201
|
Elmore JM, Coaker G. The role of the plasma membrane H+-ATPase in plant-microbe interactions. MOLECULAR PLANT 2011; 4:416-27. [PMID: 21300757 PMCID: PMC3107590 DOI: 10.1093/mp/ssq083] [Citation(s) in RCA: 120] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2010] [Accepted: 12/17/2010] [Indexed: 05/17/2023]
Abstract
Plasma membrane (PM) H+-ATPases are the primary pumps responsible for the establishment of cellular membrane potential in plants. In addition to regulating basic aspects of plant cell function, these enzymes contribute to signaling events in response to diverse environmental stimuli. Here, we focus on the roles of the PM H+-ATPase during plant-pathogen interactions. PM H+-ATPases are dynamically regulated during plant immune responses and recent quantitative proteomics studies suggest complex spatial and temporal modulation of PM H+-ATPase activity during early pathogen recognition events. Additional data indicate that PM H+-ATPases cooperate with the plant immune signaling protein RIN4 to regulate stomatal apertures during bacterial invasion of leaf tissue. Furthermore, pathogens have evolved mechanisms to manipulate PM H+-ATPase activity during infection. Thus, these ubiquitous plant enzymes contribute to plant immune responses and are targeted by pathogens to increase plant susceptibility.
Collapse
Affiliation(s)
| | - Gitta Coaker
- To whom correspondence should be addressed. E-mail , fax 530-752-5674, tel. 530-752-6541
| |
Collapse
|
202
|
Lan WZ, Lee SC, Che YF, Jiang YQ, Luan S. Mechanistic analysis of AKT1 regulation by the CBL-CIPK-PP2CA interactions. MOLECULAR PLANT 2011; 4:527-36. [PMID: 21596690 DOI: 10.1093/mp/ssr031] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Arabidopsis K+ transporter 1 (AKT1) participates in K+ uptake in roots, especially under low-K conditions. We recently identified a Ca²⁺ signaling pathway consisting of multiple calcineurin B-like calcium sensors (CBLs) and multiple target kinases (CBL-interacting protein kinases or CIPKs) that phosphorylate and activate AKT1, whereas a specific PP2C-type phosphatase inactivates CIPK-dependent AKT1 activity. In this study, we analyzed the interactions between PP2Cs and the CBL-CIPK pathway and found previously unsuspected mechanisms underlying the CBL-CIPK-PP2C signaling processes. The interaction between the CIPKs and PP2Cs involves the kinase domain of the CIPK component, in addition to the protein phosphatase interacting motif (PPI) in the regulatory domain. Furthermore, specific CBLs physically interact with and inactivate PP2C phosphatases to recover the CIPK-dependent AKT1 channel activity. These findings provide further insights into the signaling network consisting of CBL-CIPK-PP2C interactions in the activation of the AKT1 channel.
Collapse
Affiliation(s)
- Wen-Zhi Lan
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
| | | | | | | | | |
Collapse
|
203
|
Favre P, Greppin H, Degli Agosti R. Accession-dependent action potentials in Arabidopsis. JOURNAL OF PLANT PHYSIOLOGY 2011; 168:653-60. [PMID: 21112666 DOI: 10.1016/j.jplph.2010.09.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2010] [Revised: 09/16/2010] [Accepted: 09/20/2010] [Indexed: 05/21/2023]
Abstract
Plant excitability, as measured by the appearance and circulation of action potentials (APs) after biotic and abiotic stress treatments, is a far lesser and more versatile phenomenon than in animals. To examine the genetic basis of plant excitability we used different Arabidopsis thaliana accessions. APs were induced by wounding (W) with a subsequent deposition (D) of 5μL of 1M KCl onto adult leaves. This treatment elicited transient voltage responses (APs) that were detected by 2 extracellular electrodes placed at a distance from the wounding location over an experimental time of 150min. The first electrode (e1) was placed at the end of the petiole and the beginning of the leaf, and the second (e2) electrode was placed on the petiole near the center of the rosette. All accessions (Columbia (Col), Wassilewskija (Ws) and Landsberg erecta (Ler)) responded to the W & D treatment. After W & D treatment was performed on 100 plants for each accession, the number of APs ranged from 0 to 37 (median 8, total 940), 0 to 16 (median 5, total 528) and 0 to 18 (median 2, total 296) in Col, Ws and Ler, respectively. Responding plants (>0 APs) showed significantly different behaviors depending on their accessions of origin (i.e., Col 91, Ws 83 and Ler 76%). Some AP characteristics, such as amplitude and speed of propagation from e1 to e2 (1.28mms(-1)), were the same for all accessions, whereas the average duration of APs was similar in Col and Ws, but different in Ler. Self-sustained oscillations were observed more frequently in Col than Ws and least often in Ler, and the mean oscillation frequency was more rapid in Col, followed by Ws, and was slowest in Ler. In general, Col was the most excitable accession, followed by Ws, and Ler was the least excitable; this corresponded well with voltage elicited action potentials. In conclusion, part of Arabidopsis excitability in AP responses is genetically pre-determined.
Collapse
Affiliation(s)
- Patrick Favre
- Laboratory of Plant Physiology and Biochemistry, Plant Physiomatics, University of Geneva, Switzerland
| | | | | |
Collapse
|
204
|
Tavares B, Domingos P, Dias PN, Feijó JA, Bicho A. The essential role of anionic transport in plant cells: the pollen tube as a case study. JOURNAL OF EXPERIMENTAL BOTANY 2011; 62:2273-2298. [PMID: 21511914 DOI: 10.1093/jxb/err036] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Plasma membrane anion transporters play fundamental roles in plant cell biology, especially in stomatal closure and nutrition. Notwithstanding, a lot is still unknown about the specific function of these transporters, their specific localization, or molecular nature. Here the fundamental roles of anionic transport in plant cells are reviewed. Special attention will be paid to them in the control of pollen tube growth. Pollen tubes are extreme examples of cellular polarity as they grow exclusively in their apical extremity. Their unique cell biology has been extensively exploited for fundamental understanding of cellular growth and morphogenesis. Non-invasive methods have demonstrated that tube growth is governed by different ion fluxes, with different properties and distribution. Not much is known about the nature of the membrane transporters responsible for anionic transport and their regulation in the pollen tube. Recent data indicate the importance of chloride (Cl(-)) transfer across the plasma membrane for pollen germination and pollen tube growth. A general overview is presented of the well-known accumulated data in terms of biophysical and functional characterization, transcriptomics, and genomic description of pollen ionic transport, and the various controversies around the role of anionic fluxes during pollen tube germination, growth, and development. It is concluded that, like all other plant cells so far analysed, pollen tubes depend on anion fluxes for a number of fundamental homeostatic properties.
Collapse
|
205
|
Horie T, Sugawara M, Okada T, Taira K, Kaothien-Nakayama P, Katsuhara M, Shinmyo A, Nakayama H. Rice sodium-insensitive potassium transporter, OsHAK5, confers increased salt tolerance in tobacco BY2 cells. J Biosci Bioeng 2011; 111:346-56. [PMID: 21084222 DOI: 10.1016/j.jbiosc.2010.10.014] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2010] [Revised: 10/14/2010] [Accepted: 10/21/2010] [Indexed: 12/14/2022]
Abstract
Potassium ion (K(+)) plays vital roles in many aspects of cellular homeostasis including competing with sodium ion (Na(+)) during potassium starvation and salt stress. Therefore, one way to engineer plant cells with improved salt tolerance is to enhance K(+) uptake activity of the cells, while keeping Na(+) out during salt stress. Here, in search for Na(+)-insensitive K(+) transporter for this purpose, bacterial expression system was used to characterize two K(+) transporters, OsHAK2 and OsHAK5, isolated from rice (Oryza sativa cv. Nipponbare). The two OsHAK transporters are members of a KT/HAK/KUP transporter family, which is one of the major K(+) transporter families in bacteria, fungi and plants. When expressed in an Escherichia coli K(+) transport mutant strain LB2003, both OsHAK transporters rescued the growth defect in K(+)-limiting conditions by significantly increasing the K(+) content of the cells. Under the condition with a large amount of extracellular Na(+), we found that OsHAK5 functions as a Na(+)-insensitive K(+) transporter, while OsHAK2 is sensitive to extracellular Na(+) and exhibits higher Na(+) over K(+) transport activities. Moreover, constitutive expression of OsHAK5 in cultured-tobacco BY2 (Nicotiana tabacum cv. Bright Yellow 2) cells enhanced the accumulation of K(+) but not Na(+) in the cells during salt stress and conferred increased salt tolerance to the cells. Transient expression experiment indicated that OsHAK5 is localized to the plant plasma membrane. These results suggest that the plasma-membrane localized Na(+) insensitive K(+) transporters, similar to OsHAK5 identified here, could be used as a tool to enhance salt tolerance in plant cells.
Collapse
Affiliation(s)
- Tomoaki Horie
- Group of Molecular and Functional Plant Biology, Research Institute for Bioresources, Okayama University, Kurashiki, Okayama 710-0046, Japan
| | | | | | | | | | | | | | | |
Collapse
|
206
|
Chao DY, Gable K, Chen M, Baxter I, Dietrich CR, Cahoon EB, Guerinot ML, Lahner B, Lü S, Markham JE, Morrissey J, Han G, Gupta SD, Harmon JM, Jaworski JG, Dunn TM, Salt DE. Sphingolipids in the root play an important role in regulating the leaf ionome in Arabidopsis thaliana. THE PLANT CELL 2011; 23:1061-81. [PMID: 21421810 PMCID: PMC3082254 DOI: 10.1105/tpc.110.079095] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2010] [Revised: 01/19/2011] [Accepted: 02/14/2011] [Indexed: 05/18/2023]
Abstract
Sphingolipid synthesis is initiated by condensation of Ser with palmitoyl-CoA producing 3-ketodihydrosphinganine (3-KDS), which is reduced by a 3-KDS reductase to dihydrosphinganine. Ser palmitoyltransferase is essential for plant viability. Arabidopsis thaliana contains two genes (At3g06060/TSC10A and At5g19200/TSC10B) encoding proteins with significant similarity to the yeast 3-KDS reductase, Tsc10p. Heterologous expression in yeast of either Arabidopsis gene restored 3-KDS reductase activity to the yeast tsc10Δ mutant, confirming both as bona fide 3-KDS reductase genes. Consistent with sphingolipids having essential functions in plants, double mutant progeny lacking both genes were not recovered from crosses of single tsc10A and tsc10B mutants. Although the 3-KDS reductase genes are functionally redundant and ubiquitously expressed in Arabidopsis, 3-KDS reductase activity was reduced to 10% of wild-type levels in the loss-of-function tsc10a mutant, leading to an altered sphingolipid profile. This perturbation of sphingolipid biosynthesis in the Arabidopsis tsc10a mutant leads an altered leaf ionome, including increases in Na, K, and Rb and decreases in Mg, Ca, Fe, and Mo. Reciprocal grafting revealed that these changes in the leaf ionome are driven by the root and are associated with increases in root suberin and alterations in Fe homeostasis.
Collapse
Affiliation(s)
- Dai-Yin Chao
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, Indiana 47906, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
207
|
Wu JY, Qu HY, Shang ZL, Tao ST, Xu GH, Wu J, Wu HQ, Zhang SL. Reciprocal regulation of Ca²+-activated outward K+ channels of Pyrus pyrifolia pollen by heme and carbon monoxide. THE NEW PHYTOLOGIST 2011; 189:1060-1068. [PMID: 21133925 DOI: 10.1111/j.1469-8137.2010.03564.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
• The regulation of plant potassium (K+) channels has been extensively studied in various systems. However, the mechanism of their regulation in the pollen tube is unclear. • In this study, the effects of heme and carbon monoxide (CO) on the outward K+ (K+(out)) channel in pear (Pyrus pyrifolia) pollen tube protoplasts were characterized using a patch-clamp technique. • Heme (1 μM) decreased the probability of K+(out) channel opening without affecting the unitary conductance, but this inhibition disappeared when heme was co-applied with 10 μM intracellular free Ca²+. Conversely, exposure to heme in the presence of NADPH increased channel activity. However, with tin protoporphyrin IX treatment, which inhibits hemeoxygenase activity, the inhibition of the K+(out) channel by heme occurred even in the presence of NADPH. CO, a product of heme catabolism by hemeoxygenase, activates the K+(out) channel in pollen tube protoplasts in a dose-dependent manner. The current induced by CO was inhibited by the K+ channel inhibitor tetraethylammonium. • These data indicate a role of heme and CO in reciprocal regulation of the K+(out) channel in pear pollen tubes.
Collapse
Affiliation(s)
- Ju-You Wu
- College of Horticulture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Hai-Yong Qu
- College of Horticulture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhong-Lin Shang
- College of Life Sciences, HeBei Normal University, Shi Jia Zhuang 050016, China
| | - Shu-Tian Tao
- College of Horticulture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Guo-Hua Xu
- College of Horticulture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Jun Wu
- College of Horticulture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Hua-Qing Wu
- College of Horticulture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Shao-Ling Zhang
- College of Horticulture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
208
|
Araújo WL, Nunes-Nesi A, Osorio S, Usadel B, Fuentes D, Nagy R, Balbo I, Lehmann M, Studart-Witkowski C, Tohge T, Martinoia E, Jordana X, DaMatta FM, Fernie AR. Antisense inhibition of the iron-sulphur subunit of succinate dehydrogenase enhances photosynthesis and growth in tomato via an organic acid-mediated effect on stomatal aperture. THE PLANT CELL 2011; 23:600-27. [PMID: 21307286 PMCID: PMC3077794 DOI: 10.1105/tpc.110.081224] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2010] [Revised: 12/07/2010] [Accepted: 01/13/2011] [Indexed: 05/19/2023]
Abstract
Transgenic tomato (Solanum lycopersicum) plants expressing a fragment of the Sl SDH2-2 gene encoding the iron sulfur subunit of the succinate dehydrogenase protein complex in the antisense orientation under the control of the 35S promoter exhibit an enhanced rate of photosynthesis. The rate of the tricarboxylic acid (TCA) cycle was reduced in these transformants, and there were changes in the levels of metabolites associated with the TCA cycle. Furthermore, in comparison to wild-type plants, carbon dioxide assimilation was enhanced by up to 25% in the transgenic plants under ambient conditions, and mature plants were characterized by an increased biomass. Analysis of additional photosynthetic parameters revealed that the rate of transpiration and stomatal conductance were markedly elevated in the transgenic plants. The transformants displayed a strongly enhanced assimilation rate under both ambient and suboptimal environmental conditions, as well as an elevated maximal stomatal aperture. By contrast, when the Sl SDH2-2 gene was repressed by antisense RNA in a guard cell-specific manner, changes in neither stomatal aperture nor photosynthesis were observed. The data obtained are discussed in the context of the role of TCA cycle intermediates both generally with respect to photosynthetic metabolism and specifically with respect to their role in the regulation of stomatal aperture.
Collapse
Affiliation(s)
- Wagner L. Araújo
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, 14476 Golm, Germany
| | - Adriano Nunes-Nesi
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, 14476 Golm, Germany
| | - Sonia Osorio
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, 14476 Golm, Germany
| | - Björn Usadel
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, 14476 Golm, Germany
| | - Daniela Fuentes
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, P. Universidad Católica de Chile, Casilla 114-D, Santiago, Chile
| | - Réka Nagy
- University of Zurich, Institute of Plant Biology, CH-8008 Zurich, Switzerland
| | - Ilse Balbo
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, 14476 Golm, Germany
| | - Martin Lehmann
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, 14476 Golm, Germany
| | | | - Takayuki Tohge
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, 14476 Golm, Germany
| | - Enrico Martinoia
- University of Zurich, Institute of Plant Biology, CH-8008 Zurich, Switzerland
| | - Xavier Jordana
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, P. Universidad Católica de Chile, Casilla 114-D, Santiago, Chile
| | - Fábio M. DaMatta
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-000 Viçosa, MG, Brazil
| | - Alisdair R. Fernie
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, 14476 Golm, Germany
| |
Collapse
|
209
|
Wu J, Wang S, Gu Y, Zhang S, Publicover SJ, Franklin-Tong VE. Self-incompatibility in Papaver rhoeas activates nonspecific cation conductance permeable to Ca2+ and K+. PLANT PHYSIOLOGY 2011; 155:963-73. [PMID: 21177472 PMCID: PMC3032480 DOI: 10.1104/pp.110.161927] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2010] [Accepted: 12/15/2010] [Indexed: 05/21/2023]
Abstract
Cellular responses rely on signaling. In plant cells, cytosolic free calcium is a major second messenger, and ion channels play a key role in mediating physiological responses. Self-incompatibility (SI) is an important genetically controlled mechanism to prevent self-fertilization. It uses interaction of matching S-determinants from the pistil and pollen to allow "self" recognition, which triggers rejection of incompatible pollen. In Papaver rhoeas, the S-determinants are PrsS and PrpS. PrsS is a small novel cysteine-rich protein; PrpS is a small novel transmembrane protein. Interaction of PrsS with incompatible pollen stimulates S-specific increases in cytosolic free calcium and alterations in the actin cytoskeleton, resulting in programmed cell death in incompatible but not compatible pollen. Here, we have used whole-cell patch clamping of pollen protoplasts to show that PrsS stimulates SI-specific activation of pollen grain plasma membrane conductance in incompatible but not compatible pollen grain protoplasts. The SI-activated conductance does not require voltage activation, but it is voltage sensitive. It is permeable to divalent cations (Ba(2+) ≥ Ca(2+) > Mg(2+)) and the monovalent ions K(+) and NH(4)(+) and is enhanced at voltages negative to -100 mV. The Ca(2+) conductance is blocked by La(3+) but not by verapamil; the K(+) currents are tetraethylammonium chloride insensitive and do not require Ca(2+). We propose that the SI-stimulated conductance may represent a nonspecific cation channel or possibly two conductances, permeable to monovalent and divalent cations. Our data provide insights into signal-response coupling involving a biologically important response. PrsS provides a rare example of a protein triggering alterations in ion channel activity.
Collapse
|
210
|
Cannon JJ, Tang D, Hur N, Kim D. Competitive entry of sodium and potassium into nanoscale pores. J Phys Chem B 2011; 114:12252-6. [PMID: 20825220 DOI: 10.1021/jp104609d] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We have studied the competitive entry of potassium and sodium into carbon nanotubes using molecular dynamics simulations. Our results demonstrate how a combination of strong sodium hydration coupled with strong potassium-chlorine interaction leads to enhanced potassium selectivity at certain diameters. We detail the reasons behind this, and show how variation of nanotube diameter can cause a switch to sodium selectivity, or even cause a decrease in overall ion entry despite an increase in diameter. These results demonstrate the importance of considering inter-ion dependence in the theoretical study of pore selectivity and show that, with careful design, the practical separation of sodium and potassium is possible using diameter variation alone.
Collapse
Affiliation(s)
- James J Cannon
- Department of Mechanical Engineering, Sogang University, 1 Shinsu-dong, Mapo-gu, Seoul, 121-742, Republic of Korea
| | | | | | | |
Collapse
|
211
|
Functional Classification of Plant Plasma Membrane Transporters. THE PLANT PLASMA MEMBRANE 2011. [DOI: 10.1007/978-3-642-13431-9_6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
212
|
Barbier-Brygoo H, De Angeli A, Filleur S, Frachisse JM, Gambale F, Thomine S, Wege S. Anion channels/transporters in plants: from molecular bases to regulatory networks. ANNUAL REVIEW OF PLANT BIOLOGY 2011; 62:25-51. [PMID: 21275645 DOI: 10.1146/annurev-arplant-042110-103741] [Citation(s) in RCA: 137] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Anion channels/transporters are key to a wide spectrum of physiological functions in plants, such as osmoregulation, cell signaling, plant nutrition and compartmentalization of metabolites, and metal tolerance. The recent identification of gene families encoding some of these transport systems opened the way for gene expression studies, structure-function analyses of the corresponding proteins, and functional genomics approaches toward further understanding of their integrated roles in planta. This review, based on a few selected examples, illustrates that the members of a given gene family exhibit a diversity of substrate specificity, regulation, and intracellular localization, and are involved in a wide range of physiological functions. It also shows that post-translational modifications of transport proteins play a key role in the regulation of anion transport activity. Key questions arising from the increasing complexity of networks controlling anion transport in plant cells (the existence of redundancy, cross talk, and coordination between various pathways and compartments) are also addressed.
Collapse
|
213
|
Pardo JM, Rubio F. Na+ and K+ Transporters in Plant Signaling. SIGNALING AND COMMUNICATION IN PLANTS 2011. [DOI: 10.1007/978-3-642-14369-4_3] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
214
|
Diatloff E, Peyronnet R, Colcombet J, Thomine S, Barbier-Brygoo H, Frachisse JM. R type anion channel: a multifunctional channel seeking its molecular identity. PLANT SIGNALING & BEHAVIOR 2010; 5:1347-52. [PMID: 21051946 PMCID: PMC3115232 DOI: 10.4161/psb.5.11.12921] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2010] [Accepted: 07/05/2010] [Indexed: 05/24/2023]
Abstract
Plant genomes code for channels involved in the transport of cations, anions and uncharged molecules through membranes. Although the molecular identity of channels for cations and uncharged molecules has progressed rapidly in the recent years, the molecular identity of anion channels has lagged behind. Electrophysiological studies have identified S-type (slow) and R-type (rapid) anion channels. In this brief review, we summarize the proposed functions of the R-type anion channels which, like the S-type, were first characterized by electrophysiology over 20 years ago, but unlike the S-type, have still yet to be cloned. We show that the R-type channel can play multiple roles.
Collapse
Affiliation(s)
- Eugene Diatloff
- Institut des Sciences du Végétal; CNRS UPR 2355; Gif sur Yvette
| | - Rémi Peyronnet
- IPMC-CNRS; Université de Nice Sophia Antipolis; Valbonne
| | | | | | | | | |
Collapse
|
215
|
Boursiac Y, Lee SM, Romanowsky S, Blank R, Sladek C, Chung WS, Harper JF. Disruption of the vacuolar calcium-ATPases in Arabidopsis results in the activation of a salicylic acid-dependent programmed cell death pathway. PLANT PHYSIOLOGY 2010; 154:1158-71. [PMID: 20837703 PMCID: PMC2971596 DOI: 10.1104/pp.110.159038] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2010] [Accepted: 09/09/2010] [Indexed: 05/18/2023]
Abstract
Calcium (Ca(2+)) signals regulate many aspects of plant development, including a programmed cell death pathway that protects plants from pathogens (hypersensitive response). Cytosolic Ca(2+) signals result from a combined action of Ca(2+) influx through channels and Ca(2+) efflux through pumps and cotransporters. Plants utilize calmodulin-activated Ca(2+) pumps (autoinhibited Ca(2+)-ATPase [ACA]) at the plasma membrane, endoplasmic reticulum, and vacuole. Here, we show that a double knockout mutation of the vacuolar Ca(2+) pumps ACA4 and ACA11 in Arabidopsis (Arabidopsis thaliana) results in a high frequency of hypersensitive response-like lesions. The appearance of macrolesions could be suppressed by growing plants with increased levels (greater than 15 mm) of various anions, providing a method for conditional suppression. By removing plants from a conditional suppression, lesion initials were found to originate primarily in leaf mesophyll cells, as detected by aniline blue staining. Initiation and spread of lesions could also be suppressed by disrupting the production or accumulation of salicylic acid (SA), as shown by combining aca4/11 mutations with a sid 2 (for salicylic acid induction-deficient2) mutation or expression of the SA degradation enzyme NahG. This indicates that the loss of the vacuolar Ca(2+) pumps by itself does not cause a catastrophic defect in ion homeostasis but rather potentiates the activation of a SA-dependent programmed cell death pathway. Together, these results provide evidence linking the activity of the vacuolar Ca(2+) pumps to the control of a SA-dependent programmed cell death pathway in plants.
Collapse
|
216
|
Liu Z, Ma Z, Guo X, Shao H, Cui Q, Song W. Changes of cytosolic Ca(2+) fluorescence intensity and plasma membrane calcium channels of maize root tip cells under osmotic stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2010; 48:860-865. [PMID: 20843698 DOI: 10.1016/j.plaphy.2010.08.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2009] [Revised: 08/13/2010] [Accepted: 08/13/2010] [Indexed: 05/29/2023]
Abstract
The changes of cytosolic Ca(2+) fluorescence intensity and the activities of calcium channel of primary maize root tip cells induced by PEG6000 or abscisic acid (ABA) were studied by both confocal techniques and the whole-cell patch clamping in this study. The Ca(2+) fluorescence intensity increased while treated with PEG or ABA within 10 min, illuminating that Ca(2+) participated in the process of ABA signal transduction. For further proving the mechanism and origin of cytosolic Ca(2+) increase induced by PEG treatments, N,N,N',N'-tetraacetic acid (EGTA), Verapamil (VP) and Trifluoperazine (TFP) were added to the PEG solution in the experiments separately. The results showed that Ca(2+) fluorescence intensity induced by PEG was suppressed by both EGTA and VP obviously in the root tip cells. The Ca(2+) fluorescence intensity of plants changed after the addition of CaM inhibitor TFP while subjected to osmotic stress, which seemed to show that CaM participated in the process of signal transduction of osmotic stress too. The mechanism about it is unknown today. Further, a hyperpolarization-activated calcium permeable channel was recorded in plasma membrane of maize root tip cells. The Ca(2+) current (I(Ca)) intensity increased remarkably after PEG treatment, and the open voltage of the calcium conductance increased. Similar changes could be observed after ABA treatment, but the channel opened earlier and the current intensity was stronger than that of PEG treatment. The activation of calcium channel initiated by PEG strongly was inhibited by EGTA, VP or TFP respectively. The results revealed that Ca(2+) participated in the signals transduction process of osmotic stress, and the cytosolic free Ca(2+) increase by osmotic stress mainly came from the extracellular, and some came from the release of cytoplasmic calcium pool.
Collapse
Affiliation(s)
- Zihui Liu
- Plant Genetic Engineering Center of Hebei Province, Institute of Genetics and Physiology, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, China
| | | | | | | | | | | |
Collapse
|
217
|
|
218
|
Dietrich P, Anschütz U, Kugler A, Becker D. Physiology and biophysics of plant ligand-gated ion channels. PLANT BIOLOGY (STUTTGART, GERMANY) 2010; 12 Suppl 1:80-93. [PMID: 20712623 DOI: 10.1111/j.1438-8677.2010.00362.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Small molecules and metabolites often act as intra- or extracellular messengers in signal transduction pathways. Ligand-gated ion channels provide a mean to transduce those biochemical signals at the membrane into electrical events and ion fluxes. In plants, cyclic nucleotides and glutamate represent intra- and extracellular signalling ligands, respectively. While the former have been shown to regulate voltage-dependent ion channels and are supposed to activate cyclic nucleotide gated (CNG) channels, the latter are perceived by ionotropic glutamate receptors (GLRs). This review summarises our current knowledge about CNG channels and glutamate receptors in plants and their proposed roles in plant development and adaptation to biotic and abiotic stresses.
Collapse
Affiliation(s)
- P Dietrich
- Department of Biology, Erlangen University, Erlangen, Germany.
| | | | | | | |
Collapse
|
219
|
Voelker C, Gomez-Porras JL, Becker D, Hamamoto S, Uozumi N, Gambale F, Mueller-Roeber B, Czempinski K, Dreyer I. Roles of tandem-pore K+ channels in plants - a puzzle still to be solved. PLANT BIOLOGY (STUTTGART, GERMANY) 2010; 12 Suppl 1:56-63. [PMID: 20712621 DOI: 10.1111/j.1438-8677.2010.00353.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The group of voltage-independent K(+) channels in Arabidopsis thaliana consists of six members, five tandem-pore channels (TPK1-TPK5) and a single K(ir)-like channel (KCO3). All TPK/KCO channels are located at the vacuolar membrane except for TPK4, which was shown to be a plasma membrane channel in pollen. The vacuolar channels interact with 14-3-3 proteins (also called General Regulating Factors, GRFs), indicating regulation at the level of protein-protein interactions. Here we review current knowledge about these ion channels and their genes, and highlight open questions that need to be urgently addressed in future studies to fully appreciate the physiological functions of these ion channels.
Collapse
Affiliation(s)
- C Voelker
- Institute of Biochemistry and Biology, Molecular Biology, University of Potsdam, Potsdam-Golm, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
220
|
Lager I, Andréasson O, Dunbar T, Andreasson E, Escobar MA, Rasmusson AG. Changes in external pH rapidly alter plant gene expression and modulate auxin and elicitor responses. PLANT, CELL & ENVIRONMENT 2010; 33:1513-28. [PMID: 20444216 PMCID: PMC2920358 DOI: 10.1111/j.1365-3040.2010.02161.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
pH is a highly variable environmental factor for the root, and plant cells can modify apoplastic pH for nutrient acquisition and in response to extracellular signals. Nevertheless, surprisingly few effects of external pH on plant gene expression have been reported. We have used microarrays to investigate whether external pH affects global gene expression. In Arabidopsis thaliana roots, 881 genes displayed at least twofold changes in transcript abundance 8 h after shifting medium pH from 6.0 to 4.5, identifying pH as a major affector of global gene expression. Several genes responded within 20 min, and gene responses were also observed in leaves of seedling cultures. The pH 4.5 treatment was not associated with abiotic stress, as evaluated from growth and transcriptional response. However, the observed patterns of global gene expression indicated redundancies and interactions between the responses to pH, auxin and pathogen elicitors. In addition, major shifts in gene expression were associated with cell wall modifications and Ca(2+) signalling. Correspondingly, a marked overrepresentation of Ca(2+)/calmodulin-associated motifs was observed in the promoters of pH-responsive genes. This strongly suggests that plant pH recognition involves intracellular Ca(2+). Overall, the results emphasize the previously underappreciated role of pH in plant responses to the environment.
Collapse
Affiliation(s)
- Ida Lager
- Department of Biology, Lund University, SE-22362, Lund, Sweden (I.L., O.A., E.A., A.G.R.); Department of Biological Sciences, California State University San Marcos, San Marcos, CA 92096, USA (T.B., M.A.E.)
| | - Ola Andréasson
- Department of Biology, Lund University, SE-22362, Lund, Sweden (I.L., O.A., E.A., A.G.R.); Department of Biological Sciences, California State University San Marcos, San Marcos, CA 92096, USA (T.B., M.A.E.)
| | - Tiffany Dunbar
- Department of Biology, Lund University, SE-22362, Lund, Sweden (I.L., O.A., E.A., A.G.R.); Department of Biological Sciences, California State University San Marcos, San Marcos, CA 92096, USA (T.B., M.A.E.)
| | - Erik Andreasson
- Department of Biology, Lund University, SE-22362, Lund, Sweden (I.L., O.A., E.A., A.G.R.); Department of Biological Sciences, California State University San Marcos, San Marcos, CA 92096, USA (T.B., M.A.E.)
| | - Matthew A. Escobar
- Department of Biology, Lund University, SE-22362, Lund, Sweden (I.L., O.A., E.A., A.G.R.); Department of Biological Sciences, California State University San Marcos, San Marcos, CA 92096, USA (T.B., M.A.E.)
| | - Allan G. Rasmusson
- Department of Biology, Lund University, SE-22362, Lund, Sweden (I.L., O.A., E.A., A.G.R.); Department of Biological Sciences, California State University San Marcos, San Marcos, CA 92096, USA (T.B., M.A.E.)
| |
Collapse
|
221
|
Matzke AJM, Weiger TM, Matzke M. Ion channels at the nucleus: electrophysiology meets the genome. MOLECULAR PLANT 2010; 3:642-52. [PMID: 20410254 PMCID: PMC2910552 DOI: 10.1093/mp/ssq013] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2010] [Accepted: 03/12/2010] [Indexed: 05/21/2023]
Abstract
The nuclear envelope is increasingly viewed from an electrophysiological perspective by researchers interested in signal transduction pathways that influence gene transcription and other processes in the nucleus. Here, we describe evidence for ion channels and transporters in the nuclear membranes and for possible ion gating by the nuclear pores. We argue that a systems-level understanding of cellular regulation is likely to require the assimilation of nuclear electrophysiology into molecular and biochemical signaling pathways.
Collapse
Affiliation(s)
- Antonius J M Matzke
- Gregor Mendel Institute of Molecular Plant Biology, Austrian Academy of Sciences, Dr. Bohr-Gasse 3, A-1030 Vienna, Austria.
| | | | | |
Collapse
|
222
|
Verret F, Wheeler G, Taylor AR, Farnham G, Brownlee C. Calcium channels in photosynthetic eukaryotes: implications for evolution of calcium-based signalling. THE NEW PHYTOLOGIST 2010; 187:23-43. [PMID: 20456068 DOI: 10.1111/j.1469-8137.2010.03271.x] [Citation(s) in RCA: 104] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Much of our current knowledge on the mechanisms by which Ca(2+) signals are generated in photosynthetic eukaryotes comes from studies of a relatively small number of model species, particularly green plants and algae, revealing some common features and notable differences between 'plant' and 'animal' systems. Physiological studies from a broad range of algal cell types have revealed the occurrence of animal-like signalling properties, including fast action potentials and fast propagating cytosolic Ca(2+) waves. Genomic studies are beginning to reveal the widespread occurrence of conserved channel types likely to be involved in Ca(2+) signalling. However, certain widespread 'ancient' channel types appear to have been lost by certain groups, such as the embryophytes. More recent channel gene loss is also evident from comparisons of more closely related algal species. The underlying processes that have given rise to the current distributions of Ca(2+) channel types include widespread retention of ancient Ca(2+) channel genes, horizontal gene transfer (including symbiotic gene transfer and acquisition of bacterial genes), gene loss and gene expansion within taxa. The assessment of the roles of Ca(2+) channel genes in diverse physiological, developmental and life history processes represents a major challenge for future studies.
Collapse
Affiliation(s)
- Frédéric Verret
- Marine Biological Association of the UK, The Laboratory, Citadel Hill, Plymouth PL1 2PB, UK
| | - Glen Wheeler
- Marine Biological Association of the UK, The Laboratory, Citadel Hill, Plymouth PL1 2PB, UK
- Plymouth Marine Laboratory, Prospect Place, The Hoe, Plymouth PL1 3DH, UK
| | - Alison R Taylor
- Department of Biology and Marine Biology, University of North Carolina, 601 S. College Road, Wilmington, NC 28403, USA
| | - Garry Farnham
- Plymouth Marine Laboratory, Prospect Place, The Hoe, Plymouth PL1 3DH, UK
| | - Colin Brownlee
- Marine Biological Association of the UK, The Laboratory, Citadel Hill, Plymouth PL1 2PB, UK
| |
Collapse
|
223
|
Pyo YJ, Gierth M, Schroeder JI, Cho MH. High-affinity K(+) transport in Arabidopsis: AtHAK5 and AKT1 are vital for seedling establishment and postgermination growth under low-potassium conditions. PLANT PHYSIOLOGY 2010; 153:863-75. [PMID: 20413648 PMCID: PMC2879780 DOI: 10.1104/pp.110.154369] [Citation(s) in RCA: 149] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2010] [Accepted: 04/16/2010] [Indexed: 05/17/2023]
Abstract
Potassium (K(+)) is a major plant nutrient required for growth and development. It is generally accepted that plant roots absorb K(+) through uptake systems operating at low concentrations (high-affinity transport) and/or high external concentrations (low-affinity transport). To understand the molecular basis of high-affinity K(+) uptake in Arabidopsis (Arabidopsis thaliana), we analyzed loss-of-function mutants in AtHAK5 and AKT1, two transmembrane proteins active in roots. Compared with the wild type under NH(4)(+)-free growth conditions, athak5 mutant plants exhibited growth defects at 10 mum K(+), but at K(+) concentrations of 20 mum and above, athak5 mutants were visibly indistinguishable from the wild type. While germination, scored as radicle emergence, was only slightly decreased in athak5 akt1 double mutants on low-K(+) medium, double mutants failed to grow on medium containing up to 100 mum K(+) and growth was impaired at concentrations up to 450 mum K(+). Moreover, transfer of 3-d-old plants from high to low K(+) concentrations led to growth defects and leaf chlorosis at 10 mum K(+) in athak5 akt1 double mutant plants. Determination of Rb(+)(K(+)) uptake kinetics in wild-type and mutant roots using rubidium ((86)Rb(+)) as a tracer for K(+) revealed that high-affinity Rb(+)(K(+)) uptake into roots is almost completely abolished in double mutants and impaired in single mutants. These results strongly indicate that AtHAK5 and AKT1 are the two major, physiologically relevant molecular entities mediating high-affinity K(+) uptake into roots during seedling establishment and postgermination growth and that residual Rb(+)(K(+)) uptake measured in athak5 akt1 double mutant roots is insufficient to enable plant growth.
Collapse
Affiliation(s)
| | | | | | - Myeon Haeng Cho
- Department of Biology, Yonsei University, Seoul 120–749, Republic of Korea (Y.J.P., M.H.C.); Department of Botany II, University of Cologne, 50674 Cologne, Germany (M.G.); Division of Biological Sciences, Cell and Developmental Biology Section, University of California San Diego, La Jolla, California 92093–0116 (J.I.S.)
| |
Collapse
|
224
|
Vahisalu T, Puzõrjova I, Brosché M, Valk E, Lepiku M, Moldau H, Pechter P, Wang YS, Lindgren O, Salojärvi J, Loog M, Kangasjärvi J, Kollist H. Ozone-triggered rapid stomatal response involves the production of reactive oxygen species, and is controlled by SLAC1 and OST1. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2010; 62:442-53. [PMID: 20128877 DOI: 10.1111/j.1365-313x.2010.04159.x] [Citation(s) in RCA: 176] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The air pollutant ozone can be used as a tool to unravel in planta processes induced by reactive oxygen species (ROS). Here, we have utilized ozone to study ROS-dependent stomatal signaling. We show that the ozone-triggered rapid transient decrease (RTD) in stomatal conductance coincided with a burst of ROS in guard cells. RTD was present in 11 different Arabidopsis ecotypes, suggesting that it is a genetically robust response. To study which signaling components or ion channels were involved in RTD, we tested 44 mutants deficient in various aspects of stomatal function. This revealed that the SLAC1 protein, essential for guard cell plasma membrane S-type anion channel function, and the protein kinase OST1 were required for the ROS-induced fast stomatal closure. We showed a physical interaction between OST1 and SLAC1, and provide evidence that SLAC1 is phosphorylated by OST1. Phosphoproteomic experiments indicated that OST1 phosphorylated multiple amino acids in the N terminus of SLAC1. Using TILLING we identified three new slac1 alleles where predicted phosphosites were mutated. The lack of RTD in two of them, slac1-7 (S120F) and slac1-8 (S146F), suggested that these serine residues were important for the activation of SLAC1. Mass-spectrometry analysis combined with site-directed mutagenesis and phosphorylation assays, however, showed that only S120 was a specific phosphorylation site for OST1. The absence of the RTD in the dominant-negative mutants abi1-1 and abi2-1 also suggested a regulatory role for the protein phosphatases ABI1 and ABI2 in the ROS-induced activation of the S-type anion channel.
Collapse
Affiliation(s)
- Triin Vahisalu
- Division of Plant Biology, Department of Biosciences, University of Helsinki, PO Box 65 (Viikinkaari 1), FI-00014 Helsinki, Finland
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
225
|
Jeworutzki E, Roelfsema MRG, Anschütz U, Krol E, Elzenga JTM, Felix G, Boller T, Hedrich R, Becker D. Early signaling through the Arabidopsis pattern recognition receptors FLS2 and EFR involves Ca-associated opening of plasma membrane anion channels. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2010; 62:367-78. [PMID: 20113440 DOI: 10.1111/j.1365-313x.2010.04155.x] [Citation(s) in RCA: 151] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The perception of microbes by plants involves highly conserved molecular signatures that are absent from the host and that are collectively referred to as microbe-associated molecular patterns (MAMPs). The Arabidopsis pattern recognition receptors FLAGELLIN-SENSING 2 (FLS2) and EF-Tu receptor (EFR) represent genetically well studied paradigms that mediate defense against bacterial pathogens. Stimulation of these receptors through their cognate ligands, bacterial flagellin or bacterial elongation factor Tu, leads to a defense response and ultimately to increased resistance. However, little is known about the early signaling pathway of these receptors. Here, we characterize this early response in situ, using an electrophysiological approach. In line with a release of negatively charged molecules, voltage recordings of microelectrode-impaled mesophyll cells and root hairs of Col-0 Arabidopsis plants revealed rapid, dose-dependent membrane potential depolarizations in response to either flg22 or elf18. Using ion-selective microelectrodes, pronounced anion currents were recorded upon application of flg22 and elf18, indicating that the signaling cascades initiated by each of the two receptors converge on the same plasma membrane ion channels. Combined calcium imaging and electrophysiological measurements revealed that the depolarization was superimposed by an increase in cytosolic calcium that was indispensable for depolarization. NADPH oxidase mutants were still depolarized upon elicitor stimulation, suggesting a reactive oxygen species-independent membrane potential response. Furthermore, electrical signaling in response to either flg22 or elf 18 critically depends on the activity of the FLS2-associated receptor-like kinase BAK1, suggesting that activation of FLS2 and EFR lead to BAK1-dependent, calcium-associated plasma membrane anion channel opening as an initial step in the pathogen defense pathway.
Collapse
Affiliation(s)
- Elena Jeworutzki
- Julius-von-Sachs Institute of Biosciences, Molecular Plant Physiology and Biophysics, University of Würzburg, Julius-von-Sachs-Platz 2, 97082 Würzburg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
226
|
Laohavisit A, Brown AT, Cicuta P, Davies JM. Annexins: components of the calcium and reactive oxygen signaling network. PLANT PHYSIOLOGY 2010; 152:1824-9. [PMID: 20154100 PMCID: PMC2850007 DOI: 10.1104/pp.109.145458] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2009] [Accepted: 01/26/2010] [Indexed: 05/18/2023]
Affiliation(s)
| | | | | | - Julia M. Davies
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, United Kingdom (A.L., J.M.D.); and Department of Physics, Cavendish Laboratory, University of Cambridge, Cambridge CB3 0HE, United Kingdom (A.T.B., P.C.)
| |
Collapse
|
227
|
A rice high-affinity potassium transporter (HKT) conceals a calcium-permeable cation channel. Proc Natl Acad Sci U S A 2010; 107:7089-94. [PMID: 20351263 DOI: 10.1073/pnas.1000698107] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Plant high-affinity K(+) transport (HKT) proteins are so named because of their relation to bacterial and fungal transporters that mediate high-affinity K(+) uptake. The view that HKT family members are sodium-selective uniporters or sodium-potassium symporters is widely held. We have found that one of the rice HKT proteins also functions as a Ca(2+)-permeable cation channel that conducts current carried by a wide range of monovalent and divalent cations. The HKT rice gene, named OsHKT2;4, is expressed in several cell types, including root hairs and vascular parenchyma cells. The protein is localized to the plasma membrane, thereby providing a mechanism for cation uptake and extrusion. This finding goes against firmly entrenched dogma in showing that HKT proteins can function as both ion carriers and channels. The study further extends the function of HKT proteins to Ca(2+)-linked processes and, in so doing, defines a previously undescribed type of Ca(2+)-permeable cation channels in plants. The work also raises questions about the evolutionary changes in this protein family following the divergence of monocots and dicots.
Collapse
|
228
|
Krol E, Mentzel T, Chinchilla D, Boller T, Felix G, Kemmerling B, Postel S, Arents M, Jeworutzki E, Al-Rasheid KAS, Becker D, Hedrich R. Perception of the Arabidopsis danger signal peptide 1 involves the pattern recognition receptor AtPEPR1 and its close homologue AtPEPR2. J Biol Chem 2010; 285:13471-9. [PMID: 20200150 DOI: 10.1074/jbc.m109.097394] [Citation(s) in RCA: 262] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Plasma membrane-borne pattern recognition receptors, which recognize microbe-associated molecular patterns and endogenous damage-associated molecular patterns, provide the first line of defense in innate immunity. In plants, leucine-rich repeat receptor kinases fulfill this role, as exemplified by FLS2 and EFR, the receptors for the microbe-associated molecular patterns flagellin and elongation factor Tu. Here we examined the perception of the damage-associated molecular pattern peptide 1 (AtPep1), an endogenous peptide of Arabidopsis identified earlier and shown to be perceived by the leucine-rich repeat protein kinase PEPR1. Using seedling growth inhibition, elicitation of an oxidative burst and induction of ethylene biosynthesis, we show that wild type plants and the pepr1 and pepr2 mutants, affected in PEPR1 and in its homologue PEPR2, are sensitive to AtPep1, but that the double mutant pepr1/pepr2 is completely insensitive. As a central body of our study, we provide electrophysiological evidence that at the level of the plasma membrane, AtPep1 triggers a receptor-dependent transient depolarization through activation of plasma membrane anion channels, and that this effect is absent in the double mutant pepr1/pepr2. The double mutant also fails to respond to AtPep2 and AtPep3, two distant homologues of AtPep1 on the basis of homology screening, implying that the PEPR1 and PEPR2 are responsible for their perception too. Our findings provide a basic framework to study the biological role of AtPep1-related danger signals and their cognate receptors.
Collapse
Affiliation(s)
- Elzbieta Krol
- Department of Molecular Plant Physiology and Biophysics, University of Wuerzburg, 97082 Wuerzburg, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
229
|
Sasaki T, Mori IC, Furuichi T, Munemasa S, Toyooka K, Matsuoka K, Murata Y, Yamamoto Y. Closing plant stomata requires a homolog of an aluminum-activated malate transporter. PLANT & CELL PHYSIOLOGY 2010; 51:354-65. [PMID: 20154005 PMCID: PMC2835873 DOI: 10.1093/pcp/pcq016] [Citation(s) in RCA: 129] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2010] [Accepted: 02/09/2010] [Indexed: 05/18/2023]
Abstract
Plant stomata limit both carbon dioxide uptake and water loss; hence, stomatal aperture is carefully set as the environment fluctuates. Aperture area is known to be regulated in part by ion transport, but few of the transporters have been characterized. Here we report that AtALMT12 (At4g17970), a homolog of the aluminum-activated malate transporter (ALMT) of wheat, is expressed in guard cells of Arabidopsis thaliana. Loss-of-function mutations in AtALMT12 impair stomatal closure induced by ABA, calcium and darkness, but do not abolish either the rapidly activated or the slowly activated anion currents previously identified as being important for stomatal closure. Expressed in Xenopus oocytes, AtALMT12 facilitates chloride and nitrate currents, but not those of organic solutes. Therefore, we conclude that AtALMT12 is a novel class of anion transporter involved in stomatal closure.
Collapse
Affiliation(s)
- Takayuki Sasaki
- Research Institute for Bioresources, Okayama University, Chuo 2-20-1, Kurashiki, Okayama, 710-0046 Japan
- These authors contributed equally to this work
- *Corresponding author: E-mail, ; Fax, +81-86-434-1236
| | - Izumi C. Mori
- Research Institute for Bioresources, Okayama University, Chuo 2-20-1, Kurashiki, Okayama, 710-0046 Japan
- These authors contributed equally to this work
| | - Takuya Furuichi
- Research Institute for Bioresources, Okayama University, Chuo 2-20-1, Kurashiki, Okayama, 710-0046 Japan
- These authors contributed equally to this work
| | - Shintaro Munemasa
- Graduate School of Natural Science and Technology, Okayama University, Tsushima-Naka, Okayama, 700-8530 Japan
| | - Kiminori Toyooka
- RIKEN Plant Science Center, Tsurumi-ku, Yokohama, 230-0045 Japan
| | - Ken Matsuoka
- Laboratory of Plant Nutrition, Faculty of Agriculture, Kyushu University, Higashi-ku, Fukuoka, 812-8581 Japan
| | - Yoshiyuki Murata
- Graduate School of Natural Science and Technology, Okayama University, Tsushima-Naka, Okayama, 700-8530 Japan
| | - Yoko Yamamoto
- Research Institute for Bioresources, Okayama University, Chuo 2-20-1, Kurashiki, Okayama, 710-0046 Japan
| |
Collapse
|
230
|
Abstract
Potassium (K(+)) is one of the essential macronutrients for plant growth and development. However, K(+) content in soils is usually limited so that the crop yields are restricted. Plants may adapt to K(+)-deficient environment by adjusting their physiological and morphological status, indicating that plants may have evolved their sensing and signaling mechanisms in response to K(+)-deficiency. This short review particularly discusses some components as possible sensors or signal transducers involved in plant sensing and signaling in response to K(+)-deficiency, such as K(+) channels and transporters, H(+)-ATPase, some cytoplasmic enzymes, etc. Possible involvement of Ca²(+) and ROS signals in plant responses to K(+)-deficiency is also discussed.
Collapse
Affiliation(s)
- Yi Wang
- State Key Laboratory of Plant Physiology and Biochemistry (SKLPPB), National Plant Gene Research Centre (Beijing), College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | | |
Collapse
|
231
|
Abstract
The molecular mechanisms of K(+) homeostasis are only poorly understood for protozoan parasites. Trypanosoma brucei subsp. parasites, the causative agents of human sleeping sickness and nagana, are strictly extracellular and need to actively concentrate K(+) from their hosts' body fluids. The T. brucei genome contains two putative K(+) channel genes, yet the trypanosomes are insensitive to K(+) antagonists and K(+) channel-blocking agents, and they do not spontaneously depolarize in response to high extracellular K(+) concentrations. However, the trypanosomes are extremely sensitive to K(+) ionophores such as valinomycin. Surprisingly, T. brucei possesses a member of the Trk/HKT superfamily of monovalent cation permeases which so far had only been known from bacteria, archaea, fungi, and plants. The protein was named TbHKT1 and functions as a Na(+)-independent K(+) transporter when expressed in Escherichia coli, Saccharomyces cerevisiae, or Xenopus laevis oocytes. In trypanosomes, TbHKT1 is expressed in both the mammalian bloodstream stage and the Tsetse fly midgut stage; however, RNA interference (RNAi)-mediated silencing of TbHKT1 expression did not produce a growth phenotype in either stage. The presence of HKT genes in trypanosomatids adds a further piece to the enigmatic phylogeny of the Trk/HKT superfamily of K(+) transporters. Parsimonial analysis suggests that the transporters were present in the first eukaryotes but subsequently lost in several of the major eukaryotic lineages, in at least four independent events.
Collapse
|
232
|
Assmann SM. Hope for Humpty Dumpty: systems biology of cellular signaling. PLANT PHYSIOLOGY 2010; 152:470-9. [PMID: 20032076 PMCID: PMC2815894 DOI: 10.1104/pp.109.151266] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Affiliation(s)
- Sarah M Assmann
- Biology Department, Pennsylvania State University, University Park, Pennsylvania 16802, USA.
| |
Collapse
|
233
|
Ion Channels and Plant Stress: Past, Present, and Future. ION CHANNELS AND PLANT STRESS RESPONSES 2010. [DOI: 10.1007/978-3-642-10494-7_1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
234
|
The Function of Cyclic Nucleotide-Gated Channels in Biotic Stress. ION CHANNELS AND PLANT STRESS RESPONSES 2010. [DOI: 10.1007/978-3-642-10494-7_8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
235
|
Abstract
Ca(2+) signals are a core regulator of plant cell physiology and cellular responses to the environment. The channels, pumps, and carriers that underlie Ca(2+) homeostasis provide the mechanistic basis for generation of Ca(2+) signals by regulating movement of Ca(2+) ions between subcellular compartments and between the cell and its extracellular environment. The information encoded within the Ca(2+) transients is decoded and transmitted by a toolkit of Ca(2+)-binding proteins that regulate transcription via Ca(2+)-responsive promoter elements and that regulate protein phosphorylation. Ca(2+)-signaling networks have architectural structures comparable to scale-free networks and bow tie networks in computing, and these similarities help explain such properties of Ca(2+)-signaling networks as robustness, evolvability, and the ability to process multiple signals simultaneously.
Collapse
Affiliation(s)
- Antony N Dodd
- Department of Biology, University of York, York, United Kingdom.
| | | | | |
Collapse
|
236
|
Lebaudy A, Pascaud F, Véry AA, Alcon C, Dreyer I, Thibaud JB, Lacombe B. Preferential KAT1-KAT2 heteromerization determines inward K+ current properties in Arabidopsis guard cells. J Biol Chem 2009; 285:6265-74. [PMID: 20040603 DOI: 10.1074/jbc.m109.068445] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Guard cells adjust their volume by changing their ion content due to intense fluxes that, for K(+), are believed to flow through inward or outward Shaker channels. Because Shaker channels can be homo- or heterotetramers and Arabidopsis guard cells express at least five genes encoding inward Shaker subunits, including the two major ones, KAT1 and KAT2, the molecular identity of inward Shaker channels operating therein is not yet completely elucidated. Here, we first addressed the properties of KAT1-KAT2 heteromers by expressing KAT1-KAT2 tandems in Xenopus oocytes. Then, computer analyses of the data suggested that coexpression of free KAT1 and KAT2 subunits resulted mainly in heteromeric channels made of two subunits of each type due to some preferential association of KAT1-KAT2 heterodimers at the first step of channel assembly. This was further supported by the analysis of KAT2 effect on KAT1 targeting in tobacco cells. Finally, patch-clamp recordings of native inward channels in wild-type and mutant genotypes strongly suggested that this preferential heteromerization occurs in planta and that Arabidopsis guard cell inward Shaker channels are mainly heteromers of KAT1 and KAT2 subunits.
Collapse
Affiliation(s)
- Anne Lebaudy
- Biochimie et Physiologie Moléculaire des Plantes, CNRS UMR 5004, Institut National de la Recherche Agronomique U386, Montpellier SupAgro, Université Montpellier II, Place Viala, 34060 Montpellier Cedex, France
| | | | | | | | | | | | | |
Collapse
|
237
|
Zifarelli G, Pusch M. CLC transport proteins in plants. FEBS Lett 2009; 584:2122-7. [DOI: 10.1016/j.febslet.2009.12.042] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2009] [Accepted: 12/21/2009] [Indexed: 10/20/2022]
|
238
|
A protein kinase-phosphatase pair interacts with an ion channel to regulate ABA signaling in plant guard cells. Proc Natl Acad Sci U S A 2009; 106:21419-24. [PMID: 19955427 DOI: 10.1073/pnas.0910601106] [Citation(s) in RCA: 427] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The plant hormone abscisic acid (ABA) serves as a physiological monitor to assess the water status of plants and, under drought conditions, induces stomatal pore closure by activating specific ion channels, such as a slow-anion channel (SLAC1) that, in turn, mediate ion efflux from the guard cells. Earlier genetic analyses uncovered a protein kinase (OST1) and several 2C-type phosphatases, as respective positive and negative regulators of ABA-induced stomatal closure. Here we show that the OST1 kinase interacts with the SLAC1 anion channel, leading to its activation via phosphorylation. PP2CA, one of the PP2C phosphatase family members acts in an opposing manner and inhibits the activity of SLAC1 by two mechanisms: (1) direct interaction with SLAC1 itself, and (2) physical interaction with OSTI leading to inhibition of the kinase independently of phosphatase activity. The results suggest that ABA signaling is mediated by a physical interaction chain consisting of several components, including a PP2C member, SnRK2-type kinase (OST1), and an ion channel, SLAC1, to regulate stomatal movements. The findings are in keeping with a paradigm in which a protein kinase-phosphatase pair interacts physically with a target protein to couple a signal with a specific response.
Collapse
|
239
|
Vandana S, Bhatla SC. Co-localization of putative calcium channels (phenylalkylamine-binding sites) on oil bodies in protoplasts from dark-grown sunflower seedling cotyledons. PLANT SIGNALING & BEHAVIOR 2009; 4:604-9. [PMID: 19820351 PMCID: PMC2710551 DOI: 10.4161/psb.4.7.9165] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Oil bodies are spherical entities containing a triacylglycerol (TAG) matrix encased by a phospholipid monolayer, which is stabilized by oil body-specific proteins, principally oleosins. Biochemical investigations in the recent past have also demonstrated the expression of calcium-binding proteins, called caleosins, as a component of oil body membranes during seed germination. Using DM-Bodipy-phenylalkylamine (PAA; a fluorescent derivative of phenylalkylamine)-a fluorescent probe known to bind L-type calcium channel proteins, present investigations provide the first report on the localization and preferential accumulation of putative calcium channel proteins on/around oil bodies during peak lipolytic phase in protoplasts derived from dark-grown sunflower (Helianthus annuus L. cv Morden) seedling cotyledons. Specificity of DM-Bodipy-PAA labeling was confirmed by using bepridil, a non-fluorescent competitor of PAA while non-specific dye accumulation has been ruled out by using Bodipy-FL as control. Co-localization of fluorescence from DM-Bodipy-PAA binding sites (ex: 504 nm; em: 511 nm) and nile red fluorescing oil bodies (ex: 552 nm; em: 636 nm) has been undertaken by epifluorescence and confocal laser scanning microscopy (CLSM). It revealed the affinity of PAA-sensitive ion channels for the oil body surface. Findings from the current investigations highlight the significance of calcium and calcium channel proteins during oil body mobilization in sunflower.
Collapse
Affiliation(s)
- Shweta Vandana
- Department of Botany, Gargi College, University of Delhi, New Delhi, India
| | | |
Collapse
|
240
|
Geiger D, Becker D, Vosloh D, Gambale F, Palme K, Rehers M, Anschuetz U, Dreyer I, Kudla J, Hedrich R. Heteromeric AtKC1{middle dot}AKT1 channels in Arabidopsis roots facilitate growth under K+-limiting conditions. J Biol Chem 2009; 284:21288-95. [PMID: 19509299 DOI: 10.1074/jbc.m109.017574] [Citation(s) in RCA: 129] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Plant growth and development is driven by osmotic processes. Potassium represents the major osmotically active cation in plants cells. The uptake of this inorganic osmolyte from the soil in Arabidopsis involves a root K(+) uptake module consisting of the two K(+) channel alpha-subunits, AKT1 and AtKC1. AKT1-mediated potassium absorption from K(+)-depleted soil was shown to depend on the calcium-sensing proteins CBL1/9 and their interacting kinase CIPK23. Here we show that upon activation by the CBL.CIPK complex in low external potassium homomeric AKT1 channels open at voltages positive of E(K), a condition resulting in cellular K(+) leakage. Although at submillimolar external potassium an intrinsic K(+) sensor reduces AKT1 channel cord conductance, loss of cytosolic potassium is not completely abolished under these conditions. Depending on channel activity and the actual potassium gradients, this channel-mediated K(+) loss results in impaired plant growth in the atkc1 mutant. Incorporation of the AtKC1 subunit into the channel complex, however, modulates the properties of the K(+) uptake module to prevent K(+) loss. Upon assembly of AKT1 and AtKC1, the activation threshold of the root inward rectifier voltage gate is shifted negative by approximately -70 mV. Additionally, the channel conductance gains a hypersensitive K(+) dependence. Together, these two processes appear to represent a safety strategy preventing K(+) loss through the uptake channels under physiological conditions. Similar growth retardation phenotypes of akt1 and atkc1 loss-of-function mutants in response to limiting K(+) supply further support such functional interdependence of AKT1 and AtKC1. Taken together, these findings suggest an essential role of AtKC1-like subunits for root K(+) uptake and K(+) homeostasis when plants experience conditions of K(+) limitation.
Collapse
Affiliation(s)
- Dietmar Geiger
- Julius-von-Sachs-Institute, Molecular Plant Physiology and Biophysics, University of Wuerzburg, Julius-von-Sachs-Platz 2, D-97082 Wuerzburg, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|