201
|
MiR-206 conjugated gold nanoparticle based targeted therapy in breast cancer cells. Sci Rep 2022; 12:4713. [PMID: 35304514 PMCID: PMC8933417 DOI: 10.1038/s41598-022-08185-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 03/03/2022] [Indexed: 12/24/2022] Open
Abstract
MicroRNAs (miRNAs) are single-stranded, non-coding, 19–25 nucleotide RNA molecules that have been observed to be dysregulated in many diseases including cancer. miRNAs have been known to play an important role in cellular proliferation, differentiation, migration, apoptosis, survival, and morphogenesis. Breast cancer is heterogeneous in nature and contributed extensively to the increased mortality rate. miRNA can either be tumor-suppressive or oncogenic in nature. The level of expression of miRNA changes according to the subtypes of cancer and the mutation responsible for different cancers. miRNA mimicry or inhibition are emerging possible therapies to maintain the level of miRNA inside the cells. In order to have proper miRNA mimicry, the major hurdle is to deliver the miRNA mimics at the site of tumor. Metallic nanoparticles with modified surface can be used to solve the problem of miRNA delivery. MiR-206 is reported to be down-regulated in Luminal-A type of breast cancer. In the current manuscript, we aim to modify the surface of gold-nanoparticles (AuNPs) with PEG moiety and allow miRNA to attach to it. The fabricated nano-complex, not only delivered miR-206 but also caused cell death in MCF-7 by arresting cells in the G0-G1 phase and inducing apoptosis by downregulating NOTCH 3.
Collapse
|
202
|
Szczepanek J, Skorupa M, Tretyn A. MicroRNA as a Potential Therapeutic Molecule in Cancer. Cells 2022; 11:1008. [PMID: 35326459 PMCID: PMC8947269 DOI: 10.3390/cells11061008] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/11/2022] [Accepted: 03/16/2022] [Indexed: 12/11/2022] Open
Abstract
Small noncoding RNAs, as post-translational regulators of many target genes, are not only markers of neoplastic disease initiation and progression, but also markers of response to anticancer therapy. Hundreds of miRNAs have been identified as biomarkers of drug resistance, and many have demonstrated the potential to sensitize cancer cells to therapy. Their properties of modulating the response of cells to therapy have made them a promising target for overcoming drug resistance. Several methods have been developed for the delivery of miRNAs to cancer cells, including introducing synthetic miRNA mimics, DNA plasmids containing miRNAs, and small molecules that epigenetically alter endogenous miRNA expression. The results of studies in animal models and preclinical studies for solid cancers and hematological malignancies have confirmed the effectiveness of treatment protocols using microRNA. Nevertheless, the use of miRNAs in anticancer therapy is not without limitations, including the development of a stable nanoconstruct, delivery method choices, and biodistribution. The aim of this review was to summarize the role of miRNAs in cancer treatment and to present new therapeutic concepts for these molecules. Supporting anticancer therapy with microRNA molecules has been verified in numerous clinical trials, which shows great potential in the treatment of cancer.
Collapse
Affiliation(s)
- Joanna Szczepanek
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Ul. Wilenska 4, 87-100 Torun, Poland;
| | - Monika Skorupa
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Ul. Wilenska 4, 87-100 Torun, Poland;
- Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Ul. Lwowska 1, 87-100 Torun, Poland;
| | - Andrzej Tretyn
- Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Ul. Lwowska 1, 87-100 Torun, Poland;
| |
Collapse
|
203
|
Breast Cancer Subtype-Specific miRNAs: Networks, Impacts, and the Potential for Intervention. Biomedicines 2022; 10:biomedicines10030651. [PMID: 35327452 PMCID: PMC8945552 DOI: 10.3390/biomedicines10030651] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/07/2022] [Accepted: 03/09/2022] [Indexed: 02/01/2023] Open
Abstract
The regulatory and functional roles of non-coding RNAs are increasingly demonstrated as critical in cancer. Among non-coding RNAs, microRNAs (miRNAs) are the most well-studied with direct regulation of biological signals through post-transcriptional repression of mRNAs. Like the transcriptome, which varies between tissue type and disease condition, the miRNA landscape is also similarly altered and shows disease-specific changes. The importance of individual tumor-promoting or suppressing miRNAs is well documented in breast cancer; however, the implications of miRNA networks is less defined. Some evidence suggests that breast cancer subtype-specific cellular effects are influenced by distinct miRNAs and a comprehensive network of subtype-specific miRNAs and mRNAs would allow us to better understand breast cancer signaling. In this review, we discuss the altered miRNA landscape in the context of breast cancer and propose that breast cancer subtypes have distinct miRNA dysregulation. Further, given that miRNAs can be used as diagnostic and/or prognostic biomarkers, their impact as novel targets for subtype-specific therapy is also possible and suggest important implications for subtype-specific miRNAs.
Collapse
|
204
|
Wang F, Liu LS, Li P, Leung HM, Tam DY, Lo PK. Biologically stable threose nucleic acid-based probes for real-time microRNA detection and imaging in living cells. MOLECULAR THERAPY. NUCLEIC ACIDS 2022; 27:787-796. [PMID: 35116190 PMCID: PMC8789592 DOI: 10.1016/j.omtn.2021.12.040] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Accepted: 12/31/2021] [Indexed: 12/26/2022]
Abstract
We successfully fabricated threose nucleic acid (TNA)-based probes for real-time monitoring of target miRNA levels in cells. Our TNA probe is comprised of a fluorophore-labeled TNA reporter strand by partially hybridizing to a quencher-labeled TNA that is designed to be antisense to a target RNA transcript; this results in effective quenching of its fluorescence. In the presence of RNA targets, the antisense capture sequence of the TNA binds to targeted transcripts to form longer, thermodynamic stable duplexes. This binding event displaces the reporter strand from the quencher resulting in a discrete “turning-on” of the fluorescence. Our TNA probe is highly specific and selective toward target miRNA and is able to distinguish one to two base mismatches in the target RNA. Compared with DNA probes, our TNA probes exhibited favorable nuclease stability, thermal stability, and exceptional storage ability for long-term cellular studies. Our TNA probes are efficiently taken up by cells with negligible cytotoxicity for dynamic detection of target miRNAs and can also differentiate the distinct target miRNA expression levels in different cell lines. This work illuminates for using TNA as a building component to construct a biocompatible probe for miRNA detection that offers alternative molecular reagents for miRNA-related diagnostics.
Collapse
Affiliation(s)
- Fei Wang
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong SAR, China
| | - Ling Sum Liu
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong SAR, China
| | - Pan Li
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong SAR, China
| | - Hoi Man Leung
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong SAR, China
| | - Dick Yan Tam
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong SAR, China
| | - Pik Kwan Lo
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong SAR, China.,Key Laboratory of Biochip Technology, Biotech and Health Care, Shenzhen Research Institute of City University of Hong Kong, Shenzhen 518057, China
| |
Collapse
|
205
|
Peng F, Wang L, Xiong L, Tang H, Du J, Peng C. Maackiain Modulates miR-374a/GADD45A Axis to Inhibit Triple-Negative Breast Cancer Initiation and Progression. Front Pharmacol 2022; 13:806869. [PMID: 35308218 PMCID: PMC8930825 DOI: 10.3389/fphar.2022.806869] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 01/24/2022] [Indexed: 12/20/2022] Open
Abstract
Breast cancer ranks as the leading cause of death in lethal malignancies among women worldwide, with a sharp increase of incidence since 2008. Triple negative breast cancer (TNBC) gives rise to the largest proportion in breast cancer-related deaths because of its aggressive growth and rapid metastasis. Hence, searching for promising targets and innovative approaches is indispensable for the TNBC treatment. Maackiain (MA), a natural compound with multiple biological activities, could be isolated from different Chinese herbs, such as Spatholobus suberectus and Sophora flavescens. It was the first time to report the anti-cancer effect of MA in TNBC. MA could suppress TNBC cell proliferation, foci formation, migration, and invasion. MA also exerted a significant inhibitory effect on tumor growth of TNBC. Furthermore, MA could induce apoptosis with an increase of GADD45α and a decrease of miR-374a. In contrast, overexpressing miR-374a would result in at least partly affecting the proapoptotic effect of MA and suppressing GADD45α stimulated by MA. These results reveal the anti-TNBC effect of MA in vitro and in vivo, providing evidence for its potential as a drug candidate utilized in TNBC therapy.
Collapse
Affiliation(s)
- Fu Peng
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Li Wang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Liang Xiong
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hailin Tang
- Department of Breast Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Junrong Du
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, China
- *Correspondence: Cheng Peng, ; Junrong Du,
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Cheng Peng, ; Junrong Du,
| |
Collapse
|
206
|
Rihane FE, Erguibi D, Lamsisi M, Chehab F, Ennaji MM. RETRACTED ARTICLE: Upregulation of miR-21 Expression in Gastric Cancer and Its Clinicopathological Feature Association. J Gastrointest Cancer 2022; 53:236. [PMID: 34907506 DOI: 10.1007/s12029-021-00691-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/12/2021] [Indexed: 12/29/2022]
Affiliation(s)
- Fatima Ezzahra Rihane
- Laboratory of Genetic and Molecular Pathology, Faculty of Medicine & Pharmacy Casablanca, University Hassan II of Casablanca, Casablanca, Morocco
- Laboratory of Virology, Microbiology, Quality, Biotechnologies/Ecotoxicology and Biodiversity, Faculty of Sciences & Technologies Mohammedia, University Hassan II of Casablanca, Casablanca, Morocco
| | - Driss Erguibi
- Service of Digestive Cancers Surgery and Liver Transplant, Department of Surgery, Ibn Rochd University Hospital Center, Faculty of Medicine & Pharmacy Casablanca, University Hassan II of Casablanca, Casablanca, Morocco
| | - Maryame Lamsisi
- Laboratory of Virology, Microbiology, Quality, Biotechnologies/Ecotoxicology and Biodiversity, Faculty of Sciences & Technologies Mohammedia, University Hassan II of Casablanca, Casablanca, Morocco
| | - Farid Chehab
- Service of Digestive Cancers Surgery and Liver Transplant, Department of Surgery, Ibn Rochd University Hospital Center, Faculty of Medicine & Pharmacy Casablanca, University Hassan II of Casablanca, Casablanca, Morocco
| | - Moulay Mustapha Ennaji
- Laboratory of Virology, Microbiology, Quality, Biotechnologies/Ecotoxicology and Biodiversity, Faculty of Sciences & Technologies Mohammedia, University Hassan II of Casablanca, Casablanca, Morocco.
| |
Collapse
|
207
|
ZeinElAbdeen YA, AbdAlSeed A, Youness RA. Decoding Insulin-Like Growth Factor Signaling Pathway From a Non-coding RNAs Perspective: A Step Towards Precision Oncology in Breast Cancer. J Mammary Gland Biol Neoplasia 2022; 27:79-99. [PMID: 35146629 DOI: 10.1007/s10911-022-09511-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 01/24/2022] [Indexed: 12/21/2022] Open
Abstract
Breast cancer (BC) is a highly complex and heterogenous disease. Several oncogenic signaling pathways drive BC oncogenic activity, thus hindering scientists to unravel the exact molecular pathogenesis of such multifaceted disease. This highlights the urgent need to find a key regulator that tunes up such intertwined oncogenic drivers to trim the malignant transformation process within the breast tissue. The Insulin-like growth factor (IGF) signaling pathway is a tenacious axis that is heavily intertwined with BC where it modulates the amplitude and activity of vital downstream oncogenic signaling pathways. Yet, the complexity of the pathway and the interactions driven by its different members seem to aggravate its oncogenicity and hinder its target-ability. In this review, the authors shed the light on the stubbornness of the IGF signaling pathway and its potential regulation by non-coding RNAs in different BC subtypes. Nonetheless, this review also spots light on the possible transport systems available for efficient delivery of non-coding RNAs to their respective targets to reach a personalized treatment code for BC patients.
Collapse
Affiliation(s)
- Yousra Ahmed ZeinElAbdeen
- The Molecular Genetics Research Team, Pharmaceutical Biology Department, Faculty of Pharmacy and Biotechnology, German University, Main Entrance Al Tagamoa Al Khames, New Cairo CityCairo, 11835, Egypt
| | - Amna AbdAlSeed
- The Molecular Genetics Research Team, Pharmaceutical Biology Department, Faculty of Pharmacy and Biotechnology, German University, Main Entrance Al Tagamoa Al Khames, New Cairo CityCairo, 11835, Egypt
- University of Khartoum, Al-Gama a Avenue, 11115, Khartoum, Sudan
| | - Rana A Youness
- The Molecular Genetics Research Team, Pharmaceutical Biology Department, Faculty of Pharmacy and Biotechnology, German University, Main Entrance Al Tagamoa Al Khames, New Cairo CityCairo, 11835, Egypt.
- School of Life and Medical Sciences, University of Hertfordshire Hosted By Global Academic Foundation, New Administrative Capital, Cairo, 11586, Egypt.
| |
Collapse
|
208
|
Biosensors as diagnostic tools in clinical applications. Biochim Biophys Acta Rev Cancer 2022; 1877:188726. [DOI: 10.1016/j.bbcan.2022.188726] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 02/18/2022] [Accepted: 03/25/2022] [Indexed: 11/19/2022]
|
209
|
Shaw P, Lokhotiya K, Kumarasamy C, Sunil K, Suresh D, Shetty S, Muthukaliannan GK, Baxi S, Mani RR, Sivanandy P, Chandramoorthy HC, Gupta MM, Samiappan S, Jayaraj R. Mapping Research on miRNAs in Cancer: A Global DataAnalysis and Bibliometric Profiling Analysis. PATHOPHYSIOLOGY 2022; 29:66-80. [PMID: 35366290 PMCID: PMC8950962 DOI: 10.3390/pathophysiology29010007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 01/31/2022] [Accepted: 02/08/2022] [Indexed: 11/16/2022] Open
Abstract
miRNAs biomarkers are emerging as an essential part of clinical oncology. Their oncogenic and tumour suppressor properties playing a role in malignancy has generated interest in their potential for use in disease prognosis. While several studies on miRNA have been carried out across the globe, evaluating the clinical implications of miRNAs in cancer diagnosis and prognosis research has currently not been attempted. A study delineating the area of miRNA research, including the topics presently being focused on, the seminal papers in this field, and the direction of research interest, does not exist. This study aims to conduct a large-scale, global data analysis and bibliometric profiling analysis of studies to evaluate the research output of clinical implications of miRNAs in cancer diagnosis and prognosis listed in the SCOPUS database. A systematic search strategy was followed to identify and extract all relevant studies, subsequently analysed to generate a bibliometric map. SPSS software (version 27) was used to calculate bibliometric indicators or parameters for analysis, such as year and country of affiliation with leading authors, journals, and institutions. It is also used to analyse annual research outputs, including total citations and the number of times it has been cited with productive nations and H-index. The number of global research articles retrieved for miRNA-Cancer research over the study period 2003 to 2019 was 18,636. Between 2012 and 2019, the growth rate of global publications is six times (n = 15,959; 90.71 percent articles) that of 2003 to 2011. (2704; 9.29 per cent articles). China published the most publications in the field of miRNA in cancer (n = 7782; 41%), while the United States had the most citations (n = 327,538; 48%) during the time span. Of these journals, Oncotarget has the highest percentage of article publications. The journal Cancer Research had the most citations (n = 41,876), with 6.20 per cent (n = 41,876). This study revealed a wide variety of journals in which miRNA-Cancer research are published; these bibliometric parameters exhibit crucial clinical information on performance assessment of research productivity and quality of research output. Therefore, this study provides a helpful reference for clinical oncologists, cancer scientists, policy decision-makers and clinical data researchers.
Collapse
Affiliation(s)
- Peter Shaw
- Oujiang Laboratory, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, China;
- Menzies School of Health Research, Darwin 0810, Australia
| | - Kartik Lokhotiya
- School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, India; (K.L.); (G.K.M.)
| | - Chellan Kumarasamy
- School of Health and Medical Sciences, Curtin University, Perth 6102, Australia;
| | - Krishnan Sunil
- Department of Radiation Oncology, Mayo Clinic Florida, Jacksonville, FL 32224, USA;
| | - Deepa Suresh
- Division of Endocrinology, Department of Internal Medicine, Mayo Clinic Florida, Jacksonville, FL 32224, USA;
| | - Sameep Shetty
- Department of Oral and Maxillofacial Surgery, Manipal College of Dental Sciences, Mangalore, Manipal Academy of Higher Education, A Constituent of MAHE, Manipal 576104, India;
| | | | - Siddhartha Baxi
- Genesis Care Gold Coast Radiation Oncologist, John Flynn Hospital, Tugun 4224, Australia;
| | - Ravishankar Ram Mani
- Department of Pharmaceutical Biology, Faculty of Pharmaceutical Sciences, UCSI University, Kuala Lumpur 56000, Malaysia;
| | - Palanisamy Sivanandy
- Department of Pharmacy Practice, School of Pharmacy, International Medical University, Kuala Lumpur 57000, Malaysia;
| | - Harish C. Chandramoorthy
- Stem Cells and Regenerative Medicine Unit, Department of Microbiology and Clinical Parasitology, College of Medicine, King Khalid University, Abha 56000, Saudi Arabia;
| | - Madan Mohan Gupta
- School of Pharmacy, Faculty of Medical Sciences, The University of the West Indies, St. Augustine 3303, Trinidad and Tobago;
| | - Suja Samiappan
- Department of Biochemistry, Bharathiar University, Coimbatore 641046, India;
| | - Rama Jayaraj
- Northern Territory Institute of Research and Training, Tiwi 0810, Australia
- Correspondence:
| |
Collapse
|
210
|
Simple Enzyme-Free Biosensor for Highly Sensitive and Selective Detection of miR-21 Based on Multiple Signal Amplification Strategy. JOURNAL OF ANALYSIS AND TESTING 2022. [DOI: 10.1007/s41664-022-00214-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
211
|
Afzal S, Hassan M, Ullah S, Abbas H, Tawakkal F, Khan MA. Breast Cancer; Discovery of Novel Diagnostic Biomarkers, Drug Resistance, and Therapeutic Implications. Front Mol Biosci 2022; 9:783450. [PMID: 35265667 PMCID: PMC8899313 DOI: 10.3389/fmolb.2022.783450] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 02/02/2022] [Indexed: 12/12/2022] Open
Abstract
Breast cancer is the second most reported cancer in women with high mortality causing millions of cancer-related deaths annually. Early detection of breast cancer intensifies the struggle towards discovering, developing, and optimizing diagnostic biomarkers that can improve its prognosis and therapeutic outcomes. Breast cancer-associated biomarkers comprise macromolecules, such as nucleic acid (DNA/RNA), proteins, and intact cells. Advancements in molecular technologies have identified all types of biomarkers that are exclusively studied for diagnostic, prognostic, drug resistance, and therapeutic implications. Identifying biomarkers may solve the problem of drug resistance which is a challenging obstacle in breast cancer treatment. Dysregulation of non-coding RNAs including circular RNAs (circRNAs) and microRNAs (miRNAs) initiates and progresses breast cancer. The circulating multiple miRNA profiles promise better diagnostic and prognostic performance and sensitivity than individual miRNAs. The high stability and existence of circRNAs in body fluids make them a promising new diagnostic biomarker. Many therapeutic-based novels targeting agents have been identified, including ESR1 mutation (DNA mutations), Oligonucleotide analogs and antagonists (miRNA), poly (ADP-ribose) polymerase (PARP) in BRCA mutations, CDK4/6 (cell cycle regulating factor initiates tumor progression), Androgen receptor (a steroid hormone receptor), that have entered clinical validation procedure. In this review, we summarize the role of novel breast cancer diagnostic biomarkers, drug resistance, and therapeutic implications for breast cancer.
Collapse
Affiliation(s)
- Samia Afzal
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
- *Correspondence: Samia Afzal,
| | - Muhammad Hassan
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Safi Ullah
- Department of Genetics, Hazara University, Mansehra, Pakistan
| | - Hazrat Abbas
- Department of Genetics, Hazara University, Mansehra, Pakistan
| | - Farah Tawakkal
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Mohsin Ahmad Khan
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| |
Collapse
|
212
|
Santos A, Cristóbal I, Rubio J, Caramés C, Luque M, Sanz-Alvarez M, Morales-Gallego M, Madoz-Gúrpide J, Rojo F, García-Foncillas J. MicroRNA-199b Deregulation Shows Oncogenic Properties and Promising Clinical Value as Circulating Marker in Locally Advanced Rectal Cancer Patients. Int J Mol Sci 2022; 23:2203. [PMID: 35216319 PMCID: PMC8875596 DOI: 10.3390/ijms23042203] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 02/14/2022] [Accepted: 02/14/2022] [Indexed: 02/01/2023] Open
Abstract
The identification of robust prognostic markers still represents a need in locally advanced rectal cancer (LARC). MicroRNAs (miRs) have progressively emerged as promising circulating markers, overcoming some limitations that traditional biopsy comprises. Tissue miR-199b deregulation has been reported to predict outcome and response to neoadjuvant chemoradiotherapy (nCRT) in LARC, and was also found to be associated with disease progression in colorectal cancer. However, its biological and clinical relevance remains to be fully clarified. Thus, we observed here that miR-199b regulates cell migration, aggressiveness, and cell growth, and inhibits colonosphere formation and induces caspase-dependent apoptosis. Moreover, miR-199b expression was quantified by real-time PCR in plasma samples from LARC patients and its downregulation was observed in 22.7% of cases. This alteration was found to be associated with higher tumor size (p = 0.002) and pathological stage (p = 0.020) after nCRT. Notably, we observed substantially lower global miR-199b expression associated with patient downstaging (p = 0.009), as well as in non-responders compared to those cases who responded to nCRT in both pre- (p = 0.003) and post-treatment samples (p = 0.038). In concordance, we found that miR-199b served as a predictor marker of response to neoadjuvant therapy in our cohort (p = 0.011). Altogether, our findings here demonstrate the functional relevance of miR-199b in this disease and its potential value as a novel circulating marker in LARC.
Collapse
Affiliation(s)
- Andrea Santos
- Cancer Unit for Research on Novel Therapeutic Targets, Oncohealth Institute, IIS-Fundación Jiménez Díaz-UAM, 28040 Madrid, Spain; (A.S.); (J.R.); (C.C.)
- Translational Oncology Division, Oncohealth Institute, IIS-Fundación Jiménez Díaz-UAM, 28040 Madrid, Spain
| | - Ion Cristóbal
- Cancer Unit for Research on Novel Therapeutic Targets, Oncohealth Institute, IIS-Fundación Jiménez Díaz-UAM, 28040 Madrid, Spain; (A.S.); (J.R.); (C.C.)
- Translational Oncology Division, Oncohealth Institute, IIS-Fundación Jiménez Díaz-UAM, 28040 Madrid, Spain
| | - Jaime Rubio
- Cancer Unit for Research on Novel Therapeutic Targets, Oncohealth Institute, IIS-Fundación Jiménez Díaz-UAM, 28040 Madrid, Spain; (A.S.); (J.R.); (C.C.)
- Translational Oncology Division, Oncohealth Institute, IIS-Fundación Jiménez Díaz-UAM, 28040 Madrid, Spain
- Medical Oncology Department, University Hospital “Fundación Jiménez Díaz”, UAM, 28040 Madrid, Spain
| | - Cristina Caramés
- Cancer Unit for Research on Novel Therapeutic Targets, Oncohealth Institute, IIS-Fundación Jiménez Díaz-UAM, 28040 Madrid, Spain; (A.S.); (J.R.); (C.C.)
- Translational Oncology Division, Oncohealth Institute, IIS-Fundación Jiménez Díaz-UAM, 28040 Madrid, Spain
- Medical Oncology Department, University Hospital “Fundación Jiménez Díaz”, UAM, 28040 Madrid, Spain
| | - Melani Luque
- Pathology Department, IIS-Fundación Jiménez Díaz-UAM, 28040 Madrid, Spain; (M.L.); (M.S.-A.); (M.M.-G.); (J.M.-G.); (F.R.)
| | - Marta Sanz-Alvarez
- Pathology Department, IIS-Fundación Jiménez Díaz-UAM, 28040 Madrid, Spain; (M.L.); (M.S.-A.); (M.M.-G.); (J.M.-G.); (F.R.)
| | - Miriam Morales-Gallego
- Pathology Department, IIS-Fundación Jiménez Díaz-UAM, 28040 Madrid, Spain; (M.L.); (M.S.-A.); (M.M.-G.); (J.M.-G.); (F.R.)
| | - Juan Madoz-Gúrpide
- Pathology Department, IIS-Fundación Jiménez Díaz-UAM, 28040 Madrid, Spain; (M.L.); (M.S.-A.); (M.M.-G.); (J.M.-G.); (F.R.)
| | - Federico Rojo
- Pathology Department, IIS-Fundación Jiménez Díaz-UAM, 28040 Madrid, Spain; (M.L.); (M.S.-A.); (M.M.-G.); (J.M.-G.); (F.R.)
| | - Jesús García-Foncillas
- Translational Oncology Division, Oncohealth Institute, IIS-Fundación Jiménez Díaz-UAM, 28040 Madrid, Spain
- Medical Oncology Department, University Hospital “Fundación Jiménez Díaz”, UAM, 28040 Madrid, Spain
| |
Collapse
|
213
|
Jorgensen BG, Ro S. MicroRNAs and 'Sponging' Competitive Endogenous RNAs Dysregulated in Colorectal Cancer: Potential as Noninvasive Biomarkers and Therapeutic Targets. Int J Mol Sci 2022; 23:2166. [PMID: 35216281 PMCID: PMC8876324 DOI: 10.3390/ijms23042166] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 01/28/2022] [Accepted: 02/02/2022] [Indexed: 12/13/2022] Open
Abstract
The gastrointestinal (GI) tract in mammals is comprised of dozens of cell types with varied functions, structures, and histological locations that respond in a myriad of ways to epigenetic and genetic factors, environmental cues, diet, and microbiota. The homeostatic functioning of these cells contained within this complex organ system has been shown to be highly regulated by the effect of microRNAs (miRNA). Multiple efforts have uncovered that these miRNAs are often tightly influential in either the suppression or overexpression of inflammatory, apoptotic, and differentiation-related genes and proteins in a variety of cell types in colorectal cancer (CRC). The early detection of CRC and other GI cancers can be difficult, attributable to the invasive nature of prophylactic colonoscopies. Additionally, the levels of miRNAs associated with CRC in biofluids can be contradictory and, therefore, must be considered in the context of other inhibiting competitive endogenous RNAs (ceRNA) such as lncRNAs and circRNAs. There is now a high demand for disease treatments and noninvasive screenings such as testing for bloodborne or fecal miRNAs and their inhibitors/targets. The breadth of this review encompasses current literature on well-established CRC-related miRNAs and the possibilities for their use as biomarkers in the diagnoses of this potentially fatal GI cancer.
Collapse
Affiliation(s)
| | - Seungil Ro
- Department of Physiology & Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV 89557, USA;
| |
Collapse
|
214
|
Analysis of Blood and Tissue miR-191, miR-22, and EGFR mRNA as Novel Biomarkers for Breast Cancer Diagnosis. INTERNATIONAL JOURNAL OF CANCER MANAGEMENT 2022. [DOI: 10.5812/ijcm.117612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background: Breast cancer is the most common cancer in women. Micro RNAs have emerged as a biomarker for the diagnosis and treatment of breast cancer. Objectives: The purpose of the present study was to evaluate miR-191, miR-22, and epidermal growth factor receptor (EGFR) mRNA in peripheral blood and tissues of patients with breast cancer. Methods: A number of 100 peripheral blood samples (50 patient blood samples and 50 healthy blood samples) were collected. Also, 100 tissue samples were simultaneously collected from affected patients by a specialist including 50 samples from the center of the tumor and 50 samples from the side tissues of tumors. Immediately, RNA extraction and cDNA synthesis were performed and polymerase chain reaction (real-time polymerase chain reaction) was performed. Results: The data obtained from the present study showed that the blood and tissue levels of miR-191 and EGFR mRNA were significantly increased in breast cancer samples compared to the group of healthy samples and the blood and tissue levels of miR-22 were significantly decreased in breast cancer samples compared to the group of healthy samples. The miR-191 was increased in patients compared to normal individuals up to 2.3 (blood) and 2.16 (tissue) times, respectively. The miR-22 was decreased in patients compared to normal individuals up to 1.46 (blood) and 1.28 (tissue) times, respectively. Also, EGFR expression was increased in patients compared to normal individuals up to 70.2 (blood) and 24.2 (tissue) times, respectively. The present study can play role in determining the prognosis of breast cancer and in obtaining molecular diagnostic biomarkers in peripheral blood and tissues of patients with breast cancer.
Collapse
|
215
|
Asadi-Samani M, Mahmoudian-Sani MR. Association between extract of Euphorbia szovitsii and expression level of microRNAs in MDA-MB-231 cell line. Mol Biol Rep 2022; 49:3531-3537. [PMID: 35132492 DOI: 10.1007/s11033-022-07193-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 01/25/2022] [Indexed: 11/25/2022]
Abstract
BACKGROUND The miRNAs have been shown to be involved in breast cancer. The aim of the present research was to evaluate the impacts of extract from Euphorbia szovitsii Fisch & C.A. Mey on the expression level of microRNAs in triple-negative breast cancer (MDA-MB-231) cell line. METHODS AND RESULT The alterations in the expression level of miRNAs in MDA-MB-231 cell line exposed to the extract of E. szovitsii were determined exploiting qRT-PCR technique. The expression of MDA-MB-231 cell microRNAs including miR-15, miR-16, miR-21, miR-29, miR-34a, miR-146b, miR-151, miR-155, miR-181b, miR-221, miR-222, and Let-7 was evaluated at 24 and 48 h after treatment with the E. szovitsii extract. The treatment of MDA-MB-231 cells with E. szovitsii caused a significant elevation in the expression of miR-155, miR-146b (P < 0.05), miR-16, miR-21, miR-151 (P < 0.01), and miR-34a (P < 0.001) after 24 h, and also miR-155, Let-7 (P < 0.05), miR-15, miR-29, miR-151 (P < 0. 01), miR-146b and miR-34a (P<0.001) after 48 h. CONCLUSIONS The qRT-PCR findings at 24 and 48 h after treatment revealed that the MDA-MB-231 cell line in the presence of E. szovitsii extract showed an alteration in the expression profile of miRNAs implicated in the induction of cell proliferation, apoptosis and migration. These results may be helpful in determining the anticancer activity of E. szovitsii in MDA-MB-231 cell line.
Collapse
Affiliation(s)
- Majid Asadi-Samani
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Mohammad-Reza Mahmoudian-Sani
- Thalassemia and Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
- Clinical Research Development Unit, Golestan Hospital, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
216
|
Huang L, Zhang X, Li F, Wang X. MicroRNA-143-3p/TBX3 Axis Represses Malignant Cell Behaviors in Bladder Cancer. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:2880087. [PMID: 35126619 PMCID: PMC8813229 DOI: 10.1155/2022/2880087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 12/16/2021] [Accepted: 12/20/2021] [Indexed: 11/26/2022]
Abstract
OBJECTIVE To offer new insight for bladder cancer therapy through researching the microRNA-143-3p/TBX3 axis. METHODS Differentially expressed microRNAs in bladder cancer were provided by databases to find microRNA that may regulate TBX3. qRT-PCR was utilized to test levels of TBX3 mRNA and microRNA-143-3p. Their binding was verified with a dual-luciferase method. Malignant cell behaviors were examined by cell functional experiments. Levels of TBX3 protein and proteins pertinent to epithelial-mesenchymal transition (EMT) were tested by western blot. RESULTS TBX3 was highly expressed in bladder cancer cells. MicroRNA-143-3p presented the most conspicuously negative correlation with TBX3, and they had binding sites. Cell functional experiments proved that TBX3 facilitated bladder cancer cell functions and EMT. MicroRNA-143-3p was demonstrated to downregulate TBX3 expression. Rescue assay further illuminated that microRNA-143-3p repressed bladder cancer cell functions and EMT through downregulating TBX3 expression. CONCLUSION These data all indicated that TBX3 was modulated by microRNA-143-3p and acted as a cancer promoter gene in bladder cancer progression via affecting tumor proliferation, migration, invasion, and EMT. Therefore, a microRNA-143-3p/TBX3 network might be an underlying target for bladder cancer.
Collapse
Affiliation(s)
- Lifu Huang
- Department of Urology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, Zhejiang Province, China 318050
- Enze Hospital, Taizhou Enze Medical Center (Group), Taizhou, Zhejiang Province, China 318050
| | - Xianjun Zhang
- Department of Urology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, Zhejiang Province, China 318050
- Enze Hospital, Taizhou Enze Medical Center (Group), Taizhou, Zhejiang Province, China 318050
| | - Feiping Li
- Department of Urology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, Zhejiang Province, China 318050
- Enze Hospital, Taizhou Enze Medical Center (Group), Taizhou, Zhejiang Province, China 318050
| | - Xiaohong Wang
- Enze Hospital, Taizhou Enze Medical Center (Group), Taizhou, Zhejiang Province, China 318050
- Obstetrical Department, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, Zhejiang Province, China 318050
| |
Collapse
|
217
|
Zhong W, Wu J, Huang Y, Xing C, Lu C. Target-Activated, Light-Actuated Three-Dimensional DNA Walker Nanomachine for Amplified miRNA Detection. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:1151-1157. [PMID: 35001620 DOI: 10.1021/acs.langmuir.1c02834] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Accurate analysis of microRNA (miRNA) is promising for elucidation of cancer processes and therapeutic effects. In this study, we reported a new target-activated, light-actuated three-dimensional (3D) DNA walker on gold nanoparticles for sensitive detection of miRNA using pyrene-incorporated DNAzyme analogues. In this design, the target miRNA activated the 3D DNA walker system to releases the walking arm. Then, under ultraviolet light irradiation, the pyrene DNAzyme on the walking arm would consecutively cleave the disulfide bonds of substrate strands and recover the fluorescence signal, thus achieving the amplified miRNA detection. The sophisticated design of the light-actuated 3D DNA walker was systematically investigated. Furthermore, this strategy could also be employed for miRNA analysis in serum samples with satisfactory reproducibility. Notably, the proposed light-actuated 3D DNA walker-based technique eliminated the need of enzymes, cofactors, and RNA backbones, thereby significantly improving the stability and efficiency. Overall, the light-actuated 3D DNA walker-based strategy enabled facile, sensitive, and specific detection of miRNA and provided new perspectives in diagnostics.
Collapse
Affiliation(s)
- Wukun Zhong
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, People's Republic of China
| | - Junye Wu
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, People's Republic of China
| | - Yuqing Huang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, People's Republic of China
| | - Chao Xing
- Fujian Key Laboratory of Functional Marine Sensing Materials, Center for Advanced Marine Materials and Smart Sensors, Minjiang University, Fuzhou, Fujian 350108, People's Republic of China
| | - Chunhua Lu
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, People's Republic of China
| |
Collapse
|
218
|
Point-of-care detection assay based on biomarker-imprinted polymer for different cancers: a state-of-the-art review. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-022-04085-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
219
|
Cao M, Tian K, Sun W, Xu J, Tang Y, Wu S. MicroRNA-141-3p inhibits the progression of oral squamous cell carcinoma via targeting PBX1 through the JAK2/STAT3 pathway. Exp Ther Med 2022; 23:97. [PMID: 34976139 PMCID: PMC8674974 DOI: 10.3892/etm.2021.11020] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 07/23/2021] [Indexed: 02/07/2023] Open
Abstract
Oral squamous cell carcinoma (OSCC), which is the most common epithelial malignant neoplasm in the head and neck, is characterized by local infiltration and metastasis of lymph nodes. The five-year survival rate of OSCC remains low despite the advances in clinical methods. miR-141-3p has been shown to activate or inhibit tumorigenesis. However, the effects of miR-141-3p on invasion and migration of OSCC remain unclear. The present study aimed to evaluate the effects of miR-141-3p on invasion, proliferation, and migration in oral squamous cell carcinoma (OSCC). Reverse transcription quantitative PCR, western blotting and immunohistochemistry were used to detect microRNA(miR)-141-3p and pre-B-cell leukaemia homeobox-1 (PBX1) expression in OSCC tissues and cell lines. The luciferase reporter assay was used to detect targets of miR-141-3p in OSCC. MTT, Transwell and wound healing assays were used to determine the cell proliferation and invasive and migratory abilities, respectively. Expression of constitutive phosphorylated (p)-Janus kinase 2 (JAK2) and p-signal transducer and activator of transcription 3 (STAT3) was detected using western blotting in tissues and cells. miR-141-3p expression was decreased in OSCC tissues and cells, while PBX1 protein expression was increased compared with non-cancerous controls. The result from the dual-luciferase reporter assay revealed that PBX1 was the direct target of miR-141-3p in OSCC tissues. Furthermore, miR-141-3p overexpression and PBX1 knockdown could reduce cell invasion, proliferation and migration, and inhibit the JAK2/STAT3 pathway; however, miR-141-3p downregulation had the opposite effects. In addition, silencing of PBX1 using small interfering RNA could weaken the effects of miR-141-3p inhibitor on JAK2/STAT3 pathway and cell progression in CAL27 cells. In summary, the findings from this study indicated that miR-141-3p upregulation could inhibit OSCC cell invasion, proliferation and migration, by targeting PBX1 via the JAK2/STAT3 pathway.
Collapse
Affiliation(s)
- Mingguo Cao
- School of Medicine and Health Sciences, Lishui University, Lishui, Zhejiang 323000, P.R. China
| | - Kebin Tian
- School of Medicine and Health Sciences, Lishui University, Lishui, Zhejiang 323000, P.R. China
| | - Weifeng Sun
- School of Medicine and Health Sciences, Lishui University, Lishui, Zhejiang 323000, P.R. China
| | - Jun Xu
- School of Medicine and Health Sciences, Lishui University, Lishui, Zhejiang 323000, P.R. China
| | - Yu Tang
- School of Medicine and Health Sciences, Lishui University, Lishui, Zhejiang 323000, P.R. China
| | - Shilian Wu
- School of Medicine and Health Sciences, Lishui University, Lishui, Zhejiang 323000, P.R. China
| |
Collapse
|
220
|
Xia S, Lin Q. Estrogen Receptor Bio-Activities Determine Clinical Endocrine Treatment Options in Estrogen Receptor-Positive Breast Cancer. Technol Cancer Res Treat 2022; 21:15330338221090351. [PMID: 35450488 PMCID: PMC9036337 DOI: 10.1177/15330338221090351] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
In estrogen receptor positive (ER+) breast cancer therapy, estrogen receptors (ERs) are the major targeting molecules. ER-targeted therapy has provided clinical benefits for approximately 70% of all breast cancer patients through targeting the ERα subtype. In recent years, mechanisms underlying breast cancer occurrence and progression have been extensively studied and largely clarified. The PI3K/AKT/mTOR pathway, microRNA regulation, and other ER downstream signaling pathways are found to be the effective therapeutic targets in ER+ BC therapy. A number of the ER+ (ER+) breast cancer biomarkers have been established for diagnosis and prognosis. The ESR1 gene mutations that lead to endocrine therapy resistance in ER+ breast cancer had been identified. Mutations in the ligand-binding domain of ERα which encoded by ESR1 gene occur in most cases. The targeted drugs combined with endocrine therapy have been developed to improve the therapeutic efficacy of ER+ breast cancer, particularly the endocrine therapy resistance ER+ breast cancer. The combination therapy has been demonstrated to be superior to monotherapy in overall clinical evaluation. In this review, we focus on recent progress in studies on ERs and related clinical applications for targeted therapy and provide a perspective view for therapy of ER+ breast cancer.
Collapse
Affiliation(s)
- Song Xia
- School of Medicine, Jiangsu University, Zhenjiang, China
| | - Qiong Lin
- School of Medicine, Jiangsu University, Zhenjiang, China
- Qiong Lin, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, China.
| |
Collapse
|
221
|
Samiei H, Ajam F, Gharavi A, Abdolmaleki S, Kokhaei P, Mohammadi S, Memarian A. Simultaneous disruption of circulating miR-21 and cytotoxic T lymphocytes (CTLs): Prospective diagnostic and prognostic markers for esophageal squamous cell carcinoma (ESCC). J Clin Lab Anal 2022; 36:e24125. [PMID: 34799871 PMCID: PMC8761409 DOI: 10.1002/jcla.24125] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 11/06/2021] [Accepted: 11/09/2021] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Esophageal squamous cell carcinoma (ESCC) as the most prominent type of esophageal cancer (EC) in developing countries encompasses a substantial contribution of cancer-related mortalities and morbidities. Cytotoxic T lymphocytes (CTLs) are the major subset of effector T cells against cancer. However, the microRNAs involved in the development and regulation of CTLs could be disrupted in cancers such as EC. METHODS Here, we evaluated the population of IL-10, TGF-β, IFN-γ, and IL-17a-producing CD3+CD8+ T cells, their association with the circulating levels of miR-21 and miR-29b, and their diagnostic and/or prognostic (after 160 weeks of follow-up) utilities in 34 ESCC patients (12 newly diagnosed: ND, 24 under-treatment: UT) and 34 matched healthy donors. RESULTS The population of IL-10 and TGF-β-producing CTLs (CD8+ Tregs) were considerably expanded, in addition to the overexpression of miR-21 in both groups (ND and UT) of ESCC patients, while the frequency of Tc17 and CD8+ Treg cells increased only in UT patients. The expression means of TGF-β and IL-10 in CTLs were considered to be excellent biomarkers (1 ≥ area under the curve: AUC ≥0.9) in distinguishing ESCC patients and associated subgroups from healthy subjects. Moreover, the lower expressions of TGF-β, IL-17a, IL-10, and IFN-γ in CTLs were associated with ESCC better prognosis. CONCLUSIONS The association between the impaired function of CD3+ CD8+ T cell subsets and miR-21 expression could be introduced as novel therapeutic targets and powerful diagnostic and prognostic markers for ESCC.
Collapse
Affiliation(s)
- Hadiseh Samiei
- Immunology DepartmentFaculty of MedicineSemnan University of Medical SciencesSemnanIran
| | - Faezeh Ajam
- Immunology DepartmentFaculty of MedicineGolestan University of Medical SciencesGorganIran
| | - Abdolsamad Gharavi
- Digestive Diseases Research InstituteTehran University of Medical SciencesTehranIran
- Golestan Research Center of Gastroenterology and HepatologyGolestan University of Medical SciencesGorganIran
| | - Sara Abdolmaleki
- Clinical Immunology LaboratoryDeziani Specialized and Advanced ClinicGolestan University of Medical SciencesGorganIran
| | - Parviz Kokhaei
- Immune and Gene Therapy LaboratoryCancer Centre KarolinskaDepartment of Oncology and PathologyKarolinska InstituteStockholmSweden
- Cancer Research Center and Department of ImmunologySemnan University of Medical SciencesSemnanIran
| | - Saeed Mohammadi
- Stem Cell Research CenterGolestan University of Medical SciencesGorganIran
- Infectious Diseases Research CenterGolestan University of Medical SciencesGorganIran
| | - Ali Memarian
- Golestan Research Center of Gastroenterology and HepatologyGolestan University of Medical SciencesGorganIran
- Department of ImmunologySchool of MedicineGolestan University of Medical SciencesGorganIran
| |
Collapse
|
222
|
MacCuaig WM, Thomas A, Carlos-Sorto JC, Gomez-Gutierrez JG, Alexander AC, Wellberg EA, Grizzle WE, McNally LR. Differential expression of microRNA between triple negative breast cancer patients of African American and European American descent. Biotech Histochem 2022; 97:1-10. [PMID: 34979848 PMCID: PMC9047185 DOI: 10.1080/10520295.2021.2005147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
There are racial disparities in the outcome of triple negative breast cancer (TNBC) patients between women of African ancestry and women of European ancestry, even after accounting for lifestyle, socioeconomic and clinical factors. MicroRNA (miRNA) are non-coding molecules whose level of expression is associated with cancer suppression, proliferation and drug resistance; therefore, these have potential for biomarker applications in cancers including TNBC. Historically, miRNAs up-regulated in African American (AA) patients have received less attention than for patients of European ancestry. Using laser capture microdissection (LCM) to acquire ultrapure tumor cell samples, miRNA expression was evaluated in 15 AA and 15 European American (EA) TNBC patients. Tumor sections were evaluated using RNA extraction followed by miRNA analysis and profiling. Results were compared based on ethnicity and method of tissue fixation. miRNAs that showed high differential expression in AA TNBC patients compared to EA included: miR-19a, miR-192, miR-302a, miR-302b, miR-302c, miR-335, miR-520b, miR-520f and miR-645. LCM is a useful technique for isolation of tumor cells. We found a greater abundance of RNA in frozen samples compared to formalin fixed, paraffin embedded samples. miRNA appears to be a useful biomarker for TNBC to improve diagnosis and treatment.
Collapse
Affiliation(s)
- William M. MacCuaig
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, Oklahoma,Department of Biomedical Engineering, University of Oklahoma, Norman, Oklahoma
| | - Alexandra Thomas
- Department of Hematology Oncology, Wake Forest Baptist Health, Winston-Salem, North Carolina
| | - Juan C. Carlos-Sorto
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, Oklahoma,Department of Surgery, University of Oklahoma, Oklahoma City, Oklahoma
| | | | - Adam C. Alexander
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, Oklahoma,Department of Family and Preventive Medicine, University of Oklahoma, Oklahoma City, Oklahoma
| | - Elizabeth A. Wellberg
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, Oklahoma,Department of Pathology, University of Oklahoma, Oklahoma City, Oklahoma
| | - William E. Grizzle
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Lacey R. McNally
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, Oklahoma,Department of Surgery, University of Oklahoma, Oklahoma City, Oklahoma
| |
Collapse
|
223
|
Mollah F, Varamini P. Overcoming Therapy Resistance and Relapse in TNBC: Emerging Technologies to Target Breast Cancer-Associated Fibroblasts. Biomedicines 2021; 9:1921. [PMID: 34944738 PMCID: PMC8698629 DOI: 10.3390/biomedicines9121921] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 12/10/2021] [Accepted: 12/11/2021] [Indexed: 12/12/2022] Open
Abstract
Breast cancer is the most diagnosed cancer and is the leading cause of cancer mortality in women. Triple-negative breast cancer (TNBC) is an aggressive form of breast cancer. Often, TNBC is not effectively treated due to the lack of specificity of conventional therapies and results in relapse and metastasis. Breast cancer-associated fibroblasts (BCAFs) are the predominant cells that reside in the tumor microenvironment (TME) and regulate tumorigenesis, progression and metastasis, and therapy resistance. BCAFs secrete a wide range of factors, including growth factors, chemokines, and cytokines, some of which have been proved to lead to a poor prognosis and clinical outcomes. This TME component has been emerging as a promising target due to its crucial role in cancer progression and chemotherapy resistance. A number of therapeutic candidates are designed to effectively target BCAFs with a focus on their tumor-promoting properties and tumor immune response. This review explores various agents targeting BCAFs in TNBC, including small molecules, nucleic acid-based agents, antibodies, proteins, and finally, nanoparticles.
Collapse
Affiliation(s)
- Farhana Mollah
- Faculty of Medicine and Health, School of Pharmacy, University of Sydney, Sydney, NSW 2006, Australia;
| | - Pegah Varamini
- Faculty of Medicine and Health, School of Pharmacy, University of Sydney, Sydney, NSW 2006, Australia;
- Sydney Nano Institute, University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
224
|
GCAEMDA: Predicting miRNA-disease associations via graph convolutional autoencoder. PLoS Comput Biol 2021; 17:e1009655. [PMID: 34890410 PMCID: PMC8694430 DOI: 10.1371/journal.pcbi.1009655] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 12/22/2021] [Accepted: 11/17/2021] [Indexed: 01/02/2023] Open
Abstract
microRNAs (miRNAs) are small non-coding RNAs related to a number of complicated biological processes. A growing body of studies have suggested that miRNAs are closely associated with many human diseases. It is meaningful to consider disease-related miRNAs as potential biomarkers, which could greatly contribute to understanding the mechanisms of complex diseases and benefit the prevention, detection, diagnosis and treatment of extraordinary diseases. In this study, we presented a novel model named Graph Convolutional Autoencoder for miRNA-Disease Association Prediction (GCAEMDA). In the proposed model, we utilized miRNA-miRNA similarities, disease-disease similarities and verified miRNA-disease associations to construct a heterogeneous network, which is applied to learn the embeddings of miRNAs and diseases. In addition, we separately constructed miRNA-based and disease-based sub-networks. Combining the embeddings of miRNAs and diseases, graph convolutional autoencoder (GCAE) was utilized to calculate association scores of miRNA-disease on two sub-networks, respectively. Furthermore, we obtained final prediction scores between miRNAs and diseases by adopting an average ensemble way to integrate the prediction scores from two types of subnetworks. To indicate the accuracy of GCAEMDA, we applied different cross validation methods to evaluate our model whose performances were better than the state-of-the-art models. Case studies on a common human diseases were also implemented to prove the effectiveness of GCAEMDA. The results demonstrated that GCAEMDA was beneficial to infer potential associations of miRNA-disease. Numerous studies have demonstrated that miRNAs are closely related to several common human diseases, so observing unverified associations between miRNAs and diseases is conducive to the diagnose and treatment of complex diseases. Considerable models proposed to infer potential miRNA-disease associations have made the prediction more effective and productive. We constructed GCAEMDA model to acquire more accuracy prediction result by integrating graph convolutional network and autoencoder to make prediction based on multi-source miRNA and disease information. The five-fold cross validation and global leave-one-out cross validation were implemented to evaluate the performance of our model. Consequently, GCAEMDA reached AUCs of 0.9415 and 0.9505 respectively that were distinctly higher than AUCs of other comparative models. Furthermore, we carried out case studies on lung neoplasms and breast neoplasms to demonstrate the practical application of the model, 47 and 47 of top-50 candidate miRNAs were confirmed by experimental reports. In summary, GCAEMDA could be considered as an effective and accuracy model to reveal relationship between miRNAs and diseases.
Collapse
|
225
|
Winter E, Cisilotto J, Silva AH, Rosolen D, Fabichak AP, Rode MP, Creczynski-Pasa TB. MicroRNAs: Potential biomarkers for reproduction, diagnosis, prognosis, and therapeutic in domestic animals. Res Vet Sci 2021; 142:117-132. [PMID: 34942556 DOI: 10.1016/j.rvsc.2021.12.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 11/02/2021] [Accepted: 12/01/2021] [Indexed: 10/19/2022]
Abstract
MicroRNA (miRNAs) are small non-coding RNA molecules involved in a wide range of biological processes through the post-transcriptional regulation of gene expression. Most studies evaluated microRNA expression in human, and despite fewer studies in veterinary medicine, this topic is one of the most exciting areas of modern veterinary medicine. miRNAs showed to be part of the pathogenesis of diseases and reproduction physiology in animals, making them biomarkers candidates. This review provides an overview of the current knowledge regarding miRNAs' role in reproduction and animal diseases, diagnostic and therapy.
Collapse
Affiliation(s)
- Evelyn Winter
- Department of Agriculture, Biodiversity and Forests, Federal University of Santa Catarina, Curitibanos, 89520000, SC, Brazil.
| | - Júlia Cisilotto
- Postgraduate Program in Pharmacy, Federal University of Santa Catarina, Florianopolis, 88040-900, SC, Brazil
| | - Adny Henrique Silva
- Postgraduate Program in Pharmacy, Federal University of Santa Catarina, Florianopolis, 88040-900, SC, Brazil
| | - Daiane Rosolen
- Postgraduate Program in Pharmacy, Federal University of Santa Catarina, Florianopolis, 88040-900, SC, Brazil
| | - Ana Paula Fabichak
- Department of Agriculture, Biodiversity and Forests, Federal University of Santa Catarina, Curitibanos, 89520000, SC, Brazil
| | - Michele Patricia Rode
- Postgraduate Program in Pharmacy, Federal University of Santa Catarina, Florianopolis, 88040-900, SC, Brazil
| | - Tânia Beatriz Creczynski-Pasa
- Postgraduate Program in Pharmacy, Federal University of Santa Catarina, Florianopolis, 88040-900, SC, Brazil; Department of Pharmaceutical Sciences, Federal University of Santa Catarina, Florianopolis, 88040-900, SC, Brazil
| |
Collapse
|
226
|
Hong BS. Regulation of the Effect of Physical Activity Through MicroRNAs in Breast Cancer. Int J Sports Med 2021; 43:455-465. [PMID: 34872116 DOI: 10.1055/a-1678-7147] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Physical activity and exercise can induce beneficial molecular and biological regulations that have been associated with an incidence of various diseases, including breast cancer. Recent studies demonstrated that the potential links between physical activity-induced circulating microRNAs (miRNAs) and cancer risk and progression. Here, we investigated whether altered miRNAs by exercise could influence breast cancer progression. After primary searching in PubMed and reviewing the full-text papers, candidate miRNAs altered by exercise in breast cancer were identified. Analysis of expression profiles and clinical outcomes of altered miRNAs using The Cancer Genome Atlas datasets showed altered miRNAs expressions were significantly associated with the patient's prognosis, whereas prognostic values of each miRNA varied in different stages and subtypes. In addition, altered miRNAs profiles regulated various target genes and key signaling pathways in tumorigenesis, including pathways in cancer and the PI3K-Akt signaling pathway; however, miRNAs regulated the expression of target genes differently according to tumor stages and subtypes. These results indicate that circulating miRNAs are promising noninvasive stable biomarkers for early detection, diagnosis, prognosis, and monitoring the response to clinical therapies of breast cancer. Moreover, stages and subtype-stratified approaches for breast cancer progression would be needed to evaluate the prognostic value of miRNAs for biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Bok Sil Hong
- Cheju Halla University, Life Science Research Center, Department of Nursing, Jeju, Korea (the Republic of)
| |
Collapse
|
227
|
Hsa-miR-3651 could serve as a novel predictor for in-breast recurrence via FRMD3. Breast Cancer 2021; 29:274-286. [PMID: 34865205 PMCID: PMC8885475 DOI: 10.1007/s12282-021-01308-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 10/25/2021] [Indexed: 11/29/2022]
Abstract
Background MicroRNAs are small non-coding RNAs with pivotal regulatory functions in multiple cellular processes. Their significance as molecular predictors for breast cancer was demonstrated in the past 15 years. The aim of this study was to elucidate the role of hsa-miR-3651 for predicting of local control (LC) in early breast cancer. Results By means of high-throughput technology, hsa-miR-3651 was found to be differentially expressed between patients who experienced local relapse compared to those without (N = 23; p = 0.0035). This result could be validated in an independent cohort of 87 patients using RT-qPCR (p < 0.0005). In a second analysis step with a chip-based microarray containing 70,523 probes of potential target molecules, FERM domain protein 3 (FRMD3) was found to be the most down-regulated protein (N = 21; p = 0.0016). Computational analysis employing different prediction algorithms revealed FRMD3 as a likely downstream target of hsa-miR-3651 with an 8mer binding site between the two molecules. This could be validated in an independent patient set (N = 20, p = 0.134). Conclusion The current study revealed that hsa-miR-3651 is a predictor of LC in early breast cancer via its putative target protein FRMD3. Since microRNAs interfere in multiple pathways, the results of this hypothesis generating study may contribute to the development of tailored therapies for breast cancer in the future. Supplementary Information The online version contains supplementary material available at 10.1007/s12282-021-01308-y.
Collapse
|
228
|
Aldakheel FM, Alduraywish SA, Mateen A, Alqahtani MS, Syed R. Molecular and docking studies of tetramethoxy hydroxyflavone compound from Artemisia absinthium against carcinogens found in cigarette smoke. OPEN CHEM 2021. [DOI: 10.1515/chem-2021-0096] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Abstract
Artemisia absinthium (AA) is an indigenous medicine used for treatment of inflammation of the liver and chronic fever, and is studied as an antimalarial and anticancer agent. The focus of the current investigation was to determine the action and effect of AA on microRNAs (miRNAs) from breast cancer cell lines. Molecular docking is a structure-based drug design process that studies the interaction of small molecule ligands with receptor biomacromolecules to predict binding mechanism and affinity. MiRNA expression profiling was done using microarray technology. Validation of transcripts with regulated expression pattern was done by SYBR-based quantitative real time PCR (qRT-PCR). AutoDock 4.2 programming allots polar hydrogens, bound together total Kollman charges, solvation borders, and fragmental volumes to the protein using auto dock devices in docking research (ADT). As confirmed by SYBR-based RT-PCR, our investigation discovered an upregulation of the miRNA-22 articulation and a downregulation of miRNA-199a*. These findings support and demonstrate the role of AA as a miRNA articulation-influencing factor in human breast cancer progression. AA’s tetramethoxy hydroxyflavone (p7F) molecule was found to be effective in the treatment of cancer. Changes in miRNA expression patterns could be a key pathogenic component in AA’s physiological action on cancer cells.
Collapse
Affiliation(s)
- Fahad M. Aldakheel
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University , Riyadh , Saudi Arabia
| | - Shatha A. Alduraywish
- Department of Family and Community Medicine, College of Medicine, King Saud University , Riyadh , Saudi Arabia
| | - Ayesha Mateen
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University , Riyadh , Saudi Arabia
| | - Mohammed S. Alqahtani
- Department of Pharmaceutics, College of Pharmacy, King Saud University , Riyadh , Saudi Arabia
| | - Rabbani Syed
- Department of Pharmaceutics, College of Pharmacy, King Saud University , Riyadh , Saudi Arabia
| |
Collapse
|
229
|
Wang Y, Zhang J, Liu M, Zhang S, Wang W, Cheng S. Clinical values and potential pathways of miR-183-5p in gastric cancer: a study based on integrational bioinformatics analysis. J Gastrointest Oncol 2021; 12:2123-2131. [PMID: 34790379 DOI: 10.21037/jgo-21-599] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 10/20/2021] [Indexed: 12/24/2022] Open
Abstract
Background The clinicopathological value and exploration of the potential molecular mechanism of microRNA-183-5p (miR-183-5p) have been investigated in various cancers. This study further explored the transcriptome profile regulated by miR-183-5p. Methods Messenger RNA (mRNA) expression data, miRNA expression, and clinical information of stomach adenocarcinoma (STAD) were downloaded from The Cancer Genome Atlas (TCGA) database. Differentially expressed genes (DEGs) that related to mir-189-5p expression and cancer proliferation were acquired using bioinformatics analysis. The biological functions of these genes were analyzed in terms of Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG). Hub genes relating to gastric cancer (GC) signal pathway were explored. The results were validated by further experiments. Results A total of 308 genes were found to be regulated by miR-183-5p, and they were related to cancer and GC patients' survival outcome. The biological function of these genes was found to act mainly on biological processes and the involved signal pathways included neuroactive ligand-receptor interaction, cell adhesion molecules, and axon guidance. In addition, miR-183-5p was also shown to regulate the mTOR, Wnt, MAPK, and PI3K-Akt signaling pathways through the genes WNT2B, NGFR, and NTRK2. Conclusions The miRNA miR-183-5p participates in the tumorigenesis and development of GC via certain signaling pathways, in particular the nerve- and immunity-related genes.
Collapse
Affiliation(s)
- Yanan Wang
- Department of Pathology, Affiliated Hospital of Hebei University, Baoding, China
| | - Jinku Zhang
- Department of Pathology, No. 1 Central Hospital of Baoding, Baoding, China
| | - Mingkai Liu
- Department of Pathology, Affiliated Hospital of Hebei University, Baoding, China
| | - Shun Zhang
- Department of Pathology, Affiliated Hospital of Hebei University, Baoding, China
| | - Weina Wang
- Department of Pathology, Affiliated Hospital of Hebei University, Baoding, China
| | - Shujie Cheng
- Department of Surgery, Affiliated Hospital of Hebei University, Baoding, China
| |
Collapse
|
230
|
Darbeheshti F, Mahdiannasser M, Noroozi Z, Firoozi Z, Mansoori B, Daraei A, Bastami M, Nariman-Saleh-Fam Z, Valipour E, Mansoori Y. Circular RNA-associated ceRNA network involved in HIF-1 signalling in triple-negative breast cancer: circ_0047303 as a potential key regulator. J Cell Mol Med 2021; 25:11322-11332. [PMID: 34791795 PMCID: PMC8650046 DOI: 10.1111/jcmm.17066] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 11/02/2021] [Accepted: 11/05/2021] [Indexed: 02/06/2023] Open
Abstract
The aggressive and highly metastatic nature of triple‐negative breast cancer (TNBC) causes patients to suffer from the poor outcome. HIF‐1 signalling pathway is a prominent pathway that contributes to angiogenesis and metastasis progression in tumours. On the contrary, the undeniable importance of circular RNAs (circRNAs) as multifunctional non‐coding RNAs (ncRNAs) has been identified in breast cancer. These ncRNAs owing to their high stability and specificity have been becoming a hotspot in cancer researches. circRNAs act as competing endogenous RNAs (ceRNAs) and compete with mRNAs for shared miRNAs, thus modulate gene expression. Since the most dysregulated biological functions in TNBC are associated with cellular invasion, understanding the molecular pathogenesis of these processes is a crucial step towards the development of new treatment approaches. The purpose of this study is to undermine the circRNA‐associated ceRNA network involved in HIF‐1 signalling in TNBC using an integrative bioinformatics approach. In the next step, the novel circ_0047303‐mediated ceRNA regulatory axes have been extracted and validated across TNBC samples. We show that circ_0047303 has the highest degree in the circRNA‐associated ceRNA network and shows a significant up‐expression in TNBC. Moreover, our results suggest that circ_0047303 could mediate the upregulation of key angiogenesis‐related genes, including HIF‐1, EIF4E2 and VEGFA in TNBC through sponging the tumour‐suppressive miRNAs. The circ_0047303 could be a promising molecular biomarker and/or therapeutic target for TNBC.
Collapse
Affiliation(s)
- Farzaneh Darbeheshti
- Department of Medical Genetics, Fasa University of Medical Sciences, Fasa, Iran.,Department of Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mojdeh Mahdiannasser
- Department of Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Noroozi
- Department of Molecular Medicine, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Firoozi
- Department of Medical Genetics, Fasa University of Medical Sciences, Fasa, Iran
| | - Behnam Mansoori
- Department of General Surgery, Fasa University of Medical Sciences, Fasa, Iran
| | - Abdolreza Daraei
- Department of Medical Genetics, School of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Milad Bastami
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| | - Ziba Nariman-Saleh-Fam
- Women's Reproductive Health Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Elahe Valipour
- Department of Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Yaser Mansoori
- Department of Medical Genetics, Fasa University of Medical Sciences, Fasa, Iran.,Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| |
Collapse
|
231
|
Shao C, Wang R, Kong D, Gao Q, Xu C. Identification of potential core genes in gastric cancer using bioinformatics analysis. J Gastrointest Oncol 2021; 12:2109-2122. [PMID: 34790378 DOI: 10.21037/jgo-21-628] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Accepted: 10/21/2021] [Indexed: 12/23/2022] Open
Abstract
Background Gastric cancer is the third leading cause of cancer-related mortality in China. Most patients with gastric cancer have no obvious early symptoms; thus, many of them are in the middle and late stages of gastric cancer at first diagnosis and miss the best treatment opportunity. Molecular targeted therapy is particularly important in changing this status quo. Methods Three microarray datasets (GSE29272, GSE33651, and GSE54129) were selected from the Gene Expression Omnibus (GEO) database. Differentially expressed genes (DEGs) were screened using GEO2R. The Database for Annotation, Visualization and Integrated Discovery (DAVID) was used to analyze the functional features of these DEGs and the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment. The protein-protein interaction (PPI) of these DEGs was visualized by Cytoscape software. The expressions of hub genes were evaluated based on Gene Expression Profiling Interactive Analysis (GEPIA). Moreover, we used the online Kaplan-Meier plotter survival analysis tool to evaluate the prognostic values of hub genes. The Target Scan database was used to predict microRNAs that could regulate the target gene, collagen type IV alpha 1 chain (COL4A1). The OncomiR database was used to analyze the expression levels of three microRNAs, as well as the relationships with tumor stage, grade, and prognosis. Results We identified 78 DEGs, including 53 upregulated genes and 25 downregulated genes. The DEGs were mainly enriched in extracellular matrix organization, extracellular structure organization, and response to wounding. Moreover, three KEGG pathways were markedly enriched, including focal adhesion, complement and coagulation cascades, and extracellular matrix (ECM)-receptor interaction. Among these 78 genes, we selected 10 hub genes. The overexpression levels of these hub genes were closely related to poor prognosis and the development of gastric cancer (except for COL3A1, LOX, and CXCL8). Moreover, we found that microRNA-29a-3p, miR-29b-3p, and miR-29c-3p were the potential microRNAs that could regulate the target gene, COL4A1. Conclusions Our results showed that FN1, COL1A1, TIMP1, COL1A2, SPARC, COL4A1, and SERPINE1 could contribute to the development of novel molecular targets and biomarker-driven treatments for gastric cancer.
Collapse
Affiliation(s)
- Changjiang Shao
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, China.,Department of Gastroenterology, The Second People's Hospital of Lianyungang City, Lianyungang, China
| | - Rong Wang
- Department of Oncology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Dandan Kong
- Department of Oncology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Qian Gao
- Department of Oncology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Chunfang Xu
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
232
|
Ramadan ES, Salem NY, Emam IA, AbdElKader NA, Farghali HA, Khattab MS. MicroRNA-21 expression, serum tumor markers, and immunohistochemistry in canine mammary tumors. Vet Res Commun 2021; 46:377-388. [PMID: 34787777 DOI: 10.1007/s11259-021-09861-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 11/07/2021] [Indexed: 11/24/2022]
Abstract
BACKGROUND Canine mammary tumors (CMTs) are one of the most common malignancies in dogs and are associated with significant mortality. Serum tumor markers and non-coding microRNAs have gained widespread popularity in human oncology studies. The present study has two aims, first one is to investigate the miR-21 expression compared with changes in serum tumor markers (CEA and CA15-3) in CMT. The second aim is to detect the immunohistochemistry markers as vimentin, P63, and -SMA in CMT. METHODS This study enrolled 17 female dogs: 10 with mammary tumors and seven controls without tumors. Blood samples were collected to measure miR-21, CEA, and CA 15-3, and histological samples were prepared for histological grading and immunohistochemistry. RESULTS CA 15-3 was elevated in all animals, whereas CEA levels showed no change compared with controls. miR-21 was upregulated 12.84-fold in animals with CMT. The most frequently recorded CMT was the mixed type. Myoepithelial cells were identified by P63 immunoreactivity, but not SMA. High expression of miR-21 was observed with positive vimentin immunoreactivity, indicating the mesenchymal origin of the tumor cells. CONCLUSION The present study showed that miR-21 was elevated to a greater extent than CA 15-3 (12.84-fold vs. threefold). Tumors that was positive for vimentin immunoreactivity was also associated with an elevation in the levels of miR-21, showing that miR-21 is released from mesenchymal cells. These findings support the hypothesis that miR-21 may be a more sensitive, noninvasive indicator for CMT.
Collapse
Affiliation(s)
- Eman S Ramadan
- Department of Internal Medicine and Infectious Diseases, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Noha Y Salem
- Department of Internal Medicine and Infectious Diseases, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Ibrahim A Emam
- Department of Surgery and Anesthesia, Faculty of Veterinary Medicine, Cairo University, 12211, Giza, Egypt
| | - Naglaa A AbdElKader
- Department of Surgery and Anesthesia, Faculty of Veterinary Medicine, Cairo University, 12211, Giza, Egypt
| | - Haithem A Farghali
- Department of Surgery and Anesthesia, Faculty of Veterinary Medicine, Cairo University, 12211, Giza, Egypt
| | - Marwa S Khattab
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, 12211, Giza, Egypt.
| |
Collapse
|
233
|
Pang S, Zhuang Y, Wang X, Wang F, Qiao S. EOESGC: predicting miRNA-disease associations based on embedding of embedding and simplified graph convolutional network. BMC Med Inform Decis Mak 2021; 21:319. [PMID: 34789236 PMCID: PMC8597227 DOI: 10.1186/s12911-021-01671-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Accepted: 10/29/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND A large number of biological studies have shown that miRNAs are inextricably linked to many complex diseases. Studying the miRNA-disease associations could provide us a root cause understanding of the underlying pathogenesis in which promotes the progress of drug development. However, traditional biological experiments are very time-consuming and costly. Therefore, we come up with an efficient models to solve this challenge. RESULTS In this work, we propose a deep learning model called EOESGC to predict potential miRNA-disease associations based on embedding of embedding and simplified convolutional network. Firstly, integrated disease similarity, integrated miRNA similarity, and miRNA-disease association network are used to construct a coupled heterogeneous graph, and the edges with low similarity are removed to simplify the graph structure and ensure the effectiveness of edges. Secondly, the Embedding of embedding model (EOE) is used to learn edge information in the coupled heterogeneous graph. The training rule of the model is that the associated nodes are close to each other and the unassociated nodes are far away from each other. Based on this rule, edge information learned is added into node embedding as supplementary information to enrich node information. Then, node embedding of EOE model training as a new feature of miRNA and disease, and information aggregation is performed by simplified graph convolution model, in which each level of convolution can aggregate multi-hop neighbor information. In this step, we only use the miRNA-disease association network to further simplify the graph structure, thus reducing the computational complexity. Finally, feature embeddings of both miRNA and disease are spliced into the MLP for prediction. On the EOESGC evaluation part, the AUC, AUPR, and F1-score of our model are 0.9658, 0.8543 and 0.8644 by 5-fold cross-validation respectively. Compared with the latest published models, our model shows better results. In addition, we predict the top 20 potential miRNAs for breast cancer and lung cancer, most of which are validated in the dbDEMC and HMDD3.2 databases. CONCLUSION The comprehensive experimental results show that EOESGC can effectively identify the potential miRNA-disease associations.
Collapse
Affiliation(s)
- Shanchen Pang
- College of Computer Science and Technology, China University of Petroleum, Qingdao, China
| | - Yu Zhuang
- College of Computer Science and Technology, China University of Petroleum, Qingdao, China
| | - Xinzeng Wang
- College of Mathematics and Systems Science, Shandong University of Science and Technology, Qingdao, China
| | - Fuyu Wang
- College of Computer Science and Technology, China University of Petroleum, Qingdao, China
| | - Sibo Qiao
- College of Computer Science and Technology, China University of Petroleum, Qingdao, China
| |
Collapse
|
234
|
Tian D, Luo L, Wang T, Qiao J. MiR-296-3p inhibits cell proliferation by the SOX4-Wnt/β-catenin pathway in triple-negative breast cancer. J Biosci 2021. [DOI: 10.1007/s12038-021-00219-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
235
|
Ahmed KT, Sun J, Chen W, Martinez I, Cheng S, Zhang W, Yong J, Zhang W. In silico model for miRNA-mediated regulatory network in cancer. Brief Bioinform 2021; 22:bbab264. [PMID: 34279571 PMCID: PMC8575005 DOI: 10.1093/bib/bbab264] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 06/19/2021] [Accepted: 06/21/2021] [Indexed: 12/12/2022] Open
Abstract
Deregulation of gene expression is associated with the pathogenesis of numerous human diseases including cancer. Current data analyses on gene expression are mostly focused on differential gene/transcript expression in big data-driven studies. However, a poor connection to the proteome changes is a widespread problem in current data analyses. This is partly due to the complexity of gene regulatory pathways at the post-transcriptional level. In this study, we overcome these limitations and introduce a graph-based learning model, PTNet, which simulates the microRNAs (miRNAs) that regulate gene expression post-transcriptionally in silico. Our model does not require large-scale proteomics studies to measure the protein expression and can successfully predict the protein levels by considering the miRNA-mRNA interaction network, the mRNA expression, and the miRNA expression. Large-scale experiments on simulations and real cancer high-throughput datasets using PTNet validated that (i) the miRNA-mediated interaction network affects the abundance of corresponding proteins and (ii) the predicted protein expression has a higher correlation with the proteomics data (ground-truth) than the mRNA expression data. The classification performance also shows that the predicted protein expression has an improved prediction power on cancer outcomes compared to the prediction done by the mRNA expression data only or considering both mRNA and miRNA. Availability: PTNet toolbox is available at http://github.com/CompbioLabUCF/PTNet.
Collapse
Affiliation(s)
| | - Jiao Sun
- Department of Computer Science, University of Central Florida, Orlando, FL 32816, USA
| | - William Chen
- Department of Computer Science, University of Central Florida, Orlando, FL 32816, USA
| | - Irene Martinez
- Department of Molecular Biotechnology, Universität Heidelberg, Heidelberg, 69120, Germany
| | - Sze Cheng
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota Twin Cities, Minneapolis, MN 55455, USA
| | - Wencai Zhang
- Division of Cancer Research, Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL 32827, USA
| | - Jeongsik Yong
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota Twin Cities, Minneapolis, MN 55455, USA
| | - Wei Zhang
- Department of Computer Science, University of Central Florida, Orlando, FL 32816, USA
| |
Collapse
|
236
|
de Freitas AJA, Causin RL, Varuzza MB, Hidalgo Filho CMT, da Silva VD, Souza CDP, Marques MMC. Molecular Biomarkers Predict Pathological Complete Response of Neoadjuvant Chemotherapy in Breast Cancer Patients: Review. Cancers (Basel) 2021; 13:cancers13215477. [PMID: 34771640 PMCID: PMC8582511 DOI: 10.3390/cancers13215477] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 10/19/2021] [Accepted: 10/19/2021] [Indexed: 01/02/2023] Open
Abstract
Simple Summary Breast cancer is the most common cancer in women worldwide. Although many studies have aimed to understand the genetic basis of breast cancer, leading to increasingly accurate diagnoses, only a few molecular biomarkers are used in clinical practice to predict response to therapy. Current studies aim to develop more personalized therapies to decrease the adverse effects of chemotherapy. Personalized medicine not only requires clinical, but also molecular characterization of tumors, which allows the use of more effective drugs for each patient. The aim of this study was to identify potential molecular biomarkers that can predict the response to therapy after neoadjuvant chemotherapy in patients with breast cancer. In this review, we summarize genomic, transcriptomic, and proteomic biomarkers that can help predict the response to therapy. Abstract Neoadjuvant chemotherapy (NAC) is often used to treat locally advanced disease for tumor downstaging, thus improving the chances of breast-conserving surgery. From the NAC response, it is possible to obtain prognostic information as patients may reach a pathological complete response (pCR). Those who do might have significant advantages in terms of survival rates. Breast cancer (BC) is a heterogeneous disease that requires personalized treatment strategies. The development of targeted therapies depends on identifying biomarkers that can be used to assess treatment efficacy as well as the discovery of new and more accurate therapeutic agents. With the development of new “OMICS” technologies, i.e., genomics, transcriptomics, and proteomics, among others, the discovery of new biomarkers is increasingly being used in the context of clinical practice, bringing us closer to personalized management of BC treatment. The aim of this review is to compile the main biomarkers that predict pCR in BC after NAC.
Collapse
Affiliation(s)
- Ana Julia Aguiar de Freitas
- Molecular Oncology Research Center, Barretos Cancer Hospital, Teaching and Research Institute, Barretos 14784-400, SP, Brazil; (A.J.A.d.F.); (R.L.C.); (M.B.V.)
| | - Rhafaela Lima Causin
- Molecular Oncology Research Center, Barretos Cancer Hospital, Teaching and Research Institute, Barretos 14784-400, SP, Brazil; (A.J.A.d.F.); (R.L.C.); (M.B.V.)
| | - Muriele Bertagna Varuzza
- Molecular Oncology Research Center, Barretos Cancer Hospital, Teaching and Research Institute, Barretos 14784-400, SP, Brazil; (A.J.A.d.F.); (R.L.C.); (M.B.V.)
| | | | | | | | - Márcia Maria Chiquitelli Marques
- Molecular Oncology Research Center, Barretos Cancer Hospital, Teaching and Research Institute, Barretos 14784-400, SP, Brazil; (A.J.A.d.F.); (R.L.C.); (M.B.V.)
- Barretos School of Health Sciences, Dr. Paulo Prata–FACISB, Barretos 14785-002, SP, Brazil
- Correspondence: ; Tel.: +55-17-3321-6600 (ext. 7057)
| |
Collapse
|
237
|
Liu H, You Y, Sang Y, Pu F, Ren J, Qu X. MicroRNA-Triggered Nanozymes Cascade Reaction for Tumor-Specific Chemodynamic Therapy. Chemistry 2021; 27:18201-18207. [PMID: 34708459 DOI: 10.1002/chem.202103547] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Indexed: 01/07/2023]
Abstract
Off-target toxicity and insufficient hydroxyl radicals (. OH) generation limit the further clinical application of nanozymes in chemodynamic therapy (CDT). Herein, we designed and constructed a microRNA-triggered nanozyme cascade platform for enhanced tumor-specific chemodynamic therapy. The nanozyme-based cascade reaction could be triggered successfully by the high expression of microRNA in cancer cells to generate more . OH, thus exhibiting excellent tumor-specific therapeutic performance. Our work provides a new dimension for tumor-specific chemodynamic therapy.
Collapse
Affiliation(s)
- Hao Liu
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China.,School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Yawen You
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China.,School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Yanjuan Sang
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China.,School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Fang Pu
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China.,School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Jinsong Ren
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China.,School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Xiaogang Qu
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China.,School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| |
Collapse
|
238
|
Richard V, Davey MG, Annuk H, Miller N, Dwyer RM, Lowery A, Kerin MJ. MicroRNAs in Molecular Classification and Pathogenesis of Breast Tumors. Cancers (Basel) 2021; 13:5332. [PMID: 34771496 PMCID: PMC8582384 DOI: 10.3390/cancers13215332] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/19/2021] [Accepted: 10/21/2021] [Indexed: 12/21/2022] Open
Abstract
The current clinical practice of breast tumor classification relies on the routine immunohistochemistry-based expression analysis of hormone receptors, which is inadequate in addressing breast tumor heterogeneity and drug resistance. MicroRNA expression profiling in tumor tissue and in the circulation is an efficient alternative to intrinsic molecular subtyping that enables precise molecular classification of breast tumor variants, the prediction of tumor progression, risk stratification and also identifies critical regulators of the tumor microenvironment. This review integrates data from protein, gene and miRNA expression studies to elaborate on a unique miRNA-based 10-subtype taxonomy, which we propose as the current gold standard to allow appropriate classification and separation of breast cancer into a targetable strategy for therapy.
Collapse
Affiliation(s)
- Vinitha Richard
- Discipline of Surgery, The Lambe Institute for Translational Research, National University of Ireland, H91 YR71 Galway, Ireland; (M.G.D.); (H.A.); (N.M.); (R.M.D.); (A.L.)
| | | | | | | | | | | | - Michael J. Kerin
- Discipline of Surgery, The Lambe Institute for Translational Research, National University of Ireland, H91 YR71 Galway, Ireland; (M.G.D.); (H.A.); (N.M.); (R.M.D.); (A.L.)
| |
Collapse
|
239
|
Ozfiliz-Kilbas P, Sonmez O, Obakan-Yerlikaya P, Coker-Gurkan A, Palavan-Ünsal N, Uysal-Onganer P, Arisan ED. In Vitro Investigations of miR-33a Expression in Estrogen Receptor-Targeting Therapies in Breast Cancer Cells. Cancers (Basel) 2021; 13:cancers13215322. [PMID: 34771486 PMCID: PMC8582455 DOI: 10.3390/cancers13215322] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 10/19/2021] [Indexed: 02/06/2023] Open
Abstract
(1) Background: Increased fatty acid synthesis leads to the aggressive phenotype of breast cancer and renders efficiency of therapeutics. Regulatory microRNAs (miRNAs) on lipid biosynthesis pathways as miR-33a have potential to clarify the exact mechanism. (2) Methods: We determined miR-33a expression levels following exposure of MCF-7 and MDA-MB-231 breast cancer cells to estrogen receptor (ER) activator (estradiol-17β, E2) or anti-estrogens (ICI 182,780, Fulvestrant, FUL) at non-cytotoxic concentrations. We related miR-33a expression levels in the cells to cellular lipid biosynthesis-related pathways through immunoblotting. (3) Results: miR-33a mimic treatment led to significantly downregulation of fatty acid synthase (FASN) in MCF-7 cells but not in MDA-MB-231 cells in the presence of estradiol-17β (E2) or Fulvestrant (FUL). In contrast to the miR-33a inhibitor effect, miR-33a mimic co-transfection with E2 or FUL led to diminished AMP-activated protein kinase α (AMPKα) activity in MCF-7 cells. E2 increases FASN levels in MDA-MB-231 cells regardless of miR-33a cellular levels. miR-33a inhibitor co-treatment suppressed E2-mediated AMPKα activity in MDA-MB-231 cells. (4) Conclusions: The cellular expression levels of miR-33a are critical to understanding differential responses which include cellular energy sensors such as AMPKα activation status in breast cancer cells.
Collapse
Affiliation(s)
- Pelin Ozfiliz-Kilbas
- Department of Molecular Biology and Genetics, Istanbul Kultur University, Istanbul 34158, Turkey; (P.O.-K.); (O.S.)
| | - Ozlem Sonmez
- Department of Molecular Biology and Genetics, Istanbul Kultur University, Istanbul 34158, Turkey; (P.O.-K.); (O.S.)
| | | | - Ajda Coker-Gurkan
- Department of Molecular Biology and Genetics, Biruni University, Istanbul 34010, Turkey;
| | - Narcin Palavan-Ünsal
- Department of Engineering, Netkent Mediterranean Research and Science University, 38-44 Kyrenia, Macka 99300, Turkey;
| | - Pinar Uysal-Onganer
- Cancer Research Group, School of Life Sciences, University of Westminster, London W1W 6UW, UK
- Correspondence: (P.U.-O.); (E.D.A.)
| | - Elif Damla Arisan
- Institute of Biotechnology, Gebze Technical University, Gebze 41400, Turkey
- Correspondence: (P.U.-O.); (E.D.A.)
| |
Collapse
|
240
|
Hussain SA, Deepak KV, Nanjappa DP, Sherigar V, Nandan N, Suresh PS, Venkatesh T. Comparative expression analysis of tRF-3001a and tRF-1003 with corresponding miRNAs (miR-1260a and miR-4521) and their network analysis with breast cancer biomarkers. Mol Biol Rep 2021; 48:7313-7324. [PMID: 34661810 DOI: 10.1007/s11033-021-06732-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Accepted: 09/29/2021] [Indexed: 12/30/2022]
Abstract
BACKGROUND MicroRNAs and tRFs (tRNA-derived fragments) are small non-coding RNAs that are promising breast cancer (BC) biomarkers. miRNA sequences are found within tRFs. For example, miR-1260a and miR-4521 sequences are found within tRF-3001a and tRF-1003, respectively. No study has addressed the biomarker potential of these tRF-miRNA pairs in BC or their association with other BC miRNA biomarkers. METHODS AND RESULTS Real-time PCR was performed to examine the expression of miR-1260a-tRF-3001a and miR-4521-tRF-1003 pairs in plasma of BC patients. miR-4521 and miR-1260a showed no change in plasma of breast cancer patients (n = 19). On the contrary, both the corresponding tRFs (tRF-1003 and tRF-3001a) were down-regulated. Also, we performed miRNA/mRNA network analysis for miR-1260a and miR-4521 with top degree BC biomarkers miR-16-5p and miR-93-5p. We found that they shared nine target genes. Moreover, miR-16-5p was down-regulated, and miR-93-5p was up-regulated in the same sample set. Survival analysis plotted using clinical data from Kaplan-Meier Plotter showed that all four miRNAs and 8/9 target gene expressions could predict the survival of BC patients. CONCLUSIONS Our cohort analyses suggest that tRF-3001a and tRF-1003 serve as better biomarkers than their miRNA counterparts in addition to miR-93-5p and miR-16-5p. Also, they form a significant miRNA/mRNA biomarker cluster.
Collapse
Affiliation(s)
- Shaharbhanu A Hussain
- Department of Biochemistry and Molecular Biology, School of Biological Sciences, Central University of Kerala, Periye, Kasargod, Kerala, 671316, India
| | - Kunhi Valappil Deepak
- Department of Biochemistry and Molecular Biology, School of Biological Sciences, Central University of Kerala, Periye, Kasargod, Kerala, 671316, India
| | - Dechamma Pandyanda Nanjappa
- Division of Molecular Genetics and Cancer, Nitte University Centre for Science Education and Research (NUCSER), NITTE (Deemed to be University), Deralakate, Mangaluru, 575018, India
| | - Viswanath Sherigar
- Department of Oncosurgery, A.J. Hospital and Research Centre, Mangalore, Karnataka, 575004, India
| | - Neetha Nandan
- Department of Obstetrics and Gynaecology, KS Hegde Medical Academy, Mangalore, Karnataka, 575018, India
| | - Padmanaban S Suresh
- School of Biotechnology, National Institute of Technology Calicut, Calicut, Kerala, 673601, India
| | - Thejaswini Venkatesh
- Department of Biochemistry and Molecular Biology, School of Biological Sciences, Central University of Kerala, Periye, Kasargod, Kerala, 671316, India.
| |
Collapse
|
241
|
Feng Y, Liu Q, Chen M, Zhao X, Wang L, Liu L, Chen X. Framework nucleic acid programmed combinatorial delivery nanocarriers for parallel and multiplexed analysis. Chem Commun (Camb) 2021; 57:10935-10938. [PMID: 34596190 DOI: 10.1039/d1cc04691h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Herein we report a framework nucleic acid programmed strategy to develop nanocarriers to precisely and independently package multiple homo- and heterogeneous cargos in vitro and in vivo, thereby enabling multiplexed analysis of aptamer-ligand complexes to distinguish normal people and patients with prostate enlargement via simple serum tests, as well as favorable imaging and discrimination of MCF-7, PC-3 and A549 cancer cells and normal QSG-7701 cells.
Collapse
Affiliation(s)
- Yinghui Feng
- College of Chemistry and Chemical Engineering, the Hunan Provincial Key Laboratory of Water Environment and Agriculture Product Safety, Central South University, Changsha 410083, Hunan, China.
| | - Qi Liu
- College of Chemistry and Chemical Engineering, the Hunan Provincial Key Laboratory of Water Environment and Agriculture Product Safety, Central South University, Changsha 410083, Hunan, China.
| | - Miao Chen
- College of Chemistry and Chemical Engineering, the Hunan Provincial Key Laboratory of Water Environment and Agriculture Product Safety, Central South University, Changsha 410083, Hunan, China. .,College of Life Science, Central South University, Changsha 410083, Hunan, China
| | - Xinyi Zhao
- College of Chemistry and Chemical Engineering, the Hunan Provincial Key Laboratory of Water Environment and Agriculture Product Safety, Central South University, Changsha 410083, Hunan, China.
| | - Lumin Wang
- College of Chemistry and Chemical Engineering, the Hunan Provincial Key Laboratory of Water Environment and Agriculture Product Safety, Central South University, Changsha 410083, Hunan, China.
| | - Longfei Liu
- Department of Urology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Xiaoqing Chen
- College of Chemistry and Chemical Engineering, the Hunan Provincial Key Laboratory of Water Environment and Agriculture Product Safety, Central South University, Changsha 410083, Hunan, China.
| |
Collapse
|
242
|
Re M, Tomasetti M, Monaco F, Amati M, Rubini C, Sollini G, Bajraktari A, Gioacchini FM, Santarelli L, Pasquini E. MiRNome analysis identifying miR-205 and miR-449a as biomarkers of disease progression in intestinal-type sinonasal adenocarcinoma. Head Neck 2021; 44:18-33. [PMID: 34647653 PMCID: PMC9292973 DOI: 10.1002/hed.26894] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 09/02/2021] [Accepted: 09/30/2021] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Patients with intestinal-type sinonasal adenocarcinoma (ITAC) have an unfavorable prognosis, and new diagnostic and therapeutic approaches are needed to improve clinical management. METHODS Next-generation sequencing-based miRNome analysis was performed on 43 ITAC patients who underwent surgical resection, and microRNA (miRNA) data were obtained from 35 cases. Four miRNAs were identified, and their expression levels were detected by reverse-transcription quantitative polymerase chain reaction and related to the relevant patient outcome. Overall survival and disease-free survival rates were evaluated through the Kaplan-Meier method and log-rank test, and multivariate analysis was performed by means of Cox proportional hazard analysis. RESULTS High levels of miR-205 and miR-34c/miR-449 cluster expression were associated with an increased recurrence risk and, therefore, a worse prognosis. Multivariate analysis confirmed that miR-205 and miR-449 were significant prognostic predictors. CONCLUSIONS A high expression of miR-205 and miR-449 is independent predictors of poor survival for ITAC patients.
Collapse
Affiliation(s)
- Massimo Re
- Department of Clinical and Molecular Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Marco Tomasetti
- Department of Clinical and Molecular Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Federica Monaco
- Department of Clinical and Molecular Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Monica Amati
- Department of Clinical and Molecular Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Corrado Rubini
- Department of Biomedical Sciences and Public Health, Anatomy Pathology and Histopathology Section, Polytechnic University of Marche, Ancona, Italy
| | | | - Arisa Bajraktari
- Department of Clinical and Molecular Sciences, Polytechnic University of Marche, Ancona, Italy
| | | | - Lory Santarelli
- Department of Clinical and Molecular Sciences, Polytechnic University of Marche, Ancona, Italy
| | | |
Collapse
|
243
|
Goldman JM, Kim S, Narburgh S, Armitage BA, Schneider JW. Rapid, multiplexed detection of the let-7 miRNA family using γPNA amphiphiles in micelle-tagging electrophoresis. Biopolymers 2021; 113:e23479. [PMID: 34643943 DOI: 10.1002/bip.23479] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 10/03/2021] [Accepted: 10/04/2021] [Indexed: 11/10/2022]
Abstract
miRNA is a promising class of biomarkers whose levels can be assayed to detect various forms of cancer and other serious diseases. These short, noncoding nucleic acids are difficult to detect due to their low abundance and the marginal stability of their duplexes with DNA probes. In addition, miRNAs within the same family have high sequence homology, and often, related miRNA differ in sequence by only a single base. In this report, we demonstrate an independent detection seven members of the let-7 family of miRNA in a single run. Key to success is the use of mini-PEG-substituted PNA amphiphiles (γPNAA) and highly fluorescent DNA nanotags in micelle tagging electrophoresis (MTE). Multiplexed detection is accomplished in capillary electrophoresis (CE) using oligomeric nanotags of pre-programmed lengths where the presence of a specific miRNA links its nanotag to a micelle drag-tag, which shifts the nanotag elution time to a defined region for detection. We further demonstrate that the peak shape and elution time are unaffected by the presence of up to 10 mg/ml of serum protein in the sample, with a total runtime of less than 4 min and a LOD of 10-100 pM. We discuss efforts to substantially decrease the detection limit using nanotags that are >1000 bp in length.
Collapse
Affiliation(s)
- Johnathan M Goldman
- Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
| | - Soyoung Kim
- Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
| | - Sarah Narburgh
- Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
| | - Bruce A Armitage
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
| | - James W Schneider
- Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
244
|
Abstract
MicroRNAs (miRNAs), a class of small noncoding RNA, posttranscriptionally regulate the expression of genes. Aberrant expression of miRNA is reported in various types of cancer. Since the first report of oncomiR-21 involvement in the glioma, its upregulation was reported in multiple cancers and was allied with high oncogenic property. In addition to the downregulation of tumor suppressor genes, the miR-21 is also associated with cancer resistance to various chemotherapy. The recent research is appraising miR-21 as a promising cancer target and biomarker for early cancer detection. In this review, we briefly explain the biogenesis and regulation of miR-21 in cancer cells. Additionally, the review features the assorted genes/pathways regulated by the miR-21 in various cancer and cancer stem cells.
Collapse
|
245
|
Sun D, Ding Z, Shen L, Yang F, Han J, Wu G. miR-410-3P inhibits adipocyte differentiation by targeting IRS-1 in cancer-associated cachexia patients. Lipids Health Dis 2021; 20:115. [PMID: 34563222 PMCID: PMC8465700 DOI: 10.1186/s12944-021-01530-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Accepted: 08/24/2021] [Indexed: 11/14/2022] Open
Abstract
Backgrounds Cancer-associated cachexia (CAC) is a metabolic syndrome characterized by progressive depletion of adipose and muscle tissue that cannot be corrected by conventional nutritional therapy. Adipose tissue, an important form of energy storage, exhibits marked loss in the early stages of CAC, which affects quality of life and efficacy of chemotherapy. MicroRNAs (miRNAs) are a class of noncoding RNAs that widely exist in all kinds of eukaryotic cells and play regulatory roles in various biological processes. However, the role of miRNAs in adipose metabolism in CAC has rarely been reported. This study attempted to identify important miRNAs in adipose metabolism in CAC and explore their mechanism to identify a new predictive marker or therapeutic target for CAC-related adipose tissue loss (CAL). Methods In this study, miRNA sequencing was firstly used to identify differentially expressed miRNAs related to CAL and the reliability of the conclusions was verified in large population samples. Furthermore, functional experiments were performed by up and down regulating miR-410-3p in adipocytes. The binding of miR-410-3p to Insulin Receptor Substrate 1 (IRS-1) was verified by Luciferase reporter assay and functional experiments of IRS-1 were performed in adipocytes. Finally, the expression of miR-410-3p in serum exosomes was detected. Results miR-410-3p was selected as differentially expressed miRNA through screening and validation. Adipogenesis was suppressed in miR-410-3p upregulation experiment and increased in downregulation experiment. Luciferase reporter assay showed that miR-410-3p binds to 3′ non-coding region of IRS-1 and represses its expression and ultimately inhibits adipogenesis. miR-410-3p was highly expressed in serum exosomes of CAC patients, which was consistent with results in adipose tissue. Conclusions The expression of miR-410-3p was higher in subcutaneous adipose tissues and serum exosomes of CAC patients, which significantly inhibits adipogenesis and lipid accumulation. The study shows that miR-410-3p could downregulate IRS-1 and downstream adipose differentiation factors including C/EBP-a and PPAR-γ by targeting 3′ noncoding region. Supplementary Information The online version contains supplementary material available at 10.1186/s12944-021-01530-9.
Collapse
Affiliation(s)
- Diya Sun
- Department of General Surgery, Zhongshan Hospital of Fudan University, Shanghai, China
| | - Zuoyou Ding
- Department of General Surgery, Zhongshan Hospital of Fudan University, Shanghai, China
| | - Lei Shen
- Department of General Surgery, Zhongshan Hospital of Fudan University, Shanghai, China
| | - Fan Yang
- Department of General Surgery, Zhongshan Hospital of Fudan University, Shanghai, China
| | - Jun Han
- Department of General Surgery, Zhongshan Hospital of Fudan University, Shanghai, China. .,Shanghai Clinical Nutrition Research Centre, Shanghai, China.
| | - Guohao Wu
- Department of General Surgery, Zhongshan Hospital of Fudan University, Shanghai, China. .,Shanghai Clinical Nutrition Research Centre, Shanghai, China.
| |
Collapse
|
246
|
Yu P, Zhu L, Cui K, Du Y, Zhang C, Ma W, Guo J. B4GALNT2 Gene Promotes Proliferation, and Invasiveness and Migration Abilities of Model Triple Negative Breast Cancer (TNBC) Cells by Interacting With HLA-B Protein. Front Oncol 2021; 11:722828. [PMID: 34589428 PMCID: PMC8473878 DOI: 10.3389/fonc.2021.722828] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 08/16/2021] [Indexed: 12/26/2022] Open
Abstract
B4GALNT2 gene encodes the enzyme β1,4-N-acetylgalactosaminyltransferase 2 that biosynthesizes the histo-blood group antigen Sda, which is expressed on the surface of erythrocytes and in body secretions. Analysis of The Cancer Genome Atlas (TCGA) database revealed that this gene was highly expressed in breast cancer tissues in comparison with adjacent healthy ones. In-vitro lentivirus-assisted B4GALNT2 gene knockdown experiments in model triple negative breast cancer (TNBC) cell lines (HCC1937 and MDA-MB-231) showed inhibition in cell proliferation, decrease in cell viability, promotion of cell apoptosis and inhibitions in cell migration and invasiveness abilities in comparison with empty lentivirus transfectant controls. Also, in cell cycle tests, the number of cells in the G1 phase increased, in the S phase decreased and did not change in the G2/M phase (indicative of the presence of a block in the G1 phase). In-vivo tumor formation experiments in mice revealed that knockdown of the B4GALNT2 gene in MDA-MB-231 cells inhibited their proliferation. Using co-immunoprecipitation (Co-IP) mass spectroscopy-assisted analysis, it was found that HLA-B protein [a product of the human leukocyte antigen (HLA) class I gene] interacts with B4GALNT2 protein. In-vitro overexpression of HLA-B in B4GALNT2-knocked down MDA-MB-231 cell lines significantly recovered the cell proliferation, viability and migration ability of B4GALNT2 gene. These indicate that HLA-B is one of the interaction proteins in the downstream pathway of the B4GALNT2 gene.
Collapse
Affiliation(s)
- Pu Yu
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Lili Zhu
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Kang Cui
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yabing Du
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Chaojie Zhang
- Nephrology Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Wang Ma
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jia Guo
- Nephrology Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
247
|
Mitochondrial DNA and MitomiR Variations in Pancreatic Cancer: Potential Diagnostic and Prognostic Biomarkers. Int J Mol Sci 2021; 22:ijms22189692. [PMID: 34575852 PMCID: PMC8470532 DOI: 10.3390/ijms22189692] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 08/31/2021] [Accepted: 09/04/2021] [Indexed: 02/07/2023] Open
Abstract
Pancreatic cancer is an aggressive disease with poor prognosis. Only about 15-20% of patients diagnosed with pancreatic cancer can undergo surgical resection, while the remaining 80% are diagnosed with locally advanced or metastatic pancreatic ductal adenocarcinoma (PDAC). In these cases, chemotherapy and radiotherapy only confer marginal survival benefit. Recent progress has been made in understanding the pathobiology of pancreatic cancer, with a particular effort in discovering new diagnostic and prognostic biomarkers, novel therapeutic targets, and biomarkers that can predict response to chemo- and/or radiotherapy. Mitochondria have become a focus in pancreatic cancer research due to their roles as powerhouses of the cell, important subcellular biosynthetic factories, and crucial determinants of cell survival and response to chemotherapy. Changes in the mitochondrial genome (mtDNA) have been implicated in chemoresistance and metastatic progression in some cancer types. There is also growing evidence that changes in microRNAs that regulate the expression of mtDNA-encoded mitochondrial proteins (mitomiRs) or nuclear-encoded mitochondrial proteins (mitochondria-related miRs) could serve as diagnostic and prognostic cancer biomarkers. This review discusses the current knowledge on the clinical significance of changes of mtDNA, mitomiRs, and mitochondria-related miRs in pancreatic cancer and their potential role as predictors of cancer risk, as diagnostic and prognostic biomarkers, and as molecular targets for personalized cancer therapy.
Collapse
|
248
|
Arancibia T, Morales-Pison S, Maldonado E, Jara L. Association between single-nucleotide polymorphisms in miRNA and breast cancer risk: an updated review. Biol Res 2021; 54:26. [PMID: 34454612 PMCID: PMC8401249 DOI: 10.1186/s40659-021-00349-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 08/13/2021] [Indexed: 12/27/2022] Open
Abstract
Breast cancer (BC), a heterogeneous, aggressive illness with high mortality, is essentially a genomic disease. While the high-penetrance genes BRCA1 and BRCA2 play important roles in tumorigenesis, moderate- and low-penetrance genes are also involved. Single-nucleotide polymorphisms (SNPs) in microRNA (miRNA) genes have recently been identified as BC risk factors. miRNA genes are currently classified as low-penetrance. SNPs are the most common variations in the human genome. While the role of miRNA SNPs in BC susceptibility has been studied extensively, results have been inconsistent. This review analyzes the results of association studies between miRNA SNPs and BC risk from countries around the world. We conclude that: (a) By continent, the largest proportion of studies to date were conducted in Asia (65.0 %) and the smallest proportion in Africa (1.8 %); (b) Association studies have been completed for 67 different SNPs; (c) 146a, 196a2, 499, 27a, and 423 are the most-studied miRNAs; (d) The SNPs rs2910164 (miRNA-146a), rs11614913 (miRNA-196a2), rs3746444 (miRNA-499) and rs6505162 (miRNA-423) were the most widely associated with increased BC risk; (e) The majority of studies had small samples, which may affect the precision and power of the results; and (f) The effect of an SNP on BC risk depends on the ethnicity of the population. This review also discusses potential explanations for controversial findings.
Collapse
Affiliation(s)
- Trinidad Arancibia
- Programa de Genética Humana, Instituto de Ciencia Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, 8380453, Santiago, Chile
| | - Sebastian Morales-Pison
- Programa de Genética Humana, Instituto de Ciencia Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, 8380453, Santiago, Chile
| | - Edio Maldonado
- Programa Biología Celular y Molecular, Facultad de Medicina, Universidad de Chile, 8380453, Santiago, Chile
| | - Lilian Jara
- Programa de Genética Humana, Instituto de Ciencia Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, 8380453, Santiago, Chile.
| |
Collapse
|
249
|
Abstract
The evolutionary theory of aging has set the foundations for a comprehensive understanding of aging. The biology of aging has listed and described the "hallmarks of aging," i.e., cellular and molecular mechanisms involved in human aging. The present paper is the first to infer the order of appearance of the hallmarks of bilaterian and thereby human aging throughout evolution from their presence in progressively narrower clades. Its first result is that all organisms, even non-senescent, have to deal with at least one mechanism of aging - the progressive accumulation of misfolded or unstable proteins. Due to their cumulation, these mechanisms are called "layers of aging." A difference should be made between the first four layers of unicellular aging, present in some unicellular organisms and in all multicellular opisthokonts, that stem and strike "from the inside" of individual cells and span from increasingly abnormal protein folding to deregulated nutrient sensing, and the last four layers of metacellular aging, progressively appearing in metazoans, that strike the cells of a multicellular organism "from the outside," i.e., because of other cells, and span from transcriptional alterations to the disruption of intercellular communication. The evolution of metazoans and eumetazoans probably solved the problem of aging along with the problem of unicellular aging. However, metacellular aging originates in the mechanisms by which the effects of unicellular aging are kept under control - e.g., the exhaustion of stem cells that contribute to replace damaged somatic cells. In bilaterians, additional functions have taken a toll on generally useless potentially limited lifespan to increase the fitness of organisms at the price of a progressively less efficient containment of the damage of unicellular aging. In the end, this picture suggests that geroscience should be more efficient in targeting conditions of metacellular aging rather than unicellular aging itself.
Collapse
Affiliation(s)
- Maël Lemoine
- CNRS, ImmunoConcEpT, UMR 5164, Univ. Bordeaux, Bordeaux, France
| |
Collapse
|
250
|
Mohanty A, Rajendran V. Mammalian host microRNA response to plasmodial infection: role as therapeutic target and potential biomarker. Parasitol Res 2021; 120:3341-3353. [PMID: 34423387 DOI: 10.1007/s00436-021-07293-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 08/13/2021] [Indexed: 10/20/2022]
Abstract
The appearance of increasing drug resistance in apicomplexan intracellular Plasmodium falciparum presents a significant challenge. P. falciparum infection results in cerebral malaria (CM), causing irreversible damage to the brain leading to high mortality cases. To enhance the clinical outcome of the disease, further research is required to identify new molecular targets involved in disease manifestations. Presently, the role of non-coding microRNAs (miRNAs) derived from different cells implicated in CM pathogenesis is still barely understood. Despite the absence of miRNA machinery in Plasmodium, host-parasite interactions can lead to disease severity or impart resistance to malaria. Cytoadherence and sequestration of parasitized RBCs dysregulate the miRNA profile of brain endothelial cells, leukocytes, monocytes, and platelets, disrupting blood-brain barrier integrity and activating inflammatory signaling pathways. The abundance of miRNA in blood plasma samples of CM patients directly correlates to cerebral symptoms compared to non-CM patients and healthy individuals. Moreover, the differential host-miRNA signatures distinguish P. falciparum from P. vivax infection. Here, we review the diverse functions of host-miRNA, either protective, pathogenic, or a combination of the two, which may act as prognostic markers and novel antimalarial drug targets.
Collapse
Affiliation(s)
- Abhinab Mohanty
- Department of Microbiology, School of Life Sciences, Pondicherry University, Puducherry, 605014, India
| | - Vinoth Rajendran
- Department of Microbiology, School of Life Sciences, Pondicherry University, Puducherry, 605014, India.
| |
Collapse
|