Los Angeles, CA
| | - Valentina Robila
- Department of Pathology, Virginia Commonwealth University; Richmond, VA
| | | | - Michelle G. Webb
- Department of Translational Genomics, Keck School of Medicine, University of Southern California; Los Angeles, CA
| | - Jiarong Song
- Department of Translational Genomics, Keck School of Medicine, University of Southern California; Los Angeles, CA
| | - Ashley Noriega
- Department of Translational Genomics, Keck School of Medicine, University of Southern California; Los Angeles, CA
| | - David W. Craig
- Department of Translational Genomics, Keck School of Medicine, University of Southern California; Los Angeles, CA
- Translational and Clinical Sciences Program, Norris Comprehensive Cancer Center, University of Southern California; Los Angeles, CA
| | - John D. Carpten
- Department of Translational Genomics, Keck School of Medicine, University of Southern California; Los Angeles, CA
- Translational and Clinical Sciences Program, Norris Comprehensive Cancer Center, University of Southern California; Los Angeles, CA
| |
Collapse
|
228
|
PARK NORAJEEYOUNG, CHOI YESEUL, LEE DONGHYEON, PARK JIYOUNG, KIM JONGMI, LEE YOONHEE, HONG DAEGY, CHONG GUNOH, HAN HYUNGSOO. Transcriptomic Network Analysis Using Exfoliative Cervical Cells Could Discriminate a Potential Risk of Progression to Cancer in HPV-related Cervical Lesions: A Pilot Study. Cancer Genomics Proteomics 2023; 20:75-87. [PMID: 36581343 PMCID: PMC9806671 DOI: 10.21873/cgp.20366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 11/01/2022] [Accepted: 11/22/2022] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND/AIM Cervical cancer is the fourth most common type of cancer in women worldwide and it is a major cause of cancer-related deaths in developing countries. Despite the marked reduction observed in the rates of the disease as a result of screening programs, it is necessary to develop robust biomarkers that can detect the neoplastic progression early in HPV-related cervical lesions. MATERIALS AND METHODS We performed comparative mRNA sequencing from exfoliative cervical cytology samples from nine Korean women using the Illumina NovaSeq6000 platform. Each pathological tissue was matched to the corresponding cytological sample. The pathologic diagnosis was scrutinized with ancillary immunohistochemistry and was considered a confirmative (endpoint) diagnosis. The pathological diagnoses consisted of three cases of chronic cervicitis, 2 high-grade squamous intraepithelial lesions (HSILs), 2 squamous cell carcinomas in situ (CIS), and 2 invasive squamous cell carcinomas (SQCCs), respectively. Using bioinformatic analyses, differentially expressed genes (DEGs; fold change ≥1.5; p<0.05) were applied for Gene Ontology (GO), Gene Set Enrichment Analysis (GSEA), and protein-protein interaction (PPI) networks. RESULTS From a total of 55,882 genes, 438 DEGs were pinpointed; 282 genes were up-regulated and 156 genes down-regulated. These transcriptomic profiles were clearly divided into neoplastic (HSIL, CIS, and SQCC; ≥HSILs) and non-neoplastic lesions. The up-regulated DEGs were HIF-1a, EDN1, PIK3R3, PPP1CA and AKR1C1. GO, GSEA, and PPI network analyses showed marked associations with metabolism, proteolysis, or proteoglycan process pathways in cervical carcinogenesis. CONCLUSION The transcriptomic analysis using exfoliative cervical cells was more likely representative of its corresponding histopathological diagnosis, thus emphasizing its potential utility in clinical practice. This study provides comprehensive transcriptomic network analyses for robust biomarkers that might present a high potential risk of progression to cancer in the exfoliative cervical cytology; our findings support their clinical utility for improved cervical cancer screening.
Collapse
Affiliation(s)
- NORA JEE-YOUNG PARK
- Department of Pathology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea,Department of Pathology, Kyungpook National University Chilgok Hospital, Daegu, Republic of Korea,Clinical Omics Research Center, School of Medicine, Kyungpook National University, Daegu, Republic of Korea,KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Kyungpook National University, Daegu, Republic of Korea
| | - YESEUL CHOI
- Department of Biomedical Science, Graduate School, Kyungpook National University, Daegu, Republic of Korea,BK21 Four Program, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - DONGHYEON LEE
- Department of Biomedical Science, Graduate School, Kyungpook National University, Daegu, Republic of Korea,BK21 Four Program, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - JI YOUNG PARK
- Department of Pathology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea,Department of Pathology, Kyungpook National University Chilgok Hospital, Daegu, Republic of Korea
| | - JONG MI KIM
- Department of Obstetrics and Gynecology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea,Department of Obstetrics and Gynecology, Kyungpook National University Chilgok Hospital, Daegu, Republic of Korea
| | - YOON HEE LEE
- Department of Obstetrics and Gynecology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea,Department of Obstetrics and Gynecology, Kyungpook National University Chilgok Hospital, Daegu, Republic of Korea
| | - DAE GY HONG
- Department of Obstetrics and Gynecology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea,Department of Obstetrics and Gynecology, Kyungpook National University Chilgok Hospital, Daegu, Republic of Korea
| | - GUN OH CHONG
- Clinical Omics Research Center, School of Medicine, Kyungpook National University, Daegu, Republic of Korea,KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Kyungpook National University, Daegu, Republic of Korea,Department of Obstetrics and Gynecology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea,Department of Obstetrics and Gynecology, Kyungpook National University Chilgok Hospital, Daegu, Republic of Korea
| | - HYUNG SOO HAN
- Clinical Omics Research Center, School of Medicine, Kyungpook National University, Daegu, Republic of Korea,KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Kyungpook National University, Daegu, Republic of Korea,Department of Physiology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| |
Collapse
|
229
|
Wei Z, Zheng D, Pi W, Qiu Y, Xia K, Guo W. Isoquercitrin restrains the proliferation and promotes apoptosis of human osteosarcoma cells by inhibiting the Wnt/β-catenin pathway. J Bone Oncol 2023; 38:100468. [PMID: 36685044 PMCID: PMC9846017 DOI: 10.1016/j.jbo.2023.100468] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 12/26/2022] [Accepted: 01/02/2023] [Indexed: 01/15/2023] Open
Abstract
Currently, chemotherapeutic drugs are widely used for the treatment of osteosarcoma. However, many of these drugs exhibit shortcomings such as poor efficacy, high toxicity, and tolerance. Isoquercitrin (ISO) is a traditional Chinese medicine that has been proved to exert good therapeutic effects on various tumors; however, its role in osteosarcoma has not been reported. Here, we observed that ISO exerted a marked inhibitory effect on the occurrence and development of osteosarcoma in a time- and dose-dependent manner. First, we determined that ISO significantly inhibited proliferation, induced EMT-related migration and invasion and induced apoptosis of osteosarcoma cells in vitro. Concurrently, we also observed that both β-catenin and its downstream genes (c-Myc, CyclinD1, and Survivin) were significantly down-regulated. To verify if the anti-tumor effect of ISO was related to the Wnt/β-catenin signaling pathway, we altered the protein expression level of β-catenin using recombinant lentivirus, then we observed that the effects of ISO on the proliferation, metastasis, and apoptosis of osteosarcoma cells were significantly reversed. Additionally, we used a nude mouse xenograft model and observed that ISO significantly inhibited the growth of osteosarcoma and improved the survival rate of the animal models. In conclusion, this study demonstrates that ISO can exert anti-tumor effects in part by inhibiting the Wnt/β-catenin signaling pathway, thus providing a new potential therapeutic strategy for the treatment of osteosarcoma.
Collapse
Affiliation(s)
- Zhun Wei
- Department of Orthopaedics, Renmin Hospital of Wuhan University, Hubei Province, Wuhan 430060, China
| | - Di Zheng
- Department of Orthopaedics, Renmin Hospital of Wuhan University, Hubei Province, Wuhan 430060, China
| | - Wenfeng Pi
- Department of Orthopaedics, Chinese Traditional Medicine of Daye Hospital, Hubei Province, Daye 435100, China
| | - Yonglong Qiu
- Department of Orthopaedics, Renmin Hospital of Wuhan University, Hubei Province, Wuhan 430060, China
| | - Kezhou Xia
- Department of Orthopaedics, Renmin Hospital of Wuhan University, Hubei Province, Wuhan 430060, China,Corresponding authors at: Department of Orthopaedics, Renmin hospital of Wuhan university, 238 Jiefang Road, Wuhan 430060, China.
| | - Weichun Guo
- Department of Orthopaedics, Renmin Hospital of Wuhan University, Hubei Province, Wuhan 430060, China,Corresponding authors at: Department of Orthopaedics, Renmin hospital of Wuhan university, 238 Jiefang Road, Wuhan 430060, China.
| |
Collapse
|
230
|
Liu X, Liu Y, Qiang L, Ren Y, Lin Y, Li H, Chen Q, Gao S, Yang X, Zhang C, Fan M, Zheng P, Li S, Wang J. Multifunctional 3D-printed bioceramic scaffolds: Recent strategies for osteosarcoma treatment. J Tissue Eng 2023; 14:20417314231170371. [PMID: 37205149 PMCID: PMC10186582 DOI: 10.1177/20417314231170371] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 03/31/2023] [Indexed: 05/21/2023] Open
Abstract
Osteosarcoma is the most prevalent bone malignant tumor in children and teenagers. The bone defect, recurrence, and metastasis after surgery severely affect the life quality of patients. Clinically, bone grafts are implanted. Primary bioceramic scaffolds show a monomodal osteogenesis function. With the advances in three-dimensional printing technology and materials science, while maintaining the osteogenesis ability, scaffolds become more patient-specific and obtain additional anti-tumor ability with functional agents being loaded. Anti-tumor therapies include photothermal, magnetothermal, old and novel chemo-, gas, and photodynamic therapy. These strategies kill tumors through novel mechanisms to treat refractory osteosarcoma due to drug resistance, and some have shown the potential to reverse drug resistance and inhibit metastasis. Therefore, multifunctional three-dimensional printed bioceramic scaffolds hold excellent promise for osteosarcoma treatments. To better understand, we review the background of osteosarcoma, primary 3D-printed bioceramic scaffolds, and different therapies and have a prospect for the future.
Collapse
Affiliation(s)
- Xingran Liu
- Shanghai Key Laboratory of Orthopedic
Implant, Department of Orthopedic Surgery, Shanghai Ninth People’s Hospital,
Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Jiao Tong University School of
Medicine, Shanghai, China
| | - Yihao Liu
- Shanghai Key Laboratory of Orthopedic
Implant, Department of Orthopedic Surgery, Shanghai Ninth People’s Hospital,
Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Jiao Tong University School of
Medicine, Shanghai, China
| | - Lei Qiang
- Southwest Jiaotong University, Chengdu,
China
| | - Ya Ren
- Southwest Jiaotong University, Chengdu,
China
| | - Yixuan Lin
- Shanghai Key Laboratory of Orthopedic
Implant, Department of Orthopedic Surgery, Shanghai Ninth People’s Hospital,
Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Han Li
- Shanghai Jiao Tong University School of
Medicine, Shanghai, China
| | - Qiuhan Chen
- Shanghai Jiao Tong University School of
Medicine, Shanghai, China
| | - Shuxin Gao
- Shanghai Jiao Tong University School of
Medicine, Shanghai, China
| | - Xue Yang
- Southwest Jiaotong University, Chengdu,
China
| | - Changru Zhang
- Shanghai Key Laboratory of Orthopedic
Implant, Department of Orthopedic Surgery, Shanghai Ninth People’s Hospital,
Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Jiao Tong University School of
Medicine, Shanghai, China
| | - Minjie Fan
- Department of Orthopaedic Surgery,
Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Pengfei Zheng
- Department of Orthopaedic Surgery,
Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Shuai Li
- Department of Orthopedics, The First
Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jinwu Wang
- Shanghai Key Laboratory of Orthopedic
Implant, Department of Orthopedic Surgery, Shanghai Ninth People’s Hospital,
Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Jiao Tong University School of
Medicine, Shanghai, China
- Southwest Jiaotong University, Chengdu,
China
- Shanghai Jiao Tong University,
Shanghai, China
- Weifang Medical University School of
Rehabilitation Medicine, Weifang, Shandong Province, China
| |
Collapse
|
231
|
Microdissecting the Hypoxia Landscape in Colon Cancer Reveals Three Distinct Subtypes and Their Potential Mechanism to Facilitate the Development of Cancer. JOURNAL OF ONCOLOGY 2023; 2023:9346621. [PMID: 36925652 PMCID: PMC10014161 DOI: 10.1155/2023/9346621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/09/2022] [Accepted: 11/25/2022] [Indexed: 03/09/2023]
Abstract
Background Hypoxia contributes to tumor progression and confers drug resistance. We attempted to microdissect the hypoxia landscape in colon cancer (CC) and explore its correlation with immunotherapy response. Materials and Methods The hypoxia landscape in CC patients was microdissected through unsupervised clustering. The "xCell" algorithms were applied to decipher the tumor immune infiltration characteristics. A hypoxia-related index signature was developed via the LASSO (least absolute shrinkage and selection operator) Cox regression in The Cancer Genome Atlas (TCGA)-colon adenocarcinoma (COAD) cohort and validated in an independent dataset from the Gene Expression Omnibus (GEO) database. The tumor immune dysfunction and exclusion (TIDE) algorithm was utilized to evaluate the correlation between the hypoxia-related index (HRI) signature and immunotherapy response. Quantitative reverse transcription polymerase chain reaction (qRT-PCR) and western blotting were performed to verify the mRNA expression levels of five key genes. The Cell Counting Kit-8 (CCK-8) assay and flow cytometry were performed to examine the cell viability and cell apoptosis. Results Patients were classified into hypoxia-high, hypoxia-median, and hypoxia-low clusters in TCGA-COAD and verified in the GSE 17538 dataset. Compared with the hypoxia-low cluster, the hypoxia-high cluster consistently presented an unfavorable prognosis, higher immune scores, and stromal scores and elevated infiltration levels of several critical immune and stromal cells. Otherwise, we also found 600 hypoxia-related differentially expressed genes (HRDEGs) between the hypoxia-high cluster and the hypoxia-low cluster. Based on the 600 HRDEGs, we constructed the HRI signature which consists of 11 genes and shows a good prognostic value in both TCGA-COAD and GSE 17538 (AUC of 6-year survival prediction >0.75). Patients with low HRI scores were consistently predicted to be more responsive to immunotherapy. Of the 11 HRI signature genes, RGS16, SNAI1, CDR2L, FRMD5, and FSTL3 were differently expressed between tumors and adjacent tissues. Low expression of SNAI1, CDR2L, FRMD5, and FSTL3 could induce cell viability and promote tumor cell apoptosis. Conclusion In our study, we discovered three hypoxia clusters which correlate with the clinical outcome and the tumor immune microenvironment in CC. Based on the hypoxia cluster and HRDEGs, we constructed a reliable HRI signature that could accurately predict the prognosis and immunotherapeutic responsiveness in CC patients and discovered four key genes that could affect tumor cell viability and apoptosis.
Collapse
|
232
|
Du J, Sun J, Liu X, Wu Q, Shen W, Gao Y, Liu Y, Wu C. Preparation of C6 cell membrane-coated doxorubicin conjugated manganese dioxide nanoparticles and its targeted therapy application in glioma. Eur J Pharm Sci 2023; 180:106338. [PMID: 36410571 DOI: 10.1016/j.ejps.2022.106338] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/25/2022] [Accepted: 11/17/2022] [Indexed: 11/20/2022]
Abstract
In this study, we prepared a C6 cell membrane-coated doxorubicin conjugated manganese dioxide biomimetic nanomedicine system (MnO2-DOX-C6) for the treatment of glioma. In the glioma microenvironment, manganese dioxide could alleviate tumor hypoxia by promoting the decomposition of hydrogen peroxide (H2O2) to generate oxygen and, through a Fenton-like reaction, increase ROS levels in tumor cells, thus inducing oxidative stress to further kill cancer cells. Doxorubicin and manganese dioxide were connected through a hydrazone bond so that doxorubicin could be released only in the acidic environment of the tumor, which helped to reduce the toxicity and side effects of doxorubicin. Encapsulation of glioma C6 cancer cell membrane in MnO2-DOX-C6 made MnO2-DOX possess the homologous targeting ability and also regulated drug release rate. In vitro release experiments showed that the cumulative release of doxorubicin from MnO2-DOX-C6 at a pH of 5.0 for 48 h was 66.84 ± 3.81%, proving that it had pH sensitivity and a sustained-release effect. Cellular uptake experiments showed that MnO2-DOX-C6 had a good ability to target syngeneic tumor cells. MTT, flow cytometry, Western blot, cell immunofluorescence staining and in vivo antitumor experiments demonstrated that MnO2-DOX-C6 could promote C6 cell apoptosis and inhibit its proliferative ability. These results clearly suggested that MnO2-DOX-C6 may be a promising bionic nanosystem agent for the treatment of glioma.
Collapse
Affiliation(s)
- Jiaqun Du
- Pharmacy School, Jinzhou Medical University, 40 Songpo Road, Linghe, Jinzhou, Liaoning, 121001, China
| | - Junpeng Sun
- Pharmacy School, Jinzhou Medical University, 40 Songpo Road, Linghe, Jinzhou, Liaoning, 121001, China
| | - Xiaobang Liu
- Pharmacy School, Jinzhou Medical University, 40 Songpo Road, Linghe, Jinzhou, Liaoning, 121001, China
| | - Qian Wu
- Pharmacy School, Jinzhou Medical University, 40 Songpo Road, Linghe, Jinzhou, Liaoning, 121001, China
| | - Wenwen Shen
- Pharmacy School, Jinzhou Medical University, 40 Songpo Road, Linghe, Jinzhou, Liaoning, 121001, China
| | - Yu Gao
- Department of Medical Oncology, the First Affiliated Hospital of Jinzhou Medical University, No.2, the Fifth Section of Renmin Street, Guta District, Jinzhou, Liaoning Province 121001, China.
| | - Ying Liu
- Pharmacy School, Jinzhou Medical University, 40 Songpo Road, Linghe, Jinzhou, Liaoning, 121001, China.
| | - Chao Wu
- Pharmacy School, Jinzhou Medical University, 40 Songpo Road, Linghe, Jinzhou, Liaoning, 121001, China.
| |
Collapse
|
233
|
Chen Z, Liu Z, Zhang Q, Huang S, Zhang Z, Feng X, Zeng L, Lin D, Wang L, Song H. Hypoxia-ameliorated photothermal manganese dioxide nanoplatform for reversing doxorubicin resistance. Front Pharmacol 2023; 14:1133011. [PMID: 36909187 PMCID: PMC9998484 DOI: 10.3389/fphar.2023.1133011] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 02/14/2023] [Indexed: 02/26/2023] Open
Abstract
Drug resistance is a huge hurdle in tumor therapy. Tumor hypoxia contributes to chemotherapy resistance by inducing the hypoxia-inducible factor-1α (HIF-1α) pathway. To reduce tumor hypoxia, novel approaches have been devised, providing significant importance to reverse therapeutic resistance and improve the effectiveness of antitumor therapies. Herein, the nanosystem of bovine serum albumin (BSA)-templated manganese dioxide (MnO2) nanoparticles (BSA/MnO2 NPs) loaded with doxorubicin (DOX) (DOX-BSA/MnO2 NPs) developed in our previous report was further explored for their physicochemical properties and capacity to reverse DOX resistance because of their excellent photothermal and tumor microenvironment (TME) response effects. The DOX-BSA/MnO2 NPs showed good biocompatibility and hemocompatibility. Meanwhile, DOX-BSA/MnO2 NPs could greatly affect DOX pharmacokinetic properties, with prolonged circulation time and reduced cardiotoxicity, besides enhancing accumulation at tumor sites. DOX-BSA/MnO2 NPs can interact with H2O2 and H+ in TME to form oxygen and exhibit excellent photothermal effect to further alleviate hypoxia due to MnO2, reversing DOX resistance by down-regulating HIF-1α expression and significantly improving the antitumor efficiency in DOX-resistant human breast carcinoma cell line (MCF-7/ADR) tumor model. The hypoxia-ameliorated photothermal MnO2 platform is a promising strategy for revering DOX resistance.
Collapse
Affiliation(s)
- Zhenzhen Chen
- Department of General Surgery, 900TH Hospital of Joint Logistics Support Force, Fuzhou, China
| | - Zhihong Liu
- Department of Pharmacy, 900TH Hospital of Joint Logistics Support Force, Fuzhou, China
| | - Qian Zhang
- College of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Sheng Huang
- Department of General Surgery, 900TH Hospital of Joint Logistics Support Force, Fuzhou, China
| | - Zaizhong Zhang
- Department of General Surgery, 900TH Hospital of Joint Logistics Support Force, Fuzhou, China
| | - Xianquan Feng
- College of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Lingjun Zeng
- Department of Pharmacy, 900TH Hospital of Joint Logistics Support Force, Fuzhou, China
| | - Ding Lin
- Department of Pharmacy, Jiaxing Maternal and Child Healthcare Hospital, Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Lie Wang
- Department of General Surgery, 900TH Hospital of Joint Logistics Support Force, Fuzhou, China
| | - Hongtao Song
- Department of Pharmacy, 900TH Hospital of Joint Logistics Support Force, Fuzhou, China
| |
Collapse
|
234
|
Li X, Jiang C, Jia X, Cao Y, Mao Y, Hao JN, Yang Y, Zhang P, Li Y. Dual "Unlocking" Strategy to Overcome Inefficient Nanomedicine Delivery and Tumor Hypoxia for Enhanced Photodynamic-Immunotherapy. Adv Healthc Mater 2023; 12:e2202467. [PMID: 36377480 DOI: 10.1002/adhm.202202467] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/11/2022] [Indexed: 11/16/2022]
Abstract
Lacking blood vessels is one of the main characteristics of most solid tumors due to their rapid and unrestricted growth, which thus causes the inefficient delivery efficiency of nanomedicine and tumor hypoxia. Herein, a dual "unlocking" strategy to overcome these obstacles is proposed by combining engineered hybrid nanoparticles (named ZnPc@FOM-Pt) with dexamethasone (DXM). It is verified that pretreatment of tumors with DXM can increase intratumorally micro-vessel density (delivery "unlocking") to enhance the tumor delivery efficiency of ZnPc@FOM-Pt and decrease HIF-1α expression. Correspondingly, more Pt can catalyze tumor-overexpressed H2 O2 to produce oxygen to further cause hypoxia "unlocking," ultimately achieving boosted ZnPc-based photodynamic therapy in vivo (tumor inhibition rate: 99.1%). Moreover, the immunosuppressive tumor microenvironment is efficiently reversed and the therapeutic effect of anti-PD-L1-based immunotherapy is promoted by this newly designed nanomedicine. This dual "unlocking" strategy provides an innovative paradigm on simultaneously enhancing nanomedicine delivery efficacy and hypoxia relief for tumor therapy.
Collapse
Affiliation(s)
- Xianglong Li
- Lab of Low-Dimensional Materials Chemistry, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontier Science Center of the Materials Biology and Dynamic Chemistry, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Cong Jiang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200092, P. R. China
| | - Xinlin Jia
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, P. R. China
| | - Yuanyuan Cao
- Lab of Low-Dimensional Materials Chemistry, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontier Science Center of the Materials Biology and Dynamic Chemistry, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Yuanqing Mao
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, P. R. China
| | - Ji-Na Hao
- Lab of Low-Dimensional Materials Chemistry, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontier Science Center of the Materials Biology and Dynamic Chemistry, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Yang Yang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200092, P. R. China
| | - Peng Zhang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200092, P. R. China
| | - Yongsheng Li
- Lab of Low-Dimensional Materials Chemistry, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontier Science Center of the Materials Biology and Dynamic Chemistry, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| |
Collapse
|
235
|
Smith PJ, McKeown SR, Patterson LH. Targeting DNA topoisomerase IIα (TOP2A) in the hypoxic tumour microenvironment using unidirectional hypoxia-activated prodrugs (uHAPs). IUBMB Life 2023; 75:40-54. [PMID: 35499745 PMCID: PMC10084299 DOI: 10.1002/iub.2619] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/24/2022] [Accepted: 04/03/2022] [Indexed: 12/29/2022]
Abstract
The hypoxic tumour microenvironment (hTME), arising from inadequate and chaotic vascularity, can present a major obstacle for the treatment of solid tumours. Hypoxic tumour cells compromise responses to treatment since they can generate resistance to radiotherapy, chemotherapy and immunotherapy. The hTME impairs the delivery of a range of anti-cancer drugs, creates routes for metastasis and exerts selection pressures for aggressive phenotypes; these changes potentially occur within an immunosuppressed environment. Therapeutic strategies aimed at the hTME include targeting the molecular changes associated with hypoxia. An alternative approach is to exploit the prevailing lack of oxygen as a principle for the selective activation of prodrugs to target cellular components within the hTME. This review focuses on the design concepts and rationale for the use of unidirectional Hypoxia-Activated Prodrugs (uHAPs) to target the hTME as exemplified by the uHAPs AQ4N and OCT1002. These agents undergo irreversible reduction in a hypoxic environment to active forms that target DNA topoisomerase IIα (TOP2A). This nuclear enzyme is essential for cell division and is a recognised chemotherapeutic target. An activated uHAP interacts with the enzyme-DNA complex to induce DNA damage, cell cycle arrest and tumour cell death. uHAPs are designed to overcome the shortcomings of conventional HAPs and offer unique pharmacodynamic properties for effective targeting of TOP2A in the hTME. uHAP therapy in combination with standard of care treatments has the potential to enhance outcomes by co-addressing the therapeutic challenge presented by the hTME.
Collapse
Affiliation(s)
- Paul J Smith
- Cancer and Genetics Division, School of Medicine, Cardiff University, Cardiff, UK
| | | | - Laurence H Patterson
- Institute of Cancer Therapeutics, School of Pharmacy and Medical Sciences, Faculty of Life Sciences, University of Bradford, Bradford, UK
| |
Collapse
|
236
|
Bryant P, Sikavitsas VI. Cancer Exosomes: An Overview and the Applications of Flow. FLUIDS 2022; 8:7. [DOI: 10.3390/fluids8010007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Cancer is one of the most prevalent and disruptive diseases affecting the population, and as such, is the subject of major research efforts. Recently, these efforts have been put towards understanding the role that exosomes can play in the progression of cancer. Exosomes are small extracellular vesicles ranging from 40–150 nm in size that carry bioactive molecules like proteins, DNA, RNA, miRNA, and surface receptors. One of the most important features of exosomes is their ability to easily travel throughout the body, extending the reach of parent cell’s signaling capabilities. Cancer derived exosomes (CDEs) carry dangerous cargo that can aid in the metastasis, and disease progression through angiogenesis, promoting epithelial to mesenchymal transition, and immune suppression. Exosomes can transport these molecules to cells in the tumor environment as well as distant premetastatic locations making them an extremely versatile tool in the toolbelt of cancer. This review aims to compile the present knowledge and understanding of the involvement of exosomes in the progression of cancer as well as current production, isolation, and purification methods, with particular interest on flow perfusion bioreactor and microfluidics systems, which allow for accurate modeling and production of exosomes.
Collapse
Affiliation(s)
- Parker Bryant
- School of Chemical, Biological, and Materials Engineering, University of Oklahoma, Norman, OK 73019, USA
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, OK 73019, USA
| | - Vassilios I. Sikavitsas
- School of Chemical, Biological, and Materials Engineering, University of Oklahoma, Norman, OK 73019, USA
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, OK 73019, USA
| |
Collapse
|
237
|
Dai T, Rosario SR, Katsuta E, Dessai AS, Paterson EJ, Novickis AT, Cortes Gomez E, Zhu B, Liu S, Wang H, Abrams SI, Seshadri M, Bshara W, Dasgupta S. Hypoxic activation of PFKFB4 in breast tumor microenvironment shapes metabolic and cellular plasticity to accentuate metastatic competence. Cell Rep 2022; 41:111756. [PMID: 36476868 PMCID: PMC9807018 DOI: 10.1016/j.celrep.2022.111756] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 09/27/2022] [Accepted: 11/08/2022] [Indexed: 12/12/2022] Open
Abstract
Cancer cells encounter a hostile tumor microenvironment (TME), and their adaptations to metabolic stresses determine metastatic competence. Here, we show that the metabolic enzyme 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase-4 (PFKFB4) is induced in hypoxic tumors acquiring metabolic plasticity and invasive phenotype. In mouse models of breast cancer, genetic ablation of PFKFB4 significantly delays distant organ metastasis, reducing local lymph node invasion by suppressing expression of invasive gene signature including integrin β3. Photoacoustic imaging followed by metabolomics analyses of hypoxic tumors show that PFKFB4 drives metabolic flexibility, enabling rapid detoxification of reactive oxygen species favoring survival under selective pressure. Mechanistically, hypoxic induction triggers nuclear translocation of PFKFB4 accentuating non-canonical transcriptional activation of HIF-1α, and breast cancer patients with increased nuclear PFKFB4 in their tumors are found to be significantly associated with poor prognosis. Our findings imply that PFKFB4 induction is crucial for tumor cell adaptation in the hypoxic TME that determines metastatic competence.
Collapse
Affiliation(s)
- Tao Dai
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Spencer R. Rosario
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Eriko Katsuta
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Abhisha Sawant Dessai
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Emily J. Paterson
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Aaron T. Novickis
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Eduardo Cortes Gomez
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Bokai Zhu
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA
| | - Song Liu
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Hai Wang
- Department of Molecular and Cellular Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Scott I. Abrams
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Mukund Seshadri
- Department of Oral Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Wiam Bshara
- Department of Pathology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Subhamoy Dasgupta
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA,Lead contact,Correspondence:
| |
Collapse
|
238
|
Wang X, He X, Liu C, Zhao W, Yuan X, Li R. Progress and perspectives of platinum nanozyme in cancer therapy. Front Chem 2022; 10:1092747. [DOI: 10.3389/fchem.2022.1092747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 11/23/2022] [Indexed: 12/03/2022] Open
Abstract
Malignant tumors, one of the worst-case scenarios within human health problems, are now posing an increasing threat to the well-being of the global population. At present, the treatment of malignant tumors mainly includes surgery, radiotherapy, chemotherapy, immunotherapy, etc. Radiotherapy and chemotherapy are often applied to inoperable tumors, and some other tumors after surgery as important adjuvant therapies. Nonetheless, both radiotherapy and chemotherapy have a series of side effects, such as radiation-induced lung injury, and chemotherapy-induced bone marrow suppression. In addition, the positioning accuracy of radiotherapy and chemotherapy is not assured and satisfactory, and the possibility of tumor cells not being sensitive to radiation and chemotherapy drugs is also problematic. Nanozymes are nanomaterials that display natural enzyme activities, and their applications to tumor therapy have made great progress recently. The most studied one, platinum nanozyme, has been shown to possess a significant correlation with radiotherapy sensitization of tumors as well as photodynamic therapy. However, there are still several issues that limited the usage of platinum-based nanozymes in vivo. In this review, we briefly summarize the representative studies regarding platinum nanozymes, and especially emphasize on the current challenges and the directions of future development for platinum nanozymes therapy.
Collapse
|
239
|
Li Y, Yoon B, Dey A, Nguyen VQ, Park JH. Recent progress in nitric oxide-generating nanomedicine for cancer therapy. J Control Release 2022; 352:179-198. [PMID: 36228954 DOI: 10.1016/j.jconrel.2022.10.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 08/26/2022] [Accepted: 10/05/2022] [Indexed: 11/06/2022]
Abstract
Nitric oxide (NO) is an endogenous, multipotent biological signaling molecule that participates in several physiological processes. Recently, exogenous supplementation of tumor tissues with NO has emerged as a potential anticancer therapy. In particular, it induces synergistic effects with other conventional therapies (such as chemo-, radio-, and photodynamic therapies) by regulating the activity of P-glycoprotein, acting as a vascular relaxant to relieve tumor hypoxia, and participating in the metabolism of reactive oxygen species. However, NO is highly reactive, and its half-life is relatively short after generation. Meanwhile, NO-induced anticancer activity is dose-dependent. Therefore, the targeted delivery of NO to the tumor is required for better therapeutic effects. In the past decade, NO-generating nanomedicines (NONs), which enable sustained and specific NO release in tumor tissues, have been developed for enhanced cancer therapy. This review describes the recent efforts and preclinical achievements in the development of NON-based cancer therapies. The chemical structures employed in the fabrication of NONs are summarized, and the strategies involved in NON-based cancer therapies are elaborated.
Collapse
Affiliation(s)
- Yuce Li
- School of Chemical Engineering, College of Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Been Yoon
- School of Chemical Engineering, College of Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Anup Dey
- School of Chemical Engineering, College of Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Van Quy Nguyen
- School of Chemical Engineering, College of Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Jae Hyung Park
- School of Chemical Engineering, College of Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea.; Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul 06351, Republic of Korea.; Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon 16419, Republic of Korea.
| |
Collapse
|
240
|
Meng Q, Sun H, Wu S, Familiari G, Relucenti M, Aschner M, Li X, Chen R. Epstein-Barr Virus-Encoded MicroRNA-BART18-3p Promotes Colorectal Cancer Progression by Targeting De Novo Lipogenesis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2202116. [PMID: 36307872 PMCID: PMC9762317 DOI: 10.1002/advs.202202116] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 07/29/2022] [Indexed: 05/14/2023]
Abstract
The Epstein-Barr virus (EBV) genome encodes a cluster of 22 viral microRNAs, called miR-BamHI-A rightward transcripts (miR-BARTs), which are shown to promote the development of cancer. Here, this study reports that EBV-miR-BART18-3p is highly expressed in colorectal cancer (CRC) and is closely associated with the pathological and advanced clinical stages of CRC. Ectopic expression of EBV-miR-BART18-3p leads to increased migration and invasion capacities of CRC cells in vitro and causes tumor metastasis in vivo. Mechanistically, EBV-miR-BART18-3p activates the hypoxia inducible factor 1 subunit alpha/lactate dehydrogenase A axis by targeting Sirtuin, which promotes lactate accumulation and acetyl-CoA production in CRC cells under hypoxic condition. Increased acetyl-CoA utilization subsequently leads to histone acetylation of fatty acid synthase and fatty acid synthase-dependent fat synthesis, which in turn drives de novo lipogenesis. The oncogenic role of EBV-miR-BART18-3p is confirmed in the patient-derived tumor xenograft mouse model. Altogether, the findings define a novel mechanism of EBV-miR-BART18-3p in CRC development through the lipogenesis pathway and provide a potential clinical intervention target for CRC.
Collapse
Affiliation(s)
- Qingtao Meng
- Beijing Key Laboratory of Environmental Toxicology, School of Public HealthCapital Medical UniversityBeijing100069P. R. China
- Department of OncologyCapital Medical UniversityBeijing100069P. R. China
| | - Hao Sun
- Department of Occupational HealthSchool of Public HealthShanxi Medical UniversityTaiyuan030001China
- Key Laboratory of Environmental Medicine EngineeringMinistry of EducationSchool of Public HealthSoutheast UniversityNanjing210009P. R. China
| | - Shenshen Wu
- Beijing Key Laboratory of Environmental Toxicology, School of Public HealthCapital Medical UniversityBeijing100069P. R. China
| | - Giuseppe Familiari
- Laboratory of Electron Microscopy “Pietro Motta”SAIMLAL DepartmentFaculty of Pharmacy and MedicineSapienza University of Romevia Alfonso Borelli 50Rome00161Italy
| | - Michela Relucenti
- Laboratory of Electron Microscopy “Pietro Motta”SAIMLAL DepartmentFaculty of Pharmacy and MedicineSapienza University of Romevia Alfonso Borelli 50Rome00161Italy
| | - Michael Aschner
- Department of Molecular PharmacologyAlbert Einstein College of MedicineForchheimer 209, 1300 Morris Park AvenueBronxNY10461USA
| | - Xiaobo Li
- Beijing Key Laboratory of Environmental Toxicology, School of Public HealthCapital Medical UniversityBeijing100069P. R. China
- Key Laboratory of Environmental Medicine EngineeringMinistry of EducationSchool of Public HealthSoutheast UniversityNanjing210009P. R. China
| | - Rui Chen
- Beijing Key Laboratory of Environmental Toxicology, School of Public HealthCapital Medical UniversityBeijing100069P. R. China
- Department of OncologyCapital Medical UniversityBeijing100069P. R. China
- Advanced Innovation Center for Human Brain ProtectionCapital Medical UniversityBeijing100069P. R. China
- Institute for Chemical CarcinogenesisGuangzhou Medical UniversityGuangzhou511436P. R. China
| |
Collapse
|
241
|
Clemente-González C, Carnero A. Role of the Hypoxic-Secretome in Seed and Soil Metastatic Preparation. Cancers (Basel) 2022; 14:5930. [PMID: 36497411 PMCID: PMC9738438 DOI: 10.3390/cancers14235930] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/18/2022] [Accepted: 11/28/2022] [Indexed: 12/05/2022] Open
Abstract
During tumor growth, the delivery of oxygen to cells is impaired due to aberrant or absent vasculature. This causes an adaptative response that activates the expression of genes that control several essential processes, such as glycolysis, neovascularization, immune suppression, and the cancer stemness phenotype, leading to increased metastasis and resistance to therapy. Hypoxic tumor cells also respond to an altered hypoxic microenvironment by secreting vesicles, factors, cytokines and nucleic acids that modify not only the immediate microenvironment but also organs at distant sites, allowing or facilitating the attachment and growth of tumor cells and contributing to metastasis. Hypoxia induces the release of molecules of different biochemical natures, either secreted or inside extracellular vesicles, and both tumor cells and stromal cells are involved in this process. The mechanisms by which these signals that can modify the premetastatic niche are sent from the primary tumor site include changes in the extracellular matrix, recruitment and activation of different stromal cells and immune or nonimmune cells, metabolic reprogramming, and molecular signaling network rewiring. In this review, we will discuss how hypoxia might alter the premetastatic niche through different signaling molecules.
Collapse
Affiliation(s)
- Cynthia Clemente-González
- Instituto de Biomedicina de Sevilla (IBIS), Consejo Superior de Investigaciones Científicas, Hospital Universitario Virgen del Rocío (HUVR), Universidad de Sevilla, 41013 Seville, Spain
- CIBERONC (Centro de Investigación Biomédica en Red Cáncer), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Amancio Carnero
- Instituto de Biomedicina de Sevilla (IBIS), Consejo Superior de Investigaciones Científicas, Hospital Universitario Virgen del Rocío (HUVR), Universidad de Sevilla, 41013 Seville, Spain
- CIBERONC (Centro de Investigación Biomédica en Red Cáncer), Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
242
|
Paillasse MR, Esquerré M, Bertrand FA, Poussereau-Pomié C, Pichery M, Visentin V, Gueguen-Dorbes G, Gaujarengues F, Barron P, Badet G, Briaux A, Ancey PB, Sibrac D, Erdociain E, Özcelik D, Meneyrol J, Martin V, Gomez-Brouchet A, Selves J, Rochaix P, Battistella M, Lebbé C, Delord JP, Dol-Gleizes F, Bono F, Blanc I, Alam A, Hunneyball I, Whittaker M, Fons P. Targeting Tumor Angiogenesis with the Selective VEGFR-3 Inhibitor EVT801 in Combination with Cancer Immunotherapy. CANCER RESEARCH COMMUNICATIONS 2022; 2:1504-1519. [PMID: 36970050 PMCID: PMC10035370 DOI: 10.1158/2767-9764.crc-22-0151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 07/13/2022] [Accepted: 11/02/2022] [Indexed: 11/30/2022]
Abstract
The receptor tyrosine kinase VEGFR-3 plays a crucial role in cancer-induced angiogenesis and lymphangiogenesis, promoting tumor development and metastasis. Here, we report the novel VEGFR-3 inhibitor EVT801 that presents a more selective and less toxic profile than two major inhibitors of VEGFRs (i.e., sorafenib and pazopanib). As monotherapy, EVT801 showed a potent antitumor effect in VEGFR-3–positive tumors, and in tumors with VEGFR-3–positive microenvironments. EVT801 suppressed VEGF-C–induced human endothelial cell proliferation in vitro and tumor (lymph)angiogenesis in different tumor mouse models. In addition to reduced tumor growth, EVT801 decreased tumor hypoxia, favored sustained tumor blood vessel homogenization (i.e., leaving fewer and overall larger vessels), and reduced important immunosuppressive cytokines (CCL4, CCL5) and myeloid-derived suppressor cells (MDSC) in circulation. Furthermore, in carcinoma mouse models, the combination of EVT801 with immune checkpoint therapy (ICT) yielded superior outcomes to either single treatment. Moreover, tumor growth inhibition was inversely correlated with levels of CCL4, CCL5, and MDSCs after treatment with EVT801, either alone or combined with ICT. Taken together, EVT801 represents a promising anti(lymph)angiogenic drug for improving ICT response rates in patients with VEGFR-3 positive tumors.
Significance:
The VEGFR-3 inhibitor EVT801 demonstrates superior selectivity and toxicity profile than other VEGFR-3 tyrosine kinase inhibitors. EVT801 showed potent antitumor effects in VEGFR-3–positive tumors, and tumors with VEGFR-3–positive microenvironments through blood vessel homogenization, and reduction of tumor hypoxia and limited immunosuppression. EVT801 increases immune checkpoint inhibitors’ antitumor effects.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Gaelle Badet
- 1Evotec France, Campus Curie, Toulouse CEDEX, France
| | - Anne Briaux
- 1Evotec France, Campus Curie, Toulouse CEDEX, France
| | | | - David Sibrac
- 1Evotec France, Campus Curie, Toulouse CEDEX, France
| | | | | | | | | | - Anne Gomez-Brouchet
- 4Institut Universitaire du Cancer Toulouse Oncopole (IUCT-O), Toulouse, Occitanie, France
| | - Janik Selves
- 4Institut Universitaire du Cancer Toulouse Oncopole (IUCT-O), Toulouse, Occitanie, France
| | - Philippe Rochaix
- 4Institut Universitaire du Cancer Toulouse Oncopole (IUCT-O), Toulouse, Occitanie, France
| | - Maxime Battistella
- 5Université de Paris, Department of Pathology, AP-HP Hôpital Saint Louis, INSERM U976, Paris, France
| | - Céleste Lebbé
- 6Université de Paris, Department of Dermatology, AP-HP Hôpital Saint Louis, INSERM U976, Paris, France
| | - Jean-Pierre Delord
- 4Institut Universitaire du Cancer Toulouse Oncopole (IUCT-O), Toulouse, Occitanie, France
| | | | | | | | | | | | | | - Pierre Fons
- 1Evotec France, Campus Curie, Toulouse CEDEX, France
| |
Collapse
|
243
|
Apfelbaum AA, Wrenn ED, Lawlor ER. The importance of fusion protein activity in Ewing sarcoma and the cell intrinsic and extrinsic factors that regulate it: A review. Front Oncol 2022; 12:1044707. [PMID: 36505823 PMCID: PMC9727305 DOI: 10.3389/fonc.2022.1044707] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 10/27/2022] [Indexed: 11/24/2022] Open
Abstract
Accumulating evidence shows that despite clonal origins tumors eventually become complex communities comprised of phenotypically distinct cell subpopulations. This heterogeneity arises from both tumor cell intrinsic programs and signals from spatially and temporally dynamic microenvironments. While pediatric cancers usually lack the mutational burden of adult cancers, they still exhibit high levels of cellular heterogeneity that are largely mediated by epigenetic mechanisms. Ewing sarcomas are aggressive bone and soft tissue malignancies with peak incidence in adolescence and the prognosis for patients with relapsed and metastatic disease is dismal. Ewing sarcomas are driven by a single pathognomonic fusion between a FET protein and an ETS family transcription factor, the most common of which is EWS::FLI1. Despite sharing a single driver mutation, Ewing sarcoma cells demonstrate a high degree of transcriptional heterogeneity both between and within tumors. Recent studies have identified differential fusion protein activity as a key source of this heterogeneity which leads to profoundly different cellular phenotypes. Paradoxically, increased invasive and metastatic potential is associated with lower EWS::FLI1 activity. Here, we review what is currently understood about EWS::FLI1 activity, the cell autonomous and tumor microenvironmental factors that regulate it, and the downstream consequences of these activity states on tumor progression. We specifically highlight how transcription factor regulation, signaling pathway modulation, and the extracellular matrix intersect to create a complex network of tumor cell phenotypes. We propose that elucidation of the mechanisms by which these essential elements interact will enable the development of novel therapeutic approaches that are designed to target this complexity and ultimately improve patient outcomes.
Collapse
Affiliation(s)
| | | | - Elizabeth R. Lawlor
- Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute and Department of Pediatrics, University of Washington, Seattle, WA, United States
| |
Collapse
|
244
|
Liu X, Su Q, Zhang X, Yang W, Ning J, Jia K, Xin J, Li H, Yu L, Liao Y, Zhang D. Recent Advances of Organ-on-a-Chip in Cancer Modeling Research. BIOSENSORS 2022; 12:bios12111045. [PMID: 36421163 PMCID: PMC9688857 DOI: 10.3390/bios12111045] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/15/2022] [Accepted: 11/16/2022] [Indexed: 05/27/2023]
Abstract
Although many studies have focused on oncology and therapeutics in cancer, cancer remains one of the leading causes of death worldwide. Due to the unclear molecular mechanism and complex in vivo microenvironment of tumors, it is challenging to reveal the nature of cancer and develop effective therapeutics. Therefore, the development of new methods to explore the role of heterogeneous TME in individual patients' cancer drug response is urgently needed and critical for the effective therapeutic management of cancer. The organ-on-chip (OoC) platform, which integrates the technology of 3D cell culture, tissue engineering, and microfluidics, is emerging as a new method to simulate the critical structures of the in vivo tumor microenvironment and functional characteristics. It overcomes the failure of traditional 2D/3D cell culture models and preclinical animal models to completely replicate the complex TME of human tumors. As a brand-new technology, OoC is of great significance for the realization of personalized treatment and the development of new drugs. This review discusses the recent advances of OoC in cancer biology studies. It focuses on the design principles of OoC devices and associated applications in cancer modeling. The challenges for the future development of this field are also summarized in this review. This review displays the broad applications of OoC technique and has reference value for oncology development.
Collapse
Affiliation(s)
- Xingxing Liu
- Guangdong Provincial Key Laboratory of Industrial Surfactant, Institute of Chemical Engineering, Guangdong Academy of Sciences, Guangzhou 510075, China
| | - Qiuping Su
- Guangdong Provincial Key Laboratory of Industrial Surfactant, Institute of Chemical Engineering, Guangdong Academy of Sciences, Guangzhou 510075, China
| | - Xiaoyu Zhang
- Research Center for Intelligent Sensing Systems, Zhejiang Laboratory, Hangzhou 311100, China
| | - Wenjian Yang
- Research Center for Intelligent Sensing Systems, Zhejiang Laboratory, Hangzhou 311100, China
| | - Junhua Ning
- Guangdong Provincial Key Laboratory of Industrial Surfactant, Institute of Chemical Engineering, Guangdong Academy of Sciences, Guangzhou 510075, China
| | - Kangle Jia
- Guangdong Provincial Key Laboratory of Industrial Surfactant, Institute of Chemical Engineering, Guangdong Academy of Sciences, Guangzhou 510075, China
| | - Jinlan Xin
- Guangdong Provincial Key Laboratory of Industrial Surfactant, Institute of Chemical Engineering, Guangdong Academy of Sciences, Guangzhou 510075, China
| | - Huanling Li
- Guangdong Provincial Key Laboratory of Industrial Surfactant, Institute of Chemical Engineering, Guangdong Academy of Sciences, Guangzhou 510075, China
| | - Longfei Yu
- Guangdong Provincial Key Laboratory of Industrial Surfactant, Institute of Chemical Engineering, Guangdong Academy of Sciences, Guangzhou 510075, China
| | - Yuheng Liao
- Research Center for Intelligent Sensing Systems, Zhejiang Laboratory, Hangzhou 311100, China
| | - Diming Zhang
- Research Center for Intelligent Sensing Systems, Zhejiang Laboratory, Hangzhou 311100, China
| |
Collapse
|
245
|
Hypoxia-induced circRNF13 promotes the progression and glycolysis of pancreatic cancer. Exp Mol Med 2022; 54:1940-1954. [PMID: 36369467 PMCID: PMC9723180 DOI: 10.1038/s12276-022-00877-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 06/14/2022] [Accepted: 08/29/2022] [Indexed: 11/13/2022] Open
Abstract
Pancreatic cancer (PC) is one of the most malignant tumors. Rapid progression and distant metastasis are the main causes of patient death. Hypoxia is a hallmark of multiple cancers and is involved in tumor biology. However, little is known about the roles of circRNAs in glycolysis and hypoxia-mediated progression of PC. Here, the expression pattern of hypoxia-related circRNAs was analyzed using RNA sequencing. A unique circRNA termed circRNF13 was found to be upregulated in PC tissues and may be a potential prognostic indicator. HIF-1α and EIF4A3 are involved in regulating the biogenesis of circRNF13. Furthermore, circRNF13 was validated to exert a stimulative effect on cell proliferation, angiogenesis, invasion and glycolysis. Importantly, we found that circRNF13 promoted PDK3 levels by acting as a miR-654-3p sponge, thus promoting the PC malignant process. Collectively, our results reveal that hypoxia-induced circRNF13 mediated by HIF-1α and EIF4A3 promotes tumor progression and glycolysis in PC, indicating the potential of circRNF13 as a prognostic biomarker and therapeutic target for PC.
Collapse
|
246
|
LINC00839 promotes malignancy of liver cancer via binding FMNL2 under hypoxia. Sci Rep 2022; 12:18757. [PMID: 36335129 PMCID: PMC9637198 DOI: 10.1038/s41598-022-16972-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 07/19/2022] [Indexed: 11/07/2022] Open
Abstract
Liver cancer is one of the most common malignant tumors in the world and metastasis is the leading cause of death associated with liver cancer. Hypoxia is a common feature of solid tumors and enhances malignant character of cancer cells. However, the exact mechanisms involved in hypoxia-driven liver cancer progression and metastasis have not been well clarified so far. The aim of this study was to investigate the contribution of long non-coding RNA (lncRNA) in hypoxia promoting liver cancer progression. We screened and revealed LINC00839 as a novel hypoxia-responsive lncRNA in liver cancer. LINC00839 expression was up-regulated in liver cancer tissues and cell lines, and the patients with high LINC00839 expression had shortened overall survival. LINC00839 further overexpressed under hypoxia and promoted liver cancer cell proliferation, migration, and invasion. Mechanistically, LINC00839 bound multiple proteins that were primarily associated with the metabolism and RNA transport, and positively regulated the expression of Formin-like protein 2 (FMNL2). LINC00839 could promote hypoxia-mediated liver cancer progression, suggesting it may be a clinically valuable biomarker and serve as a molecular target for the diagnosis, prognosis, and therapy of liver cancer.
Collapse
|
247
|
Incremental benefits of size-zone matrix-based radiomics features for the prognosis of lung adenocarcinoma: advantage of spatial partitioning on tumor evaluation. Eur Radiol 2022; 32:7691-7699. [PMID: 35554645 DOI: 10.1007/s00330-022-08818-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 04/04/2022] [Accepted: 04/13/2022] [Indexed: 01/03/2023]
Abstract
OBJECTIVES Prognostic models of lung adenocarcinoma (ADC) can be built using radiomics features from various categories. The size-zone matrix (SZM) features have a strong biological basis related to tumor partitioning, but their incremental benefits have not been fully explored. In our study, we aimed to evaluate the incremental benefits of SZM features for the prognosis of lung ADC. METHODS A total of 298 patients were included and their pretreatment computed tomography images were analyzed in fivefold cross-validation. We built a risk model of overall survival using SZM features and compared it with a conventional radiomics risk model and a clinical variable-based risk model. We also compared it with other models incorporating various combinations of SZM features, other radiomics features, and clinical variables. A total of seven risk models were compared and evaluated using the hazard ratio (HR) on the left-out test fold. RESULTS As a baseline, the clinical variable risk model showed an HR of 2.739. Combining the radiomics signature with SZM feature was better (HR 4.034) than using radiomics signature alone (HR 3.439). Combining radiomics signature, SZM feature, and clinical variable (HR 6.524) fared better than just combining radiomics signature and clinical variables (HR 4.202). These results confirmed the added benefits of SZM features for prognosis in lung ADC. CONCLUSION Combining SZM feature with the radiomics signature was better than using the radiomics signature alone and the benefits of SZM features were maintained when clinical variables were added confirming the incremental benefits of SZM features for lung ADC prognosis. KEY POINTS • Size-zone matrix (SZM) features provide incremental benefits for the prognosis of lung adenocarcinoma. • Combining the radiomics signature with SZM features performed better than using a radiomics signature alone.
Collapse
|
248
|
Ma J, Guo Z, Yang X, Zhu Y. Exploration of various roles of hypoxia genes in osteosarcoma. Sci Rep 2022; 12:18293. [PMID: 36316355 PMCID: PMC9622735 DOI: 10.1038/s41598-022-17622-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 07/28/2022] [Indexed: 12/31/2022] Open
Abstract
Osteosarcoma is a primary malignant tumor that often metastasizes in orthopedic diseases. Although multi-drug chemotherapy and surgical treatment have significantly improved the survival and prognosis of patients with osteosarcoma, the survival rate is still very low due to frequent metastases in patients with osteosarcoma. In-depth exploration of the relationship between various influencing factors of osteosarcoma is very important for screening promising therapeutic targets. This study used multivariate COX regression analysis to select the hypoxia genes SLC2A1 and FBP1 in patients with osteosarcoma, and used the expression of these two genes to divide the patients with osteosarcoma into high-risk and low-risk groups. Then, we first constructed a prognostic model based on the patient's risk value and compared the survival difference between the high expression group and the low expression group. Second, in the high expression group and the low expression group, compare the differences in tumor invasion and inflammatory gene expression between the two groups of immune cells. Finally, the ferroptosis-related genes with differences between the high expression group and the low expression group were screened, and the correlation between these genes was analyzed. In the high-risk group, immune cells with higher tumor invasiveness, macrophages M0 and immune cells with lower invasiveness included: mast cell resting, regulatory T cells (Tregs) and monocytes. Finally, among genes related to ferroptosis, we found AKR1C2, AKR1C1 and ALOX15 that may be related to hypoxia. These ferroptosis-related genes were discovered for the first time in osteosarcoma. Among them, the hypoxia gene FBP1 is positively correlated with the ferroptosis genes AKR1C1 and ALOX15, and the hypoxia gene SLC2A1 is negatively correlated with the ferroptosis genes AKR1C2, AKR1C1 and ALOX15. This study constructed a prognostic model based on hypoxia-related genes SLC2A1 and FBP1 in patients with osteosarcoma, and explored their correlation with immune cells, inflammatory markers and ferroptosis-related genes. This indicates that SLC2A1 and FBP1 are promising targets for osteosarcoma research.
Collapse
Affiliation(s)
- Jimin Ma
- grid.186775.a0000 0000 9490 772XDepartment of Orthopedics, Fuyang Hospital of Anhui Medical University, 99 Huangshan Road, Fuhe Modern Industrial Park, Yingzhou District, Fuyang, 236000 Anhui Province China
| | - Ziming Guo
- grid.186775.a0000 0000 9490 772XDepartment of Orthopedics, Fuyang Hospital of Anhui Medical University, 99 Huangshan Road, Fuhe Modern Industrial Park, Yingzhou District, Fuyang, 236000 Anhui Province China
| | - Xuefei Yang
- grid.186775.a0000 0000 9490 772XDepartment of Orthopedics, Fuyang Hospital of Anhui Medical University, 99 Huangshan Road, Fuhe Modern Industrial Park, Yingzhou District, Fuyang, 236000 Anhui Province China
| | - Yakun Zhu
- grid.186775.a0000 0000 9490 772XDepartment of Orthopedics, Fuyang Hospital of Anhui Medical University, 99 Huangshan Road, Fuhe Modern Industrial Park, Yingzhou District, Fuyang, 236000 Anhui Province China
| |
Collapse
|
249
|
Zhang G, Zhang K, Zhao Y, Yang Q, Lv X. A novel stemness-hypoxia-related signature for prognostic stratification and immunotherapy response in hepatocellular carcinoma. BMC Cancer 2022; 22:1103. [DOI: 10.1186/s12885-022-10195-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 10/18/2022] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
The specific differentiation potential, unlimited proliferation, and self-renewal capacity of cancer stem cells (CSCs) are closely related to the occurrence, recurrence, and drug resistance of hepatocellular carcinoma (HCC), as well as hypoxia. Therefore, an in-depth analysis of the relationship between HCC stemness, oxygenation status, and the effectiveness of immunotherapy is necessary to improve the poor prognosis of HCC patients.
Methods
The weighted gene co-expression network analysis (WGCNA) was utilized to find hypoxia-related genes, and the stemness index (mRNAsi) was evaluated using the one-class logistic regression (OCLR) technique. Based on stemness-hypoxia-related genes (SHRGs), population subgroup categorization using NMF cluster analysis was carried out. The relationship between SHRGs and survival outcomes was determined using univariate Cox regression. The LASSO-Cox regression strategy was performed to investigate the quality and establish the classifier associated with prognosis. The main effect of risk scores on the tumor microenvironment (TME) and its response to immune checkpoint drugs was also examined. Finally, qRT-PCR was performed to explore the expression and prognostic value of the signature in clinical samples.
Results
After identifying tumor stemness- and hypoxia-related genes through a series of bioinformatics analyses, we constructed a prognostic stratification model based on these SHRGs, which can be effectively applied to the prognostic classification of HCC patients and the prediction of immune checkpoint inhibitors (ICIs) efficacy. Independent validation of the model in the ICGC cohort yielded good results. In addition, we also constructed hypoxic cell models in Herp3B and Huh7 cells to verify the expression of genes in the prognostic model and found that C7, CLEC1B, and CXCL6 were not only related to the tumor stemness but also related to hypoxia. Finally, we found that the constructed signature had a good prognostic value in the clinical sample.
Conclusions
We constructed and validated a stemness-hypoxia-related prognostic signature that can be used to predict the efficacy of ICIs therapy. We also verified that C7, CLEC1B, and CXCL6 are indeed associated with stemness and hypoxia through a hypoxic cell model, which may provide new ideas for individualized immunotherapy.
Collapse
|
250
|
Qiao C, Yang Z, Liu X, Zhang R, Xia Y, Wang L, Chen Z, Jia Q, Wang R, Yang Y, Wang Z. Post-Remedial Oxygen Supply: A New Perspective on Photodynamic Therapy to Suppress Tumor Metastasis. NANO LETTERS 2022; 22:8250-8257. [PMID: 36218311 DOI: 10.1021/acs.nanolett.2c02983] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Photodynamic therapy (PDT) holds great promise in tumor therapy due to high safety, efficacy, and specificity. However, the risk of increased metastasis in hypoxic tumors after oxygen-dependent PDT remains underestimated. Here, we propose a post-PDT oxygen supply (POS) strategy to reduce the risk of metastasis. Herein, biocompatible and tumor-targeting Ce6@BSA and PFC@BSA nanoparticles were constructed for PDT and POS in a 4T1-orthotropic breast cancer model. PDT with Ce6@BSA nanoparticles increased tumor metastasis via the HIF-1α signaling pathway, whereas POS significantly reduced the PDT-triggered metastasis by blocking this pathway. Furthermore, POS, with clinical protocols and an FDA-approved photosensitizer (hypericin), and oxygen inhalation reduced PDT-induced metastasis. Our study findings indicate that PDT may increase the risk of tumor metastasis and that POS may solve this problem. POS can reduce the metastasis resulting not only from PDT but also from other oxygen-dependent treatments such as radiotherapy and sonodynamic therapy.
Collapse
Affiliation(s)
- Chaoqiang Qiao
- Lab of Molecular Imaging and Translational Medicine (MITM), Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, P.R. China
| | - Zuo Yang
- Lab of Molecular Imaging and Translational Medicine (MITM), Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, P.R. China
| | - Xuelan Liu
- Lab of Molecular Imaging and Translational Medicine (MITM), Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, P.R. China
| | - Ruili Zhang
- Lab of Molecular Imaging and Translational Medicine (MITM), Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, P.R. China
| | - Yuqiong Xia
- Lab of Molecular Imaging and Translational Medicine (MITM), Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, P.R. China
| | - Lexuan Wang
- Lab of Molecular Imaging and Translational Medicine (MITM), Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, P.R. China
| | - Zhuang Chen
- Lab of Molecular Imaging and Translational Medicine (MITM), Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, P.R. China
| | - Qian Jia
- Lab of Molecular Imaging and Translational Medicine (MITM), Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, P.R. China
| | - Ruhao Wang
- Lab of Molecular Imaging and Translational Medicine (MITM), Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, P.R. China
| | - Yang Yang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China
- School of Materials Science and Engineering, Tongji University, Shanghai, 201804, P.R. China
| | - Zhongliang Wang
- Lab of Molecular Imaging and Translational Medicine (MITM), Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, P.R. China
- International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment, Xidian University, Xi'an, Shaanxi 710126, P.R. China
- Academy of Advanced Interdisciplinary Research, Xidian University, Xi'an, Shaanxi 710071, P.R. China
| |
Collapse
|