201
|
Siemeling U, Bretthauer F, Bruhn C. Oxidative addition of asparagusic acid based disulfides to Pt0. J Organomet Chem 2010. [DOI: 10.1016/j.jorganchem.2009.11.032] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
202
|
Boonyos P, Soonsanga S, Boonserm P, Promdonkoy B. Role of cysteine at positions 67, 161 and 241 of a Bacillus sphaericus binary toxin BinB. BMB Rep 2010; 43:23-8. [DOI: 10.5483/bmbrep.2010.43.1.023] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
203
|
Sideris DP, Tokatlidis K. Trapping oxidative folding intermediates during translocation to the intermembrane space of mitochondria: in vivo and in vitro studies. Methods Mol Biol 2010; 619:411-423. [PMID: 20419425 DOI: 10.1007/978-1-60327-412-8_25] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
The MIA40 pathway is a novel import pathway in mitochondria specific for cysteine-rich proteins of the intermembrane space (IMS). The newly synthesised precursors are trapped in the IMS by a disulfide relay mechanism that involves introduction of disulfides from the sulfhydryl oxidase Erv1 to the redox-regulated import receptor Mia40 and then on to the substrate. This thiol-disulfide exchange mechanism is essential for the import and oxidative folding of the incoming cysteine-rich substrate proteins. In this chapter we will describe the experimental methods that have been developed in order to study and characterise disulfide-trapped intermediates in yeast mitochondria.
Collapse
Affiliation(s)
- Dionisia P Sideris
- Department of Biology, University of Crete and Institute of Molecular Biology and Biotechnology-Foundation for Research and Technology Hellas, Heraklion, Crete, Greece
| | | |
Collapse
|
204
|
Takatsuka Y, Nikaido H. Site-directed disulfide cross-linking to probe conformational changes of a transporter during its functional cycle: Escherichia coli AcrB multidrug exporter as an example. Methods Mol Biol 2010; 634:343-54. [PMID: 20676995 PMCID: PMC2915569 DOI: 10.1007/978-1-60761-652-8_24] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
Many proteins, especially transporters, are thought to undergo large conformational alterations during their functional cycle. Since X-ray crystallography usually gives only the most stable conformation, other methods are needed to probe this conformational change. Site-directed disulfide cross-linking is often very useful for this purpose. We illustrate this by using the Escherichia coli AcrB, a proton-motive-force-dependent multidrug efflux transporter. Crystallographic studies of the asymmetric trimer of AcrB suggest that each protomer in the trimeric assembly goes through a cycle of conformational changes during drug export (functional rotation hypothesis). Site-directed disulfide cross-linking between those residues that come close to each other in only one stage in the cycle inactivated the transporter, showing that the conformational changes indeed occurred in vivo and that they are required for drug transport. A dsbA strain, which has a diminished activity to form disulfide bonds in the periplasm, was used to verify the conclusion by showing a restored transport activity in this strain. Furthermore, we describe "a real-time cross-linking experiment," in which rapidly reacting, sulfhydryl-specific cross-linkers, methanethiosulfonates, inactivate the AcrB double-cysteine mutant expressed in dsbA cells instantaneously.
Collapse
Affiliation(s)
- Yumiko Takatsuka
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720-3202
| | - Hiroshi Nikaido
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720-3202
| |
Collapse
|
205
|
The quorum-quenching N-acyl homoserine lactone acylase PvdQ is an Ntn-hydrolase with an unusual substrate-binding pocket. Proc Natl Acad Sci U S A 2009; 107:686-91. [PMID: 20080736 DOI: 10.1073/pnas.0911839107] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In many Gram-negative pathogens, their virulent behavior is regulated by quorum sensing, in which diffusible signals such as N-acyl homoserine lactones (AHLs) act as chemical messaging compounds. Enzymatic degradation of these diffusible signals by, e.g., lactonases or amidohydrolases abolishes AHL regulated virulence, a process known as quorum quenching. Here we report the first crystal structure of an AHL amidohydrolase, the AHL acylase PvdQ from Pseudomonas aeruginosa. PvdQ has a typical alpha/beta heterodimeric Ntn-hydrolase fold, similar to penicillin G acylase and cephalosporin acylase. However, it has a distinct, unusually large, hydrophobic binding pocket, ideally suited to recognize C12 fatty acid-like chains of AHLs. Binding of a C12 fatty acid or a 3-oxo-C12 fatty acid induces subtle conformational changes to accommodate the aliphatic chain. Furthermore, the structure of a covalent ester intermediate identifies Serbeta1 as the nucleophile and Asnbeta269 and Valbeta70 as the oxyanion hole residues in the AHL degradation process. Our structures show the versatility of the Ntn-hydrolase scaffold and can serve as a structural paradigm for Ntn-hydrolases with similar substrate preference. Finally, the quorum-quenching capabilities of PvdQ may be utilized to suppress the quorum-sensing machinery of pathogens.
Collapse
|
206
|
Kouwen TRHM, van Dijl JM. Applications of thiol-disulfide oxidoreductases for optimized in vivo production of functionally active proteins in Bacillus. Appl Microbiol Biotechnol 2009; 85:45-52. [PMID: 19727703 PMCID: PMC2765640 DOI: 10.1007/s00253-009-2212-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2009] [Revised: 08/17/2009] [Accepted: 08/18/2009] [Indexed: 02/01/2023]
Abstract
Bacillus subtilis is a well-established cellular factory for proteins and fine chemicals. In particular, the direct secretion of proteinaceous products into the growth medium greatly facilitates their downstream processing, which is an important advantage of B. subtilis over other biotechnological production hosts, such as Escherichia coli. The application spectrum of B. subtilis is, however, often confined to proteins from Bacillus or closely related species. One of the major reasons for this (current) limitation is the inefficient formation of disulfide bonds, which are found in many, especially eukaryotic, proteins. Future exploitation of B. subtilis to fulfill the ever-growing demand for pharmaceutical and other high-value proteins will therefore depend on overcoming this particular hurdle. Recently, promising advances in this area have been achieved, which focus attention on the need to modulate the cellular levels and activity of thiol-disulfide oxidoreductases (TDORs). These TDORs are enzymes that control the cleavage or formation of disulfide bonds. This review will discuss readily applicable approaches for TDOR modulation and aims to provide leads for further improvement of the Bacillus cell factory for production of disulfide bond-containing proteins.
Collapse
Affiliation(s)
- Thijs R H M Kouwen
- Department of Medical Microbiology, University Medical Microbiology, University Medical Center Groningen, Groningen, The Netherlands
| | | |
Collapse
|
207
|
Inhibition of bacterial disulfide bond formation by the anticoagulant warfarin. Proc Natl Acad Sci U S A 2009; 107:297-301. [PMID: 20018758 DOI: 10.1073/pnas.0912952107] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Blood coagulation in humans requires the activity of vitamin K epoxide reductase (VKOR), the target of the anticoagulant warfarin (Coumadin). Bacterial homologs of VKOR were recently found to participate in a pathway leading to disulfide bond formation in secreted proteins of many bacteria. Here we show that the VKOR homolog from the bacterium Mycobacterium tuberculosis, the causative agent of human tuberculosis, is inhibited by warfarin and that warfarin-resistant mutations of mycobacterial VKOR appear in similar locations to mutations found in human patients who require higher doses of warfarin. Deletion of VKOR results in a severe growth defect in mycobacteria, and the growth of M. tuberculosis is inhibited by warfarin. The bacterial VKOR homolog may represent a target for antibiotics and a model for genetic studies of human VKOR. We present a simple assay in Escherichia coli, based on a disulfide-sensitive beta-galactosidase, which can be used to screen for stronger inhibitors of the M. tuberculosis VKOR homolog.
Collapse
|
208
|
Ponniah K, Loo TS, Edwards PJB, Pascal SM, Jameson GB, Norris GE. The production of soluble and correctly folded recombinant bovine beta-lactoglobulin variants A and B in Escherichia coli for NMR studies. Protein Expr Purif 2009; 70:283-9. [PMID: 20018245 DOI: 10.1016/j.pep.2009.12.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2009] [Revised: 12/04/2009] [Accepted: 12/09/2009] [Indexed: 10/20/2022]
Abstract
The production of soluble and correctly folded eukaryotic proteins in prokaryotic systems has always been hampered by the difference in or lack of cell machinery responsible for folding, post-translation modification and secretion of the proteins involved. In the case of bovine beta-lactoglobulin (BLG), a major cow's milk allergen and a protein widely used for protein folding studies, a eukaryotic yeast expression system has been the preferred choice of many researchers, particularly for the production of isotopically labeled protein required for NMR studies. Although this system yields high amounts of recombinant protein, the BLG produced is usually associated with extracellular polysaccharides, which is problematic for NMR analysis. In our study we show that when co-expressed with the signal-sequence-less disulfide bond isomerase (Delta ssDsbC) in the dual expression vector, pETDUET-1, both BLG A and BLG B can be reproducibly produced in a soluble form. Expression was carried out in Escherichia coli Origami(DE3), a trxB/gor mutant for thioredoxin- and glutathione reductase, which allows for proper formation of disulfide bonds in the cytoplasm. The protein was purified by anion exchange chromatography followed by salting-out at low pH and size exclusion chromatography. Our expression system is able to consistently produce milligram quantities of correctly folded BLG A and B with no additional amino acid residues at the N-terminus, except for a methionine. (15)N-labeled BLG A and B, prepared and purified using this method, produced HSQC spectra typical of native bovine BLG.
Collapse
Affiliation(s)
- Komala Ponniah
- Institute of Molecular BioSciences, Massey University, Private Bag 11222, Palmerston North, New Zealand
| | | | | | | | | | | |
Collapse
|
209
|
Trivedi MV, Laurence JS, Siahaan TJ. The role of thiols and disulfides on protein stability. Curr Protein Pept Sci 2009; 10:614-25. [PMID: 19538140 PMCID: PMC3319691 DOI: 10.2174/138920309789630534] [Citation(s) in RCA: 282] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2008] [Accepted: 05/23/2009] [Indexed: 01/20/2023]
Abstract
There has been a tremendous increase in the number of approved drugs derived from recombinant proteins; however, their development as potential drugs has been hampered by their instability that causes difficulty to formulate them as therapeutic agents. It has been shown that the reactivity of thiol and disulfide functional groups could catalyze chemical (i.e., oxidation and beta-elimination reactions) and physical (i.e., aggregation and precipitation) degradations of proteins. Because most proteins contain a free Cys residue or/and a disulfide bond, this review is focused on their roles in the physical and chemical stability of proteins. The effect of introducing a disulfide bond to improve physical stability of proteins and the mechanisms of degradation of disulfide bond were discussed. The qualitative/quantitative methods to determine the presence of thiol in the Cys residue and various methods to derivatize thiol group for improving protein stability were also illustrated.
Collapse
Affiliation(s)
- Maulik V. Trivedi
- Department of Pharmaceutical Chemistry, The University of Kansas, Simons Research Laboratories, 2095 Constant Ave., Lawrence, Kansas 66047
| | - Jennifer S. Laurence
- Department of Pharmaceutical Chemistry, The University of Kansas, Simons Research Laboratories, 2095 Constant Ave., Lawrence, Kansas 66047
| | - Teruna J. Siahaan
- Department of Pharmaceutical Chemistry, The University of Kansas, Simons Research Laboratories, 2095 Constant Ave., Lawrence, Kansas 66047
| |
Collapse
|
210
|
Daniels R, Mellroth P, Bernsel A, Neiers F, Normark S, von Heijne G, Henriques-Normark B. Disulfide bond formation and cysteine exclusion in gram-positive bacteria. J Biol Chem 2009; 285:3300-9. [PMID: 19940132 PMCID: PMC2823432 DOI: 10.1074/jbc.m109.081398] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Most secretion pathways in bacteria and eukaryotic cells are challenged by the requirement for their substrate proteins to mature after they traverse a membrane barrier and enter a reactive oxidizing environment. For Gram-positive bacteria, the mechanisms that protect their exported proteins from misoxidation during their post-translocation maturation are poorly understood. To address this, we separated numerous bacterial species according to their tolerance for oxygen and divided their proteomes based on the predicted subcellular localization of their proteins. We then applied a previously established computational approach that utilizes cysteine incorporation patterns in proteins as an indicator of enzymatic systems that may exist in each species. The Sec-dependent exported proteins from aerobic Gram-positive Actinobacteria were found to encode cysteines in an even-biased pattern indicative of a functional disulfide bond formation system. In contrast, aerobic Gram-positive Firmicutes favor the exclusion of cysteines from both their cytoplasmic proteins and their substantially longer exported proteins. Supporting these findings, we show that Firmicutes, but not Actinobacteria, tolerate growth in reductant. We further demonstrate that the actinobacterium Corynebacterium glutamicum possesses disulfide-bonded proteins and two dimeric Dsb-like enzymes that can efficiently catalyze the formation of disulfide bonds. Our results suggest that cysteine exclusion is an important adaptive strategy against the challenges presented by oxidative environments.
Collapse
Affiliation(s)
- Robert Daniels
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | | | | | | | | | | | | |
Collapse
|
211
|
Khan MA, Bishop RE. Molecular mechanism for lateral lipid diffusion between the outer membrane external leaflet and a beta-barrel hydrocarbon ruler. Biochemistry 2009; 48:9745-56. [PMID: 19769329 DOI: 10.1021/bi9013566] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Membrane-intrinsic enzymes are embedded in lipids, yet how such enzymes interrogate lipid substrates remains a largely unexplored fundamental question. The outer membrane phospholipid:lipid A palmitoyltransferase PagP combats host immune defenses during infection and selects a palmitate chain using its beta-barrel interior hydrocarbon ruler. Both a molecular embrasure and crenel in Escherichia coli PagP display weakened transmembrane beta-strand hydrogen bonding to provide potential lateral routes for diffusion of the palmitoyl group between the hydrocarbon ruler and outer membrane external leaflet. Prolines in strands A and B lie beneath the dynamic L1 surface loop flanking the embrasure, whereas the crenel is flanked by prolines in strands F and G. Reversibly barricading the embrasure prevents lipid A palmitoylation without affecting the slower phospholipase reaction. Lys42Ala PagP is also a dedicated phospholipase, implicating this disordered L1 loop residue in lipid A recognition. The embrasure barricade additionally prevents palmitoylation of nonspecific fatty alcohols, but not miscible alcohols. Irreversibly barricading the crenel inhibits both lipid A palmitoylation and phospholipase reactions without compromising PagP structure. These findings indicate lateral palmitoyl group diffusion within the PagP hydrocarbon ruler is likely gated during phospholipid entry via the crenel and during lipid A egress via the embrasure.
Collapse
Affiliation(s)
- M Adil Khan
- Department of Biochemistry and Biomedical Sciences and Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON, Canada L8N 3Z5
| | | |
Collapse
|
212
|
Hatahet F, Ruddock LW. Protein disulfide isomerase: a critical evaluation of its function in disulfide bond formation. Antioxid Redox Signal 2009; 11:2807-50. [PMID: 19476414 DOI: 10.1089/ars.2009.2466] [Citation(s) in RCA: 518] [Impact Index Per Article: 32.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Disulfide bond formation is probably involved in the biogenesis of approximately one third of human proteins. A central player in this essential process is protein disulfide isomerase or PDI. PDI was the first protein-folding catalyst reported. However, despite more than four decades of study, we still do not understand much about its physiological mechanisms of action. This review examines the published literature with a critical eye. This review aims to (a) provide background on the chemistry of disulfide bond formation and rearrangement, including the concept of reduction potential, before examining the structure of PDI; (b) detail the thiol-disulfide exchange reactions that are catalyzed by PDI in vitro, including a critical examination of the assays used to determine them; (c) examine oxidation and reduction of PDI in vivo, including not only the role of ERo1 but also an extensive assessment of the role of glutathione, as well as other systems, such as peroxide, dehydroascorbate, and a discussion of vitamin K-based systems; (d) consider the in vivo reactions of PDI and the determination and implications of the redox state of PDI in vivo; and (e) discuss other human and yeast PDI-family members.
Collapse
Affiliation(s)
- Feras Hatahet
- Department of Biochemistry, University of Oulu , Oulu, Finland
| | | |
Collapse
|
213
|
Detecting folding intermediates of a protein as it passes through the bacterial translocation channel. Cell 2009; 138:1164-73. [PMID: 19766568 DOI: 10.1016/j.cell.2009.07.030] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2009] [Revised: 05/04/2009] [Accepted: 07/16/2009] [Indexed: 11/20/2022]
Abstract
Most bacterial exported proteins cross the cytoplasmic membrane as unfolded polypeptides. However, little is known about how they fold during or after this process due to the difficulty in detecting folding intermediates. Here we identify cotranslational and posttranslational folding intermediates of a periplasmic protein in which the protein and DsbA, a periplasmic disulfide bond-forming enzyme, are covalently linked by a disulfide bond. The cotranslational mixed-disulfide intermediate is, upon further chain elongation, resolved, releasing the oxidized polypeptide, thus allowing us to follow the folding process. This analysis reveals that two cysteines that are joined to form a structural disulfide can play different roles during the folding reaction and that the mode of translocation (cotranslational verse posttranslational) can affect the folding process of a protein in the periplasm. The latter finding leads us to propose that the activity of the ribosome (translation) can modulate protein folding even in an extracytosolic compartment.
Collapse
|
214
|
Lin D, Kim B, Slauch JM. DsbL and DsbI contribute to periplasmic disulfide bond formation in Salmonella enterica serovar Typhimurium. MICROBIOLOGY-SGM 2009; 155:4014-4024. [PMID: 19797361 DOI: 10.1099/mic.0.032904-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Disulfide bond formation in periplasmic proteins is catalysed by the DsbA/DsbB system in most Gram-negative bacteria. Salmonella enterica serovar Typhimurium also encodes a paralogous pair of proteins to DsbA and DsbB, DsbL and DsbI, respectively, downstream of a periplasmic arylsulfate sulfotransferase (ASST). We show that DsbL and DsbI function as a redox pair contributing to periplasmic disulfide bond formation and, as such, affect transcription of the Salmonella pathogenicity island 1 (SPI1) type three secretion system genes and activation of the RcsCDB system, as well as ASST activity. In contrast to DsbA/DsbB, however, the DsbL/DsbI system cannot catalyse the disulfide bond formation required for flagellar assembly. Phylogenic analysis suggests that the assT dsbL dsbI genes are ancestral in the Enterobacteriaceae, but have been lost in many lineages. Deletion of assT confers no virulence defect during acute Salmonella infection of mice.
Collapse
Affiliation(s)
- Dongxia Lin
- Department of Microbiology, University of Illinois, Urbana, IL 61801, USA
| | - Byoungkwan Kim
- Department of Microbiology, University of Illinois, Urbana, IL 61801, USA
| | - James M Slauch
- College of Medicine, University of Illinois, Urbana, IL 61801, USA.,Department of Microbiology, University of Illinois, Urbana, IL 61801, USA
| |
Collapse
|
215
|
An FAD-dependent pyridine nucleotide-disulfide oxidoreductase is involved in disulfide bond formation in FK228 anticancer depsipeptide. ACTA ACUST UNITED AC 2009; 16:585-93. [PMID: 19549597 DOI: 10.1016/j.chembiol.2009.05.005] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2009] [Revised: 04/23/2009] [Accepted: 05/08/2009] [Indexed: 11/22/2022]
Abstract
Disulfide bonds are rare in bacterial natural products, and the mechanism of disulfide bond formation in those products is unknown. Here we characterize a gene and its product critical for a disulfide bond formation in FK228 anticancer depsipeptide in Chromobacterium violaceum. Deletion of depH drastically reduced FK228 production, whereas complementation of the depH-deletion mutant with a copy of depH on a medium copy-number plasmid not only fully restored the FK228 production but also significantly increased the FK228 yield. Purified 6xHis-tagged DepH fusion protein in native form is a homodimer of 71.0 kDa, with each monomer containing one molecule of FAD. DepH efficiently converts an immediate FK228 precursor to FK228 in the presence of NADP(+). We conclude that DepH is an FAD-dependent pyridine nucleotide-disulfide oxidoreductase, specifically and efficiently catalyzing a disulfide bond formation in FK228.
Collapse
|
216
|
Deponte M, Hell K. Disulphide Bond Formation in the Intermembrane Space of Mitochondria. J Biochem 2009; 146:599-608. [DOI: 10.1093/jb/mvp133] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
217
|
Oh IS, Lee JC, Lee MS, Chung JH, Kim DM. Cell-free production of functional antibody fragments. Bioprocess Biosyst Eng 2009; 33:127-32. [DOI: 10.1007/s00449-009-0372-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2009] [Accepted: 08/06/2009] [Indexed: 11/28/2022]
|
218
|
A periplasmic thioredoxin-like protein plays a role in defense against oxidative stress in Neisseria gonorrhoeae. Infect Immun 2009; 77:4934-9. [PMID: 19687198 DOI: 10.1128/iai.00714-09] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Thioredoxin-like proteins of the TlpA/ResE/CcmG subfamily are known to face the periplasm in gram-negative bacteria. Using the tlpA gene of Bradyrhizobium japonicum as a query, we identified a locus (NGO1923) in Neisseria gonorrhoeae that encodes a thioredoxin-like protein (NG_TlpA). Bioinformatics analysis indicated that the predicted NG_TlpA protein contained a cleavable signal peptide at the N terminus, and secondary structure analysis identified a thioredoxin fold with a helical insertion (approximately 25 residues), similar to that found in B. japonicum TlpA but absent in cytoplasmic thioredoxins. Biochemical characterization of a recombinant form of NG_TlpA revealed a standard redox potential (E0') of -206 mV. This property and the observation that the oxidized form of the protein exhibited greater thermal stability than the reduced species indicated that NG_TlpA is a reducing thioredoxin and not an oxidizing thiol-disulfide oxidoreductase like DsbA. The thioredoxin activity of NG_TlpA was confirmed in an insulin disulfide reduction assay. A tlpA mutant of N. gonorrhoeae strain 1291 was found to be highly sensitive to oxidative killing by paraquat and hydrogen peroxide, indicating an antioxidant role for the NG_TlpA in this bacterium. The tlpA mutant also exhibited reduced intracellular survival in human primary cervical epithelial cells.
Collapse
|
219
|
Ang SK, Lu H. Deciphering structural and functional roles of individual disulfide bonds of the mitochondrial sulfhydryl oxidase Erv1p. J Biol Chem 2009; 284:28754-61. [PMID: 19679655 DOI: 10.1074/jbc.m109.021113] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Erv1p is a FAD-dependent sulfhydryl oxidase of the mitochondrial intermembrane space. It contains three conserved disulfide bonds arranged in two CXXC motifs and one CX(16)C motif. Experimental evidence for the specific roles of the individual disulfide bonds is lacking. In this study, structural and functional roles of the disulfides were dissected systematically using a wide range of biochemical and biophysical methods. Three double cysteine mutants with each pair of cysteines mutated to serines were generated. All of the mutants were purified with the normal FAD binding properties as the wild type Erv1p, showing that none of the three disulfides are essential for FAD binding. Thermal denaturation and trypsin digestion studies showed that the CX(16)C disulfide plays an important role in stabilizing the folding of Erv1p. To understand the functional role of each disulfide, small molecules and the physiological substrate protein Mia40 were used as electron donors in oxygen consumption assays. We show that both CXXC disulfides are required for Erv1 oxidase activity. The active site disulfide is well protected thus requires the shuttle disulfide for its function. Although both mutants of the CXXC motifs were individually inactive, Erv1p activity was partially recovered by mixing these two mutants together, and the recovery was rapid. Thus, we provided the first experimental evidence of electron transfer between the shuttle and active site disulfides of Erv1p, and we propose that both intersubunit and intermolecular electron transfer can occur.
Collapse
Affiliation(s)
- Swee Kim Ang
- Faculty of Life Sciences, The University of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PT, United Kingdom
| | | |
Collapse
|
220
|
Tartakoff AM, Tao T. Comparative and evolutionary aspects of macromolecular translocation across membranes. Int J Biochem Cell Biol 2009; 42:214-29. [PMID: 19643202 DOI: 10.1016/j.biocel.2009.07.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2009] [Revised: 07/21/2009] [Accepted: 07/21/2009] [Indexed: 01/10/2023]
Abstract
Membrane barriers preserve the integrity of organelles of eukaryotic cells, yet the genesis and ongoing functions of the same organelles requires that their limiting membranes allow import and export of selected macromolecules. Multiple distinct mechanisms are used for this purpose, only some of which have been traced to prokaryotes. Some can accommodate both monomeric and also large heterooligomeric cargoes. The best characterized of these is nucleocytoplasmic transport. This synthesis compares the unidirectional and bidirectional mechanisms of macromolecular transport of the endoplasmic reticulum, mitochondria, peroxisomes and the nucleus, calls attention to the powerful experimental approaches which have been used for their elucidation, discusses their regulation and evolutionary origins, and highlights relatively unexplored areas.
Collapse
Affiliation(s)
- Alan M Tartakoff
- Department of Pathology & Cell Biology Program, Case Western Reserve University, School of Medicine, Cleveland, OH 44106, USA.
| | | |
Collapse
|
221
|
Abstract
Disulfide bonds play fundamental roles in proteins. This work is devoted to highly rare motifs containing disulfide bonds. A search for four cysteines, forming a 16-atom membered ring (4CR) embodying two disulfide bonds, was carried out against all entries in the Protein Data Bank. Searching the crystallographic subset, only few protein molecules, all dimeric, were found to embody this peculiar structural feature, which establishes a covalent link between two different polypeptide chains. In contrast, in a peptide studied in solution by NMR, the four cysteines moiety includes only residues from one chain. A comparative analysis provided evidence for similarity and difference. It emerged that 4CR motif is highly rare and may serve to gain a specialized function.
Collapse
Affiliation(s)
- Adriana Zagari
- Dipartimento delle Scienze Biologiche, Università degli Studi di Napoli, Via Mezzocannone 16, Naples, Italy.
| |
Collapse
|
222
|
Abstract
This Letter reports the use of disulfide linkages to stabilize a beta-sheet dimer with a well-defined structure in aqueous and dimethyl sulfoxide solutions. In this dimer, two cyclic beta-sheet peptides are connected by disulfide linkages at the non-hydrogen-bonded rings. The cyclic beta-sheet "domains" interact through hydrogen bonding to form a four-stranded beta-sheet structure. This interaction results in enhanced folding of the cyclic beta-sheet peptides.
Collapse
Affiliation(s)
- Omid Khakshoor
- Department of Chemistry, University of California, Irvine, Irvine, CA 92697-2025
| | - James S. Nowick
- Department of Chemistry, University of California, Irvine, Irvine, CA 92697-2025
| |
Collapse
|
223
|
Arredondo SA, Chen TF, Riggs AF, Gilbert HF, Georgiou G. Role of dimerization in the catalytic properties of the Escherichia coli disulfide isomerase DsbC. J Biol Chem 2009; 284:23972-9. [PMID: 19581640 DOI: 10.1074/jbc.m109.010199] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The bacterial protein-disulfide isomerase DsbC is a homodimeric V-shaped enzyme that consists of a dimerization domain, two alpha-helical linkers, and two opposing thioredoxin fold catalytic domains. The functional significance of the two catalytic domains of DsbC is not well understood yet. We have engineered heterodimer-like DsbC derivatives covalently linked via (Gly(3)-Ser) flexible linkers. We either inactivated one of the catalytic sites (CGYC), or entirely removed one of the catalytic domains while maintaining the putative binding area intact. Variants having a single active catalytic site display significant levels of isomerase activity. Furthermore, mDsbC[H45D]-dim[D53H], a DsbC variant lacking an entire catalytic domain but with an intact dimerization domain, also showed isomerase activity, albeit at lower levels. In addition, the absence of the catalytic domain allowed this protein to catalyze in vivo oxidation. Our results reveal that two catalytic domains in DsbC are not essential for disulfide bond isomerization and that a determining feature in isomerization is the availability of a substrate binding domain.
Collapse
Affiliation(s)
- Silvia A Arredondo
- Department of Chemical Engineering, School of Biological Sciences, University of Texas, Austin, Texas 78712, USA
| | | | | | | | | |
Collapse
|
224
|
|
225
|
Ihssen J, Magnani D, Thöny-Meyer L, Ren Q. Use of extracellular medium chain length polyhydroxyalkanoate depolymerase for targeted binding of proteins to artificial poly[(3-hydroxyoctanoate)-co-(3-hydroxyhexanoate)] granules. Biomacromolecules 2009; 10:1854-64. [PMID: 19459673 DOI: 10.1021/bm9002859] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Polyhydroxyalkanoates (PHA), which are produced by many microorganisms, are promising polymers for biomedical applications due to their biodegradability and biocompatibility. In this study, we evaluated the suitability of medium chain length (mcl) PHA as surface materials for immobilizing proteins. Self-stabilized, artificial mcl-PHA beads with a size of 200-300 nm were fabricated. Five of six tested proteins adsorbed nonspecifically to mcl-PHA beads in amounts of 0.4-1.8 mg m(-2) bead surface area. The binding capacity was comparable to similar-sized polystyrene particles commonly used for antibody immobilization in clinical diagnostics. A targeted immobilization of fusion proteins was achieved by using inactive extracellular PHA depolymerase (ePHA(mcl)) from Pseudomonas fluorescens as the capture ligand. The N-terminal part of ePhaZ(MCL) preceding the catalytic domain was identified to comprise the substrate binding domain and was sufficient for mediating the binding of fusion proteins to mcl-PHA. We suggest mcl-PHA to be prime candidates for both nonspecific and targeted immobilization of proteins in applications such as drug delivery, protein microarrays, and protein purification.
Collapse
Affiliation(s)
- Julian Ihssen
- Laboratory of Biomaterials, Swiss Federal Laboratories for Materials Testing and Research (EMPA), CH-9014 St. Gallen, Switzerland
| | | | | | | |
Collapse
|
226
|
de Marco A. Strategies for successful recombinant expression of disulfide bond-dependent proteins in Escherichia coli. Microb Cell Fact 2009; 8:26. [PMID: 19442264 PMCID: PMC2689190 DOI: 10.1186/1475-2859-8-26] [Citation(s) in RCA: 265] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2009] [Accepted: 05/14/2009] [Indexed: 12/22/2022] Open
Abstract
Bacteria are simple and cost effective hosts for producing recombinant proteins. However, their physiological features may limit their use for obtaining in native form proteins of some specific structural classes, such as for instance polypeptides that undergo extensive post-translational modifications. To some extent, also the production of proteins that depending on disulfide bridges for their stability has been considered difficult in E. coli. Both eukaryotic and prokaryotic organisms keep their cytoplasm reduced and, consequently, disulfide bond formation is impaired in this subcellular compartment. Disulfide bridges can stabilize protein structure and are often present in high abundance in secreted proteins. In eukaryotic cells such bonds are formed in the oxidizing environment of endoplasmic reticulum during the export process. Bacteria do not possess a similar specialized subcellular compartment, but they have both export systems and enzymatic activities aimed at the formation and at the quality control of disulfide bonds in the oxidizing periplasm. This article reviews the available strategies for exploiting the physiological mechanisms of bactera to produce properly folded disulfide-bonded proteins.
Collapse
Affiliation(s)
- Ario de Marco
- Cogentech, IFOM-IEO Campus for Oncogenomic, via Adamello, 16 - 20139, Milano, Italy.
| |
Collapse
|
227
|
Marino SM, Gladyshev VN. A structure-based approach for detection of thiol oxidoreductases and their catalytic redox-active cysteine residues. PLoS Comput Biol 2009; 5:e1000383. [PMID: 19424433 PMCID: PMC2673044 DOI: 10.1371/journal.pcbi.1000383] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2008] [Accepted: 04/02/2009] [Indexed: 02/07/2023] Open
Abstract
Cysteine (Cys) residues often play critical roles in proteins, for example, in the formation of structural disulfide bonds, metal binding, targeting proteins to the membranes, and various catalytic functions. However, the structural determinants for various Cys functions are not clear. Thiol oxidoreductases, which are enzymes containing catalytic redox-active Cys residues, have been extensively studied, but even for these proteins there is little understanding of what distinguishes their catalytic redox Cys from other Cys functions. Herein, we characterized thiol oxidoreductases at a structural level and developed an algorithm that can recognize these enzymes by (i) analyzing amino acid and secondary structure composition of the active site and its similarity to known active sites containing redox Cys and (ii) calculating accessibility, active site location, and reactivity of Cys. For proteins with known or modeled structures, this method can identify proteins with catalytic Cys residues and distinguish thiol oxidoreductases from the enzymes containing other catalytic Cys types. Furthermore, by applying this procedure to Saccharomyces cerevisiae proteins containing conserved Cys, we could identify the majority of known yeast thiol oxidoreductases. This study provides insights into the structural properties of catalytic redox-active Cys and should further help to recognize thiol oxidoreductases in protein sequence and structure databases.
Collapse
Affiliation(s)
- Stefano M. Marino
- Department of Biochemistry and Redox Biology Center, University of
Nebraska, Lincoln, Nebraska, United States of America
| | - Vadim N. Gladyshev
- Department of Biochemistry and Redox Biology Center, University of
Nebraska, Lincoln, Nebraska, United States of America
| |
Collapse
|
228
|
Characterization of two homologous disulfide bond systems involved in virulence factor biogenesis in uropathogenic Escherichia coli CFT073. J Bacteriol 2009; 191:3901-8. [PMID: 19376849 DOI: 10.1128/jb.00143-09] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Disulfide bond (DSB) formation is catalyzed by disulfide bond proteins and is critical for the proper folding and functioning of secreted and membrane-associated bacterial proteins. Uropathogenic Escherichia coli (UPEC) strains possess two paralogous disulfide bond systems: the well-characterized DsbAB system and the recently described DsbLI system. In the DsbAB system, the highly oxidizing DsbA protein introduces disulfide bonds into unfolded polypeptides by donating its redox-active disulfide and is in turn reoxidized by DsbB. DsbA has broad substrate specificity and reacts readily with reduced unfolded proteins entering the periplasm. The DsbLI system also comprises a functional redox pair; however, DsbL catalyzes the specific oxidative folding of the large periplasmic enzyme arylsulfate sulfotransferase (ASST). In this study, we characterized the DsbLI system of the prototypic UPEC strain CFT073 and examined the contributions of the DsbAB and DsbLI systems to the production of functional flagella as well as type 1 and P fimbriae. The DsbLI system was able to catalyze disulfide bond formation in several well-defined DsbA targets when provided in trans on a multicopy plasmid. In a mouse urinary tract infection model, the isogenic dsbAB deletion mutant of CFT073 was severely attenuated, while deletion of dsbLI or assT did not affect colonization.
Collapse
|
229
|
Crow A, Liu Y, Möller MC, Le Brun NE, Hederstedt L. Structure and functional properties of Bacillus subtilis endospore biogenesis factor StoA. J Biol Chem 2009; 284:10056-66. [PMID: 19144642 PMCID: PMC2665060 DOI: 10.1074/jbc.m809566200] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2008] [Indexed: 11/21/2022] Open
Abstract
Bacillus subtilis StoA is an extracytoplasmic thiol-disulfide oxidoreductase (TDOR) important for the synthesis of the endospore peptidoglycan cortex protective layer. Here we demonstrate that StoA is membrane-associated in B. subtilis and report the crystal structure of the soluble protein lacking its membrane anchor. This showed that StoA adopts a thioredoxin-like fold with N-terminal and internal additions that are characteristic of extracytoplasmic TDORs. The CXXC active site of the crystallized protein was found to be in a mixture of oxidized and reduced states, illustrating that there is little conformational variation between redox states. The midpoint reduction potential was determined as -248 mV versus normal hydrogen electrode at pH 7 consistent with StoA fulfilling a reductive role in endospore biogenesis. pK(a) values of the active site cysteines, Cys-65 and Cys-68, were determined to be 5.5 and 7.8. Although Cys-68 is buried within the structure, both cysteines were found to be accessible to cysteine-specific alkylating reagents. In vivo studies of site-directed variants of StoA revealed that the active site cysteines are functionally important, as is Glu-71, which lies close to the active site and is conserved in many reducing extracytoplasmic TDORs. The structure and biophysical properties of StoA are very similar to those of ResA, a B. subtilis extracytoplasmic TDOR involved in cytochrome c maturation, raising important general questions about how these similar but non-redundant proteins achieve specificity. A detailed comparison of the two proteins demonstrates that relatively subtle differences, largely located around the active sites of the proteins, are sufficient to confer specificity.
Collapse
Affiliation(s)
- Allister Crow
- Centre for Molecular and Structural Biochemistry, School of Chemical Sciences and Pharmacy, University of East Anglia, Norwich NR4 7TJ, United Kingdom
| | | | | | | | | |
Collapse
|
230
|
Dynamic nature of disulphide bond formation catalysts revealed by crystal structures of DsbB. EMBO J 2009; 28:779-91. [PMID: 19214188 DOI: 10.1038/emboj.2009.21] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2008] [Accepted: 01/12/2009] [Indexed: 11/08/2022] Open
Abstract
In the Escherichia coli system catalysing oxidative protein folding, disulphide bonds are generated by the cooperation of DsbB and ubiquinone and transferred to substrate proteins through DsbA. The structures solved so far for different forms of DsbB lack the Cys104-Cys130 initial-state disulphide that is directly donated to DsbA. Here, we report the 3.4 A crystal structure of a DsbB-Fab complex, in which DsbB has this principal disulphide. Its comparison with the updated structure of the DsbB-DsbA complex as well as with the recently reported NMR structure of a DsbB variant having the rearranged Cys41-Cys130 disulphide illuminated conformational transitions of DsbB induced by the binding and release of DsbA. Mutational studies revealed that the membrane-parallel short alpha-helix of DsbB has a key function in physiological electron flow, presumably by controlling the positioning of the Cys130-containing loop. These findings demonstrate that DsbB has developed the elaborate conformational dynamism to oxidize DsbA for continuous protein disulphide bond formation in the cell.
Collapse
|
231
|
Zhang D, Neumann O, Wang H, Yuwono VM, Barhoumi A, Perham M, Hartgerink JD, Wittung-Stafshede P, Halas NJ. Gold nanoparticles can induce the formation of protein-based aggregates at physiological pH. NANO LETTERS 2009; 9:666-71. [PMID: 19199758 DOI: 10.1021/nl803054h] [Citation(s) in RCA: 281] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Protein-nanoparticle interactions are of central importance in the biomedical applications of nanoparticles, as well as in the growing biosafety concerns of nanomaterials. We observe that gold nanoparticles initiate protein aggregation at physiological pH, resulting in the formation of extended, amorphous protein-nanoparticle assemblies, accompanied by large protein aggregates without embedded nanoparticles. Proteins at the Au nanoparticle surface are observed to be partially unfolded; these nanoparticle-induced misfolded proteins likely catalyze the observed aggregate formation and growth.
Collapse
Affiliation(s)
- Dongmao Zhang
- Department of Electrical and Computer Engineering, Rice University, Houston, Texas 77005, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
232
|
MIA40 is an oxidoreductase that catalyzes oxidative protein folding in mitochondria. Nat Struct Mol Biol 2009; 16:198-206. [PMID: 19182799 DOI: 10.1038/nsmb.1553] [Citation(s) in RCA: 220] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2008] [Accepted: 01/05/2009] [Indexed: 11/08/2022]
Abstract
MIA40 has a key role in oxidative protein folding in the mitochondrial intermembrane space. We present the solution structure of human MIA40 and its mechanism as a catalyst of oxidative folding. MIA40 has a 66-residue folded domain made of an alpha-helical hairpin core stabilized by two structural disulfides and a rigid N-terminal lid, with a characteristic CPC motif that can donate its disulfide bond to substrates. The CPC active site is solvent-accessible and sits adjacent to a hydrophobic cleft. Its second cysteine (Cys55) is essential in vivo and is crucial for mixed disulfide formation with the substrate. The hydrophobic cleft functions as a substrate binding domain, and mutations of this domain are lethal in vivo and abrogate binding in vitro. MIA40 represents a thioredoxin-unrelated, minimal oxidoreductase, with a facile CPC redox active site that ensures its catalytic function in oxidative folding in mitochondria.
Collapse
|
233
|
Mavridou DAI, Stevens JM, Goddard AD, Willis AC, Ferguson SJ, Redfield C. Control of periplasmic interdomain thiol:disulfide exchange in the transmembrane oxidoreductase DsbD. J Biol Chem 2009; 284:3219-3226. [PMID: 19004826 PMCID: PMC2631958 DOI: 10.1074/jbc.m805963200] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2008] [Revised: 11/10/2008] [Indexed: 01/23/2023] Open
Abstract
The bacterial protein DsbD transfers reductant from the cytoplasm to the otherwise oxidizing environment of the periplasm. This reducing power is required for several essential pathways, including disulfide bond formation and cytochrome c maturation. DsbD includes a transmembrane domain (tmDsbD) flanked by two globular periplasmic domains (nDsbD/cDsbD); each contains a cysteine pair involved in electron transfer via a disulfide exchange cascade. The final step in the cascade involves reduction of the Cys(103)-Cys(109) disulfide of nDsbD by Cys(461) of cDsbD. Here we show that a complex between the globular periplasmic domains is trapped in vivo only when both are linked by tmDsbD. We have found previously ( Mavridou, D. A., Stevens, J. M., Ferguson, S. J., & Redfield, C. (2007) J. Mol. Biol. 370, 643-658 ) that the attacking cysteine (Cys(461)) in isolated cDsbD has a high pK(a) value (10.5) that makes this thiol relatively unreactive toward the target disulfide in nDsbD. Here we show using NMR that active-site pK(a) values change significantly when cDsbD forms a complex with nDsbD. This modulation of pK(a) values is critical for the specificity and function of cDsbD. Uncomplexed cDsbD is a poor nucleophile, allowing it to avoid nonspecific reoxidation; however, in complex with nDsbD, the nucleophilicity of cDsbD increases permitting reductant transfer. The observation of significant changes in active-site pK(a) values upon complex formation has wider implications for understanding reactivity in thiol:disulfide oxidoreductases.
Collapse
Affiliation(s)
- Despoina A I Mavridou
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, United Kingdom
| | - Julie M Stevens
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, United Kingdom
| | - Alan D Goddard
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, United Kingdom
| | - Antony C Willis
- Medical Research Council Immunochemistry Unit, University of Oxford, South Parks Road, Oxford OX1 3QU, United Kingdom
| | - Stuart J Ferguson
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, United Kingdom.
| | - Christina Redfield
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, United Kingdom.
| |
Collapse
|
234
|
Chang JY. Conformational Isomers of Denatured and Unfolded Proteins: Methods of Production and Applications. Protein J 2009; 28:44-56. [DOI: 10.1007/s10930-009-9162-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
235
|
Fisher A, DeLisa MP. Efficient isolation of soluble intracellular single-chain antibodies using the twin-arginine translocation machinery. J Mol Biol 2009; 385:299-311. [PMID: 18992254 PMCID: PMC2612092 DOI: 10.1016/j.jmb.2008.10.051] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2008] [Revised: 10/04/2008] [Accepted: 10/09/2008] [Indexed: 12/27/2022]
Abstract
One of the most commonly used recombinant antibody formats is the single-chain variable fragment (scFv) that consists of the antibody variable heavy chain connected to the variable light chain by a flexible linker. Since disulfide bonds are often necessary for scFv folding, it can be challenging to express scFvs in the reducing environment of the cytosol. Thus, we sought to develop a method for antigen-independent selection of scFvs that are stable in the reducing cytosol of bacteria. To this end, we applied a recently developed genetic selection for protein folding and solubility based on the quality control feature of the Escherichia coli twin-arginine translocation (Tat) pathway. This selection employs a tripartite sandwich fusion of a protein-of-interest with an N-terminal Tat-specific signal peptide and C-terminal TEM1 beta-lactamase, thereby coupling antibiotic resistance with Tat pathway export. Here, we adapted this assay to develop intrabody selection after Tat export (ISELATE), a high-throughput selection strategy for the identification of solubility-enhanced scFv sequences. Using ISELATE for three rounds of laboratory evolution, it was possible to evolve a soluble scFv from an insoluble parental sequence. We show also that ISELATE enables focusing of an scFv library in soluble sequence space before functional screening and thus can be used to increase the likelihood of finding functional intrabodies. Finally, the technique was used to screen a large repertoire of naïve scFvs for clones that conferred significant levels of soluble accumulation. Our results reveal that the Tat quality control mechanism can be harnessed for molecular evolution of scFvs that are soluble in the reducing cytoplasm of E. coli.
Collapse
Affiliation(s)
- Adam Fisher
- School of Chemical and Biomolecular Engineering, Cornell University, Ithaca NY 14853 USA
| | - Matthew P. DeLisa
- School of Chemical and Biomolecular Engineering, Cornell University, Ithaca NY 14853 USA
- Department of Biomedical Engineering, Cornell University, Ithaca NY 14853 USA
| |
Collapse
|
236
|
Gao F, Fang Q, Zhang R, Lu J, Lu H, Wang C, Ma X, Xu J, Jia W, Xiang K. Polymorphism of DsbA-L gene associates with insulin secretion and body fat distribution in Chinese population. Endocr J 2009; 56:487-94. [PMID: 19225211 DOI: 10.1507/endocrj.k08e-322] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Disulfide-bond-A oxidoreductase-like protein (DsbA-L) has been suggested to take part in the disulfide bond formation progress of proteins, including insulin and adiponectin. Recent study has demonstrated that expression of DsbA-L was decreased in obese mice and human subject, indicating that DsbA-L might be a potential target for treatment of metabolic diseases. We investigated the association of SNP-1308G/T (rs1917760) of DsbA-L gene with metabolic diseases. 589 normal glucose tolerance (NGT) subjects and 556 type 2 diabetes (T2DM) subjects were recruited. Each group was divided into normal weight (NW) (BMI<24 kg/m(2)) subgroup and overweight/obesity (OW/OB) (BMI>/=24 kg/ m(2)) subgroup. Genotype distributions and allele frequencies of SNP (-1308G/T) in DsbA-L gene were not associated with T2DM and obesity. However, it was observed that T allele carriers had better insulin secretion function compared with non-T allele carriers in NGT-NW group, not only the first phase insulin secretion (P=0.007) but also the second phase insulin secretion (P=0.031). Multiple linear regression analysis revealed that SNP-1308G/T polymorphism (rs1917760) was independently correlated with both first and second phase insulin secretion in NGT-NW group (R(2)=0.055, P=0.007; R(2)=0.029, P=0.041). Otherwise, T carriers had more visceral fat than non-T carriers (P=0.020) in NGT-OW/OB group. In conclusion, the SNP-1308G/T (rs1917760) genotypes of DsbA-L gene might participate in insulin secretion and body fat distribution. It is possible that polymorphisms of DsbA-L gene associated with metabolic diseases.
Collapse
Affiliation(s)
- Fei Gao
- Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Diabetes Institute, Shanghai Clinical Medicine Center for Diabetes, Shanghai, PR China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
237
|
|
238
|
Hamel P, Corvest V, Giegé P, Bonnard G. Biochemical requirements for the maturation of mitochondrial c-type cytochromes. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2009; 1793:125-38. [DOI: 10.1016/j.bbamcr.2008.06.017] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2008] [Revised: 06/18/2008] [Accepted: 06/26/2008] [Indexed: 11/26/2022]
|
239
|
Interchangeable modules in bacterial thiol-disulfide exchange pathways. Trends Microbiol 2009; 17:6-12. [DOI: 10.1016/j.tim.2008.10.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2008] [Revised: 10/05/2008] [Accepted: 10/08/2008] [Indexed: 11/22/2022]
|
240
|
Thangudu RR, Manoharan M, Srinivasan N, Cadet F, Sowdhamini R, Offmann B. Analysis on conservation of disulphide bonds and their structural features in homologous protein domain families. BMC STRUCTURAL BIOLOGY 2008; 8:55. [PMID: 19111067 PMCID: PMC2628669 DOI: 10.1186/1472-6807-8-55] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2008] [Accepted: 12/26/2008] [Indexed: 11/22/2022]
Abstract
Background Disulphide bridges are well known to play key roles in stability, folding and functions of proteins. Introduction or deletion of disulphides by site-directed mutagenesis have produced varying effects on stability and folding depending upon the protein and location of disulphide in the 3-D structure. Given the lack of complete understanding it is worthwhile to learn from an analysis of extent of conservation of disulphides in homologous proteins. We have also addressed the question of what structural interactions replaces a disulphide in a homologue in another homologue. Results Using a dataset involving 34,752 pairwise comparisons of homologous protein domains corresponding to 300 protein domain families of known 3-D structures, we provide a comprehensive analysis of extent of conservation of disulphide bridges and their structural features. We report that only 54% of all the disulphide bonds compared between the homologous pairs are conserved, even if, a small fraction of the non-conserved disulphides do include cytoplasmic proteins. Also, only about one fourth of the distinct disulphides are conserved in all the members in protein families. We note that while conservation of disulphide is common in many families, disulphide bond mutations are quite prevalent. Interestingly, we note that there is no clear relationship between sequence identity between two homologous proteins and disulphide bond conservation. Our analysis on structural features at the sites where cysteines forming disulphide in one homologue are replaced by non-Cys residues show that the elimination of a disulphide in a homologue need not always result in stabilizing interactions between equivalent residues. Conclusion We observe that in the homologous proteins, disulphide bonds are conserved only to a modest extent. Very interestingly, we note that extent of conservation of disulphide in homologous proteins is unrelated to the overall sequence identity between homologues. The non-conserved disulphides are often associated with variable structural features that were recruited to be associated with differentiation or specialisation of protein function.
Collapse
Affiliation(s)
- Ratna R Thangudu
- Laboratoire de Biochimie et Génétique Moléculaire, Université de La Réunion, BP 7151, 15 avenue René Cassin, 97715 Saint Denis Messag Cedex 09, La Réunion, France.
| | | | | | | | | | | |
Collapse
|
241
|
Rudolph R, Lange C. Strategies for the Oxidative in vitro Refolding of Disulfide-bridge-containing Proteins. OXIDATIVE FOLDING OF PEPTIDES AND PROTEINS 2008. [DOI: 10.1039/9781847559265-00192] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Rainer Rudolph
- Institut für Biochemie and Biotechnologie Martin-Luther-Universität Halle-Wittenberg Kurt-Mothes-Str. 3 06120 Halle (Saale) Germany
| | - Christian Lange
- Institut für Biochemie and Biotechnologie Martin-Luther-Universität Halle-Wittenberg Kurt-Mothes-Str. 3 06120 Halle (Saale) Germany
| |
Collapse
|
242
|
Hell K, Neupert W. Oxidative Protein Folding in Mitochondria. OXIDATIVE FOLDING OF PEPTIDES AND PROTEINS 2008. [DOI: 10.1039/9781847559265-00067] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Kai Hell
- Adolf-Butenandt-Institut für Physiologische Chemie, Ludwig-Maximilians-Universität München Butenandtstrasse 5 81377 München Germany
| | - Walter Neupert
- Adolf-Butenandt-Institut für Physiologische Chemie, Ludwig-Maximilians-Universität München Butenandtstrasse 5 81377 München Germany
| |
Collapse
|
243
|
Ruggiero A, Masullo M, Ruocco MR, Grimaldi P, Lanzotti MA, Arcari P, Zagari A, Vitagliano L. Structure and stability of a thioredoxin reductase from Sulfolobus solfataricus: a thermostable protein with two functions. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2008; 1794:554-62. [PMID: 19110078 DOI: 10.1016/j.bbapap.2008.11.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2008] [Revised: 11/13/2008] [Accepted: 11/14/2008] [Indexed: 10/21/2022]
Abstract
Recent investigations have demonstrated that disulfide bridges may play a crucial role in the stabilization of proteins in hyperthermophilic organisms. A major role in the process of disulfide formation is played by ubiquitous proteins belonging to the thioredoxin superfamily, which includes thioredoxins (Trx), thioredoxin reductases (TrxR), and disulfide oxidases/isomerases (PDO/PDI). Here we report a characterization of the structure and stability of the TrxR (SsTrxRB3) isolated from the archaeon Sulfolobus solfataricus. This protein is particularly interesting since it is able to process different substrates (Trxs and PDO) and it is endowed with an additional NADH oxidase activity. The crystal structure of the wild-type enzyme, of its complex with NADP and of the C147A mutant provides interesting clues on the enzyme function. In contrast to what is observed for class II TrxRs, in the structure of the oxidized enzyme, the FAD binding site is occupied by a partially disordered NAD molecule. In the active site of the C147A mutant, which exhibits a marginal NADH oxidase activity, the FAD is canonically bound to the enzyme. Molecular modeling indicates that a FAD molecule can be accommodated in the site of the reduced SsTrxRB3. Depending on the oxidation state, SsTrxRB3 can bind a different cofactor in its active site. This peculiar feature has been related to its dual activity. Denaturation experiments followed by circular dichroism indicate that electrostatic interactions play an important role in the stabilization of this thermostable protein. The analysis of the enzyme 3D-structure has also provided insights into the bases of SsTrxRB3 stability.
Collapse
Affiliation(s)
- Alessia Ruggiero
- Istituto di Biostrutture e Bioimmagini, CNR, Via Mezzocannone 16, I-80134 Napoli, Italy
| | | | | | | | | | | | | | | |
Collapse
|
244
|
Ho SC, Goh SS, Li S, Khoo DHC, Paterson M. Effects of mutations involving cysteine residues distal to the S281HCC motif at the C-terminus on the functional characteristics of a truncated ectodomain-only thyrotropin receptor anchored on glycosylphosphatidyl-inositol. Thyroid 2008; 18:1313-9. [PMID: 18976165 DOI: 10.1089/thy.2008.0240] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND Cysteine (Cys) residues pair to form disulfide bonds that are important in maintaining structure and function of the thyrotropin receptor (TSHR). There are 11 Cys residues in the ectodomain (ECD). Cys 41 at the N-terminus and Cys 283 at the SHCC motif have been identified as important for ligand binding. The present study evaluated the effects of mutating Cys distal to the S281HCC motif at the C-terminus of the ECD on the functional characteristics of TSHR. METHODS We introduced (i) individual Cys and (ii) consecutive cumulative Cys mutations into the starting template SHCS-TSHR, a truncated TSHR-ECD moiety previously shown to behave like the wild-type TSHR. Each mutant receptor was evaluated for relative specific binding (RSB), calculated as a measure of TSH-binding ability after normalization with receptor surface expression. RESULTS In the first approach, RSB was severely affected when Cys 390 and Cys 398 were individually switched to serine. Failed receptor trafficking occurred with Cys 408 mutation. These findings were likely results of altered receptor conformation due to illegitimate disulfide bridge formation. Only SHCS-301 TSHR bound TSH in a specific manner, and it formed the base for sequential Cys mutations. Through this second approach, both Cys 301 and 390 could be removed simultaneously without hindering TSH binding significantly. Cys 398, however, was shown to be critical. Its absence resulted in huge loss of TSH binding. Leaving Cys 283 and 398 as the only Cys pair in the C-terminus alone could support 40% of the total ligand-binding capacity. CONCLUSIONS From these data, we proposed Cys 398 as a stable disulfide bond partner of Cys 283, corroborating with a model based on evolutionary history of TSHR across species. This pairing of Cys 283 and Cys 398 also provides an objective alternative to conventional hypotheses on Cys coupling based on other predictive models.
Collapse
Affiliation(s)
- Su-Chin Ho
- SingHealth Research, Singapore Health Service, Singapore, Republic of Singapore.
| | | | | | | | | |
Collapse
|
245
|
A disulfide-bond A oxidoreductase-like protein (DsbA-L) regulates adiponectin multimerization. Proc Natl Acad Sci U S A 2008; 105:18302-7. [PMID: 19011089 DOI: 10.1073/pnas.0806341105] [Citation(s) in RCA: 158] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Impairments in adiponectin multimerization lead to defects in adiponectin secretion and function and are associated with diabetes, yet the underlying mechanisms remain largely unknown. We have identified an adiponectin-interacting protein, previously named GST-kappa, by yeast 2-hybrid screening. The adiponectin-interacting protein contains 2 thioredoxin domains and has very little sequence similarity to other GST isoforms. However, this protein shares high sequence and secondary structure homology to bacterial disulfide-bond A oxidoreductase (DsbA) and is thus renamed DsbA-like protein (DsbA-L). DsbA-L is highly expressed in adipose tissue, and its expression level is negatively correlated with obesity in mice and humans. DsbA-L expression in 3T3-L1 adipocytes is stimulated by the insulin sensitizer rosiglitazone and inhibited by the inflammatory cytokine TNFalpha. Overexpression of DsbA-L promoted adiponectin multimerization while suppressing DsbA-L expression by RNAi markedly and selectively reduced adiponectin levels and secretion in 3T3-L1 adipocytes. Our results identify DsbA-L as a key regulator for adiponectin biosynthesis and uncover a potential new target for developing therapeutic drugs for the treatment of insulin resistance and its associated metabolic disorders.
Collapse
|
246
|
Limauro D, Saviano M, Galdi I, Rossi M, Bartolucci S, Pedone E. Sulfolobus solfataricus protein disulphide oxidoreductase: insight into the roles of its redox sites. Protein Eng Des Sel 2008; 22:19-26. [PMID: 18988690 DOI: 10.1093/protein/gzn061] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Sulfolobus solfataricus protein disulphide oxidoreductase (SsPDO) contains three disulphide bridges linking residues C(41)XXC(44), C(155)XXC(158), C(173)XXXXC(178). To get information on the role played by these cross-links in determining the structural and functional properties of the protein, we performed site-directed mutagenesis on Cys residues and investigated the changes in folding, stability and functional features of the mutants and analysed the results with computational analysis. The reductase activity of SsPDO and its mutants was evaluated by insulin and thioredoxin reductase assays also coupled with peroxiredoxin Bcp1 of S. solfataricus. The three-dimensional model of SsPDO was constructed and correlated with circular dichroism data and functional results. Biochemical analysis indicated a key function for the redox site constituted by Cys155 and Cys158. To discriminate between the role of the two cysteine residues, each cysteine was mutagenized and the behaviour of the single mutants was investigated elucidating the basis of the electron-shuffling mechanism for SsPDO. Finally, cysteine pK values were calculated and the accessible surface for the cysteine side chains in the reduced form was measured, showing higher reactivity and solvent exposure for Cys155.
Collapse
Affiliation(s)
- Danila Limauro
- Dipartamento Biologia Strutturale e Funzionale, University of Naples Federico II, Complesso Universitario Monte S. Angelo, via Cinthia, 80126 Naples
| | | | | | | | | | | |
Collapse
|
247
|
Heterologous expression of lipase in Escherichia coli is limited by folding and disulfide bond formation. Appl Microbiol Biotechnol 2008; 81:79-87. [DOI: 10.1007/s00253-008-1644-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2008] [Revised: 07/28/2008] [Accepted: 07/30/2008] [Indexed: 10/21/2022]
|
248
|
Sanders C, Turkarslan S, Lee DW, Onder O, Kranz RG, Daldal F. The cytochrome c maturation components CcmF, CcmH, and CcmI form a membrane-integral multisubunit heme ligation complex. J Biol Chem 2008; 283:29715-22. [PMID: 18753134 PMCID: PMC2573057 DOI: 10.1074/jbc.m805413200] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2008] [Revised: 08/27/2008] [Indexed: 11/06/2022] Open
Abstract
Cytochrome c maturation (Ccm) is a post-translational and post-export protein modification process that involves ten (CcmABCDEFGHI and CcdA or DsbD) components in most Gram-negative bacteria. The absence of any of these components abolishes the ability of cells to form cytochrome c, leading in the case of Rhodobacter capsulatus to the loss of photosynthetic proficiency and respiratory cytochrome oxidase activity. Based on earlier molecular genetic studies, we inferred that R. capsulatus CcmF, CcmH, and CcmI interact with each other to perform heme-apocytochrome c ligation. Here, using functional epitope-tagged derivatives of these components coproduced in appropriate mutant strains, we determined protein-protein interactions between them in detergent-dispersed membranes. Reciprocal affinity purification as well as tandem size exclusion and affinity chromatography analyses provided the first biochemical evidence that CcmF, CcmH, and CcmI associate stably with each other, indicating that these Ccm components form a membrane-integral complex. Under the conditions used, the CcmFHI complex does not contain CcmG, suggesting that the latter thio-reduction component is not always associated with the heme ligation components. The findings are discussed with respect to defining the obligatory components of a minimalistic heme-apocytochrome c ligation complex in R. capsulatus.
Collapse
Affiliation(s)
- Carsten Sanders
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | | | |
Collapse
|
249
|
Stepanyuk GA, Xu H, Wu CK, Markova SV, Lee J, Vysotski ES, Wang BC. Expression, purification and characterization of the secreted luciferase of the copepod Metridia longa from Sf9 insect cells. Protein Expr Purif 2008; 61:142-8. [PMID: 18595733 PMCID: PMC2577724 DOI: 10.1016/j.pep.2008.05.013] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2008] [Revised: 05/16/2008] [Accepted: 05/21/2008] [Indexed: 11/29/2022]
Abstract
Metridia luciferase is a secreted luciferase from a marine copepod and uses coelenterazine as a substrate to produce a blue bioluminescence (lambda(max)=480 nm). This luciferase has been successfully applied as a bioluminescent reporter in mammalian cells. The main advantage of secreted luciferase as a reporter is the capability of measuring intracellular events without destroying the cells or tissues and this property is well suited for development of high throughput screening technologies. However because Metridia luciferase is a Cys-rich protein, Escherichia coli expression systems produce an incorrectly folded protein, hindering its biochemical characterization and application for development of in vitro bioluminescent assays. Here we report the successful expression of Metridia luciferase with its signal peptide for secretion, in insect (Sf9) cells using the baculovirus expression system. Functionally active luciferase secreted by insect cells into the culture media has been efficiently purified with a yield of high purity protein of 2-3 mg/L. This Metridia luciferase expressed in the insect cell system is a monomeric protein showing 3.5-fold greater bioluminescence activity than luciferase expressed and purified from E. coli. The near coincidence of the experimental mass of Metridia luciferase purified from insect cells with that calculated from amino acid sequence, indicates that luciferase does not undergo post-translational modifications such as phosphorylation or glycosylation and also, the cleavage site of the signal peptide for secretion is at VQA-KS, as predicted from sequence analysis.
Collapse
Affiliation(s)
- Galina A. Stepanyuk
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, USA
- Photobiology Lab, Institute of Biophysics Russian Academy of Sciences, Siberian Branch, Krasnoyarsk, Russia
| | - Hao Xu
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, USA
| | - Chia-Kuei Wu
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, USA
| | - Svetlana V. Markova
- Photobiology Lab, Institute of Biophysics Russian Academy of Sciences, Siberian Branch, Krasnoyarsk, Russia
| | - John Lee
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, USA
| | - Eugene S. Vysotski
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, USA
- Photobiology Lab, Institute of Biophysics Russian Academy of Sciences, Siberian Branch, Krasnoyarsk, Russia
| | - Bi-Cheng Wang
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, USA
| |
Collapse
|
250
|
Rother D, Ringk J, Friedrich CG. Sulfur oxidation of Paracoccus pantotrophus: the sulfur-binding protein SoxYZ is the target of the periplasmic thiol-disulfide oxidoreductase SoxS. MICROBIOLOGY-SGM 2008; 154:1980-1988. [PMID: 18599826 DOI: 10.1099/mic.0.2008/018655-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The periplasmic thiol-disulfide oxidoreductase SoxS is essential for chemotrophic growth of Paracoccus pantotrophus with thiosulfate. To trap its periplasmic partner, the cysteine residues of the CysXaaXaaCys motif of SoxS (11 kDa) were changed to alanine by site-directed mutagenesis. The disrupted soxS gene of the homogenote mutant G OmegaS was complemented with plasmids carrying the mutated soxS[C13A] or soxS[C16A] gene. Strain G OmegaS(pRD179.6[C16A](S)) displayed a marginal thiosulfate-oxidizing activity, suggesting that Cys13(S) binds the target protein. Evidence is presented that SoxS specifically binds SoxY. (i) Immunoblot analysis using non-reducing SDS gel electrophoresis and anti-SoxS and anti-SoxYZ antibodies identified the respective antigens of strain G OmegaS(pRD179.6[C16A](S)) at the 25 kDa position, suggesting an adduct of about 14 kDa, close to the value expected for SoxY migration. (ii) A mutant unable to produce SoxYZ, such as strain G OmegaX(pRD187.7[C16A](S)), did not form a SoxS(C16A) adduct, while addition of homogeneous SoxYZ resulted in the 25 kDa adduct. (iii) The SoxY and SoxZ subunits were distinguished by site-directed mutagenesis of the cysteine residue in SoxZ. SoxYZ(C53S) formed the 25 kDa adduct with SoxS(C16A). These results demonstrate that the target of SoxS is the sulfur-binding protein SoxY of the SoxYZ complex. As SoxYZ is reversibly inactivated, SoxS may activate SoxYZ as a crucial function for chemotrophy of P. pantotrophus.
Collapse
Affiliation(s)
- Dagmar Rother
- Lehrstuhl für Technische Mikrobiologie, Fakultät Bio- und Chemieingenieurwesen, Technische Universität Dortmund, D-44221 Dortmund, Germany
| | - Josefina Ringk
- Lehrstuhl für Technische Mikrobiologie, Fakultät Bio- und Chemieingenieurwesen, Technische Universität Dortmund, D-44221 Dortmund, Germany
| | - Cornelius G Friedrich
- Lehrstuhl für Technische Mikrobiologie, Fakultät Bio- und Chemieingenieurwesen, Technische Universität Dortmund, D-44221 Dortmund, Germany
| |
Collapse
|