201
|
Anti-angiogenic therapy induces integrin-linked kinase 1 up-regulation in a mouse model of glioblastoma. PLoS One 2010; 5:e13710. [PMID: 21060779 PMCID: PMC2966411 DOI: 10.1371/journal.pone.0013710] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2010] [Accepted: 10/04/2010] [Indexed: 01/30/2023] Open
Abstract
Background In order to improve our understanding of the molecular pathways that mediate tumor proliferation and angiogenesis, and to evaluate the biological response to anti-angiogenic therapy, we analyzed the changes in the protein profile of glioblastoma in response to treatment with recombinant human Platelet Factor 4-DLR mutated protein (PF4-DLR), an inhibitor of angiogenesis. Methodology/Principal Findings U87-derived experimental glioblastomas were grown in the brain of xenografted nude mice, treated with PF4-DLR, and processed for proteomic analysis. More than fifty proteins were differentially expressed in response to PF4-DLR treatment. Among them, integrin-linked kinase 1 (ILK1) signaling pathway was first down-regulated but then up-regulated after treatment for prolonged period. The activity of PF4-DLR can be increased by simultaneously treating mice orthotopically implanted with glioblastomas, with ILK1-specific siRNA. As ILK1 is related to malignant progression and a poor prognosis in various types of tumors, we measured ILK1 expression in human glioblatomas, astrocytomas and oligodendrogliomas, and found that it varied widely; however, a high level of ILK1 expression was correlated to a poor prognosis. Conclusions/Significance Our results suggest that identifying the molecular pathways induced by anti-angiogenic therapies may help the development of combinaatorial treatment strategies that increase the therapeutic efficacy of angiogenesis inhibitors by association with specific agents that disrupt signaling in tumor cells.
Collapse
|
202
|
White CD, Khurana H, Gnatenko DV, Li Z, Odze RD, Sacks DB, Schmidt VA. IQGAP1 and IQGAP2 are reciprocally altered in hepatocellular carcinoma. BMC Gastroenterol 2010; 10:125. [PMID: 20977743 PMCID: PMC2988069 DOI: 10.1186/1471-230x-10-125] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2010] [Accepted: 10/26/2010] [Indexed: 01/16/2023] Open
Abstract
Background IQGAP1 and IQGAP2 are homologous members of the IQGAP family of scaffold proteins. Accumulating evidence implicates IQGAPs in tumorigenesis. We recently reported that IQGAP2 deficiency leads to the development of hepatocellular carcinoma (HCC) in mice. In the current study we extend these findings, and investigate IQGAP1 and IQGAP2 expression in human HCC. Methods IQGAP1 and IQGAP2 protein expression was assessed by Western blotting and immunohistochemistry. IQGAP mRNA was measured by quantitative RT-PCR. The methylation status of the Iqgap2 promoter was determined by pyrosequencing of bisulfite-treated genomic DNA. Results IQGAP1 and IQGAP2 expression was reciprocally altered in 6/6 liver cancer cell lines. Similarly, immunohistochemical staining of 82 HCC samples showed that IQGAP2 protein expression was reduced in 64/82 (78.0%), while IQGAP1 was present in 69/82 (84.1%). No IQGAP1 staining was detected in 23/28 (82.1%) normal livers, 4/4 (100.0%) hepatic adenomas and 23/23 (100.0%) cirrhosis cases, while IQGAP2 was increased in 22/28 (78.6%), 4/4 (100.0%) and 23/23 (100.0%), respectively. Although the Iqgap2 promoter was not hypermethylated in HCC at any of the 25 CpG sites studied (N = 17), IQGAP2 mRNA levels were significantly lower in HCC specimens (N = 23) than normal livers (N = 6). Conclusions We conclude that increased IQGAP1 and/or decreased IQGAP2 contribute to the pathogenesis of human HCC. Furthermore, downregulation of IQGAP2 in HCC occurs independently of hypermethylation of the Iqgap2 promoter. Immunostaining of IQGAP1 and IQGAP2 may aid in the diagnosis of HCC, and their pharmacologic modulation may represent a novel therapeutic strategy for the treatment of liver cancer.
Collapse
Affiliation(s)
- Colin D White
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | | | |
Collapse
|
203
|
Zhou G, Hasina R, Wroblewski K, Mankame TP, Doçi CL, Lingen MW. Dual inhibition of vascular endothelial growth factor receptor and epidermal growth factor receptor is an effective chemopreventive strategy in the mouse 4-NQO model of oral carcinogenesis. Cancer Prev Res (Phila) 2010; 3:1493-502. [PMID: 20978113 DOI: 10.1158/1940-6207.capr-10-0135] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Despite recent therapeutic advances, several factors, including field cancerization, have limited improvements in long-term survival for oral squamous cell carcinoma (OSCC). Therefore, comprehensive treatment plans must include improved chemopreventive strategies. Using the 4-nitroquinoline 1-oxide (4-NQO) mouse model, we tested the hypothesis that ZD6474 (Vandetanib, ZACTIMA) is an effective chemopreventive agent. CBA mice were fed 4-NQO (100 μg/mL) in their drinking water for 8 weeks and then randomized to no treatment or oral ZD6474 (25 mg/kg/d) for 24 weeks. The percentage of animals with OSCC was significantly different between the two groups (71% in control and 12% in the ZD6474 group; P ≤ 0.001). The percentage of mice with dysplasia or OSCC was significantly different (96% in the control and 28% in the ZD6474 group; P ≤ 0.001). Proliferation and microvessel density scores were significantly decreased in the ZD6474 group (P ≤ 0.001 for both). Although proliferation and microvessel density increased with histologic progression in control and treatment cohorts, epidermal growth factor receptor and vascular endothelial growth factor receptor-2 phosphorylation was decreased in the treatment group for each histologic diagnosis, including mice harboring tumors. OSCC from ZD6474-treated mice exhibited features of epithelial to mesenchymal transition, as shown by loss E-cadherin and gain of vimentin protein expression. These data suggest that ZD6474 holds promise as an OSCC chemopreventive agent. They further suggest that acquired resistance to ZD6474 may be mediated by the expression of an epithelial to mesenchymal transition phenotype. Finally, the data suggests that this model is a useful preclinical platform to investigate the mechanisms of acquired resistance in the chemopreventive setting.
Collapse
Affiliation(s)
- Guolin Zhou
- Departments of Pathology, The University of Chicago, Chicago, Illinois 60637, USA
| | | | | | | | | | | |
Collapse
|
204
|
Wang Z, Li Y, Kong D, Sarkar FH. The role of Notch signaling pathway in epithelial-mesenchymal transition (EMT) during development and tumor aggressiveness. Curr Drug Targets 2010; 11:745-51. [PMID: 20041844 DOI: 10.2174/138945010791170860] [Citation(s) in RCA: 242] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2009] [Accepted: 12/17/2009] [Indexed: 02/07/2023]
Abstract
The Notch signaling pathway maintains a balance between cell proliferation and apoptosis, and thus it is believed that Notch signaling pathways may play an important role in the development and progression of several malignancies. However, the functions of Notch signaling in EMT are largely unknown. This mini review describes the role of Notch signaling pathway in EMT, and cataloging how its deregulation is involved in EMT and tumor aggressiveness. Further attempts have been made to summarize the role of several chemopreventive agents that could be useful for targeted inactivation of Notch signaling, and thus it may cause reversal of EMT, which could become a novel approach for cancer prevention and treatment.
Collapse
Affiliation(s)
- Zhiwei Wang
- Department of Pathology, Karmanos Cancer Institute, Wayne State University, Detroit, MI 48201, USA
| | | | | | | |
Collapse
|
205
|
Suppression of Her2/neu expression through ILK inhibition is regulated by a pathway involving TWIST and YB-1. Oncogene 2010; 29:6343-56. [PMID: 20838384 PMCID: PMC3007675 DOI: 10.1038/onc.2010.366] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
In a previous study it was found that the therapeutic effects of QLT0267, a small molecule inhibitor of integrin-linked kinase (ILK), were influenced by Her2/neu expression. To understand how inhibition or silencing of ILK influences Her2/neu expression, Her2/neu signaling was evaluated in six Her2/neu-positive breast cancer cell lines (LCC6Her2, MCF7Her2, SKBR3, BT474, JIMT-1 and KPL-4). Treatment with QLT0267 engendered suppression (32–87%) of total Her2/neu protein in these cells. Suppression of Her2/neu was also observed following small interfering RNA-mediated silencing of ILK expression. Time course studies suggest that ILK inhibition or silencing caused transient decreases in P-AKTser473, which were not temporally related to Her2/neu downregulation. Attenuation of ILK activity or expression was, however, associated with decreases in YB-1 (Y-box binding protein-1) protein and transcript levels. YB-1 is a known transcriptional regulator of Her2/neu expression, and in this study it is demonstrated that inhibition of ILK activity using QLT0267 decreased YB-1 promoter activity by 50.6%. ILK inhibition was associated with changes in YB-1 localization, as reflected by localization of cytoplasmic YB-1 into stress granules. ILK inhibition also suppressed TWIST (a regulator of YB-1 expression) protein expression. To confirm the role of ILK on YB-1 and TWIST, cells were engineered to overexpress ILK. This was associated with a fourfold increase in the level of YB-1 in the nucleus, and a 2- and 1.5-fold increase in TWIST and Her2/neu protein levels, respectively. Taken together, these data indicate that ILK regulates the expression of Her2/neu through TWIST and YB-1, lending support to the use of ILK inhibitors in the treatment of aggressive Her2/neu-positive tumors.
Collapse
|
206
|
Wheeler DL, Dunn EF, Harari PM. Understanding resistance to EGFR inhibitors-impact on future treatment strategies. Nat Rev Clin Oncol 2010; 7:493-507. [PMID: 20551942 PMCID: PMC2929287 DOI: 10.1038/nrclinonc.2010.97] [Citation(s) in RCA: 508] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
EGFR is a tyrosine kinase that participates in the regulation of cellular homeostasis. Following ligand binding, EGFR stimulates downstream cell signaling cascades that influence cell proliferation, apoptosis, migration, survival and complex processes, including angiogenesis and tumorigenesis. EGFR has been strongly implicated in the biology of human epithelial malignancies, with therapeutic applications in cancers of the colon, head and neck, lung, and pancreas. Accordingly, targeting EGFR has been intensely pursued, with the development of a series of promising molecular inhibitors for use in clinical oncology. As is common in cancer therapy, challenges with respect to treatment resistance emerge over time. This situation is certainly true of EGFR inhibitor therapies, where intrinsic and acquired resistance is now well recognized. In this Review, we provide a brief overview regarding the biology of EGFR, preclinical and clinical development of EGFR inhibitors, and molecular mechanisms that underlie the development of treatment resistance. A greater understanding of the mechanisms that lead to EGFR resistance may provide valuable insights to help design new strategies that will enhance the impact of this promising class of inhibitors for the treatment of cancer.
Collapse
Affiliation(s)
- Deric L Wheeler
- Department of Human Oncology, University of Wisconsin Comprehensive Cancer Center, Madison, WI 53705, USA.
| | | | | |
Collapse
|
207
|
Wang Z, Li Y, Ahmad A, Azmi AS, Kong D, Banerjee S, Sarkar FH. Targeting miRNAs involved in cancer stem cell and EMT regulation: An emerging concept in overcoming drug resistance. Drug Resist Updat 2010; 13:109-18. [PMID: 20692200 PMCID: PMC2956795 DOI: 10.1016/j.drup.2010.07.001] [Citation(s) in RCA: 274] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2010] [Revised: 07/08/2010] [Accepted: 07/08/2010] [Indexed: 02/06/2023]
Abstract
Although chemotherapy is an important therapeutic strategy for cancer treatment, it fails to eliminate all tumor cells due to intrinsic or acquired drug resistance, which is the most common cause of tumor recurrence. Emerging evidence suggests an intricate role of cancer stem cells (CSCs) and epithelial-mesenchymal transition (EMT)-type cells in anticancer drug resistance. Recent studies also demonstrated that microRNAs (miRNAs) play critical roles in the regulation of drug resistance. Here we will discuss current knowledge regarding CSCs, EMT and the role of regulation by miRNAs in the context of drug resistance, tumor recurrence and metastasis. A better understanding of the molecular intricacies of drug-resistant cells will help to design novel therapeutic strategies by selective targeting of CSCs and EMT-phenotypic cells through alterations in the expression of specific miRNAs towards eradicating tumor recurrence and metastasis. A particular promising lead is the potential synergistic combination of natural compounds that affect critical miRNAs, such as curcumin or epigallocatechin-3-gallate (EGCG) with chemotherapeutic agents.
Collapse
Affiliation(s)
- Zhiwei Wang
- Department of Pathology, Karmanos Cancer Institute, Wayne State University, School of Medicine, Detroit, MI 48201, USA
| | - Yiwei Li
- Department of Pathology, Karmanos Cancer Institute, Wayne State University, School of Medicine, Detroit, MI 48201, USA
| | - Aamir Ahmad
- Department of Pathology, Karmanos Cancer Institute, Wayne State University, School of Medicine, Detroit, MI 48201, USA
| | - Asfar S Azmi
- Department of Pathology, Karmanos Cancer Institute, Wayne State University, School of Medicine, Detroit, MI 48201, USA
| | - Dejuan Kong
- Department of Pathology, Karmanos Cancer Institute, Wayne State University, School of Medicine, Detroit, MI 48201, USA
| | - Sanjeev Banerjee
- Department of Pathology, Karmanos Cancer Institute, Wayne State University, School of Medicine, Detroit, MI 48201, USA
| | - Fazlul H Sarkar
- Department of Pathology, Karmanos Cancer Institute, Wayne State University, School of Medicine, Detroit, MI 48201, USA
| |
Collapse
|
208
|
Firrincieli D, Boissan M, Chignard N. Epithelial-mesenchymal transition in the liver. ACTA ACUST UNITED AC 2010; 34:523-8. [PMID: 20615641 DOI: 10.1016/j.gcb.2010.04.017] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2010] [Accepted: 04/30/2010] [Indexed: 12/13/2022]
Abstract
Epithelial-mesenchymal transition (EMT) is a physiological process occurring in the embryo. In adult organism, EMT could be involved in disease development. In the liver, the possibility that EMT of liver epithelial cells participate to liver fibrosis is increasingly discussed. Furthermore, the involvement of hepatocyte EMT to liver cancer biology has also been documented over the past few years. In this review, we will first describe how EMT participates to embryological development. We will then discuss the involvement of hepatocytes and biliary epithelial cells in liver fibrosis. Finally, we will describe how EMT may impact the metastatic process and resistance to therapy in hepatocellular carcinoma.
Collapse
Affiliation(s)
- D Firrincieli
- UMR_S 938, centre de recherche Saint-Antoine, UPMC université Paris 06, 27 rue de Chaligny, Paris, France
| | | | | |
Collapse
|
209
|
Tumour-microenvironmental interactions: paths to progression and targets for treatment. Semin Cancer Biol 2010; 20:128-38. [DOI: 10.1016/j.semcancer.2010.06.004] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2010] [Accepted: 06/24/2010] [Indexed: 01/01/2023]
|
210
|
Evidence for mesenchymal-like sub-populations within squamous cell carcinomas possessing chemoresistance and phenotypic plasticity. Oncogene 2010; 29:4170-82. [PMID: 20498638 PMCID: PMC3039880 DOI: 10.1038/onc.2010.170] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Variable drug responses among malignant cells within individual tumors may represent a barrier to their eradication using chemotherapy. Carcinoma cells expressing mesenchymal markers resist conventional and epidermal growth factor receptor (EGFR)-targeted chemotherapy. Here we evaluated whether mesenchymal-like subpopulations within human squamous cell carcinomas (SCCs) with predominantly epithelial features contribute to overall therapy resistance. We identified a mesenchymal-like subset expressing low E-cadherin (Ecad-lo) and high vimentin (Vim-hi) within upper aerodigestive tract SCCs. This subset was both isolated from cell lines and identified in xenografts and primary clinical specimens. The Ecad-lo subset contained more low-turnover cells, correlating with resistance to the conventional chemotherapeutic paclitaxel in vitro. Epidermal growth factor (EGF) induced less stimulation of the MAP kinase and PI3-kinase pathways in Ecad-lo cells, which was likely due to lower EGFR expression in this subset and correlated with in vivo resistance to the EGFR-targeted antibody cetuximab. The Ecad-lo and high E-cadherin (Ecad-hi) subsets were dynamic in phenotype, showing the capacity to repopulate each other from single cell clones. Taken together, these results provide evidence for a low-turnover, mesenchymal-like subpopulation in SCCs with diminished EGFR pathway function and intrinsic resistance to conventional and EGFR-targeted chemotherapies.
Collapse
|
211
|
Yang YM, Lee S, Nam CW, Ha JH, Jayaraman M, Dhanasekaran DN, Lee CH, Kwak MK, Kim SG. G(alpha)12/13 inhibition enhances the anticancer effect of bortezomib through PSMB5 downregulation. Carcinogenesis 2010; 31:1230-7. [PMID: 20478922 DOI: 10.1093/carcin/bgq097] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Bortezomib is a proteasome inhibitor approved for anticancer therapy. However, variable sensitivity of tumor cells exists in this therapy probably due to differences in the expression of proteasome subunits. G(alpha)(12/13) serves modulators or signal transducers in diverse pathways. This study investigated whether cancer cells display differential sensitivity to bortezomib with reference to G(alpha)(12/13) expression, and if so, whether G(alpha)(12/13) affects the expression of proteasome subunits and their activities. Bortezomib treatment exhibited greater sensitivities in Huh7 and SNU886 cells (epithelial type) than SK-Hep1 and SNU449 cells (mesenchymal type) that exhibited higher levels of G(alpha)(12/13). Overexpression of an active mutant of G(alpha)(12) (Galpha(12)QL) or G(alpha)(13) (G(alpha)(13)QL) diminished the ability of bortezomib to induce cytotoxicity in Huh7 cells. Moreover, transfection with the minigene that disturbs G protein-coupled receptor-G protein coupling (CT12 or CT13) increased it in SK-Hep1 cells. Consistently, MiaPaCa2 cells transfected with CT12 or CT13 exhibited a greater sensitivity to bortezomib. Evidence of G(alpha)(12/13)'s antagonism on the anticancer effect of bortezomib was verified in the reversal by G(alpha)(12)QL or G(alpha)(13)QL of the minigenes' enhancement of cytotoxity. Real-time polymerase chain reaction assay enabled us to identify PSMB5, multicatalytic endopeptidase complex-like-1, and proteasome activator subunit-1 repression by CT12 or CT13. Furthermore, G(alpha)(12/13) inhibition enhanced the ability of bortezomib to repress PSMB5, as shown by immunoblotting and proteasome activity assay. Moreover, this inhibitory effect on PSMB5 was attenuated by G(alpha)G(alpha)(12)QL or G(alpha)(13)QL. In conclusion, the inhibition of G(alpha)(12/13) activities may enhance the anticancer effect of bortezomib through PSMB5 repression, providing insight into the G(alpha)(12/13) pathway for the regulation of proteasomal activity.
Collapse
Affiliation(s)
- Yoon Mee Yang
- Department of Pharmacy, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 151-742, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
212
|
Skvortsova I, Skvortsov S, Raju U, Stasyk T, Riesterer O, Schottdorf EM, Popper BA, Schiestl B, Eichberger P, Debbage P, Neher A, Bonn GK, Huber LA, Milas L, Lukas P. Epithelial-to-mesenchymal transition and c-myc expression are the determinants of cetuximab-induced enhancement of squamous cell carcinoma radioresponse. Radiother Oncol 2010; 96:108-15. [PMID: 20451273 DOI: 10.1016/j.radonc.2010.04.017] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2009] [Revised: 03/24/2010] [Accepted: 04/14/2010] [Indexed: 11/16/2022]
Abstract
PURPOSE Radiation therapy cures malignant tumors of the head and neck region more effectively when it is combined with application of the anti-EGFR monoclonal antibody cetuximab. Despite the successes achieved, we still do not know how to select patients who will respond to this combination of anti-EGFR monoclonal antibody and radiation. This study was conducted to elucidate possible mechanisms which cause the combined treatment with cetuximab and irradiation to fail in some cases of squamous cell carcinomas. METHODS AND MATERIALS Mice bearing FaDu and A431 squamous cell carcinoma xenograft tumors were treated with cetuximab (total dose 3 mg, intraperitoneally), irradiation (10 Gy) or their combination at the same doses. Treatment was applied when tumors reached 8mm in size. To collect samples for further protein analysis (two-dimensional differential gel electrophoresis (2-D DIGE), mass spectrometry MALDI-TOF/TOF, Western blot analysis, and ELISA), mice from each group were sacrificed on the 8th day after the first injection of cetuximab. Other mice were subjected to tumor growth delay assay. RESULTS In FaDu xenografts, treatment with cetuximab alone was nearly as effective as cetuximab combined with ionizing radiation, whereas A431 tumors responded to the combined treatment with significantly enhanced delay in tumor growth. Tumors extracted from the untreated FaDu and A431 xenografts were analysed for protein expression, and 34 proteins that were differently expressed in the two tumor types were identified. The majority of these proteins are closely related to intratumoral angiogenesis, cell adhesion, motility, differentiation, epithelial-to-mesenchymal transition (EMT), c-myc signaling and DNA repair. CONCLUSIONS The failure of cetuximab to enhance radiation response in FaDu xenografts was associated with the initiation of the program of EMT and with c-myc up-regulation in the carcinoma cells. For this reason, c-myc and EMT-related proteins (E-cadherin, vimentin) may be considered as potential biomarkers to predict squamous cell carcinoma response after treatment with cetuximab in combination with radiation.
Collapse
Affiliation(s)
- Ira Skvortsova
- Department of Therapeutic Radiology and Oncology, Innsbruck Medical University, Austria.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
213
|
Wong CCL, Wong CM, Au SLK, Ng IOL. RhoGTPases and Rho-effectors in hepatocellular carcinoma metastasis: ROCK N'Rho move it. Liver Int 2010; 30:642-56. [PMID: 20726051 DOI: 10.1111/j.1478-3231.2010.02232.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Hepatocellular carcinoma (HCC) is an intractable disease with an extremely high mortality rate. Metastasis is the major factor of liver failure, tumour recurrence and death in HCC patients. Unfortunately, no promising curative therapy for HCC metastasis is available as yet; therefore, treatment for advanced HCC still remains a formidable challenge. A large body of evidence has demonstrated that the RhoGTPases/Rho-effector pathway plays important roles in mediating HCC metastasis based on their foremost functions in orchestrating the cell cytoskeletal reorganization. This review will first discuss the general principles of cancer metastasis and cancer cell movement with a particular focus on HCC.We will then summarize the implications of various members in the RhoGTPases/Rho-effectors signalling cascade including the upstream RhoGTPase regulators RhoGTPases and Rho-effectors and their downstream targets in HCC metastasis. Finally, we will discuss the therapeutic insight of targeting the RhoGTPases/Rho-effector pathway in HCC. Taken together, the literature demonstrates the importance of the RhoGTPases/Rho-effector signalling pathway in HCC metastasis and marks the necessity to have a more thorough knowledge of this complicated signalling network in order to develop novel therapeutic strategies for HCC patients.
Collapse
Affiliation(s)
- Carmen Chak-Lui Wong
- Liver Cancer and Hepatitis Research Laboratory, Department of Pathology, University of Hong Kong, Pokfulam, Hong Kong
| | | | | | | |
Collapse
|
214
|
Ali S, Ahmad A, Banerjee S, Padhye S, Dominiak K, Schaffert JM, Wang Z, Philip PA, Sarkar FH. Gemcitabine sensitivity can be induced in pancreatic cancer cells through modulation of miR-200 and miR-21 expression by curcumin or its analogue CDF. Cancer Res 2010; 70:3606-17. [PMID: 20388782 DOI: 10.1158/0008-5472.can-09-4598] [Citation(s) in RCA: 354] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Curcumin induces cancer cell growth arrest and apoptosis in vitro, but its poor bioavailability in vivo limits its antitumor efficacy. We have previously evaluated the bioavailability of novel analogues of curcumin compared with curcumin, and we found that the analogue CDF exhibited greater systemic and pancreatic tissue bioavailability. In this study, we evaluated the effects of CDF or curcumin alone or in combination with gemcitabine on cell viability and apoptosis in gemcitabine-sensitive and gemcitabine-resistant pancreatic cancer (PC) cell lines. Mechanistic investigations revealed a significant reduction in cell viability in CDF-treated cells compared with curcumin-treated cells, which were also associated with the induction of apoptosis, and these results were consistent with the downregulation of Akt, cyclooxygenase-2, prostaglandin E(2), vascular endothelial growth factor, and NF-kappaB DNA binding activity. We have also documented attenuated expression of miR-200 and increased expression of miR-21 (a signature of tumor aggressiveness) in gemcitabine-resistant cells relative to gemcitabine-sensitive cells. Interestingly, CDF treatment upregulated miR-200 expression and downregulated the expression of miR-21, and the downregulation of miR-21 resulted in the induction of PTEN. These results prompt further interest in CDF as a drug modality to improve treatment outcome of patients diagnosed with PC as a result of its greater bioavailability in pancreatic tissue.
Collapse
Affiliation(s)
- Shadan Ali
- Division of Hematology/Oncology, Department of Pathology, Karmanos Cancer Institute, Wayne State University, Detroit, Michigan 48201, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
215
|
Jou J, Diehl AM. Epithelial-mesenchymal transitions and hepatocarcinogenesis. J Clin Invest 2010; 120:1031-4. [PMID: 20335655 DOI: 10.1172/jci42615] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Epithelial-mesenchymal transitions (EMTs) are believed to play a role in invasion and metastasis of many types of tumors. In this issue of the JCI, Chen et al. show that a gene that has been associated with aggressive biology in hepatocellular carcinomas initiates a molecular cascade that results in EMT.
Collapse
Affiliation(s)
- Janice Jou
- Division of Gastroenterology, Duke University, Durham, North Carolina 27710, USA
| | | |
Collapse
|
216
|
Pruszak J, Ludwig W, Blak A, Alavian K, Isacson O. CD15, CD24, and CD29 define a surface biomarker code for neural lineage differentiation of stem cells. Stem Cells 2010; 27:2928-40. [PMID: 19725119 DOI: 10.1002/stem.211] [Citation(s) in RCA: 174] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Identification and use of cell surface cluster of differentiation (CD) biomarkers have enabled much scientific and clinical progress. We identify a CD surface antigen code for the neural lineage based on combinatorial flow cytometric analysis of three distinct populations derived from human embryonic stem cells: (1) CD15(+)/CD29(HI)/CD24(LO) surface antigen expression defined neural stem cells; (2) CD15(-)/CD29(HI)/CD24(LO) revealed neural crest-like and mesenchymal phenotypes; and (3) CD15(-)/CD29(LO)/CD24(HI) selected neuroblasts and neurons. Fluorescence-activated cell sorting (FACS) for the CD15(-)/CD29(LO)/CD24(HI) profile reduced proliferative cell types in human embryonic stem cell differentiation. This eliminated tumor formation in vivo, resulting in pure neuronal grafts. In conclusion, combinatorial CD15/CD24/CD29 marker profiles define neural lineage development of neural stem cell, neural crest, and neuronal populations from human stem cells. We believe this set of biomarkers enables analysis and selection of neural cell types for developmental studies and pharmacological and therapeutic applications.
Collapse
Affiliation(s)
- Jan Pruszak
- McLean Hospital/Harvard Medical School, Center for Neuroregeneration Research, Belmont, Massachusetts 02478, USA
| | | | | | | | | |
Collapse
|
217
|
van Zijl F, Zulehner G, Petz M, Schneller D, Kornauth C, Hau M, Machat G, Grubinger M, Huber H, Mikulits W. Epithelial-mesenchymal transition in hepatocellular carcinoma. Future Oncol 2010; 5:1169-79. [PMID: 19852728 DOI: 10.2217/fon.09.91] [Citation(s) in RCA: 258] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The transition of epithelial cells to a mesenchymal phenotype is of paramount relevance for embryonic development and adult wound healing. During the past decade, the epithelial-mesenchymal transition (EMT) has been increasingly recognized to occur during the progression of various carcinomas such as hepatocellular carcinoma (HCC). Here, we focus on EMT in both experimental liver models and human HCC, emphasizing the underlying molecular mechanisms which show partial recurrence of embryonic programs such as TGF-beta and Wnt/ beta-catenin signaling, including collaboration with hepatitis viruses. We further discuss the differentiation repertoire of malignant hepatocytes with respect to the potential acquisition of stemness, and the involvement of the mesenchymal to epithelial transition, the reversal of EMT, in cancer dissemination and metastatic colonization. The strong evidence for EMT in HCC patients demands novel strategies in pathological assessments and therapeutic concepts to efficiently combat HCC progression.
Collapse
Affiliation(s)
- Franziska van Zijl
- Department of Medicine I, Division: Institute of Cancer Research, Medical University of Vienna, Borschke-Gasse 8a, A-1090 Vienna, Austria
| | | | | | | | | | | | | | | | | | | |
Collapse
|
218
|
Heintz NH, Janssen-Heininger YMW, Mossman BT. Asbestos, lung cancers, and mesotheliomas: from molecular approaches to targeting tumor survival pathways. Am J Respir Cell Mol Biol 2010; 42:133-9. [PMID: 20068227 DOI: 10.1165/rcmb.2009-0206tr] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Fifteen years have passed since we published findings in the AJRCMB demonstrating that induction of early response fos/jun proto-oncogenes in rodent tracheal and mesothelial cells correlates with fibrous geometry and pathogenicity of asbestos. Our study was the first to suggest that the aberrant induction of signaling responses by crocidolite asbestos and erionite, a fibrous zeolite mineral associated with the development of malignant mesotheliomas (MMs) in areas of Turkey, led to altered gene expression. New data questioned the widely held belief at that time that the carcinogenic effects of asbestos in the development of lung cancer and MM were due to genotoxic or mutagenic effects. Later studies by our group revealed that proto-oncogene expression and several of the signaling pathways activated by asbestos were redox dependent, explaining why antioxidants and antioxidant enzymes were elevated in lung and pleura after exposure to asbestos and how they alleviated many of the phenotypic and functional effects of asbestos in vitro or after inhalation. Since these original studies, our efforts have expanded to understand the interface between asbestos-induced redox-dependent signal transduction cascades, the relationship between these pathways and cell fate, and the role of asbestos and cell interactions in development of asbestos-associated diseases. Of considerable significance is the fact that the signal transduction pathways activated by asbestos are also important in survival and chemoresistance of MMs and lung cancers. An understanding of the pathogenic features of asbestos fibers and dysregulation of signaling pathways allows strategies for the prevention and therapy of asbestos-related diseases.
Collapse
Affiliation(s)
- Nicholas H Heintz
- Department of Pathology, University of Vermont College of Medicine, 89 Beaumont Avenue, Burlington, VT 05405-0068, USA
| | | | | |
Collapse
|
219
|
Iwatsuki M, Mimori K, Yokobori T, Ishi H, Beppu T, Nakamori S, Baba H, Mori M. Epithelial-mesenchymal transition in cancer development and its clinical significance. Cancer Sci 2010; 101:293-9. [PMID: 19961486 PMCID: PMC11159985 DOI: 10.1111/j.1349-7006.2009.01419.x] [Citation(s) in RCA: 579] [Impact Index Per Article: 41.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The epithelial-mesenchymal transition (EMT) plays a critical role in embryonic development. EMT is also involved in cancer progression and metastasis and it is probable that a common molecular mechanism is shared by these processes. Cancer cells undergoing EMT can acquire invasive properties and enter the surrounding stroma, resulting in the creation of a favorable microenvironment for cancer progression and metastasis. Furthermore, the acquisition of EMT features has been associated with chemoresistance which could give rise to recurrence and metastasis after standard chemotherapeutic treatment. Thus, EMT could be closely involved in carcinogenesis, invasion, metastasis, recurrence, and chemoresistance. Research into EMT and its role in cancer pathogenesis has progressed rapidly and it is now hypothesized that novel concepts such as cancer stem cells and microRNA could be involved in EMT. However, the involvement of EMT varies greatly among cancer types, and much remains to be learned. In this review, we present recent findings regarding the involvement of EMT in cancer progression and metastasis and provide a perspective from clinical and translational viewpoints.
Collapse
Affiliation(s)
- Masaaki Iwatsuki
- Department of Surgical Oncology, Medical Institute of Bioregulation, Kyushu University, Beppu, Japan
| | | | | | | | | | | | | | | |
Collapse
|
220
|
Finn RS. Development of Molecularly Targeted Therapies in Hepatocellular Carcinoma: Where Do We Go Now? Clin Cancer Res 2010; 16:390-7. [DOI: 10.1158/1078-0432.ccr-09-2084] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
221
|
Shao M, Cao L, Shen C, Satpathy M, Chelladurai B, Bigsby RM, Nakshatri H, Matei D. Epithelial-to-mesenchymal transition and ovarian tumor progression induced by tissue transglutaminase. Cancer Res 2010; 69:9192-201. [PMID: 19951993 DOI: 10.1158/0008-5472.can-09-1257] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Tissue transglutaminase (TG2), an enzyme that catalyzes Ca(2+)-dependent aggregation and polymerization of proteins, is overexpressed in ovarian cancer cells and tumors. We previously reported that TG2 facilitates tumor dissemination using an i.p. xenograft model. Here we show that TG2 modulates epithelial-to-mesenchymal transition (EMT), contributing to increased ovarian cancer cell invasiveness and tumor metastasis. By using stable knockdown and overexpression in epithelial ovarian cancer cells, we show that TG2 induces a mesenchymal phenotype, characterized by cadherin switch and invasive behavior in a Matrigel matrix. This is mediated at the transcriptional level by altering the expression levels and function of several transcriptional repressors, including Zeb1. One mechanism through which TG2 induces Zeb1 is by activating the nuclear factor-kappaB complex. The effects of TG2 on ovarian cancer cell phenotype and invasiveness translate into increased tumor formation and metastasis in vivo, as assessed by an orthotopic ovarian xenograft model. Highly expressed in ovarian tumors, TG2 promotes EMT and enhances ovarian tumor metastasis by activating oncogenic signaling.
Collapse
Affiliation(s)
- Minghai Shao
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | | | | | | | | | | | | | | |
Collapse
|
222
|
Kim SM, Han JH, Park SM. The Role of Epithelial-mesenchymal Transition in the Gastroenterology. THE KOREAN JOURNAL OF GASTROENTEROLOGY 2010; 56:69-77. [DOI: 10.4166/kjg.2010.56.2.69] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Sung Moo Kim
- Department of Internal Medicine, Chungbuk National University College of Medicine, Cheongju, Korea
| | - Joung-Ho Han
- Department of Internal Medicine, Chungbuk National University College of Medicine, Cheongju, Korea
| | - Seon Mee Park
- Department of Internal Medicine, Chungbuk National University College of Medicine, Cheongju, Korea
| |
Collapse
|
223
|
Midorikawa Y, Sugiyama Y, Aburatani H. Molecular targets for liver cancer therapy: From screening of target genes to clinical trials. Hepatol Res 2010; 40:49-60. [PMID: 19788683 DOI: 10.1111/j.1872-034x.2009.00583.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Cancer arises from the accumulation of genetic alterations, and the inactivation of oncogenes, or recovery of suppressor genes, are promising strategies for cancer treatment. Genome-based drug research starts with identification of target genes and is accomplished by exploitation of target-based drugs such as monoclonal antibodies, small molecules and antisense drugs. Recently, clinical trials for treatment of advanced hepatocellular carcinoma (HCC) have been performed, and the effectiveness of sorafenib, an oral multikinase inhibitor of the vascular endothelial growth factor receptor and Ras kinase, has been demonstrated. In addition to known target genes, microarray technology has enabled us to constitute novel therapeutic targets, and many researchers have applied this technology in studies of HCC and have identified candidate target genes, validated to affect cell growth. In addition, promoter arrays for whole-genome epigenetic aberration analysis, ChIP-chip analysis using tiling arrays, and high-throughput sequencing systems have been applied to drug discovery. To elucidate the status of therapeutic target genes in vivo, development of diagnostic markers for stratification of patients is a pressing need. Here, we review recent advances in microarray technology for liver cancer, discuss the innovations and approaches to therapeutic target discovery, and present data regarding the outcome of gene target therapy using monoclonal antibodies and molecular diagnostic markers in our laboratory.
Collapse
Affiliation(s)
- Yutaka Midorikawa
- Department of Surgery, Teikyo University School of Medicine University Hospital, Mizonokuchi, Kawasaki
| | | | | |
Collapse
|
224
|
Zulehner G, Mikula M, Schneller D, van Zijl F, Huber H, Sieghart W, Grasl-Kraupp B, Waldhör T, Peck-Radosavljevic M, Beug H, Mikulits W. Nuclear beta-catenin induces an early liver progenitor phenotype in hepatocellular carcinoma and promotes tumor recurrence. THE AMERICAN JOURNAL OF PATHOLOGY 2009; 176:472-81. [PMID: 20008139 DOI: 10.2353/ajpath.2010.090300] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Transforming growth factor-beta cooperates with oncogenic Ras to activate nuclear beta-catenin during the epithelial to mesenchymal transition of hepatocytes, a process relevant in the progression of hepatocellular carcinoma (HCC). In this study we investigated the role of beta-catenin in the differentiation of murine, oncogene-targeted hepatocytes and in 133 human HCC patients scheduled for orthotopic liver transplantation. Transforming growth factor-beta caused dissociation of plasma membrane E-cadherin/beta-catenin complexes and accumulation of nuclear beta-catenin in Ras-transformed, but otherwise normal hepatocytes in p19(ARF)-/- mice. Both processes were inhibited by Smad7-mediated disruption of transforming growth factor-beta signaling. Overexpression of constitutively active beta-catenin resulted in high levels of CK19 and M2-PK, whereas ablation of beta-catenin by axin overexpression caused strong expression of CK8 and CK18. Therefore, nuclear beta-catenin resulted in dedifferentiation of neoplastic hepatocytes to immature progenitor cells, whereas loss of nuclear beta-catenin led to a differentiated HCC phenotype. Poorly differentiated human HCC showed cytoplasmic redistribution or even loss of E-cadherin, suggesting epithelial to mesenchymal transition. Analysis of 133 HCC patient samples revealed that 58.6% of human HCC exhibited strong nuclear beta-catenin accumulation, which correlated with clinical features such as vascular invasion and recurrence of disease after orthotopic liver transplantation. These data suggest that activation of beta-catenin signaling causes dedifferentiation to malignant, immature hepatocyte progenitors and facilitates recurrence of human HCC after orthotopic liver transplantation.
Collapse
Affiliation(s)
- Gudrun Zulehner
- Department of Internal Medicine I, Centre of Public Health, Medical University of Vienna, Vienna, Austria
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
225
|
Epithelial–mesenchymal transition in cancer metastasis: Mechanisms, markers and strategies to overcome drug resistance in the clinic. Biochim Biophys Acta Rev Cancer 2009; 1796:75-90. [DOI: 10.1016/j.bbcan.2009.03.002] [Citation(s) in RCA: 350] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2008] [Revised: 03/05/2009] [Accepted: 03/07/2009] [Indexed: 12/26/2022]
|
226
|
Yuzugullu H, Benhaj K, Ozturk N, Senturk S, Celik E, Toylu A, Tasdemir N, Yilmaz M, Erdal E, Akcali KC, Atabey N, Ozturk M. Canonical Wnt signaling is antagonized by noncanonical Wnt5a in hepatocellular carcinoma cells. Mol Cancer 2009; 8:90. [PMID: 19849855 PMCID: PMC2770486 DOI: 10.1186/1476-4598-8-90] [Citation(s) in RCA: 156] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2009] [Accepted: 10/22/2009] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND beta-catenin mutations that constitutively activate the canonical Wnt signaling have been observed in a subset of hepatocellular carcinomas (HCCs). These mutations are associated with chromosomal stability, low histological grade, low tumor invasion and better patient survival. We hypothesized that canonical Wnt signaling is selectively activated in well-differentiated, but repressed in poorly differentiated HCCs. To this aim, we characterized differentiation status of HCC cell lines and compared their expression status of Wnt pathway genes, and explored their activity of canonical Wnt signaling. RESULTS We classified human HCC cell lines into "well-differentiated" and "poorly differentiated" subtypes, based on the expression of hepatocyte lineage, epithelial and mesenchymal markers. Poorly differentiated cell lines lost epithelial and hepatocyte lineage markers, and overexpressed mesenchymal markers. Also, they were highly motile and invasive. We compared the expression of 45 Wnt pathway genes between two subtypes. TCF1 and TCF4 factors, and LRP5 and LRP6 co-receptors were ubiquitously expressed. Likewise, six Frizzled receptors, and canonical Wnt3 ligand were expressed in both subtypes. In contrast, canonical ligand Wnt8b and noncanonical ligands Wnt4, Wnt5a, Wnt5b and Wnt7b were expressed selectively in well- and poorly differentiated cell lines, respectively. Canonical Wnt signaling activity, as tested by a TCF reporter assay was detected in 80% of well-differentiated, contrary to 14% of poorly differentiated cell lines. TCF activity generated by ectopic mutant beta-catenin was weak in poorly differentiated SNU449 cell line, suggesting a repressive mechanism. We tested Wnt5a as a candidate antagonist. It strongly inhibited canonical Wnt signaling that is activated by mutant beta-catenin in HCC cell lines. CONCLUSION Differential expression of Wnt ligands in HCC cells is associated with selective activation of canonical Wnt signaling in well-differentiated, and its repression in poorly differentiated cell lines. One potential mechanism of repression involved Wnt5a, acting as an antagonist of canonical Wnt signaling. Our observations support the hypothesis that Wnt pathway is selectively activated or repressed depending on differentiation status of HCC cells. We propose that canonical and noncanonical Wnt pathways have complementary roles in HCC, where the canonical signaling contributes to tumor initiation, and noncanonical signaling to tumor progression.
Collapse
Affiliation(s)
- Haluk Yuzugullu
- Department of Molecular Biology and Genetics, Faculty of Science, Bilkent University, 06800, Ankara, Turkey.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
227
|
Cooper JB, Cohen EEW. Mechanisms of resistance to EGFR inhibitors in head and neck cancer. Head Neck 2009; 31:1086-94. [PMID: 19378324 DOI: 10.1002/hed.21109] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Epidermal growth factor receptor (EGFR), a receptor tyrosine kinase that activates multiple signaling pathways, including phosphatidylinositol-3-kinase/v-AKT murine thymoma viral oncogene homolog protein (Akt), has long been a target of novel therapies. Despite universal EGFR expression in head and neck squamous cell carcinoma (HNSCC), the majority of patients do not respond to EGFR inhibitors. This review focuses on mechanisms of resistance to these agents in HNSCC, and how these may be unique when compared with other malignancies such as non-small cell lung and colorectal cancers. Published studies and abstracts reveal that there are likely several mechanisms underlying resistance, suggesting that different strategies will be required to improve efficacy of EGFR inhibitors in HNSCC.
Collapse
Affiliation(s)
- Jonathan B Cooper
- Pritzker School of Medicine, University of Chicago, Chicago, Illinois, USA
| | | |
Collapse
|
228
|
Desbois-Mouthon C, Baron A, Blivet-Van Eggelpoël MJ, Fartoux L, Venot C, Bladt F, Housset C, Rosmorduc O. Insulin-like growth factor-1 receptor inhibition induces a resistance mechanism via the epidermal growth factor receptor/HER3/AKT signaling pathway: rational basis for cotargeting insulin-like growth factor-1 receptor and epidermal growth factor receptor in hepatocellular carcinoma. Clin Cancer Res 2009; 15:5445-56. [PMID: 19706799 DOI: 10.1158/1078-0432.ccr-08-2980] [Citation(s) in RCA: 126] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE The insulin-like growth factor (IGF) signaling axis is frequently dysregulated in hepatocellular carcinoma (HCC). Therefore, we investigated whether the specific targeting of the IGF type 1 receptor (IGF-1R) might represent a new therapeutic approach for this tumor. EXPERIMENTAL DESIGN Total and phosphorylated levels of IGF-1R were measured in 21 paired samples of human HCCs and adjacent nontumoral livers using ELISA. The antineoplastic potency of a novel anti-IGF-1R antibody, AVE1642, was examined in five human hepatoma cell lines. RESULTS Overexpression of IGF-1R was detected in 33% of HCCs and increased activation of IGF-1R was observed in 52% of tumors. AVE1642 alone had moderate inhibitory effects on cell viability. However, its combination with gefitinib, an epidermal growth factor receptor (EGFR) inhibitor, induced supra-additive effects in all cell lines that were associated with cell cycle blockage and inhibition of AKT phosphorylation. The combination of AVE1642 with rapamycin also induced a synergistic reduction of viability and of AKT phosphorylation. Of marked interest, AVE1642 alone up-regulated the phosphorylated and total levels of HER3, the main partner of EGFR, and AVE1642-induced phosphorylation of HER3 was prevented by gefitinib. Moreover, the down-regulation of HER3 expression with siRNA reduced AKT phosphorylation and increased cell sensitivity to AVE1642. CONCLUSIONS These findings indicate that hepatoma cells overcome IGF-1R inhibition through HER3 activation in an EGFR-dependent mechanism, and that HER3 represents a critical mediator in acquired resistance to anti-IGF-1R therapy. These results provide a strong rational for targeting simultaneously EGFR and IGF-1R in clinical trials for HCC].
Collapse
|
229
|
Hill-Baskin AE, Markiewski MM, Buchner DA, Shao H, DeSantis D, Hsiao G, Subramaniam S, Berger NA, Croniger C, Lambris JD, Nadeau JH. Diet-induced hepatocellular carcinoma in genetically predisposed mice. Hum Mol Genet 2009; 18:2975-88. [PMID: 19454484 PMCID: PMC2714725 DOI: 10.1093/hmg/ddp236] [Citation(s) in RCA: 130] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2009] [Accepted: 05/14/2009] [Indexed: 12/15/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the leading causes of cancer death worldwide, with approximately 70% of cases resulting from hepatitis B and C viral infections, aflatoxin exposure, chronic alcohol use or genetic liver diseases. The remaining approximately 30% of cases are associated with obesity, type 2 diabetes and related metabolic diseases, although a direct link between these pathologies and HCCs has not been established. We tested the long-term effects of high-fat and low-fat diets on males of two inbred strains of mice and discovered that C57BL/6J but not A/J males were susceptible to non-alcoholic steatohepatitis (NASH) and HCC on a high-fat but not low-fat diet. This strain-diet interaction represents an important model for genetically controlled, diet-induced HCC. Susceptible mice showed morphological characteristics of NASH (steatosis, hepatitis, fibrosis and cirrhosis), dysplasia and HCC. mRNA profiles of HCCs versus tumor-free liver showed involvement of two signaling networks, one centered on Myc and the other on NFkappaB, similar to signaling described for the two major classes of HCC in humans. miRNA profiles revealed dramatically increased expression of a cluster of miRNAs on the X chromosome without amplification of the chromosomal segment. A switch from high-fat to low-fat diet reversed these outcomes, with switched C57BL/6J males being lean rather than obese and without evidence for NASH or HCCs at the end of the study. A similar diet modification may have important implications for prevention of HCCs in humans.
Collapse
Affiliation(s)
- Annie E. Hill-Baskin
- Department of Genetics, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Maciej M. Markiewski
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia 19104, USA
| | - David A. Buchner
- Department of Genetics, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Haifeng Shao
- Department of Genetics, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - David DeSantis
- Department of Nutrition, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Gene Hsiao
- Department of Bioengineering, University of California, San Diego, CA 93093, USA
| | - Shankar Subramaniam
- Department of Bioengineering, University of California, San Diego, CA 93093, USA
| | - Nathan A. Berger
- Case Center for Transdisciplinary Research on Energetics and Cancer
- Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Colleen Croniger
- Department of Nutrition, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - John D. Lambris
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia 19104, USA
| | - Joseph H. Nadeau
- Department of Genetics, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
- Case Center for Transdisciplinary Research on Energetics and Cancer
- Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| |
Collapse
|
230
|
Li Y, VandenBoom TG, Kong D, Wang Z, Ali S, Philip PA, Sarkar FH. Up-regulation of miR-200 and let-7 by natural agents leads to the reversal of epithelial-to-mesenchymal transition in gemcitabine-resistant pancreatic cancer cells. Cancer Res 2009; 69:6704-12. [PMID: 19654291 DOI: 10.1158/0008-5472.can-09-1298] [Citation(s) in RCA: 543] [Impact Index Per Article: 36.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Pancreatic cancer is the fourth most common cause of cancer death in the United States, and the aggressiveness of pancreatic cancer is in part due to its intrinsic and extrinsic drug resistance characteristics, which are also associated with the acquisition of epithelial-to-mesenchymal transition (EMT). Emerging evidence also suggests that the processes of EMT are regulated by the expression status of many microRNAs (miRNA), which are believed to function as key regulators of various biological and pathologic processes during tumor development and progression. In the present study, we compared the expression of miRNAs between gemcitabine-sensitive and gemcitabine-resistant pancreatic cancer cells and investigated whether the treatment of cells with "natural agents" [3,3'-diindolylmethane (DIM) or isoflavone] could affect the expression of miRNAs. We found that the expression of miR-200b, miR-200c, let-7b, let-7c, let-7d, and let-7e was significantly down-regulated in gemcitabine-resistant cells, which showed EMT characteristics such as elongated fibroblastoid morphology, lower expression of epithelial marker E-cadherin, and higher expression of mesenchymal markers such as vimentin and ZEB1. Moreover, we found that reexpression of miR-200 by transfection studies or treatment of gemcitabine-resistant cells with either DIM or isoflavone resulted in the down-regulation of ZEB1, slug, and vimentin, which was consistent with morphologic reversal of EMT phenotype leading to epithelial morphology. These results provide experimental evidence, for the first time, that DIM and isoflavone could function as miRNA regulators leading to the reversal of EMT phenotype, which is likely to be important for designing novel therapies for pancreatic cancer.
Collapse
Affiliation(s)
- Yiwei Li
- Department of Pathology, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, Michigan 48201, USA
| | | | | | | | | | | | | |
Collapse
|
231
|
Finn RS, Zhu AX. Targeting angiogenesis in hepatocellular carcinoma: focus on VEGF and bevacizumab. Expert Rev Anticancer Ther 2009; 9:503-9. [PMID: 19374603 DOI: 10.1586/era.09.6] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Hepatocellular carcinoma (HCC) is one of the most common malignancies worldwide and one of the few malignancies with an increasing incidence in the USA. While the relationship between HCC and its inciting risk factors (e.g., hepatitis B, hepatitis C and alcohol liver disease) is well defined, driving genetic alterations are still yet to be identified. Clinically, HCC tends to be hypervascular and, for that reason, transarterial chemoembolization has proven to be effective in managing many patients with localized disease. More recently, angiogenesis has been targeted effectively with pharmacologic strategies, including monoclonal antibodies against VEGF and the VEGF receptor, as well as small-molecule kinase inhibitors of the VEGF receptor. Targeting angiogenesis with these approaches has been validated in several different solid tumors since the initial approval of bevacizumab for advanced colon cancer in 2004. In HCC, only sorafenib has been shown to extend survival in patients with advanced HCC and has opened the door for other anti-angiogenic strategies. Here, we will review the data supporting the targeting of the VEGF axis in HCC and the preclinical and early clinical development of bevacizumab.
Collapse
Affiliation(s)
- Richard S Finn
- Department of Medicine, Division of Hematology/Oncology, Geffen School of Medicine at UCLA, 10833 Le Conte Avenue, 11-934 Factor building, Los Angeles, CA 90095, USA.
| | | |
Collapse
|
232
|
Singh A, Greninger P, Rhodes D, Koopman L, Violette S, Bardeesy N, Settleman J. A gene expression signature associated with "K-Ras addiction" reveals regulators of EMT and tumor cell survival. Cancer Cell 2009; 15:489-500. [PMID: 19477428 PMCID: PMC2743093 DOI: 10.1016/j.ccr.2009.03.022] [Citation(s) in RCA: 646] [Impact Index Per Article: 43.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2008] [Revised: 12/22/2008] [Accepted: 03/25/2009] [Indexed: 02/06/2023]
Abstract
K-ras mutations occur frequently in epithelial cancers. Using short hairpin RNAs to deplete K-Ras in lung and pancreatic cancer cell lines harboring K-ras mutations, two classes were identified-lines that do or do not require K-Ras to maintain viability. Comparing these two classes of cancer cells revealed a gene expression signature in K-Ras-dependent cells, associated with a well-differentiated epithelial phenotype, which was also seen in primary tumors. Several of these genes encode pharmacologically tractable proteins, such as Syk and Ron kinases and integrin beta6, depletion of which induces epithelial-mesenchymal transformation (EMT) and apoptosis specifically in K-Ras-dependent cells. These findings indicate that epithelial differentiation and tumor cell viability are associated, and that EMT regulators in "K-Ras-addicted" cancers represent candidate therapeutic targets.
Collapse
Affiliation(s)
- Anurag Singh
- Massachusetts General Hospital Cancer Center and Harvard Medical School, 149 13 Street, Charlestown, MA 02129, USA
| | - Patricia Greninger
- Massachusetts General Hospital Cancer Center and Harvard Medical School, 149 13 Street, Charlestown, MA 02129, USA
| | - Daniel Rhodes
- Department of Pathology and Department of Bioinformatics, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Louise Koopman
- Department of Discovery Oncology, Biogen Idec, Cambridge, MA 02142
| | - Sheila Violette
- Stromedix Inc., One Canal Park, Suite 1120, Cambridge MA 02141
| | - Nabeel Bardeesy
- Massachusetts General Hospital Cancer Center and Harvard Medical School, 149 13 Street, Charlestown, MA 02129, USA
| | - Jeff Settleman
- Massachusetts General Hospital Cancer Center and Harvard Medical School, 149 13 Street, Charlestown, MA 02129, USA
- Correspondence: Telephone: (617) 724-9556, fax: (617) 726-7808,
| |
Collapse
|
233
|
Pei Y, Kano J, Iijima T, Morishita Y, Inadome Y, Noguchi M. Overexpression of Dickkopf 3 in hepatoblastomas and hepatocellular carcinomas. Virchows Arch 2009; 454:639-46. [PMID: 19437037 DOI: 10.1007/s00428-009-0772-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2009] [Revised: 04/03/2009] [Accepted: 04/07/2009] [Indexed: 12/21/2022]
Abstract
Dickkopf 3 (Dkk3) is a protein expressed at a very early stage of hepatogenesis. In this study, we examined whether Dkk3 was related to a premature or dedifferentiated nature in hepatoblastomas (HBLs) and hepatocellular carcinomas (HCCs). It was demonstrated that Dkk3 was overexpressed in HBLs and HCCs and that its expression was more frequent in the former than in the latter, being consistent with the fact that most HBLs show an embryonal or fetal hepatic histology, whereas there was no distinct relationship between Dkk3 expression and clinical data or histology. All of the HBLs expressed Dkk3, alpha-fetoprotein (AFP), or both proteins, suggesting that, similar to AFP, Dkk3 is another potentially useful biomarker detecting a wide range of HBLs. Furthermore, Dkk3 and AFP were expressed reciprocally in the tumors. These results suggest that Dkk3 may be related to the premature or dedifferentiated nature of HBLs and HCCs, whereas AFP may be related to a more differentiated nature. Thus, assessment of Dkk3 and AFP may be useful in the diagnosis of hepatic tumors.
Collapse
Affiliation(s)
- Yihua Pei
- Department of Pathology, Institute of Basic Medical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | | | | | | | | | | |
Collapse
|
234
|
Adenosquamous carcinoma of the pancreas harbors KRAS2, DPC4 and TP53 molecular alterations similar to pancreatic ductal adenocarcinoma. Mod Pathol 2009; 22:651-9. [PMID: 19270646 DOI: 10.1038/modpathol.2009.15] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Adenosquamous carcinoma of the pancreas is one of the most aggressive forms of pancreatic cancer. Molecular characterizations of this rare tumor subtype are sparse. Understanding the common molecular and pathologic features of pancreatic adenosquamous carcinomas could provide critical information for identifying therapeutic targets. Herein, we analyzed the pathologic and molecular features of our series of eight pancreatic adenosquamous carcinomas. We found KRAS2 gene mutations at codon 12 in all eight cases. All the cases showed loss of p16 protein. In three of these cases the loss was attributed to an exon 2 homozygous deletion in the p16/CDKN2a gene. The majority of the cases had loss of Dpc4 protein and strong nuclear p53 positivity, similar to the molecular signature found in pancreatic ductal adenocarcinoma. We found that E-cadherin was either lost or reduced in all cases and that epidermal growth factor receptor was overexpressed in all cases. The squamous component was positive for p63 staining and thus p63 labeling was helpful in identifying squamous differentiation in adenosquamous carcinomas with an acantholytic growth pattern. In summary, although pancreatic adenosquamous carcinoma and ductal adenocarcinoma have overlapping pathologic and molecular characteristics, there are distinct differences that may be helpful in diagnostic and therapeutic strategies.
Collapse
|
235
|
|
236
|
Abstract
PURPOSE OF REVIEW Over the past decades, advances in the knowledge of the molecular pathogenesis of hepatocellular carcinoma (HCC) have allowed significant improvements in the therapeutic management of this devastating disease. Several investigations have established the role of aberrant activation of major intracellular signaling pathways during human hepatocarcinogenesis. Genome-wide analysis of DNA copy number changes and gene expression led to the identification of gene signatures and novel targets for cancer treatment. Numerous attempts have tried to develop a molecular classification of HCC. This review aims to summarize the most relevant genetic alterations and pathways involved in the development and progression of HCC, providing an overview of the molecular targeted therapies tested so far in human HCC. RECENT FINDINGS The discovery of sorafenib, a multikinase inhibitor, as a treatment with survival benefits in patients with advanced HCC, has become a major breakthrough in the clinical management of HCC. For the first time, a molecular therapy was able to demonstrate significant efficacy for the treatment of HCC patients. New guidelines have established the ideal endpoints for the design of clinical trials for HCC. At last, a molecular classification of HCC based on genome-wide investigations, able to identify patient subclasses according to drug sensitivity will lead to a more personalized medicine. SUMMARY In this review, we provide a comprehensive analysis of the underlying molecular mechanisms leading to human hepatocarcinogenesis, providing the scientific rationale for the development of new therapeutic targets.
Collapse
|
237
|
Yam JWP, Tse EYT, Ng IOL. Role and significance of focal adhesion proteins in hepatocellular carcinoma. J Gastroenterol Hepatol 2009; 24:520-30. [PMID: 19368632 DOI: 10.1111/j.1440-1746.2009.05813.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Focal adhesions are structural links between the extracellular matrix and actin cytoskeleton. They are important sites where dynamic alterations of proteins in the focal contacts are involved during cell movement. Focal adhesions are composed of diverse molecules, for instance, receptors, structural proteins, adaptors, GTPase, kinases and phosphatases. These molecules play critical roles in normal physiological events such as cellular adhesion, movement, cytoskeletal structure and intracellular signaling pathways. In cancers, aberrant expression and altered functions of focal adhesion proteins contribute to adverse tumor behavior. It is evident that these proteins do not function alone, but rather associate and work together in the process of tumor development and cancer metastasis. Focal adhesion proteins have been shown to play critical roles in hepatocellular carcinoma. Understanding the molecular interactions and mechanisms of the interconnected focal adhesion proteins is of particular importance in understanding mechanisms underlying hepatocellular carcinoma progression and development of potential effective treatment.
Collapse
Affiliation(s)
- Judy Wai Ping Yam
- Liver Cancer and Hepatitis Research Laboratory, Department of Pathology, The University of Hong Kong, Pokfulam, Hong Kong
| | | | | |
Collapse
|
238
|
Hollier BG, Evans K, Mani SA. The epithelial-to-mesenchymal transition and cancer stem cells: a coalition against cancer therapies. J Mammary Gland Biol Neoplasia 2009; 14:29-43. [PMID: 19242781 DOI: 10.1007/s10911-009-9110-3] [Citation(s) in RCA: 270] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2008] [Accepted: 02/08/2009] [Indexed: 12/11/2022] Open
Abstract
During cancer progression, some cells within the primary tumor may reactivate a latent embryonic program known as epithelial-to-mesenchymal transition (EMT). Through EMT, transformed epithelial cells can acquire the mesenchymal traits that seem to facilitate metastasis. Indeed, there is accumulating evidence that EMT and mesenchymal-related gene expression are associated with aggressive breast cancer subtypes and poor clinical outcome in breast cancer patients. More recently, the EMT program was shown to endow normal and transformed mammary epithelial cells with stem cell properties, including the ability to self-renew and efficiently initiate tumors. This link between EMT and stem cells may have numerous implications in the progression of breast tumors. The EMT process may facilitate the generation of cancer cells with the mesenchymal traits needed for dissemination as well as the self-renewal properties needed for initiation of secondary tumors. Breast cancer stem cells are resistant to many conventional cancer therapies, which can promote tumor relapse. Therefore, the generation of cancer stem cells by EMT may promote the development of refractory and resistant breast tumors. The purpose of this review is to summarize the findings related to EMT and stem cells in cancer progression and therapy resistance.
Collapse
Affiliation(s)
- Brett G Hollier
- Department of Molecular Pathology, University of Texas M. D. Anderson Cancer Center, Houston, TX 77054, USA
| | | | | |
Collapse
|
239
|
Cokakli M, Erdal E, Nart D, Yilmaz F, Sagol O, Kilic M, Karademir S, Atabey N. Differential expression of Caveolin-1 in hepatocellular carcinoma: correlation with differentiation state, motility and invasion. BMC Cancer 2009; 9:65. [PMID: 19239691 PMCID: PMC2656543 DOI: 10.1186/1471-2407-9-65] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2008] [Accepted: 02/24/2009] [Indexed: 11/18/2022] Open
Abstract
Background Caveolin-1 is the main component of caveolae membrane structures and has different roles during tumorigenesis in different cancer types with varying expression profiles, indicating that the role of caveolin-1 varies according to tumor type. In this study, we investigated the role and expression of caveolin-1 in hepatocellular carcinogenesis. Methods We analyzed the expression of Caveolin-1 in 96 hepatocellular carcinoma (HCC), 29 cirrhosis, 20 normal liver tissues and 9 HCC cell lines by immunostaining and western blotting, respectively. After caveolin-1 was stably transfected to HepG2 and Huh7 cells, the effects of Caveolin-1 on the cellular motility, matrix invasion and anchorage-independent growth were studied. Also, caveolae structure was disrupted in endogenously caveolin expressing cells, SNU 449 and SNU 475 by addition of methyl-β-cyclodextrin and analyzed cellular motility and invasion. Results In HCC cell lines, Caveolin-1 expression is correlated to differentiation and basal motility status of these cells. The percentage of Caveolin-1 positivity was found extremely low in normal liver tissue (5%) while it was increased in cirrhosis (45%) and in HCC (66%) (p = 0.002 and p = 0.001 respectively). Cav-1 expression in poorly differentiated HCC samples has been found significantly higher than well differentiated ones (p = 0.001). The caveolin-1 expression was found significantly higher in tumor cells than its peritumoral cirrhotic tissues in HCC samples (p < 0.001). Additionally, the patients with positive staining for Caveolin-1 had significantly higher portal vein invasion than those with negative staining (p = 0.02). Caveolin-1 overexpression increased motility and invasion of HepG2 and Huh7 cells. And disruption of caveolae results in a dramatic decline in both motility and invasion abilities in SNU-449 and SNU-475 cells. Furthermore, caveolin-1 overexpression resulted in down-regulation of E-cadherin while up-regulation of Vimentin. Also, it increased secreted MMP-2 and expression levels of MMP-9 and MT1-MMP. There was no significant difference in colony formation in soft agar between stable clones and parental ones. Conclusion In conclusion, stepwise increase in Cav-1 expression in neoplastic stage with respect to pre-neoplastic stage during hepatocellular carcinogenesis and its ability to stimulate HCC cell motility and invasiveness indicate that this protein plays a crucial role in tumor progression.
Collapse
Affiliation(s)
- Murat Cokakli
- Dokuz Eylul University, Faculty of Medicine, Department of Medical Biology and Genetics, Inciralti, Izmir, Turkey.
| | | | | | | | | | | | | | | |
Collapse
|
240
|
Ho HK, Pok S, Streit S, Ruhe JE, Hart S, Lim KS, Loo HL, Aung MO, Lim SG, Ullrich A. Fibroblast growth factor receptor 4 regulates proliferation, anti-apoptosis and alpha-fetoprotein secretion during hepatocellular carcinoma progression and represents a potential target for therapeutic intervention. J Hepatol 2009; 50:118-27. [PMID: 19008009 DOI: 10.1016/j.jhep.2008.08.015] [Citation(s) in RCA: 139] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2008] [Revised: 08/22/2008] [Accepted: 08/29/2008] [Indexed: 12/17/2022]
Abstract
BACKGROUND/AIMS FGFR4, a member of the fibroblast growth factor receptor family, has been recently associated with progression of melanoma, breast and head and neck carcinoma. Given its uniquely high expression in the liver, we investigated its contributory role to hepatocellular carcinoma (HCC). METHODS We performed a comprehensive sequencing of full-length FGFR4 transcript in 57 tumor/normal HCC tissue pairs, and quantified their mRNA expressions. Notable mutations and expression patterns were correlated with patient data. Clinically significant trends were examined in in vitro models. RESULTS We found eight genetic alterations including two highly frequent polymorphisms (V10I and G338R). Secretion of alpha-fetoprotein (AFP), a HCC biomarker, was increased among patients bearing homozygous Arg388 alleles. One-third of these patients exhibited increased FGFR4 mRNA expression in the matched tumor/normal tissue. Subsequent in vitro perturbation of FGFR4 signaling through both FGF19-stimulation and FGFR4 silencing confirmed a mechanistic link between FGFR4 activities and tumor aggressiveness. More importantly, inhibition of FGFR activity with PD173074 exquisitely blocked HuH7 (high FGFR4 expression) proliferation as compared to control cell lines. CONCLUSIONS FGFR4 contributes significantly to HCC progression by modulating AFP secretion, proliferation and anti-apoptosis. Its frequent overexpression in patients renders its inhibition a novel and much needed pharmacological approach against HCC.
Collapse
Affiliation(s)
- Han Kiat Ho
- Singapore OncoGenome Laboratory, Institute of Medical Biology, A *STAR, 8A Biomedical Grove, #06-06 Immunos, Singapore 138648, Singapore.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
241
|
Song IH. Molecular targeting for treatment of advanced hepatocellular carcinoma. THE KOREAN JOURNAL OF HEPATOLOGY 2009; 15:299-308. [DOI: 10.3350/kjhep.2009.15.3.299] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Il Han Song
- Department of Internal Medicine, Dankook University College of Medicine, Cheonan, Korea
| |
Collapse
|
242
|
Chitnis MM, Yuen JSP, Protheroe AS, Pollak M, Macaulay VM. The type 1 insulin-like growth factor receptor pathway. Clin Cancer Res 2008; 14:6364-70. [PMID: 18927274 DOI: 10.1158/1078-0432.ccr-07-4879] [Citation(s) in RCA: 329] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Research conducted over the past two decades has shown the importance of the type 1 insulin-like growth factor receptor (IGF1R) in tumorigenesis, metastasis, and resistance to existing forms of cancer therapy. The IGF1R itself has only recently been accepted as a credible treatment target, however, perhaps reflecting the potential problems for drug design posed by normal tissue IGF1R expression, and close homology with the insulin receptor. Currently approximately 12 anti-IGF1R therapeutics are undergoing clinical evaluation, including blocking antibodies and tyrosine kinase inhibitors. This review will summarize the principal signaling pathways activated by IGF1R and the preclinical data that validated this receptor as a treatment target. We will review clinical progress in the testing of IGF1R inhibitory drug candidates, the relative benefits and potential toxicities of coinhibition of the insulin receptor, and the rationale for combining IGF1R blockade with other cancer treatments. An understanding of IGF1R signaling is important because it will guide the incorporation of appropriate molecular markers into clinical trial design. This will be key to the identification of patients most likely to benefit, and so will influence the ability of IGF1R inhibition to make the transition from experimental intervention to clinical therapy.
Collapse
|
243
|
Proteomic analysis of tumor necrosis factor-alpha resistant human breast cancer cells reveals a MEK5/Erk5-mediated epithelial-mesenchymal transition phenotype. Breast Cancer Res 2008; 10:R105. [PMID: 19087274 PMCID: PMC2656902 DOI: 10.1186/bcr2210] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2008] [Revised: 10/29/2008] [Accepted: 12/16/2008] [Indexed: 12/21/2022] Open
Abstract
Introduction Despite intensive study of the mechanisms of chemotherapeutic drug resistance in human breast cancer, few reports have systematically investigated the mechanisms that underlie resistance to the chemotherapy-sensitizing agent tumor necrosis factor (TNF)-α. Additionally, the relationship between TNF-α resistance mediated by MEK5/Erk5 signaling and epithelial-mesenchymal transition (EMT), a process associated with promotion of invasion, metastasis, and recurrence in breast cancer, has not previously been investigated. Methods To compare differences in the proteome of the TNF-α resistant MCF-7 breast cancer cell line MCF-7-MEK5 (in which TNF-α resistance is mediated by MEK5/Erk5 signaling) and its parental TNF-a sensitive MCF-7 cell line MCF-7-VEC, two-dimensional gel electrophoresis and high performance capillary liquid chromatography coupled with tandem mass spectrometry approaches were used. Differential protein expression was verified at the transcriptional level using RT-PCR assays. An EMT phenotype was confirmed using immunofluorescence staining and gene expression analyses. A short hairpin RNA strategy targeting Erk5 was utilized to investigate the requirement for the MEK/Erk5 pathway in EMT. Results Proteomic analyses and PCR assays were used to identify and confirm differential expression of proteins. In MCF-7-MEK5 versus MCF-7-VEC cells, vimentin (VIM), glutathione-S-transferase P (GSTP1), and creatine kinase B-type (CKB) were upregulated, and keratin 8 (KRT8), keratin 19 (KRT19) and glutathione-S-transferase Mu 3 (GSTM3) were downregulated. Morphology and immunofluorescence staining for E-cadherin and vimentin revealed an EMT phenotype in the MCF-7-MEK5 cells. Furthermore, EMT regulatory genes SNAI2 (slug), ZEB1 (δ-EF1), and N-cadherin (CDH2) were upregulated, whereas E-cadherin (CDH1) was downregulated in MCF-7-MEK5 cells versus MCF-7-VEC cells. RNA interference targeting of Erk5 reversed MEK5-mediated EMT gene expression. Conclusions This study demonstrates that MEK5 over-expression promotes a TNF-α resistance phenotype associated with distinct proteomic changes (upregulation of VIM/vim, GSTP1/gstp1, and CKB/ckb; and downregulation of KRT8/krt8, KRT19/krt19, and GSTM3/gstm3). We further demonstrate that MEK5-mediated progression to an EMT phenotype is dependent upon intact Erk5 and associated with upregulation of SNAI2 and ZEB1 expression.
Collapse
|
244
|
McDonald PC, Fielding AB, Dedhar S. Integrin-linked kinase--essential roles in physiology and cancer biology. J Cell Sci 2008; 121:3121-32. [PMID: 18799788 DOI: 10.1242/jcs.017996] [Citation(s) in RCA: 276] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Integrin-linked kinase (ILK) is a multifunctional intracellular effector of cell-matrix interactions and regulates many cellular processes, including growth, proliferation, survival, differentiation, migration, invasion and angiogenesis. The use of recently developed Cre-lox-driven recombination and RNA-interference technologies has enabled the evaluation of the physiological roles of ILK in several major organ systems. Significant developmental and tissue-homeostasis defects occur when the gene that encodes ILK is deleted, whereas the expression of ILK is often elevated in human malignancies. Although the cause(s) of ILK overexpression remain to be fully elucidated, accumulating evidence suggests that its oncogenic capacity derives from its regulation of several downstream targets that provide cells with signals that promote proliferation, survival and migration, supporting the concept that ILK is a relevant therapeutic target in human cancer. Furthermore, a global analysis of the ILK 'interactome' has yielded several novel interactions, and has revealed exciting and unexpected cellular functions of ILK that might have important implications for the development of effective therapeutic agents.
Collapse
Affiliation(s)
- Paul C McDonald
- British Columbia Cancer Agency, BC Cancer Research Centre, Department of Cancer Genetics, Vancouver, BC, Canada
| | | | | |
Collapse
|
245
|
Mechanisms of resistance to EGFR tyrosine kinase inhibitors: implications for patient selection and drug combination strategies. Target Oncol 2008. [DOI: 10.1007/s11523-008-0093-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
246
|
De Wever O, Pauwels P, De Craene B, Sabbah M, Emami S, Redeuilh G, Gespach C, Bracke M, Berx G. Molecular and pathological signatures of epithelial-mesenchymal transitions at the cancer invasion front. Histochem Cell Biol 2008; 130:481-94. [PMID: 18648847 PMCID: PMC2522326 DOI: 10.1007/s00418-008-0464-1] [Citation(s) in RCA: 173] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/12/2008] [Indexed: 12/18/2022]
Abstract
Reduction of epithelial cell-cell adhesion via the transcriptional repression of cadherins in combination with the acquisition of mesenchymal properties are key determinants of epithelial-mesenchymal transition (EMT). EMT is associated with early stages of carcinogenesis, cancer invasion and recurrence. Furthermore, the tumor stroma dictates EMT through intensive bidirectional communication. The pathological analysis of EMT signatures is critically, especially to determine the presence of cancer cells at the resection margins of a tumor. When diffusion barriers disappear, EMT markers may be detected in sera from cancer patients. The detection of EMT signatures is not only important for diagnosis but can also be exploited to enhance classical chemotherapy treatments. In conclusion, further detailed understanding of the contextual cues and molecular mediators that control EMT will be required in order to develop diagnostic tools and small molecule inhibitors with potential clinical implications.
Collapse
Affiliation(s)
- Olivier De Wever
- Laboratory of Experimental Cancer Research, Department of Radiotherapy and Nuclear Medicine, Ghent University Hospital, De Pintelaan 185, 9000 Ghent, Belgium
| | - Patrick Pauwels
- Department of Pathology, Ghent University Hospital, 9000 Ghent, Belgium
| | - Bram De Craene
- Molecular and Cellular Oncology Unit, Department for Molecular Biomedical Research, VIB, Technologiepark 927, Zwijnaarde, 9052 Ghent, Belgium
- Department of Molecular Biology, Ghent University, 9052 Ghent, Belgium
| | | | | | | | - Christian Gespach
- INSERM U 673, Paris, France
- Laboratory of Molecular and Clinical Oncology of Solid Tumors, Faculté de Médecine, Université Pierre et Marie Curie-Paris 6, 755071 Paris Cedex 12, France
| | - Marc Bracke
- Laboratory of Experimental Cancer Research, Department of Radiotherapy and Nuclear Medicine, Ghent University Hospital, De Pintelaan 185, 9000 Ghent, Belgium
| | - Geert Berx
- Molecular and Cellular Oncology Unit, Department for Molecular Biomedical Research, VIB, Technologiepark 927, Zwijnaarde, 9052 Ghent, Belgium
- Department of Molecular Biology, Ghent University, 9052 Ghent, Belgium
| |
Collapse
|
247
|
Sabbah M, Emami S, Redeuilh G, Julien S, Prévost G, Zimber A, Ouelaa R, Bracke M, De Wever O, Gespach C. Molecular signature and therapeutic perspective of the epithelial-to-mesenchymal transitions in epithelial cancers. Drug Resist Updat 2008; 11:123-51. [PMID: 18718806 DOI: 10.1016/j.drup.2008.07.001] [Citation(s) in RCA: 240] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2008] [Revised: 06/25/2008] [Accepted: 07/01/2008] [Indexed: 12/26/2022]
Abstract
The mechanisms involved in the epithelial to mesenchymal transition (EMT) are integrated in concert with master developmental and oncogenic pathways regulating in tumor growth, angiogenesis, metastasis, as well as the reprogrammation of specific gene repertoires ascribed to both epithelial and mesenchymal cells. Consequently, it is not unexpected that EMT has profound impacts on the neoplastic progression, patient survival, as well as the resistance of cancers to therapeutics (taxol, vincristine, oxaliplatin, EGF-R targeted therapy and radiotherapy), independent of the "classical" resistance mechanisms linked to genotoxic drugs. New therapeutic combinations using genotoxic agents and/or EMT signaling inhibitors are therefore expected to circumvent the chemotherapeutic resistance of cancers characterized by transient or sustained EMT signatures. Thus, targeting critical orchestrators at the convergence of several EMT pathways, such as the transcription pathways NF-kappaB, AKT/mTOR axis, MAPK, beta-catenin, PKC and the AP-1/SMAD factors provide a realistic strategy to control EMT and the progression of human epithelial cancers. Several inhibitors targeting these signaling platforms are already tested in preclinical and clinical oncology. In addition, upstream EMT signaling pathways induced by receptor and nonreceptor tyrosine kinases (e.g. EGF-R, IGF-R, VEGF-R, integrins/FAK, Src) and G-protein-coupled receptors (GPCR) constitute practical options under preclinical research, clinical trials or are currently used in the clinic for cancer treatment: e.g. small molecule inhibitors (Iressa: targeting selectively the EGF-R; CP-751,871, AMG479, NVP-AEW541, BMS-536924, PQIP, AG1024: IGF-R; AZD2171, ZD6474: VEGF-R; AZD0530, BMS-354825, SKI606: Src; BIM-46174: GPCR; rapamycin, CCI-779, RAD-001: mTOR) and humanized function blocking antibodies (Herceptin: ErbB2; Avastin: VEGF-A; Erbitux: EGF-R; Abegrin: alphavbeta3 integrins). We can assume that silencing RNA and adenovirus-based gene transfer of therapeutic miR and dominant interferring expression vectors targeting EMT pathways and signaling elements will bring additional ways for the treatment of epithelial cancers. Identification of the factors that initiate, modulate and effectuate EMT signatures and their underlying upstream oncogenic pathways should provide the basis of more efficient strategies to fight cancer progression as well as genetic and epigenetic forms of drug resistance. This goal can be accomplished using global screening of human clinical tumors by EMT-associated cDNA, proteome, miRome, and tissue arrays.
Collapse
Affiliation(s)
- Michèle Sabbah
- INSERM U673, Molecular and Clinical Oncology of Solid Tumors, Université Pierre et Marie Curie-Paris 6, Faculté de Médecine, Hôpital Saint-Antoine, 75571 Paris Cedex 12, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
248
|
Yao DF, Gu WJ, Li YM. Expression and dynamic alteration of hepatoma-related growth factors during malignant transformation of hepatocytes. Shijie Huaren Xiaohua Zazhi 2008; 16:2570-2575. [DOI: 10.11569/wcjd.v16.i23.2570] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a common hepatic malignancy worldwide. Its nature of rapid growth results in a grave prognosis. Its treatment is challenging because the mechanisms underlying tumor progression are still largely unknown. Recently, new molecular targets have been confirmed and various targeted agents are now being investigated for the treatment of HCC. The progression of HCC is closely associated with expression of hepatic growth factors that may be molecular targets for HCC treatment. This paper concludes the expression characters and dynamic changes of several hepatoma-related growth factors such as IGF-Ⅱ, VEGF, TGF-β1 and HGF.
Collapse
|