201
|
Birkholz AM, Howell AR, Kronenberg M. The Alpha and Omega of Galactosylceramides in T Cell Immune Function. J Biol Chem 2015; 290:15365-15370. [PMID: 25947378 DOI: 10.1074/jbc.r115.647057] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Glycosphingolipids are a subgroup of glycolipids that contain an amino alcohol sphingoid base linked to sugars. They are found in the membranes of cells ranging from bacteria to vertebrates. This group of lipids is known to stimulate the immune system through activation of a type of white blood cell known as natural killer T cell (NKT cell). Here we summarize the extensive research that has been done to identify the structures of natural glycolipids that stimulate NKT cells and to determine how these antigens are recognized. We also review studies designed to understand how glycolipid variants, both natural and synthetic, can alter the responses of NKT cells, leading to dramatic changes in the global immune response.
Collapse
Affiliation(s)
- Alysia M Birkholz
- Division of Developmental Immunology, La Jolla Institute for Allergy and Immunology, La Jolla, California 92037; Division of Biological Sciences, University of California, San Diego, La Jolla, California 92037
| | - Amy R Howell
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269
| | - Mitchell Kronenberg
- Division of Developmental Immunology, La Jolla Institute for Allergy and Immunology, La Jolla, California 92037; Division of Biological Sciences, University of California, San Diego, La Jolla, California 92037.
| |
Collapse
|
202
|
Abstract
Invariant natural killer T (iNKT) cells are a unique population of T lymphocytes, which lie at the interface between the innate and adaptive immune systems, and are important mediators of immune responses and tumor surveillance. iNKT cells recognize lipid antigens in a CD1d-dependent manner; their subsequent activation results in a rapid and specific downstream response, which enhances both innate and adaptive immunity. The capacity of iNKT cells to modify the immune microenvironment influences the ability of the host to control tumor growth, making them an important population to be harnessed in the clinic for the development of anticancer therapeutics. Indeed, the identification of strong iNKT-cell agonists, such as α-galactosylceramide (α-GalCer) and its analogues, has led to the development of synthetic lipids that have shown potential in vaccination and treatment against cancers. In this Masters of Immunology article, we discuss these latest findings and summarize the major discoveries in iNKT-cell biology, which have enabled the design of potent strategies for immune-mediated tumor destruction.
Collapse
Affiliation(s)
- Rosanna M McEwen-Smith
- Medical Research Council Human Immunology Unit, Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Headington, Oxford, United Kingdom
| | - Mariolina Salio
- Medical Research Council Human Immunology Unit, Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Headington, Oxford, United Kingdom
| | - Vincenzo Cerundolo
- Medical Research Council Human Immunology Unit, Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Headington, Oxford, United Kingdom.
| |
Collapse
|
203
|
Abstract
Over the last two decades, it has been established that peptides are not the only antigens recognized by T lymphocytes. Here, we review information on two T lymphocyte populations that recognize nonpeptide antigens: invariant natural killer T cells (iNKT cells), which respond to glycolipids, and mucosal associated invariant T cells (MAIT cells), which recognize microbial metabolites. These two populations have a number of striking properties that distinguish them from the majority of T cells. First, their cognate antigens are presented by nonclassical class I antigen-presenting molecules; CD1d for iNKT cells and MR1 for MAIT cells. Second, these T lymphocyte populations have a highly restricted diversity of their T cell antigen receptor α chains. Third, these cells respond rapidly to antigen or cytokine stimulation by producing copious amounts of cytokines, such as IFNγ, which normally are only made by highly differentiated effector T lymphocytes. Because of their response characteristics, iNKT and MAIT cells act at the interface of innate and adaptive immunity, participating in both types of responses. In this review, we will compare these two subsets of innate-like T cells, with an emphasis on the various ways that lead to their activation and their participation in antimicrobial responses.
Collapse
Affiliation(s)
- Shilpi Chandra
- La Jolla Institute for Allergy & Immunology, La Jolla, California, USA
| | | |
Collapse
|
204
|
Baena A, Gómez-Giraldo L, Carreño LJ. Mecanismos de activación de las células T asesinas naturales invariantes (iNKT). IATREIA 2015. [DOI: 10.17533/udea.iatreia.v29n1a05] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
205
|
Wallace ME, Alcantara MB, Minoda Y, Kannourakis G, Berzins SP. An emerging role for immune regulatory subsets in chronic lymphocytic leukaemia. Int Immunopharmacol 2015; 28:897-900. [PMID: 25862133 DOI: 10.1016/j.intimp.2015.03.047] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Accepted: 03/28/2015] [Indexed: 01/22/2023]
Abstract
The last few years has seen the burgeoning of a new category of therapeutics for cancer targeting immune regulatory pathways. Antibodies that block the PD-1/PD-L1 interaction are perhaps the most prominent of these new anti-cancer therapies, but several other inhibitory receptor ligand interactions have also shown promise as targets in clinical trials, including CTLA-4/CD80 and Lag-3/MHC class II. Related to this is a rapidly improving knowledge of 'regulatory' lymphocyte lineages, including NKT cells, MAIT cells, B regulatory cells and others. These cells have potent cytokine responses that can influence the functioning of other immune cells and many researchers believe that they could be effective targets for therapies designed to enhance immune responses to cancer. This review will outline our current understanding of FOXP3+ 'Tregs', NKT cells, MAIT cells and B regulatory cells immune regulatory cell populations in cancer, with a particular focus on chronic lymphocytic leukaemia (CLL). We will discuss evidence linking CLL with immune regulatory dysfunction and the potential for new therapies targeting regulatory cells.
Collapse
Affiliation(s)
- Morgan E Wallace
- Federation University, Ballarat, Victoria, Australia; Fiona Elsey Cancer Research Institute, Ballarat, Victoria, Australia
| | - Marice B Alcantara
- Federation University, Ballarat, Victoria, Australia; Fiona Elsey Cancer Research Institute, Ballarat, Victoria, Australia
| | - Yosuke Minoda
- Federation University, Ballarat, Victoria, Australia; Fiona Elsey Cancer Research Institute, Ballarat, Victoria, Australia
| | - George Kannourakis
- Federation University, Ballarat, Victoria, Australia; Fiona Elsey Cancer Research Institute, Ballarat, Victoria, Australia
| | - Stuart P Berzins
- Federation University, Ballarat, Victoria, Australia; Fiona Elsey Cancer Research Institute, Ballarat, Victoria, Australia; Department of Microbiology and Immunology, University of Melbourne, Parkville, Victoria, Australia.
| |
Collapse
|
206
|
Chaudhry MS, Karadimitris A. Role and regulation of CD1d in normal and pathological B cells. THE JOURNAL OF IMMUNOLOGY 2015; 193:4761-8. [PMID: 25381357 DOI: 10.4049/jimmunol.1401805] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
CD1d is a nonpolymorphic, MHC class I-like molecule that presents phospholipid and glycosphingolipid Ags to a subset of CD1d-restricted T cells called invariant NKT (iNKT) cells. This CD1d-iNKT cell axis regulates nearly all aspects of both the innate and adaptive immune responses. Expression of CD1d on B cells is suggestive of the ability of these cells to present Ag to, and form cognate interactions with, iNKT cells. In this article, we summarize key evidence regarding the role and regulation of CD1d in normal B cells and in humoral immunity. We then extend the discussion to B cell disorders, with emphasis on autoimmune disease, viral infection, and neoplastic transformation of B lineage cells, in which CD1d expression can be altered as a mechanism of immune evasion and can have both diagnostic and prognostic importance. Finally, we highlight current and future therapeutic strategies that aim to target the CD1d-iNKT cell axis in B cells.
Collapse
Affiliation(s)
- Mohammed S Chaudhry
- Centre for Haematology, Imperial College London, Hammersmith Hospital, London W12 0NN, United Kingdom
| | - Anastasios Karadimitris
- Centre for Haematology, Imperial College London, Hammersmith Hospital, London W12 0NN, United Kingdom
| |
Collapse
|
207
|
Abstract
In this issue of Blood, Nair et al describe a new population of type II natural killer T (NKT) cells with follicular helper phenotype (TFH), which is more abundant in patients and mice with Gaucher disease (GD) and is capable of regulating B-cell activity.
Collapse
|
208
|
Buechel HM, Stradner MH, D'Cruz LM. Stages versus subsets: Invariant Natural Killer T cell lineage differentiation. Cytokine 2015; 72:204-9. [PMID: 25648290 DOI: 10.1016/j.cyto.2014.12.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Accepted: 12/03/2014] [Indexed: 12/14/2022]
Abstract
Invariant Natural Killer T (iNKT) cells represent a population of innate T lymphocytes which act as 'first-responders' to infection. While they have long been considered a versatile cell, capable of secretion of multiple cytokines upon activation, recent evidence now indicates that distinct lineages of iNKT cells with unique transcriptional and cytokine profiles exist in different peripheral tissue and as such represent 'fine-tuning' of these cells, which act as mediators between the innate and adaptive immune systems. Here we discuss the molecules regulating the differentiation of iNKT cell lineages, the transcription factors associated with their development, and the role of E protein transcription factors and their negative regulators the Id proteins, as these cells develop from immature progenitor cells to terminally differentiated cells in peripheral tissue.
Collapse
Affiliation(s)
- Heather M Buechel
- University of Pittsburgh, Department of Immunology, Biomedical Science Tower, 200 Lothrop St, Pittsburgh, PA 15213, United States
| | - Martin H Stradner
- Division of Rheumatology and Immunology, Medical University of Graz, Graz A-8035, Austria
| | - Louise M D'Cruz
- University of Pittsburgh, Department of Immunology, Biomedical Science Tower, 200 Lothrop St, Pittsburgh, PA 15213, United States.
| |
Collapse
|
209
|
Tyler CJ, Doherty DG, Moser B, Eberl M. Human Vγ9/Vδ2 T cells: Innate adaptors of the immune system. Cell Immunol 2015; 296:10-21. [PMID: 25659480 DOI: 10.1016/j.cellimm.2015.01.008] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Revised: 11/25/2014] [Accepted: 01/14/2015] [Indexed: 12/11/2022]
Abstract
Unconventional T cells are gaining center stage as important effector and regulatory cells that orchestrate innate and adaptive immune responses. Human Vγ9/Vδ2 T cells are amongst the best understood unconventional T cells, as they are easily accessible in peripheral blood, can readily be expanded and manipulated in vitro, respond to microbial infections in vivo and can be exploited for novel tumor immunotherapies. We here review findings that suggest that Vγ9/Vδ2 T cells, and possibly other unconventional human T cells, play an important role in bridging innate and adaptive immunity by promoting the activation and differentiation of various types of antigen-presenting cells (APCs) and even turning into APCs themselves, and thereby pave the way for antigen-specific effector responses and long-term immunological memory. Although the direct physiological relevance for most of these mechanisms still needs to be demonstrated in vivo, these findings may have implications for novel therapies, diagnostic tests and vaccines.
Collapse
Affiliation(s)
- Christopher J Tyler
- Cardiff Institute of Infection & Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Derek G Doherty
- Department of Immunology, School of Medicine, Trinity College Dublin, Dublin, Ireland
| | - Bernhard Moser
- Cardiff Institute of Infection & Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Matthias Eberl
- Cardiff Institute of Infection & Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom.
| |
Collapse
|
210
|
Gu S, Nawrocka W, Adams EJ. Sensing of Pyrophosphate Metabolites by Vγ9Vδ2 T Cells. Front Immunol 2015; 5:688. [PMID: 25657647 PMCID: PMC4303140 DOI: 10.3389/fimmu.2014.00688] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Accepted: 12/22/2014] [Indexed: 01/15/2023] Open
Abstract
The predominant population of γδ T cells in human blood express a T cell receptor (TCR) composed of a Vγ9 (Vγ2 in an alternate nomenclature) and Vδ2 domains. These cells came into the limelight when it was discovered they can respond to certain microbial infections and tumorigenic cells through the detection of small, pyrophosphate containing organic molecules collectively called “phosphoantigens” or “pAgs.” These molecules are intermediates in both eukaryotic and prokaryotic metabolic pathways. Chemical variants of these intermediates have been used in the clinic to treat a range of different cancers, however, directed optimization of these molecules requires a full understanding of their mechanism of action on target cells. We and others have identified a subclass of butyrophilin-related molecules (BTN3A1-3) that are directly involved in pAg sensing in the target cell, leading to engagement and activation of the T cell through the TCR. Our data and that of others support the pAg binding site to be the intracellular B30.2 domain of BTN3A1, which is the only isoform capable of mediating pAg-dependent stimulation of Vγ9Vδ2 T cells. Here, we review the data demonstrating pAg binding to the B30.2 domain and our studies of the structural conformations of the BTN3A extracellular domains. Finally, we synthesize a model linking binding of pAg to the intracellular domain with T cell detection via the extracellular domains in an “inside-out” signaling mechanism of the type characterized first for integrin molecule signaling. We also explore the role of Vγ9Vδ2 TCR variability in the CDR3 γ and δ loops and how this may modulate Vγ9Vδ2 cells as a population in surveillance of human health and disease.
Collapse
Affiliation(s)
- Siyi Gu
- Department of Biochemistry and Molecular Biology, University of Chicago , Chicago, IL , USA
| | - Wioletta Nawrocka
- Department of Biochemistry and Molecular Biology, University of Chicago , Chicago, IL , USA
| | - Erin J Adams
- Department of Biochemistry and Molecular Biology, University of Chicago , Chicago, IL , USA ; Committee on Immunology, University of Chicago , Chicago, IL , USA ; Committee on Cancer Biology, University of Chicago , Chicago, IL , USA
| |
Collapse
|
211
|
Park YW, Kee SJ. Mucosal-associated Invariant T cells: A New Player in Innate Immunity. JOURNAL OF RHEUMATIC DISEASES 2015. [DOI: 10.4078/jrd.2015.22.6.337] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Yong-Wook Park
- Department of Rheumatology, Chonnam National University Hospital, Chonnam National University Medical School, Gwangju, Korea
| | - Seung-Jung Kee
- Department of Laboratory Medicine, Chonnam National University Hospital, Chonnam National University Medical School, Gwangju, Korea
| |
Collapse
|
212
|
Kronenberg M, Lantz O. Mucosal-Resident T Lymphocytes with Invariant Antigen Receptors. Mucosal Immunol 2015. [DOI: 10.1016/b978-0-12-415847-4.00036-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
213
|
Essential role for autophagy during invariant NKT cell development. Proc Natl Acad Sci U S A 2014; 111:E5678-87. [PMID: 25512546 DOI: 10.1073/pnas.1413935112] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Autophagy is an evolutionarily conserved cellular homeostatic pathway essential for development, immunity, and cell death. Although autophagy modulates MHC antigen presentation, it remains unclear whether autophagy defects impact on CD1d lipid loading and presentation to invariant natural killer T (iNKT) cells and on iNKT cell differentiation in the thymus. Furthermore, it remains unclear whether iNKT and conventional T cells have similar autophagy requirements for differentiation, survival, and/or activation. We report that, in mice with a conditional deletion of the essential autophagy gene Atg7 in the T-cell compartment (CD4 Cre-Atg7(-/-)), thymic iNKT cell development--unlike conventional T-cell development--is blocked at an early stage and mature iNKT cells are absent in peripheral lymphoid organs. The defect is not due to altered loading of intracellular iNKT cell agonists; rather, it is T-cell-intrinsic, resulting in enhanced susceptibility of iNKT cells to apoptosis. We show that autophagy increases during iNKT cell thymic differentiation and that it developmentally regulates mitochondrial content through mitophagy in the thymus of mice and humans. Autophagy defects result in the intracellular accumulation of mitochondrial superoxide species and subsequent apoptotic cell death. Although autophagy-deficient conventional T cells develop normally, they show impaired peripheral survival, particularly memory CD8(+) T cells. Because iNKT cells, unlike conventional T cells, differentiate into memory cells while in the thymus, our results highlight a unique autophagy-dependent metabolic regulation of adaptive and innate T cells, which is required for transition to a quiescent state after population expansion.
Collapse
|
214
|
Luoma AM, Castro CD, Adams EJ. γδ T cell surveillance via CD1 molecules. Trends Immunol 2014; 35:613-621. [PMID: 25283967 PMCID: PMC4383740 DOI: 10.1016/j.it.2014.09.003] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2014] [Revised: 09/03/2014] [Accepted: 09/04/2014] [Indexed: 12/15/2022]
Abstract
γδ T cells are a prominent epithelial-resident lymphocyte population, possessing multi-functional capacities in the repair of host tissue, pathogen clearance, and tumor surveillance. Although three decades have now passed since their discovery, the nature of γδ T cell receptor (TCR)-mediated ligand recognition remains poorly defined. Recent studies have provided structural insight into this recognition, demonstrating that γδ T cells survey both CD1 and the presented lipid, and in some cases are exquisitely lipid specific. We review these findings here, examining the molecular basis for and the functional relevance of this interaction. We discuss potential implications on the notion that non-classical major histocompatibility complex (MHC) molecules may function as important restricting elements of γδ TCR specificity, and on our understanding of γδ T cell activation and function.
Collapse
Affiliation(s)
- Adrienne M Luoma
- Committee on Immunology and Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL 60637, USA
| | - Caitlin D Castro
- Committee on Immunology and Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL 60637, USA
| | - Erin J Adams
- Committee on Immunology and Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
215
|
Rizvi ZA, Puri N, Saxena RK. Lipid antigen presentation through CD1d pathway in mouse lung epithelial cells, macrophages and dendritic cells and its suppression by poly-dispersed single-walled carbon nanotubes. Toxicol In Vitro 2014; 29:1275-82. [PMID: 25448806 DOI: 10.1016/j.tiv.2014.10.022] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Revised: 10/17/2014] [Accepted: 10/28/2014] [Indexed: 10/24/2022]
Abstract
Effect of poly-dispersed acid-functionalized single-walled carbon nanotubes (AF-SWCNTs) was examined on lipid antigen presentation through CD1d pathway on three cell lines, LA4, MHS, and JAWSII used as prototype antigen presenting cells (APCs). CD1d molecule was expressed on 80-90% MHS (prototype macrophages) and JAWSII (prototype dendritic cells) cells whereas <5% LA4 cells (lung epithelial cells, non-classical APCs) expressed CD1d. Treatment with AF-SWCNTs but not with pristine SWCNTs resulted in a significant decline in the level of CD1d mRNA as well as mRNA levels of some other intracellular proteins involved in lipid antigen presentation pathway (MTP, ApoE, prosaposin, SR-BI and LDLr). Lipid antigen presentation was assessed by first incubating the cells with a prototype lipid antigen (α-Glactosylceramide or αGC) and then staining with L363 monoclonal antibody that detects αGC bound to CD1d molecule. While 100% MHS and JAWSII cells presented αGC, only 20% LA4 cells presented the CD1d antigen. Treatment with AF-SWCNTs resulted in a 30-40% decrease in αGC antigen presentation in all three cell lines. These results show that AF-SWCNT treatment down regulated the lipid antigen presentation pathway in all three cell lines and significantly lowered the ability of these cell lines to present αGC antigen.
Collapse
Affiliation(s)
| | - Niti Puri
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Rajiv K Saxena
- Faculty of Life Sciences and Biotechnology, South Asian University, New Delhi, India.
| |
Collapse
|
216
|
Wei J, Yang K, Chi H. Cutting edge: Discrete functions of mTOR signaling in invariant NKT cell development and NKT17 fate decision. THE JOURNAL OF IMMUNOLOGY 2014; 193:4297-4301. [PMID: 25261481 DOI: 10.4049/jimmunol.1402042] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Invariant NKT (iNKT) cells recently were classified into NKT1, NKT2, and NKT17 lineages with distinct transcription factor and cytokine profiles, but the mechanisms underlying such fate decisions remain elusive. In this article, we report crucial roles for mechanistic target of rapamycin (mTOR) signaling, especially mTORC2, in iNKT cell development and fate determination of NKT17 cells. Loss of Rictor, an obligatory component of mTORC2, decreased thymic and peripheral iNKT cells, which was associated with defective survival. Strikingly, Rictor deficiency selectively abolished the NKT17 lineage, as indicated by a marked reduction in RORγt and IL-17 expression. Moreover, deletion of phosphatase and tensin homolog (Pten) upregulated mTORC2 activity and enhanced NKT17 generation, but concomitant loss of Rictor reversed the NKT17 dysregulation. In contrast, mTORC1 regulators Raptor and Rheb are dispensable for NKT17 differentiation, despite their importance in iNKT cell thymic development. Our findings establish pivotal and unique roles for mTORC2 signaling, which is reciprocally regulated by Rictor and Pten, in NKT17 lineage determination.
Collapse
Affiliation(s)
- Jun Wei
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Kai Yang
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Hongbo Chi
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| |
Collapse
|
217
|
Edholm ES, Grayfer L, Robert J. Evolution of nonclassical MHC-dependent invariant T cells. Cell Mol Life Sci 2014; 71:4763-80. [PMID: 25117267 DOI: 10.1007/s00018-014-1701-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Revised: 08/02/2014] [Accepted: 08/04/2014] [Indexed: 12/23/2022]
Abstract
TCR-mediated specific recognition of antigenic peptides in the context of classical MHC molecules is a cornerstone of adaptive immunity of jawed vertebrate. Ancillary to these interactions, the T cell repertoire also includes unconventional T cells that recognize endogenous and/or exogenous antigens in a classical MHC-unrestricted manner. Among these, the mammalian nonclassical MHC class I-restricted invariant T cell (iT) subsets, such as iNKT and MAIT cells, are now believed to be integral to immune response initiation as well as in orchestrating subsequent adaptive immunity. Until recently the evolutionary origins of these cells were unknown. Here we review our current understanding of a nonclassical MHC class I-restricted iT cell population in the amphibian Xenopus laevis. Parallels with the mammalian iNKT and MAIT cells underline the crucial biological roles of these evolutionarily ancient immune subsets.
Collapse
Affiliation(s)
- Eva-Stina Edholm
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | | | | |
Collapse
|
218
|
Berzins SP, Ritchie DS. Natural killer T cells: drivers or passengers in preventing human disease? Nat Rev Immunol 2014; 14:640-6. [PMID: 25103356 DOI: 10.1038/nri3725] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Natural killer T (NKT) cells are credited with regulatory roles in immunity against cancers, autoimmune diseases, allergies, and bacterial and viral infections. Studies in mice and observational research in patient groups have suggested that NKT cell-based therapies could be used to prevent or treat these diseases, yet the translation into clinical settings has been disappointing. We support the view that NKT cells have regulatory characteristics that could be exploited in clinical settings, but there are doubts about the natural roles of NKT cells in vivo and whether NKT cell defects are fundamental drivers of disease in humans. In this Opinion article, we discuss the uncertainties and opportunities regarding NKT cells in humans, and the potential for NKT cells to be manipulated to prevent or treat disease.
Collapse
Affiliation(s)
- Stuart P Berzins
- School of Health Sciences, Federation University, Ballarat, Victoria 3350, Australia, the Fiona Elsey Cancer Research Institute, Ballarat, Victoria 3350, Australia, and the Department of Microbiology and Immunology, the Peter Doherty Institute, University of Melbourne, Parkville, Victoria 3010, Australia
| | - David S Ritchie
- Department of Clinical Hematology and Bone Marrow Transplant Service, Royal Melbourne Hospital, Parkville, Victoria 3050, Australia, and the Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria 3050, Australia
| |
Collapse
|
219
|
Kronenberg M. When Less Is More: T Lymphocyte Populations with Restricted Antigen Receptor Diversity. THE JOURNAL OF IMMUNOLOGY 2014; 193:975-6. [DOI: 10.4049/jimmunol.1401491] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
220
|
Zhang L, Tschumi BO, Corgnac S, Rüegg MA, Hall MN, Mach JP, Romero P, Donda A. Mammalian target of rapamycin complex 1 orchestrates invariant NKT cell differentiation and effector function. THE JOURNAL OF IMMUNOLOGY 2014; 193:1759-65. [PMID: 25015820 DOI: 10.4049/jimmunol.1400769] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Invariant NKT (iNKT) cells play critical roles in bridging innate and adaptive immunity. The Raptor containing mTOR complex 1 (mTORC1) has been well documented to control peripheral CD4 or CD8 T cell effector or memory differentiation. However, the role of mTORC1 in iNKT cell development and function remains largely unknown. By using mice with T cell-restricted deletion of Raptor, we show that mTORC1 is selectively required for iNKT but not for conventional T cell development. Indeed, Raptor-deficient iNKT cells are mostly blocked at thymic stage 1-2, resulting in a dramatic decrease of terminal differentiation into stage 3 and severe reduction of peripheral iNKT cells. Moreover, residual iNKT cells in Raptor knockout mice are impaired in their rapid cytokine production upon αGalcer challenge. Bone marrow chimera studies demonstrate that mTORC1 controls iNKT differentiation in a cell-intrinsic manner. Collectively, our data provide the genetic evidence that iNKT cell development and effector functions are under the control of mTORC1 signaling.
Collapse
Affiliation(s)
- Lianjun Zhang
- Translational Tumor Immunology Group, Ludwig Center for Cancer Research, University of Lausanne, 1066 Epalinges, Switzerland
| | - Benjamin O Tschumi
- Translational Tumor Immunology Group, Ludwig Center for Cancer Research, University of Lausanne, 1066 Epalinges, Switzerland
| | - Stéphanie Corgnac
- Translational Tumor Immunology Group, Ludwig Center for Cancer Research, University of Lausanne, 1066 Epalinges, Switzerland
| | - Markus A Rüegg
- Biozentrum, University of Basel, 4003 Basel, Switzerland; and
| | - Michael N Hall
- Biozentrum, University of Basel, 4003 Basel, Switzerland; and
| | - Jean-Pierre Mach
- Department of Biochemistry, University of Lausanne, 1066 Epalinges, Switzerland
| | - Pedro Romero
- Translational Tumor Immunology Group, Ludwig Center for Cancer Research, University of Lausanne, 1066 Epalinges, Switzerland
| | - Alena Donda
- Translational Tumor Immunology Group, Ludwig Center for Cancer Research, University of Lausanne, 1066 Epalinges, Switzerland;
| |
Collapse
|
221
|
|
222
|
Dellabona P, Abrignani S, Casorati G. iNKT-cell help to B cells: a cooperative job between innate and adaptive immune responses. Eur J Immunol 2014; 44:2230-7. [PMID: 24782127 DOI: 10.1002/eji.201344399] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Revised: 04/21/2014] [Accepted: 04/25/2014] [Indexed: 11/11/2022]
Abstract
T-cell help to B lymphocytes is one of the most important events in adaptive immune responses in health and disease. It is generally delivered by cognate CD4(+) T follicular helper (T(FH)) cells via both cell-to-cell contacts and soluble mediators, and it is essential for both the clonal expansion of antibody (Ab)-secreting B cells and memory B-cell formation. CD1d-restricted invariant natural killer T (iNKT) cells are a subset of innate-like T lymphocytes that rapidly respond to stimulation with specific lipid antigens (Ags) that are derived from infectious pathogens or stressed host cells. Activated iNKT cells produce a wide range of cytokines and upregulate costimulatory molecules that can promote activation of dendritic cells (DCs), natural killer (NK) cells, and T cells. A decade ago, we discovered that iNKT cells can help B cells to proliferate and to produce IgG Abs in vitro and in vivo. This adjuvant-like function of Ag-activated iNKT cells provides a flexible set of helper mechanisms that expand the current paradigm of T-cell-B-cell interaction and highlights the potential of iNKT-cell targeting vaccine formulations.
Collapse
Affiliation(s)
- Paolo Dellabona
- Experimental Immunology Unit, Division of Immunology Transplantation and Infectious Diseases, San Raffaele Scientific Institute, Milano, Italy
| | | | | |
Collapse
|