201
|
Chen S, Liu L, Zhang W, Sun L, Wang F, Zhao Y, Liu S, Zhao L, Xu Y. Suppressed dendritic cell functions by cystatin C lead to compromised immunity in vivo. Cell Immunol 2020; 349:104049. [PMID: 32057353 DOI: 10.1016/j.cellimm.2020.104049] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 01/19/2020] [Accepted: 01/26/2020] [Indexed: 12/30/2022]
Abstract
Pathogenic microorganisms utilize multiple approaches to break down host immunity in favor of their invasion, of which, cystatin C is one of the soluble factors secreted by parasites reported to affect host immunity in vivo. The cellular targets and mechanisms of action in vivo of cystatin C, however, are far from clear. As professional antigen-presenting cells, dendritic cells (DCs) are first immune cells that contact foreign pathogenic agents or their products to initiate immune responses. We previously reported that cystatin C can regulate the functions of DCs in terms of suppressed CD4+ T cell activation but enhanced Th1/Th17 differentiation via different mechanisms. Here, we further verified these regulatory effects of cystatin C on DCs in vivo. We found that the suppressive role of DC-mediated CD4+ T cell proliferation by cystatin C was partly cell-contact independent and extended to CD8+ T cells in vivo. Although cystatin C-overexpressing DCs trafficked equally as their mock-transduced counterparts, their adoptive transfer suppressed CD8+ T cell immunity and resulted in compromised tumor rejection in both vaccination and treatment regimes. Compared with their role in promoting Th17 differentiation in vivo, cystatin C-transduced DCs had far greater ability to induce T regulatory cells (Tregs), leading to collectively a higher Treg/Th17 ratio in an adoptively transferred disease model, and thus relieved Th17-dependent autoimmunity. Collectively, these data demonstrated strong in vivo evidences for immune regulatory roles of cystatin C in DCs and provided theoretical basis for the application of cystatin C-transduced cell therapy in the treatment or remission of certain autoimmune diseases. (246).
Collapse
Affiliation(s)
- Shun Chen
- Anhui Provincial Key Laboratory for Conservation and Exploitation of Biological Resources, College of Life Science, Anhui Normal University, Wuhu 241000, China
| | - Lei Liu
- Anhui Provincial Key Laboratory for Conservation and Exploitation of Biological Resources, College of Life Science, Anhui Normal University, Wuhu 241000, China
| | - Wenjie Zhang
- Anhui Provincial Key Laboratory for Conservation and Exploitation of Biological Resources, College of Life Science, Anhui Normal University, Wuhu 241000, China
| | - Li Sun
- Anhui Provincial Key Laboratory for Conservation and Exploitation of Biological Resources, College of Life Science, Anhui Normal University, Wuhu 241000, China
| | - Fengge Wang
- Anhui Provincial Key Laboratory for Conservation and Exploitation of Biological Resources, College of Life Science, Anhui Normal University, Wuhu 241000, China
| | - Yanfang Zhao
- Anhui Provincial Key Laboratory for Conservation and Exploitation of Biological Resources, College of Life Science, Anhui Normal University, Wuhu 241000, China
| | - Shan Liu
- Anhui Provincial Key Laboratory for Conservation and Exploitation of Biological Resources, College of Life Science, Anhui Normal University, Wuhu 241000, China
| | - Lin Zhao
- Anhui Provincial Key Laboratory for Conservation and Exploitation of Biological Resources, College of Life Science, Anhui Normal University, Wuhu 241000, China
| | - Yuekang Xu
- Anhui Provincial Key Laboratory for Conservation and Exploitation of Biological Resources, College of Life Science, Anhui Normal University, Wuhu 241000, China.
| |
Collapse
|
202
|
Integrated single cell analysis of blood and cerebrospinal fluid leukocytes in multiple sclerosis. Nat Commun 2020; 11:247. [PMID: 31937773 PMCID: PMC6959356 DOI: 10.1038/s41467-019-14118-w] [Citation(s) in RCA: 257] [Impact Index Per Article: 51.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 12/12/2019] [Indexed: 12/30/2022] Open
Abstract
Cerebrospinal fluid (CSF) protects the central nervous system (CNS) and analyzing CSF aids the diagnosis of CNS diseases, but our understanding of CSF leukocytes remains superficial. Here, using single cell transcriptomics, we identify a specific location-associated composition and transcriptome of CSF leukocytes. Multiple sclerosis (MS) – an autoimmune disease of the CNS – increases transcriptional diversity in blood, but increases cell type diversity in CSF including a higher abundance of cytotoxic phenotype T helper cells. An analytical approach, named cell set enrichment analysis (CSEA) identifies a cluster-independent increase of follicular (TFH) cells potentially driving the known expansion of B lineage cells in the CSF in MS. In mice, TFH cells accordingly promote B cell infiltration into the CNS and the severity of MS animal models. Immune mechanisms in MS are thus highly compartmentalized and indicate ongoing local T/B cell interaction. Here the authors provide a single-cell characterization of cerebrospinal fluid and blood of newly diagnosed multiple sclerosis (MS) patients, revealing altered composition of lymphocyte and monocyte subsets, validated by other methods including the interrogation of the TFH subset in mouse models of MS.
Collapse
|
203
|
Colbert JD, Cruz FM, Rock KL. Cross-presentation of exogenous antigens on MHC I molecules. Curr Opin Immunol 2020; 64:1-8. [PMID: 31927332 DOI: 10.1016/j.coi.2019.12.005] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 12/09/2019] [Indexed: 12/11/2022]
Abstract
In order to get recognized by CD8 T cells, most cells present peptides from endogenously expressed self or foreign proteins on MHC class I molecules. However, specialized antigen-presenting cells, such as DCs and macrophages, can present exogenous antigen on MHC-I in a process called cross-presentation. This pathway plays key roles in antimicrobial and antitumor immunity, and also immune tolerance. Recent advances have broadened our understanding of the underlying mechanisms of cross-presentation. Here, we review some of these recent advances, including the distinct pathways that result in the cross-priming of CD8 T cells and the source of the class I molecules presenting exogenous peptides.
Collapse
Affiliation(s)
- Jeff D Colbert
- Department of Pathology, University of Massachusetts Medical School, United States
| | - Freidrich M Cruz
- Department of Pathology, University of Massachusetts Medical School, United States
| | - Kenneth L Rock
- Department of Pathology, University of Massachusetts Medical School, United States.
| |
Collapse
|
204
|
DeVito NC, Plebanek MP, Theivanthiran B, Hanks BA. Role of Tumor-Mediated Dendritic Cell Tolerization in Immune Evasion. Front Immunol 2019; 10:2876. [PMID: 31921140 PMCID: PMC6914818 DOI: 10.3389/fimmu.2019.02876] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 11/22/2019] [Indexed: 12/13/2022] Open
Abstract
The vast majority of cancer-related deaths are due to metastasis, a process that requires evasion of the host immune system. In addition, a significant percentage of cancer patients do not benefit from our current immunotherapy arsenal due to either primary or secondary immunotherapy resistance. Importantly, select subsets of dendritic cells (DCs) have been shown to be indispensable for generating responses to checkpoint inhibitor immunotherapy. These observations are consistent with the critical role of DCs in antigen cross-presentation and the generation of effective anti-tumor immunity. Therefore, the evolution of efficient tumor-extrinsic mechanisms to modulate DCs is expected to be a potent strategy to escape immunosurveillance and various immunotherapy strategies. Despite this critical role, little is known regarding the methods by which cancers subvert DC function. Herein, we focus on those select mechanisms utilized by developing cancers to co-opt and tolerize local DC populations. We discuss the reported mechanisms utilized by cancers to induce DC tolerization in the tumor microenvironment, describing various parallels between the evolution of these mechanisms and the process of mesenchymal transformation involved in tumorigenesis and metastasis, and we highlight strategies to reverse these mechanisms in order to enhance the efficacy of the currently available checkpoint inhibitor immunotherapies.
Collapse
Affiliation(s)
- Nicholas C. DeVito
- Division of Medical Oncology, Department of Medicine, Duke Cancer Institute, Durham, NC, United States
| | - Michael P. Plebanek
- Division of Medical Oncology, Department of Medicine, Duke Cancer Institute, Durham, NC, United States
| | - Bala Theivanthiran
- Division of Medical Oncology, Department of Medicine, Duke Cancer Institute, Durham, NC, United States
| | - Brent A. Hanks
- Division of Medical Oncology, Department of Medicine, Duke Cancer Institute, Durham, NC, United States
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, United States
| |
Collapse
|
205
|
Xue D, Tabib T, Morse C, Lafyatis R. Transcriptome landscape of myeloid cells in human skin reveals diversity, rare populations and putative DC progenitors. J Dermatol Sci 2019; 97:41-49. [PMID: 31836271 DOI: 10.1016/j.jdermsci.2019.11.012] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 11/08/2019] [Accepted: 11/25/2019] [Indexed: 01/21/2023]
Abstract
BACKGROUND The heterogeneous functions of dermal myeloid cells in antigen presentation, and scavenging pathogens and cell debris places them centrally in cutaneous inflammation. Single cell transcriptomics can provide new understanding of the heterogeneity and function of yet incompletely understood human dermal myeloid cell subsets. OBJECTIVE Investigate the transcriptome landscape of myeloid cells in healthy human skin. METHODS Single cell RNA-sequencing was performed on skin biopsies from ten healthy donors and analyzed to identify myeloid cell populations. RESULTS One LIN- HLA-DR+ cluster with expression of myeloid-specific genes was identified as a cluster of myeloid cells. Upon reanalysis of this cluster, we identified three macrophage subsets, marked by high expression of CCR1, MARCO or TREM2; and six dendritic cell subsets, marked by high expression of CLEC9A, CXorf21, MCOLN2, LAMP3, KIAA0101 and Langerin, representing respectively cDC1, two subsets of cDC2, a novel DC type, a cluster of proliferating DC, and a Langerhans cell subset. GO term analysis indicated specialized functions for the discrete rare populations of myeloid cells: TREM2 Mφ in lipid metabolism and LAMP3 DC as a mature cDC. Proliferating DCs appeared to represent cDC2 progenitors. CONCLUSION The transcriptional landscape of myeloid cell populations in human skin indicates several, novel populations with specialized functions, as well as a rare proliferating DC population that likely accounts for local regeneration or expansion of dermal DCs. We provide robust gene expression markers for each of these populations that should permit better understandings of their roles in various homeostatic and pathologic immune processes in the skin.
Collapse
Affiliation(s)
- Dan Xue
- Division of Rheumatology and Clinical Rheumatology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA; The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Tracy Tabib
- Division of Rheumatology and Clinical Rheumatology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Christina Morse
- Division of Rheumatology and Clinical Rheumatology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Robert Lafyatis
- Division of Rheumatology and Clinical Rheumatology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
206
|
Enders M, Franken L, Philipp MS, Kessler N, Baumgart AK, Eichler M, Wiertz EJH, Garbi N, Kurts C. Splenic Red Pulp Macrophages Cross-Prime Early Effector CTL That Provide Rapid Defense against Viral Infections. THE JOURNAL OF IMMUNOLOGY 2019; 204:87-100. [PMID: 31776205 DOI: 10.4049/jimmunol.1900021] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 10/29/2019] [Indexed: 12/13/2022]
Abstract
Cross-presentation allows dendritic cells (DCs) to present peptides derived from endocytosed Ags on MHC class I molecules, which is important for activating CTL against viral infections and tumors. Type 1 classical DCs (cDC1), which depend on the transcription factor Batf3, are considered the main cross-presenting cells. In this study, we report that soluble Ags are efficiently cross-presented also by transcription factor SpiC-dependent red pulp macrophages (RPM) of the spleen. In contrast to cDC1, RPM used the mannose receptor for Ag uptake and employed the proteasome- and TAP-dependent cytosolic cross-presentation pathway, previously shown to be used in vitro by bone marrow-derived DCs. In an in vivo vaccination model, both cDC1 and RPM cross-primed CTL efficiently but with distinct kinetics. Within a few days, RPM induced very early effector CTL of a distinct phenotype (Ly6A/E+ Ly6C(+) KLRG1- CD127- CX3CR1- Grz-B+). In an adenoviral infection model, such CTL contained the early viral spread, whereas cDC1 induced short-lived effector CTL that eventually cleared the virus. RPM-induced early effector CTL also contributed to the endogenous antiviral response but not to CTL memory generation. In conclusion, RPM can contribute to antiviral immunity by generating a rapid CTL defense force that contains the virus until cDC1-induced CTL are available to eliminate it. This function can be harnessed for improving vaccination strategies aimed at inducing CTL.
Collapse
Affiliation(s)
- Marika Enders
- Institut für Experimentelle Immunologie, Rheinische Friedrich-Wilhelms-Universität, 53127 Bonn, Germany; and
| | - Lars Franken
- Institut für Experimentelle Immunologie, Rheinische Friedrich-Wilhelms-Universität, 53127 Bonn, Germany; and
| | - Marie-Sophie Philipp
- Institut für Experimentelle Immunologie, Rheinische Friedrich-Wilhelms-Universität, 53127 Bonn, Germany; and
| | - Nina Kessler
- Institut für Experimentelle Immunologie, Rheinische Friedrich-Wilhelms-Universität, 53127 Bonn, Germany; and
| | - Ann-Kathrin Baumgart
- Institut für Experimentelle Immunologie, Rheinische Friedrich-Wilhelms-Universität, 53127 Bonn, Germany; and
| | - Melanie Eichler
- Institut für Experimentelle Immunologie, Rheinische Friedrich-Wilhelms-Universität, 53127 Bonn, Germany; and
| | - Emmanuel J H Wiertz
- Department of Medical Microbiology, University Medical Center Utrecht, 3584 CX Utrecht, the Netherlands
| | - Natalio Garbi
- Institut für Experimentelle Immunologie, Rheinische Friedrich-Wilhelms-Universität, 53127 Bonn, Germany; and
| | - Christian Kurts
- Institut für Experimentelle Immunologie, Rheinische Friedrich-Wilhelms-Universität, 53127 Bonn, Germany; and
| |
Collapse
|
207
|
Perez CR, De Palma M. Engineering dendritic cell vaccines to improve cancer immunotherapy. Nat Commun 2019; 10:5408. [PMID: 31776331 PMCID: PMC6881351 DOI: 10.1038/s41467-019-13368-y] [Citation(s) in RCA: 331] [Impact Index Per Article: 55.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 11/06/2019] [Indexed: 12/19/2022] Open
Abstract
At the interface between the innate and adaptive immune system, dendritic cells (DCs) play key roles in tumour immunity and hold a hitherto unrealized potential for cancer immunotherapy. Here we review the role of distinct DC subsets in the tumour microenvironment, with special emphasis on conventional type 1 DCs. Integrating new knowledge of DC biology and advancements in cell engineering, we provide a blueprint for the rational design of optimized DC vaccines for personalized cancer medicine. Dendritic cells (DCs) have been explored as a promising strategy for cancer immunotherapy. In this Perspective, the authors discuss the different types of DCs and their therapeutic potential in the context of vaccines for personalized cancer therapy.
Collapse
Affiliation(s)
- Caleb R Perez
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland
| | - Michele De Palma
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland.
| |
Collapse
|
208
|
Li H, Rukina D, David FPA, Li TY, Oh CM, Gao AW, Katsyuba E, Bou Sleiman M, Komljenovic A, Huang Q, Williams RW, Robinson-Rechavi M, Schoonjans K, Morgenthaler S, Auwerx J. Identifying gene function and module connections by the integration of multispecies expression compendia. Genome Res 2019; 29:2034-2045. [PMID: 31754022 PMCID: PMC6886503 DOI: 10.1101/gr.251983.119] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 10/31/2019] [Indexed: 12/13/2022]
Abstract
The functions of many eukaryotic genes are still poorly understood. Here, we developed and validated a new method, termed GeneBridge, which is based on two linked approaches to impute gene function and bridge genes with biological processes. First, Gene-Module Association Determination (G-MAD) allows the annotation of gene function. Second, Module-Module Association Determination (M-MAD) allows predicting connectivity among modules. We applied the GeneBridge tools to large-scale multispecies expression compendia—1700 data sets with over 300,000 samples from human, mouse, rat, fly, worm, and yeast—collected in this study. G-MAD identifies novel functions of genes—for example, DDT in mitochondrial respiration and WDFY4 in T cell activation—and also suggests novel components for modules, such as for cholesterol biosynthesis. By applying G-MAD on data sets from respective tissues, tissue-specific functions of genes were identified—for instance, the roles of EHHADH in liver and kidney, as well as SLC6A1 in brain and liver. Using M-MAD, we identified a list of module-module associations, such as those between mitochondria and proteasome, mitochondria and histone demethylation, as well as ribosomes and lipid biosynthesis. The GeneBridge tools together with the expression compendia are available as an open resource, which will facilitate the identification of connections linking genes, modules, phenotypes, and diseases.
Collapse
Affiliation(s)
- Hao Li
- Laboratory of Integrative Systems Physiology, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne 1015, Switzerland
| | - Daria Rukina
- Institute of Mathematics, École Polytechnique Fédérale de Lausanne, Lausanne 1015, Switzerland
| | - Fabrice P A David
- Gene Expression Core Facility, École Polytechnique Fédérale de Lausanne, Lausanne 1015, Switzerland.,SV-IT, École Polytechnique Fédérale de Lausanne, Lausanne 1015, Switzerland.,Swiss Institute of Bioinformatics, Lausanne 1015, Switzerland
| | - Terytty Yang Li
- Laboratory of Integrative Systems Physiology, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne 1015, Switzerland
| | - Chang-Myung Oh
- Laboratory of Integrative Systems Physiology, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne 1015, Switzerland
| | - Arwen W Gao
- Laboratory of Integrative Systems Physiology, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne 1015, Switzerland
| | - Elena Katsyuba
- Laboratory of Integrative Systems Physiology, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne 1015, Switzerland
| | - Maroun Bou Sleiman
- Laboratory of Integrative Systems Physiology, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne 1015, Switzerland
| | - Andrea Komljenovic
- Swiss Institute of Bioinformatics, Lausanne 1015, Switzerland.,Department of Ecology and Evolution, University of Lausanne, Lausanne 1015, Switzerland
| | - Qingyao Huang
- Laboratory of Metabolic Signaling, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne 1015, Switzerland
| | - Robert W Williams
- Department of Genetics, Genomics and Informatics, University of Tennessee, Memphis, Tennessee 38163, USA
| | - Marc Robinson-Rechavi
- Swiss Institute of Bioinformatics, Lausanne 1015, Switzerland.,Department of Ecology and Evolution, University of Lausanne, Lausanne 1015, Switzerland
| | - Kristina Schoonjans
- Laboratory of Metabolic Signaling, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne 1015, Switzerland
| | - Stephan Morgenthaler
- Institute of Mathematics, École Polytechnique Fédérale de Lausanne, Lausanne 1015, Switzerland
| | - Johan Auwerx
- Laboratory of Integrative Systems Physiology, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne 1015, Switzerland
| |
Collapse
|
209
|
Imai J, Otani M, Sakai T. Distinct Subcellular Compartments of Dendritic Cells Used for Cross-Presentation. Int J Mol Sci 2019; 20:ijms20225606. [PMID: 31717517 PMCID: PMC6888166 DOI: 10.3390/ijms20225606] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 10/29/2019] [Accepted: 11/06/2019] [Indexed: 02/06/2023] Open
Abstract
Dendritic cells (DCs) present exogenous protein-derived peptides on major histocompatibility complex class I molecules to prime naïve CD8+ T cells. This DC specific ability, called cross-presentation (CP), is important for the activation of cell-mediated immunity and the induction of self-tolerance. Recent research revealed that endoplasmic reticulum-associated degradation (ERAD), which was first identified as a part of the unfolded protein response—a quality control system in the ER—plays a pivotal role in the processing of exogenous proteins in CP. Moreover, DCs express a variety of immuno-modulatory molecules and cytokines to regulate T cell activation in response to the environment. Although both CP and immuno-modulation are indispensable, contrasting ER conditions are required for their correct activity. Since ERAD substrates are unfolded proteins, their accumulation may result in ER stress, impaired cell homeostasis, and eventually apoptosis. In contrast, activation of the unfolded protein response should be inhibited for DCs to express immuno-modulatory molecules and cytokines. Here, we review recent advances on antigen CP, focusing on intracellular transport routes for exogenous antigens and distinctive subcellular compartments involved in ERAD.
Collapse
Affiliation(s)
- Jun Imai
- Correspondence: ; Tel.: +81-27-352-1180
| | | | | |
Collapse
|
210
|
Guermonprez P, Gerber-Ferder Y, Vaivode K, Bourdely P, Helft J. Origin and development of classical dendritic cells. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2019; 349:1-54. [PMID: 31759429 DOI: 10.1016/bs.ircmb.2019.08.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Classical dendritic cells (cDCs) are mononuclear phagocytes of hematopoietic origin specialized in the induction and regulation of adaptive immunity. Initially defined by their unique T cell activation potential, it became quickly apparent that cDCs would be difficult to distinguish from other phagocyte lineages, by solely relying on marker-based approaches. Today, cDCs definition increasingly embed their unique ontogenetic features. A growing consensus defines cDCs on multiple criteria including: (1) dependency on the fms-like tyrosine kinase 3 ligand hematopoietic growth factor, (2) development from the common DC bone marrow progenitor, (3) constitutive expression of the transcription factor ZBTB46 and (4) the ability to induce, after adequate stimulation, the activation of naïve T lymphocytes. cDCs are a heterogeneous cell population that contains two main subsets, named type 1 and type 2 cDCs, arising from divergent ontogenetic pathways and populating multiple lymphoid and non-lymphoid tissues. Here, we present recent knowledge on the cellular and molecular pathways controlling the specification and commitment of cDC subsets from murine and human hematopoietic stem cells.
Collapse
Affiliation(s)
- Pierre Guermonprez
- King's College London, Centre for Inflammation Biology and Cancer Immunology, The Peter Gorer Department of Immmunobiology, London, United Kingdom; Université de Paris, CNRS ERL8252, INSERM1149, Centre for Inflammation Research, Paris, France.
| | - Yohan Gerber-Ferder
- Institut Curie, PSL Research University, INSERM U932, SiRIC «Translational Immunotherapy Team», Paris, France; Université de Paris, Immunity and Cancer Department, INSERM U932, Institut Curie, Paris, France
| | - Kristine Vaivode
- King's College London, Centre for Inflammation Biology and Cancer Immunology, The Peter Gorer Department of Immmunobiology, London, United Kingdom
| | - Pierre Bourdely
- King's College London, Centre for Inflammation Biology and Cancer Immunology, The Peter Gorer Department of Immmunobiology, London, United Kingdom
| | - Julie Helft
- Institut Curie, PSL Research University, INSERM U932, SiRIC «Translational Immunotherapy Team», Paris, France; Université de Paris, Immunity and Cancer Department, INSERM U932, Institut Curie, Paris, France.
| |
Collapse
|
211
|
Bagadia P, Huang X, Liu TT, Murphy KM. Shared Transcriptional Control of Innate Lymphoid Cell and Dendritic Cell Development. Annu Rev Cell Dev Biol 2019; 35:381-406. [PMID: 31283378 PMCID: PMC6886469 DOI: 10.1146/annurev-cellbio-100818-125403] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Innate immunity and adaptive immunity consist of highly specialized immune lineages that depend on transcription factors for both function and development. In this review, we dissect the similarities between two innate lineages, innate lymphoid cells (ILCs) and dendritic cells (DCs), and an adaptive immune lineage, T cells. ILCs, DCs, and T cells make up four functional immune modules and interact in concert to produce a specified immune response. These three immune lineages also share transcriptional networks governing the development of each lineage, and we discuss the similarities between ILCs and DCs in this review.
Collapse
Affiliation(s)
- Prachi Bagadia
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri 63108, USA;
| | - Xiao Huang
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri 63108, USA;
| | - Tian-Tian Liu
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri 63108, USA;
| | - Kenneth M Murphy
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri 63108, USA;
- Howard Hughes Medical Institute, Washington University School of Medicine, St. Louis, Missouri 63108, USA
| |
Collapse
|
212
|
Vanpouille-Box C, Hoffmann JA, Galluzzi L. Pharmacological modulation of nucleic acid sensors - therapeutic potential and persisting obstacles. Nat Rev Drug Discov 2019; 18:845-867. [PMID: 31554927 DOI: 10.1038/s41573-019-0043-2] [Citation(s) in RCA: 140] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/09/2019] [Indexed: 02/08/2023]
Abstract
Nucleic acid sensors, primarily TLR and RLR family members, as well as cGAS-STING signalling, play a critical role in the preservation of cellular and organismal homeostasis. Accordingly, deregulated nucleic acid sensing contributes to the origin of a diverse range of disorders, including infectious diseases, as well as cardiovascular, autoimmune and neoplastic conditions. Accumulating evidence indicates that normalizing aberrant nucleic acid sensing can mediate robust therapeutic effects. However, targeting nucleic acid sensors with pharmacological agents, such as STING agonists, presents multiple obstacles, including drug-, target-, disease- and host-related issues. Here, we discuss preclinical and clinical data supporting the potential of this therapeutic paradigm and highlight key limitations and possible strategies to overcome them.
Collapse
Affiliation(s)
- Claire Vanpouille-Box
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA.,Sandra and Edward Meyer Cancer Center, New York, NY, USA
| | - Jules A Hoffmann
- University of Strasbourg Institute for Advanced Studies, Strasbourg, France.,CNRS UPR 9022, Institute for Molecular and Cellular Biology, Strasbourg, France.,Sino-French Hoffmann Institute, Guangzhou Medical University, Guangzhou, China
| | - Lorenzo Galluzzi
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA. .,Sandra and Edward Meyer Cancer Center, New York, NY, USA. .,Department of Dermatology, Yale School of Medicine, New Haven, CT, USA. .,Université Paris Descartes, Paris, France.
| |
Collapse
|
213
|
Abstract
Rapid advances have been made to uncover the mechanisms that regulate dendritic cell (DC) development, and in turn, how models of development can be employed to define dendritic cell function. Models of DC development have been used to define the unique functions of DC subsets during immune responses to distinct pathogens. More recently, models of DC function have expanded to include their homeostatic and inflammatory physiology, modes of communication with various innate and adaptive immune lineages, and specialized functions across different lymphoid organs. New models of DC development call for revisions of previously accepted paradigms with respect to the ontogeny of plasmacytoid DC (pDC) and classical DC (cDC) subsets. By far, development of the cDC1 subset is best understood, and models have now been developed that can separate deficiencies in development from deficiencies in function. Such models are lacking for pDCs and cDC2s, limiting the depth of our understanding of their unique and essential roles during immune responses. If novel immunotherapies aim to harness the functions of human DCs, understanding of DC development will be essential to develop models DC function. Here we review emerging models of DC development and function.
Collapse
Affiliation(s)
- David A Anderson
- Department of Pathology and Immunology, School of Medicine, Washington University in St. Louis, St. Louis, MO, United States.
| | - Kenneth M Murphy
- Department of Pathology and Immunology, School of Medicine, Washington University in St. Louis, St. Louis, MO, United States; Howard Hughes Medical Institute, School of Medicine, Washington University in St. Louis, St. Louis, MO, United States
| |
Collapse
|
214
|
Balan S, Saxena M, Bhardwaj N. Dendritic cell subsets and locations. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2019; 348:1-68. [PMID: 31810551 DOI: 10.1016/bs.ircmb.2019.07.004] [Citation(s) in RCA: 219] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Dendritic cells (DCs) are a unique class of immune cells that act as a bridge between innate and adaptive immunity. The discovery of DCs by Cohen and Steinman in 1973 laid the foundation for DC biology, and the advances in the field identified different versions of DCs with unique properties and functions. DCs originate from hematopoietic stem cells, and their differentiation is modulated by Flt3L. They are professional antigen-presenting cells that patrol the environmental interphase, sites of infection, or infiltrate pathological tissues looking for antigens that can be used to activate effector cells. DCs are critical for the initiation of the cellular and humoral immune response and protection from infectious diseases or tumors. DCs can take up antigens using specialized surface receptors such as endocytosis receptors, phagocytosis receptors, and C type lectin receptors. Moreover, DCs are equipped with an array of extracellular and intracellular pattern recognition receptors for sensing different danger signals. Upon sensing the danger signals, DCs get activated, upregulate costimulatory molecules, produce various cytokines and chemokines, take up antigen and process it and migrate to lymph nodes where they present antigens to both CD8 and CD4 T cells. DCs are classified into different subsets based on an integrated approach considering their surface phenotype, expression of unique and conserved molecules, ontogeny, and functions. They can be broadly classified as conventional DCs consisting of two subsets (DC1 and DC2), plasmacytoid DCs, inflammatory DCs, and Langerhans cells.
Collapse
Affiliation(s)
- Sreekumar Balan
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States.
| | - Mansi Saxena
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Nina Bhardwaj
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States; Parker Institute for Cancer Immunotherapy, San Francisco, CA, United States
| |
Collapse
|
215
|
Durai V, Bagadia P, Granja JM, Satpathy AT, Kulkarni DH, Davidson JT, Wu R, Patel SJ, Iwata A, Liu TT, Huang X, Briseño CG, Grajales-Reyes GE, Wöhner M, Tagoh H, Kee BL, Newberry RD, Busslinger M, Chang HY, Murphy TL, Murphy KM. Cryptic activation of an Irf8 enhancer governs cDC1 fate specification. Nat Immunol 2019; 20:1161-1173. [PMID: 31406378 PMCID: PMC6707878 DOI: 10.1038/s41590-019-0450-x] [Citation(s) in RCA: 122] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 06/17/2019] [Indexed: 01/25/2023]
Abstract
Induction of the transcription factor Irf8 in the common dendritic cell progenitor (CDP) is required for classical type 1 dendritic cell (cDC1) fate specification, but the mechanisms controlling this induction are unclear. In the present study Irf8 enhancers were identified via chromatin profiling of dendritic cells and CRISPR/Cas9 genome editing was used to assess their roles in Irf8 regulation. An enhancer 32 kilobases (kb) downstream of the Irf8 transcriptional start site (+32-kb Irf8) that was active in mature cDC1s was required for the development of this lineage, but not for its specification. Instead, a +41-kb Irf8 enhancer, previously thought to be active only in plasmacytoid dendritic cells, was found to also be transiently accessible in cDC1 progenitors, and deleting this enhancer prevented the induction of Irf8 in CDPs and abolished cDC1 specification. Thus, cryptic activation of the +41-kb Irf8 enhancer in dendritic cell progenitors is responsible for cDC1 fate specification.
Collapse
Affiliation(s)
- Vivek Durai
- Department of Pathology and Immunology, Washington University in St Louis, School of Medicine, St Louis, MO, USA
| | - Prachi Bagadia
- Department of Pathology and Immunology, Washington University in St Louis, School of Medicine, St Louis, MO, USA
| | - Jeffrey M Granja
- Center for Personal Dynamic Regulomes, Stanford University School of Medicine, Stanford, CA, USA
- Deparment of Genetics, Stanford University School of Medicine, Stanford, CA, USA
- Biophysics Program, Stanford University School of Medicine, Stanford, CA, USA
| | - Ansuman T Satpathy
- Center for Personal Dynamic Regulomes, Stanford University School of Medicine, Stanford, CA, USA
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Devesha H Kulkarni
- Division of Gastroenterology, John T. Milliken Department of Medicine, Washington University in St Louis, School of Medicine, St Louis, MO, USA
| | - Jesse T Davidson
- Department of Pathology and Immunology, Washington University in St Louis, School of Medicine, St Louis, MO, USA
| | - Renee Wu
- Department of Pathology and Immunology, Washington University in St Louis, School of Medicine, St Louis, MO, USA
| | - Swapneel J Patel
- Division of Rheumatology, John T. Milliken Department of Medicine, Washington University in St Louis, School of Medicine, St Louis, MO, USA
| | - Arifumi Iwata
- Department of Pathology and Immunology, Washington University in St Louis, School of Medicine, St Louis, MO, USA
| | - Tian-Tian Liu
- Department of Pathology and Immunology, Washington University in St Louis, School of Medicine, St Louis, MO, USA
- Howard Hughes Medical Institute, Washington University in St Louis, School of Medicine, St Louis, MO, USA
| | - Xiao Huang
- Department of Pathology and Immunology, Washington University in St Louis, School of Medicine, St Louis, MO, USA
| | - Carlos G Briseño
- Department of Pathology and Immunology, Washington University in St Louis, School of Medicine, St Louis, MO, USA
| | - Gary E Grajales-Reyes
- Department of Pathology and Immunology, Washington University in St Louis, School of Medicine, St Louis, MO, USA
| | - Miriam Wöhner
- Research Institute of Molecular Pathology, Campus-Vienna-Biocenter 1, Vienna, Austria
| | - Hiromi Tagoh
- Research Institute of Molecular Pathology, Campus-Vienna-Biocenter 1, Vienna, Austria
| | - Barbara L Kee
- Department of Pathology and Committee on Immunology, University of Chicago, Chicago, IL, USA
| | - Rodney D Newberry
- Division of Gastroenterology, John T. Milliken Department of Medicine, Washington University in St Louis, School of Medicine, St Louis, MO, USA
| | - Meinrad Busslinger
- Research Institute of Molecular Pathology, Campus-Vienna-Biocenter 1, Vienna, Austria
| | - Howard Y Chang
- Center for Personal Dynamic Regulomes, Stanford University School of Medicine, Stanford, CA, USA
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Theresa L Murphy
- Department of Pathology and Immunology, Washington University in St Louis, School of Medicine, St Louis, MO, USA
| | - Kenneth M Murphy
- Department of Pathology and Immunology, Washington University in St Louis, School of Medicine, St Louis, MO, USA.
- Howard Hughes Medical Institute, Washington University in St Louis, School of Medicine, St Louis, MO, USA.
| |
Collapse
|
216
|
Wculek SK, Cueto FJ, Mujal AM, Melero I, Krummel MF, Sancho D. Dendritic cells in cancer immunology and immunotherapy. Nat Rev Immunol 2019; 20:7-24. [PMID: 31467405 DOI: 10.1038/s41577-019-0210-z] [Citation(s) in RCA: 1663] [Impact Index Per Article: 277.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/22/2019] [Indexed: 02/07/2023]
Abstract
Dendritic cells (DCs) are a diverse group of specialized antigen-presenting cells with key roles in the initiation and regulation of innate and adaptive immune responses. As such, there is currently much interest in modulating DC function to improve cancer immunotherapy. Many strategies have been developed to target DCs in cancer, such as the administration of antigens with immunomodulators that mobilize and activate endogenous DCs, as well as the generation of DC-based vaccines. A better understanding of the diversity and functions of DC subsets and of how these are shaped by the tumour microenvironment could lead to improved therapies for cancer. Here we will outline how different DC subsets influence immunity and tolerance in cancer settings and discuss the implications for both established cancer treatments and novel immunotherapy strategies.
Collapse
Affiliation(s)
- Stefanie K Wculek
- Immunobiology Laboratory, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Francisco J Cueto
- Immunobiology Laboratory, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Adriana M Mujal
- Department of Pathology, University of California, San Francisco, CA, USA.,Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ignacio Melero
- Division of Immunology and Immunotherapy, Center for Applied Medical Research, University of Navarra, Pamplona, Spain.,Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain.,University Clinic, University of Navarra, Pamplona, Spain.,Centro de Investigación Biomédica en Red Cáncer, Madrid, Spain
| | - Matthew F Krummel
- Department of Pathology, University of California, San Francisco, CA, USA
| | - David Sancho
- Immunobiology Laboratory, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain.
| |
Collapse
|
217
|
Shi L, Chen X, Zang A, Li T, Hu Y, Ma S, Lü M, Yin H, Wang H, Zhang X, Zhang B, Leng Q, Yang J, Xiao H. TSC1/mTOR-controlled metabolic-epigenetic cross talk underpins DC control of CD8+ T-cell homeostasis. PLoS Biol 2019; 17:e3000420. [PMID: 31433805 PMCID: PMC6719877 DOI: 10.1371/journal.pbio.3000420] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 09/03/2019] [Accepted: 08/01/2019] [Indexed: 02/07/2023] Open
Abstract
Dendritic cells (DCs) play pivotal roles in T-cell homeostasis and activation, and metabolic programing has been recently linked to DC development and function. However, the metabolic underpinnings corresponding to distinct DC functions remain largely unresolved. Here, we demonstrate a special metabolic–epigenetic coupling mechanism orchestrated by tuberous sclerosis complex subunit 1 (TSC1)-mechanistic target of rapamycin (mTOR) for homeostatic DC function. Specific ablation of Tsc1 in the DC compartment (Tsc1DC-KO) largely preserved DC development but led to pronounced reduction in naïve and memory–phenotype cluster of differentiation (CD)8+ T cells, a defect fully rescued by concomitant ablation of mTor or regulatory associated protein of MTOR, complex 1 (Rptor) in DCs. Moreover, Tsc1DC-KO mice were unable to launch efficient antigen-specific CD8+ T effector responses required for containing Listeria monocytogenes and B16 melanomas. Mechanistically, our data suggest that the steady-state DCs tend to tune down de novo fatty acid synthesis and divert acetyl-coenzyme A (acetyl-CoA) for histone acetylation, a process critically controlled by TSC1-mTOR. Correspondingly, TSC1 deficiency elevated acetyl-CoA carboxylase 1 (ACC1) expression and fatty acid synthesis, leading to impaired epigenetic imprinting on selective genes such as major histocompatibility complex (MHC)-I and interleukin (IL)-7. Remarkably, tempering ACC1 activity was able to divert cytosolic acetyl-CoA for histone acetylation and restore the gene expression program compromised by TSC1 deficiency. Taken together, our results uncover a crucial role for TSC1-mTOR in metabolic programing of the homeostatic DCs for T-cell homeostasis and implicate metabolic-coupled epigenetic imprinting as a paradigm for DC specification. Dendritic cells (DCs) play pivotal roles in T cell homeostasis and activation, but the basis of the metabolic programming of distinct DC functions remains unclear. This study identifies a novel metabolic-epigenetic node enabling DC control of CD8 T cell homeostasis, involving mTOR-ACC1 as a rheostat that balances fatty-acid synthesis and histone acetylation.
Collapse
Affiliation(s)
- Lei Shi
- School of Life Sciences, Lanzhou University, Lanzhou, Gansu, China
- CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai; CAS Center for Excellence in Molecular Cell Science; University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Xia Chen
- School of Life Sciences, Lanzhou University, Lanzhou, Gansu, China
- CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai; CAS Center for Excellence in Molecular Cell Science; University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Aiping Zang
- CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai; CAS Center for Excellence in Molecular Cell Science; University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Tiantian Li
- CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai; CAS Center for Excellence in Molecular Cell Science; University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yanxiang Hu
- Department of Immunology, Medical College of Qingdao University, Qingdao, Shandong, China
| | - Shixin Ma
- CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai; CAS Center for Excellence in Molecular Cell Science; University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Mengdie Lü
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, State Key Laboratory of Respiratory Diseases, Guangzhou, Guangdong, China
| | - Huiyong Yin
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Haikun Wang
- CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai; CAS Center for Excellence in Molecular Cell Science; University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Xiaoming Zhang
- CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai; CAS Center for Excellence in Molecular Cell Science; University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Bei Zhang
- Department of Immunology, Medical College of Qingdao University, Qingdao, Shandong, China
| | - Qibin Leng
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, State Key Laboratory of Respiratory Diseases, Guangzhou, Guangdong, China
- * E-mail: (HX); (JY); (QL)
| | - Jinbo Yang
- School of Life Sciences, Lanzhou University, Lanzhou, Gansu, China
- * E-mail: (HX); (JY); (QL)
| | - Hui Xiao
- CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai; CAS Center for Excellence in Molecular Cell Science; University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
- * E-mail: (HX); (JY); (QL)
| |
Collapse
|
218
|
Kotsias F, Cebrian I, Alloatti A. Antigen processing and presentation. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2019; 348:69-121. [PMID: 31810556 DOI: 10.1016/bs.ircmb.2019.07.005] [Citation(s) in RCA: 118] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Dendritic cells are at the center of immune responses. They are defined by their ability to sense the environment, take up and process antigen, migrate to secondary lymphoid organs, where they present antigens to the adaptive immune system. In particular, they present lipids and proteins from pathogens, which they encountered in peripheral tissues, to T cells in order to induce a specific effector immune response. These complex antigens need to be broken down into peptides of a certain length in association with Major Histocompatibility Complex (MHC) molecules. Presentation of MHC/antigen complexes alongside costimulatory molecules and secretion of proinflammatory cytokines will induce an appropriate immune response. This interaction between dendritic cells and T cells takes place at defined locations within secondary lymphoid organs. In this review, we discuss the current knowledge and recent advances on the cellular and molecular mechanisms that underlie antigen processing and the subsequent presentation to T lymphocytes.
Collapse
Affiliation(s)
- Fiorella Kotsias
- Cátedra de Virología, Facultad de Ciencias Veterinarias, Universidad de Buenos Aires (UBA), Buenos Aires, Argentina; Instituto de Investigaciones en Producción Animal (INPA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-Universidad de Buenos Aires (UBA), Buenos Aires, Argentina
| | - Ignacio Cebrian
- Facultad de Ciencias Médicas, Instituto de Histología y Embriología de Mendoza (IHEM)-CONICET/Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Andrés Alloatti
- Facultad de Ciencias Médicas, Instituto de Inmunología Clínica y Experimental de Rosario (IDICER)-CONICET/Universidad Nacional de Rosario, Rosario, Argentina.
| |
Collapse
|
219
|
Ou P, Wen L, Liu X, Huang J, Huang X, Su C, Wang L, Ni H, Reizis B, Yang CY. Thioesterase PPT1 balances viral resistance and efficient T cell crosspriming in dendritic cells. J Exp Med 2019; 216:2091-2112. [PMID: 31262842 PMCID: PMC6719428 DOI: 10.1084/jem.20190041] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 05/05/2019] [Accepted: 06/12/2019] [Indexed: 12/21/2022] Open
Abstract
Crosspriming of CD8+ T cells by dendritic cells is crucial for host response against cancer and intracellular microbial infections. Ou et al. demonstrates that palmitoyl-protein thioesterase PPT1 is a phagosomal pH rheostat enabling both viral resistance and efficient crosspriming in cDC1s. Conventional type 1 dendritic cells (cDC1s) are inherently resistant to many viruses but, paradoxically, possess fewer acidic phagosomes that enable antigen retention and cross-presentation. We report that palmitoyl-protein thioesterase 1 (PPT1), which catabolizes lipid-modified proteins in neurons, is highly expressed in cDC1s. PPT1-deficient DCs are more susceptible to vesicular stomatitis virus (VSV) infection, and mice with PPT1 deficiency in cDC1s show impaired response to VSV. Conversely, PPT1-deficient cDC1s enhance the priming of naive CD8+ T cells into tissue-resident KLRG1+ effectors and memory T cells, resulting in rapid clearance of tumors and Listeria monocytogenes. Mechanistically, PPT1 protects steady state DCs from viruses by promoting antigen degradation and endosomal acidification via V-ATPase recruitment. After DC activation, immediate down-regulation of PPT1 is likely to facilitate efficient cross-presentation, production of costimulatory molecules and inflammatory cytokines. Thus, PPT1 acts as a molecular rheostat that allows cDC1s to crossprime efficiently without compromising viral resistance. These results suggest potential therapeutics to enhance cDC1-dependent crosspriming.
Collapse
Affiliation(s)
- Pengju Ou
- Department of Immunology, Sun Yat-sen University Zhongshan School of Medicine, Guangzhou, Guangdong, China.,Department of Chemotherapy, First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
| | - Lifen Wen
- Department of Immunology, Sun Yat-sen University Zhongshan School of Medicine, Guangzhou, Guangdong, China
| | - Xiaoli Liu
- Department of Immunology, Sun Yat-sen University Zhongshan School of Medicine, Guangzhou, Guangdong, China
| | - Jiancheng Huang
- Department of Immunology, Sun Yat-sen University Zhongshan School of Medicine, Guangzhou, Guangdong, China
| | - Xiaoling Huang
- Department of Immunology, Sun Yat-sen University Zhongshan School of Medicine, Guangzhou, Guangdong, China
| | - Chaofei Su
- Department of Immunology, Sun Yat-sen University Zhongshan School of Medicine, Guangzhou, Guangdong, China
| | - Ling Wang
- Department of Immunology, Sun Yat-sen University Zhongshan School of Medicine, Guangzhou, Guangdong, China
| | - Hai Ni
- Department of Immunology, Sun Yat-sen University Zhongshan School of Medicine, Guangzhou, Guangdong, China
| | - Boris Reizis
- Department of Pathology, New York University School of Medicine, New York, NY
| | - Cliff Y Yang
- Department of Immunology, Sun Yat-sen University Zhongshan School of Medicine, Guangzhou, Guangdong, China .,Key Laboratory of Tropical Disease Control, Sun Yat-sen University, Ministry of Education, Guangzhou, Guangdong, China
| |
Collapse
|
220
|
Mancusi A, Alvarez M, Piccinelli S, Velardi A, Pierini A. TNFR2 signaling modulates immunity after allogeneic hematopoietic cell transplantation. Cytokine Growth Factor Rev 2019; 47:54-61. [PMID: 31122819 DOI: 10.1016/j.cytogfr.2019.05.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 05/09/2019] [Indexed: 02/07/2023]
Abstract
Tumor necrosis factor-α (TNF-α) signaling through TNF receptor 2 (TNFR2) plays a complex immune regulatory role in allogeneic hematopoietic cell transplantation (HCT). TNF-α is rapidly released in the circulation after the conditioning regimen with chemotherapy and/or radiotherapy. It activates the function of donor alloreactive T cells and donor Natural Killer cells and promotes graft versus tumor effects. However, donor alloreactive T cells also attack host tissues and cause graft versus host disease (GVHD), a life-threatening complication of HCT. Indeed, anti-TNF-α therapy has been used to treat steroid-refractory GVHD. Recent studies have highlighted another role for TNFR2 signaling, as it enhances the function of immune cells with suppressive properties, in particular CD4+Foxp3+ regulatory T cells (Tregs). Various clinical trials are employing Treg-based treatments to prevent or treat GVHD. The present review will discuss the effects of TNFR2 signaling in the setting of allogeneic HCT, the implications for the use of anti-TNF-α therapy to treat GVHD and the clinical perspectives of strategies that specifically target this pathway.
Collapse
Affiliation(s)
- Antonella Mancusi
- Hematology and Clinical Immunology and Bone Marrow Transplant Program, Department of Medicine, University of Perugia, Perugia, 06132, Italy
| | - Maite Alvarez
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Pamplona, Spain; Navarra Institute for Health Research (IDISNA), Pamplona, Spain
| | - Sara Piccinelli
- Hematology and Clinical Immunology and Bone Marrow Transplant Program, Department of Medicine, University of Perugia, Perugia, 06132, Italy
| | - Andrea Velardi
- Hematology and Clinical Immunology and Bone Marrow Transplant Program, Department of Medicine, University of Perugia, Perugia, 06132, Italy
| | - Antonio Pierini
- Hematology and Clinical Immunology and Bone Marrow Transplant Program, Department of Medicine, University of Perugia, Perugia, 06132, Italy.
| |
Collapse
|
221
|
Noubade R, Majri-Morrison S, Tarbell KV. Beyond cDC1: Emerging Roles of DC Crosstalk in Cancer Immunity. Front Immunol 2019; 10:1014. [PMID: 31143179 PMCID: PMC6521804 DOI: 10.3389/fimmu.2019.01014] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 04/23/2019] [Indexed: 01/03/2023] Open
Abstract
Dendritic cells (DCs) efficiently process and present antigens to T cells, and by integrating environmental signals, link innate and adaptive immunity. DCs also control the balance between tolerance and immunity, and are required for T-cell mediated anti-tumor immunity. One subset of classical DCs, cDC1, are particularly important for eliciting CD8 T cells that can kill tumor cells. cDC1s are superior in antigen cross-presentation, a process of presenting exogenous antigens on MHC class I to activate CD8+ T cells. Tumor-associated cDC1s can transport tumor antigen to the draining lymph node and cross-present tumor antigens, resulting in priming and activation of cytotoxic T cells. Although cross-presenting cDC1s are critical for eliciting anti-tumor T cell responses, the role and importance of other DC subsets in anti-tumor immunity is not as well-characterized. Recent literature in other contexts suggests that critical crosstalk between DC subsets can significantly alter biological outcomes, and these DC interactions likely also contribute significantly to tumor-specific immune responses. Therefore, antigen presentation by cDC1s may be necessary but not sufficient for maximal immune responses against cancer. Here, we discuss recent advances in the understanding of DC subset interactions to maximize anti-tumor immunity, and propose that such interactions should be considered for the development of better DC-targeted immunotherapies.
Collapse
Affiliation(s)
- Rajkumar Noubade
- Department of Inflammation and Oncology, Amgen Research, Amgen Inc., South San Francisco, CA, United States
| | - Sonia Majri-Morrison
- Department of Inflammation and Oncology, Amgen Research, Amgen Inc., South San Francisco, CA, United States
| | - Kristin V Tarbell
- Department of Inflammation and Oncology, Amgen Research, Amgen Inc., South San Francisco, CA, United States
| |
Collapse
|
222
|
Burbage M, Gros M, Amigorena S. Translate less, prime better, to improve anti-tumor responses. Nat Immunol 2019; 20:518-520. [DOI: 10.1038/s41590-019-0371-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
223
|
MacNabb BW, Kline DE, Albright AR, Chen X, Leventhal DS, Savage PA, Kline J. Negligible Role for Deletion Mediated by cDC1 in CD8 + T Cell Tolerance. THE JOURNAL OF IMMUNOLOGY 2019; 202:2628-2635. [PMID: 30902900 DOI: 10.4049/jimmunol.1801621] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 03/05/2019] [Indexed: 11/19/2022]
Abstract
Deletion of CD8+ T cells by dendritic cells (DCs) is recognized as a critical mechanism of immune tolerance to self-antigens. Although DC-mediated peripheral deletion of autoreactive CD8+ T cells has been demonstrated using T cells reactive to model Ags, its role in shaping the naturally occurring polyclonal CD8+ T cell repertoire has not been defined. Using Batf3-/- mice lacking cross-presenting CD8α+ and CD103+ DCs (also known as type 1 conventional [cDC1]), we demonstrate that peripheral deletion of CD8+ T cells reactive to a model tissue Ag is dependent on cDC1. However, endogenous CD8+ T cells from the periphery of Batf3-/- mice do not exhibit heightened self-reactivity, and deep TCR sequencing of CD8+ T cells from Batf3-/- and Batf3+/+ mice reveals that cDC1 have a minimal impact on shaping the peripheral CD8+ T cell repertoire. Thus, although evident in reductionist systems, deletion of polyclonal self-specific CD8+ T cells by cDC1 plays a negligible role in enforcing tolerance to natural self-ligands.
Collapse
Affiliation(s)
| | - Douglas E Kline
- Committee on Immunology, University of Chicago, Chicago, IL 60637
| | - Annie R Albright
- Department of Medicine, University of Chicago, Chicago, IL 60637
| | - Xiufen Chen
- Department of Medicine, University of Chicago, Chicago, IL 60637
| | - Daniel S Leventhal
- Committee on Cancer Biology, University of Chicago, Chicago, IL 60637; and
| | - Peter A Savage
- Committee on Immunology, University of Chicago, Chicago, IL 60637.,Committee on Cancer Biology, University of Chicago, Chicago, IL 60637; and.,Department of Pathology, University of Chicago, Chicago, IL 60637
| | - Justin Kline
- Committee on Immunology, University of Chicago, Chicago, IL 60637; .,Department of Medicine, University of Chicago, Chicago, IL 60637.,Committee on Cancer Biology, University of Chicago, Chicago, IL 60637; and
| |
Collapse
|
224
|
Wang YF, Lau YL, Yang W. Genetic studies on systemic lupus erythematosus in East Asia point to population differences in disease susceptibility. AMERICAN JOURNAL OF MEDICAL GENETICS PART C-SEMINARS IN MEDICAL GENETICS 2019; 181:262-268. [PMID: 30897304 DOI: 10.1002/ajmg.c.31696] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 03/02/2019] [Accepted: 03/04/2019] [Indexed: 01/08/2023]
Abstract
Systemic lupus erythematosus (SLE) is a prototype autoimmune disease with extreme clinical heterogeneity and significant differences between populations. East Asian populations are known to have higher prevalence and more severe clinical manifestations for SLE than Europeans. The difference could be the result of genetic and environmental factors, and the interactions between them. Thus, identifying genetic associations from diverse populations provides an opportunity to better understand the genetic architecture of this heterogeneous disease. It is also necessary to elucidate population differences and to apply the findings in future stratified treatment of the disease, with ethnicity likely a major factor to consider. Indeed, it has shown that there are significant differences between East Asians and European populations in several genetic loci for SLE. Genetic studies on SLE are very active in East Asian countries and there have been close collaborations among scientists in this region. Here, we document some work done in this region on SLE genetic research and discuss the aspect of population differences.
Collapse
Affiliation(s)
- Yong-Fei Wang
- Department of Paediatrics and Adolescent Medicine, The University of Hong Kong, Hong Kong, China
| | - Yu Lung Lau
- Department of Paediatrics and Adolescent Medicine, The University of Hong Kong, Hong Kong, China
| | - Wanling Yang
- Department of Paediatrics and Adolescent Medicine, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
225
|
Cancel JC, Crozat K, Dalod M, Mattiuz R. Are Conventional Type 1 Dendritic Cells Critical for Protective Antitumor Immunity and How? Front Immunol 2019; 10:9. [PMID: 30809220 PMCID: PMC6379659 DOI: 10.3389/fimmu.2019.00009] [Citation(s) in RCA: 133] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Accepted: 01/04/2019] [Indexed: 12/20/2022] Open
Abstract
Dendritic cells (DCs) are endowed with a unique potency to prime T cells, as well as to orchestrate their expansion, functional polarization and effector activity in non-lymphoid tissues or in their draining lymph nodes. The concept of harnessing DC immunogenicity to induce protective responses in cancer patients was put forward about 25 years ago and has led to a multitude of DC-based vaccine trials. However, until very recently, objective clinical responses were below expectations. Conventional type 1 DCs (cDC1) excel in the activation of cytotoxic lymphocytes including CD8+ T cells (CTLs), natural killer (NK) cells, and NKT cells, which are all critical effector cell types in antitumor immunity. Efforts to investigate whether cDC1 might orchestrate immune defenses against cancer are ongoing, thanks to the recent blossoming of tools allowing their manipulation in vivo. Here we are reporting on these studies. We discuss the mouse models used to genetically deplete or manipulate cDC1, and their main caveats. We present current knowledge on the role of cDC1 in the spontaneous immune rejection of tumors engrafted in syngeneic mouse recipients, as a surrogate model to cancer immunosurveillance, and how this process is promoted by type I interferon (IFN-I) effects on cDC1. We also discuss cDC1 implication in promoting the protective effects of immunotherapies in mouse preclinical models, especially for adoptive cell transfer (ACT) and immune checkpoint blockers (ICB). We elaborate on how to improve this process by in vivo reprogramming of certain cDC1 functions with off-the-shelf compounds. We also summarize and discuss basic research and clinical data supporting the hypothesis that the protective antitumor functions of cDC1 inferred from mouse preclinical models are conserved in humans. This analysis supports potential applicability to cancer patients of the cDC1-targeting adjuvant immunotherapies showing promising results in mouse models. Nonetheless, further investigations on cDC1 and their implications in anti-cancer mechanisms are needed to determine whether they are the missing key that will ultimately help switching cold tumors into therapeutically responsive hot tumors, and how precisely they mediate their protective effects.
Collapse
Affiliation(s)
- Jean-Charles Cancel
- CNRS, INSERM, Centre d'Immunologie de Marseille-Luminy, Turing Center for Living Systems, Aix Marseille University, Marseille, France
| | - Karine Crozat
- CNRS, INSERM, Centre d'Immunologie de Marseille-Luminy, Turing Center for Living Systems, Aix Marseille University, Marseille, France
| | - Marc Dalod
- CNRS, INSERM, Centre d'Immunologie de Marseille-Luminy, Turing Center for Living Systems, Aix Marseille University, Marseille, France
| | - Raphaël Mattiuz
- CNRS, INSERM, Centre d'Immunologie de Marseille-Luminy, Turing Center for Living Systems, Aix Marseille University, Marseille, France
| |
Collapse
|
226
|
Gros M, Amigorena S. Regulation of Antigen Export to the Cytosol During Cross-Presentation. Front Immunol 2019; 10:41. [PMID: 30745902 PMCID: PMC6360170 DOI: 10.3389/fimmu.2019.00041] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Accepted: 01/09/2019] [Indexed: 02/02/2023] Open
Abstract
Cross-priming refers to the induction of primary cytotoxic CD8+ T cell responses to antigens that are not expressed in antigen presenting cells (APCs) responsible for T cell priming. Cross-priming is achieved through cross-presentation of exogenous antigens derived from tumors, extracellular pathogens or infected neighboring cells on Major Histocompatibility Complex (MHC) class I molecules. Despite extensive research efforts to understand the intracellular pathways involved in antigen cross-presentation, certain critical steps remain elusive and controversial. Here we review recent advances on antigen cross-presentation, focusing on the mechanisms involved in antigen export to the cytosol, a crucial step of this pathway.
Collapse
|
227
|
Interplay between dendritic cells and cancer cells. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2019; 348:179-215. [DOI: 10.1016/bs.ircmb.2019.07.008] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
228
|
Barbet G, Blander JM. A key ingredient for priming killer T cells. Science 2018; 362:641-642. [PMID: 30409872 DOI: 10.1126/science.aav3683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
- Gaëtan Barbet
- Jill Roberts Institute for Research in Inflammatory Bowel Disease; Gastroenterology and Hepatology Division, Joan and Sanford I. Weill Department of Medicine; Department of Microbiology and Immunology; Sandra and Edward Meyer Cancer Center; and Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - J Magarian Blander
- Jill Roberts Institute for Research in Inflammatory Bowel Disease; Gastroenterology and Hepatology Division, Joan and Sanford I. Weill Department of Medicine; Department of Microbiology and Immunology; Sandra and Edward Meyer Cancer Center; and Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, Cornell University, New York, NY, USA.
| |
Collapse
|