201
|
Abstract
Hepatitis E, caused by infection with hepatitis E virus (HEV), is a common cause of enterically-transmitted acute hepatitis in developing countries. Occasional cases of sporadic hepatitis E have been increasingly recognized in developed countries over the past decade. These cases differ from those in developing countries in being possibly caused by zoonotic transmission, often affecting people with a suppressed immune system and occasionally leading to persistent HEV infection. The commonly used tests for HEV infection include detection of IgM and IgG anti-HEV antibodies and detection of HEV RNA. IgM anti-HEV antibodies can be detected during the first few months after HEV infection, whereas IgG anti-HEV antibodies represent either recent or remote exposure. The presence of HEV RNA indicates current infection, whether acute or chronic. Although several diagnostic assays for anti-HEV antibodies are available, they have undergone fairly limited testing and often provide discordant results, particularly for IgG antibodies. Thus, although the available antibody assays might be useful for case diagnosis in areas with high disease endemicity, their use for case diagnosis in areas with low endemicity and for seroprevalence studies remains problematic. Improved validation of existing anti-HEV antibody assays or development of new assays with superior performance characteristics is urgently needed.
Collapse
Affiliation(s)
- Rakesh Aggarwal
- Department of Gastroenterology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow 226014, India.
| |
Collapse
|
202
|
Li TC, Yoshizaki S, Ami Y, Suzaki Y, Yasuda SP, Yoshimatsu K, Arikawa J, Takeda N, Wakita T. Susceptibility of laboratory rats against genotypes 1, 3, 4, and rat hepatitis E viruses. Vet Microbiol 2012; 163:54-61. [PMID: 23317806 DOI: 10.1016/j.vetmic.2012.12.014] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Revised: 12/11/2012] [Accepted: 12/17/2012] [Indexed: 01/27/2023]
Abstract
To determine whether or not rats are susceptible to hepatitis E virus (HEV) infection, each of group containing three laboratory rats (Wistar) were experimentally inoculated with genotypes 1, 3, 4 and rat HEV by intravenous injection. Serum and stool samples were collected and used to detect HEV RNA and anti-HEV antibodies by RT-PCR and ELISA, respectively. The virus infection was monitored up to 3 months after inoculation. None of the serum or stool samples collected from the rats inoculated with G1, G3, or G4 HEV indicated positive sign for virus replication. Although no alteration was observed in ALT level, rat HEV RNA was detected in stools from both of the rats inoculated with rat HEV, and both rats were positive for anti-rat HEV IgG and IgM from 3 weeks after inoculation. These results demonstrated that rats are susceptible to rat HEV but not to G1, G3, and G4 HEV. We also confirm that the nude rats were useful for obtaining a large amount of rat HEV and that the rat HEV was transmitted by the fecal-oral route.
Collapse
Affiliation(s)
- Tian-Cheng Li
- Department of Virology II, National Institute of Infectious Diseases, Gakuen 4-7-1, Musashi-murayama, Tokyo 208-0011, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
203
|
Temmam S, Besnard L, Andriamandimby SF, Foray C, Rasamoelina-Andriamanivo H, Héraud JM, Cardinale E, Dellagi K, Pavio N, Pascalis H, Porphyre V. High prevalence of hepatitis E in humans and pigs and evidence of genotype-3 virus in swine, Madagascar. Am J Trop Med Hyg 2012. [PMID: 23208879 DOI: 10.4269/ajtmh.2012.12-0615] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Hepatitis E virus (HEV) causes an orofecal disease transmitted through poor hygiene environments, contaminated food (mainly pork products), or by contacts with infected animals. Very little data are currently available regarding the disease in the Southwestern Indian Ocean Islands. We report the first sero- and viro-survey for HEV in human and swine in Madagascar. A seroprevalence rate of 14.1% (60 of 427) was measured in slaughterhouse workers. Seroprevalence to HEV in pigs was estimated to 71.2% (178 of 250), strongly suggesting the existence of a zoonotic cycle. Three out of 250 pig livers (1.2%) tested HEV RNA-positive by quantitative polymerase chain reaction. Phylogenetic analyses based on 1-kb sequences of the ORF 2-3 identified these viruses as HEV genotype 3. Sequences clustered in a distinct Malagasy sub-clade, possibly representative of a new sub-genotype, for which the date of emergence was estimated around 1989. Further studies are needed to confirm other transmission routes of HEV to humans, especially through non-zoonotic cycles.
Collapse
Affiliation(s)
- Sarah Temmam
- Centre de Recherche et de Veille sur les Maladies Émergentes dans l'Océan Indien (CRVOI), Plateforme de Recherche CYROI, Sainte Clotilde, La Réunion, France.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
204
|
Geng Y, Zhang H, Li J, Huang W, Harrison TJ, Zhao C, Zhou Y, Lian H, Wang Y. Comparison of hepatitis E virus genotypes from rabbits and pigs in the same geographic area: no evidence of natural cross-species transmission between the two animals. INFECTION GENETICS AND EVOLUTION 2012. [PMID: 23183309 DOI: 10.1016/j.meegid.2012.11.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Domesticated pigs have been shown to be a reservoir of genotypes 3 and 4 hepatitis E virus (HEV). Farmed rabbits were recently recognized as the host of a novel virus, rabbit HEV. In order to determine whether HEV is transmitted naturally between rabbits and pigs, a survey on HEV infections was conducted in rabbits and pigs aged 2-4 months from rabbit and pig farms located near to each other in nine villages in three counties of Hebei Province, China. The overall anti-HEV antibody positivity rates in serum samples of swine and rabbits were 61.7% (58/94) and 23.2% (67/289), and the positive rates for HEV RNA were 23.4% (22/94) and 10% (29/289), respectively. In addition, 37 of 125 swine fecal samples (29.6%) were HEV RNA positive. The nucleotide sequences of a 304 bp region within HEV ORF2 have identity ranging from 84.5% to 100% among the rabbit isolates and from 82.3% to 100% among the swine isolates. In contrast, the nucleotide identity between the two species groups was only 72-76.6%. Consequently, the two groups were clearly separated in the phylogenetic tree that showed all of the rabbit isolates are closely related to the rabbit HEV reported recently and the swine isolates belong to genotype 4, including subgenotypes 4a, 4c and 4d. The results showed that HEV is highly prevalent in farmed rabbits and pigs in these areas. However, genotype 4 HEV and rabbit HEV are circulating separately in pigs and rabbits in the same area. In conclusion, there was no evidence of cross-species transmission of HEV between pigs and rabbits. The frequency of HEV transmission events between these two animal species is likely low in commercial farms.
Collapse
Affiliation(s)
- Yansheng Geng
- Health Science Center, Hebei University, No. 342 Yuhuadonglu, Baoding 071000, China
| | | | | | | | | | | | | | | | | |
Collapse
|
205
|
Ng TFF, Marine R, Wang C, Simmonds P, Kapusinszky B, Bodhidatta L, Oderinde BS, Wommack KE, Delwart E. High variety of known and new RNA and DNA viruses of diverse origins in untreated sewage. J Virol 2012; 86:12161-75. [PMID: 22933275 PMCID: PMC3486453 DOI: 10.1128/jvi.00869-12] [Citation(s) in RCA: 207] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Accepted: 08/22/2012] [Indexed: 12/17/2022] Open
Abstract
Deep sequencing of untreated sewage provides an opportunity to monitor enteric infections in large populations and for high-throughput viral discovery. A metagenomics analysis of purified viral particles in untreated sewage from the United States (San Francisco, CA), Nigeria (Maiduguri), Thailand (Bangkok), and Nepal (Kathmandu) revealed sequences related to 29 eukaryotic viral families infecting vertebrates, invertebrates, and plants (BLASTx E score, <10(-4)), including known pathogens (>90% protein identities) in numerous viral families infecting humans (Adenoviridae, Astroviridae, Caliciviridae, Hepeviridae, Parvoviridae, Picornaviridae, Picobirnaviridae, and Reoviridae), plants (Alphaflexiviridae, Betaflexiviridae, Partitiviridae, Sobemovirus, Secoviridae, Tombusviridae, Tymoviridae, Virgaviridae), and insects (Dicistroviridae, Nodaviridae, and Parvoviridae). The full and partial genomes of a novel kobuvirus, salivirus, and sapovirus are described. A novel astrovirus (casa astrovirus) basal to those infecting mammals and birds, potentially representing a third astrovirus genus, was partially characterized. Potential new genera and families of viruses distantly related to members of the single-stranded RNA picorna-like virus superfamily were genetically characterized and named Picalivirus, Secalivirus, Hepelivirus, Nedicistrovirus, Cadicistrovirus, and Niflavirus. Phylogenetic analysis placed these highly divergent genomes near the root of the picorna-like virus superfamily, with possible vertebrate, plant, or arthropod hosts inferred from nucleotide composition analysis. Circular DNA genomes distantly related to the plant-infecting Geminiviridae family were named Baminivirus, Nimivirus, and Niminivirus. These results highlight the utility of analyzing sewage to monitor shedding of viral pathogens and the high viral diversity found in this common pollutant and provide genetic information to facilitate future studies of these newly characterized viruses.
Collapse
Affiliation(s)
- Terry Fei Fan Ng
- Blood Systems Research Institute, San Francisco, California, USA
- Department of Laboratory Medicine, University of California, San Francisco, California, USA
| | - Rachel Marine
- Departments of Biological Sciences and Plant & Soil Sciences, Delaware Biotechnology Institute, University of Delaware, Newark, Delaware, USA
| | - Chunlin Wang
- Stanford Genome Technology Center, Stanford University, Stanford, California, USA
| | - Peter Simmonds
- Centre for Immunity, Infection and Evolution, University of Edinburgh, Edinburgh, United Kingdom
| | - Beatrix Kapusinszky
- Blood Systems Research Institute, San Francisco, California, USA
- Department of Laboratory Medicine, University of California, San Francisco, California, USA
| | - Ladaporn Bodhidatta
- Department of Enteric Diseases, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Bamidele Soji Oderinde
- WHO National Polio Laboratory, University of Maiduguri Teaching Hospital, Borno State, Nigeria
| | - K. Eric Wommack
- Departments of Biological Sciences and Plant & Soil Sciences, Delaware Biotechnology Institute, University of Delaware, Newark, Delaware, USA
| | - Eric Delwart
- Blood Systems Research Institute, San Francisco, California, USA
- Department of Laboratory Medicine, University of California, San Francisco, California, USA
| |
Collapse
|
206
|
Jirintai S, Jinshan, Tanggis, Manglai D, Mulyanto, Takahashi M, Nagashima S, Kobayashi T, Nishizawa T, Okamoto H. Molecular analysis of hepatitis E virus from farm rabbits in Inner Mongolia, China and its successful propagation in A549 and PLC/PRF/5 cells. Virus Res 2012; 170:126-37. [PMID: 23041252 DOI: 10.1016/j.virusres.2012.09.015] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Revised: 09/25/2012] [Accepted: 09/26/2012] [Indexed: 01/05/2023]
Abstract
Rabbit hepatitis E virus (HEV) strains have recently been isolated in several areas of China and in the US and France. However, the host range, distribution and zoonotic potential of these HEV strains remain unknown and their propagation in cultured cells has not yet been reported. A total of 211 4-month-old rabbits raised on a farm in Inner Mongolia were tested for the presence of anti-HEV antibodies and HEV RNA. Overall, 121 rabbits (57.3%) tested positive for anti-HEV antibodies, and 151 (71.6%) had detectable HEV RNA. The 174 HEV strains recovered from these viremic rabbits, including two distinct strains each from 23 rabbits, differed from each other by up to 13.6% in a 412-nucleotide (nt) sequence within ORF2, and were 89.3-95.9% identical to the reported rabbit HEV strains in other provinces of China. Three representative Inner Mongolian strains, one each from three phylogenetic clusters, whose entire genomic sequences were determined, shared 79.6-96.7% identities with reported rabbit HEV strains within the entire or 242- to 1349-nt partial genomic sequence. Rabbit HEV strains recovered from liver tissues of rabbits with a high HEV load propagated efficiently in human cell lines (A549 and PLC/PRF/5 cells), suggesting the potential zoonotic risk of rabbit HEV.
Collapse
Affiliation(s)
- Suljid Jirintai
- Division of Virology, Department of Infection and Immunity, Jichi Medical University School of Medicine, 3311-1 Yakushiji, Shimotsuke-Shi, Tochigi-Ken 329-0498, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|