201
|
Yu C, Li Y, Chen G, Wu C, Wang X, Zhang Y. Bioactive constituents of animal-derived traditional Chinese medicinal materials for breast cancer: opportunities and challenges. J Zhejiang Univ Sci B 2022; 23:547-563. [PMID: 35794685 PMCID: PMC9264107 DOI: 10.1631/jzus.b2101019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 03/20/2022] [Indexed: 11/11/2022]
Abstract
Breast cancer is globally the most common invasive cancer in women and remains one of the leading causes of cancer-related deaths. Surgery, radiotherapy, chemotherapy, immunotherapy, and endocrine therapy are currently the main treatments for this cancer type. However, some breast cancer patients are prone to drug resistance related to chemotherapy or immunotherapy, resulting in limited treatment efficacy. Consequently, traditional Chinese medicinal materials (TCMMs) as natural products have become an attractive source of novel drugs. In this review, we summarized the current knowledge on the active components of animal-derived TCMMs, including Ophiocordycepssinensis-derived cordycepin, the aqueous and ethanolic extracts of O.sinensis, norcantharidin (NCTD), Chansu, bee venom, deer antlers, Ostreagigas, and scorpion venom, with reference to marked anti-breast cancer effects due to regulating cell cycle arrest, proliferation, apoptosis, metastasis, and drug resistance. In future studies, the underlying mechanisms for the antitumor effects of these components need to be further investigated by utilizing multi-omics technologies. Furthermore, large-scale clinical trials are necessary to validate the efficacy of bioactive constituents alone or in combination with chemotherapeutic drugs for breast cancer treatment.
Collapse
Affiliation(s)
- Chaochao Yu
- Department of Integrated Chinese and Western Medicine, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
| | - Yi Li
- Department of Oncology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
| | - Guopeng Chen
- Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
| | - Chaoyan Wu
- Department of Integrated Chinese and Western Medicine, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
| | - Xiuping Wang
- Department of Integrated Chinese and Western Medicine, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
| | - Yingwen Zhang
- Department of Integrated Chinese and Western Medicine, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China.
| |
Collapse
|
202
|
Ma X, Wang J. Formononetin: A Pathway to Protect Neurons. Front Integr Neurosci 2022; 16:908378. [PMID: 35910340 PMCID: PMC9326316 DOI: 10.3389/fnint.2022.908378] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 06/14/2022] [Indexed: 11/19/2022] Open
Abstract
Formononetin (FMN) is a phytoestrogen member of the flavonoid family, which has the pharmacological effects of antioxidative, antihypertensive, antitumor, and anti-infective. FMN demonstrates potential in the prevention and treatment of diseases, specifically neurological diseases, such as traumatic brain injury (TBI), spinal cord injury (SCI), ischemic stroke, cerebral ischemia-reperfusion, Alzheimer’s disease, and nerve tumor. Herein, a literature search is conducted to provide information on the signaling pathways of neuroprotection of formononetin based on the neuroprotective study. The significant neuroprotective function of FMN makes it a novel candidate for the development of drugs targeting the central nervous system.
Collapse
Affiliation(s)
- Xiaoyu Ma
- The Second Clinical Medical School, Nanjing Medical University, Nanjing, China
| | - Juejin Wang
- Department of Physiology, Nanjing Medical University, Nanjing, China
- *Correspondence: Juejin Wang,
| |
Collapse
|
203
|
Bajalia EM, Azzouz FB, Chism DA, Giansiracusa DM, Wong CG, Plaskett KN, Bishayee A. Phytochemicals for the Prevention and Treatment of Renal Cell Carcinoma: Preclinical and Clinical Evidence and Molecular Mechanisms. Cancers (Basel) 2022; 14:3278. [PMID: 35805049 PMCID: PMC9265746 DOI: 10.3390/cancers14133278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/26/2022] [Accepted: 06/30/2022] [Indexed: 11/18/2022] Open
Abstract
Renal cell carcinoma (RCC) is associated with about 90% of renal malignancies, and its incidence is increasing globally. Plant-derived compounds have gained significant attention in the scientific community for their preventative and therapeutic effects on cancer. To evaluate the anticancer potential of phytocompounds for RCC, we compiled a comprehensive and systematic review of the available literature. Our work was conducted following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses criteria. The literature search was performed using scholarly databases such as PubMed, Scopus, and ScienceDirect and keywords such as renal cell carcinoma, phytochemicals, cancer, tumor, proliferation, apoptosis, prevention, treatment, in vitro, in vivo, and clinical studies. Based on in vitro results, various phytochemicals, such as phenolics, terpenoids, alkaloids, and sulfur-containing compounds, suppressed cell viability, proliferation and growth, showed cytotoxic activity, inhibited invasion and migration, and enhanced the efficacy of chemotherapeutic drugs in RCC. In various animal tumor models, phytochemicals suppressed renal tumor growth, reduced tumor size, and hindered angiogenesis and metastasis. The relevant antineoplastic mechanisms involved upregulation of caspases, reduction in cyclin activity, induction of cell cycle arrest and apoptosis via modulation of a plethora of cell signaling pathways. Clinical studies demonstrated a reduced risk for the development of kidney cancer and enhancement of the efficacy of chemotherapeutic drugs. Both preclinical and clinical studies displayed significant promise of utilizing phytochemicals for the prevention and treatment of RCC. Further research, confirming the mechanisms and regulatory pathways, along with randomized controlled trials, are needed to establish the use of phytochemicals in clinical practice.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Anupam Bishayee
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA; (E.M.B.); (F.B.A.); (D.A.C.); (D.M.G.); (C.G.W.); (K.N.P.)
| |
Collapse
|
204
|
Siswodihardjo S, Pratama MRF, Praditapuspa EN, Kesuma D, Poerwono H, Widiandani T. Boesenbergia Pandurata as an Anti-Breast Cancer Agent: Molecular Docking
and ADMET Study. LETT DRUG DES DISCOV 2022. [DOI: 10.2174/1570180819666211220111245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
Boesenbergia pandurata or fingerroot is known to have various pharmacological
activities, including anticancer properties. Extracts from these plants are known to inhibit the growth of
cancer cells, including breast cancer. Anti-breast cancer activity is significantly influenced by the inhibition
of two receptors: ER-α and HER2. However, it is unknown which metabolites of B. pandurata play
the most crucial role in exerting anticancer activity.
Objective:
This study aimed to determine the metabolites of B. pandurata with the best potential as ER-α
and HER2 inhibitors.
Method:
The method used was molecular docking of several B. pandurata metabolites to ER-α and
HER2 receptors, followed by an ADMET study of several metabolites with the best docking results.
Results:
The docking results showed eight metabolites with the best docking results for the two receptors
based on the docking score and ligand-receptor interactions. Of these eight compounds, compounds 11
((2S)-7,8-dihydro-5-hydroxy-2-methyl-2-(4''-methyl-3''-pentenyl)-8-phenyl-2H,6H-benzo(1,2-b-5,4-
b')dipyran-6-one) and 34 (geranyl-2,4-dihydroxy-6-phenethylbenzoate) showed the potential to inhibit
both receptors. Both ADMET profiles also showed mixed results; however, there is a possibility of further
development.
Conclusion:
In conclusion, the metabolites of B. pandurata, especially compounds 11 and 34, can be
developed as anti-breast cancer agents by inhibiting ER-α and HER2.
Collapse
Affiliation(s)
- Siswandono Siswodihardjo
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Universitas Airlangga, Surabaya
60115, Indonesia
| | - Mohammad Rizki Fadhil Pratama
- Doctoral Program of Pharmaceutical Science, Faculty of Pharmacy, Universitas Airlangga, Surabaya 60115, Indonesia
- Department of Pharmacy, Faculty of Health Science, Universitas Muhammadiyah Palangkaraya, Palangka Raya
73111, Indonesia
| | - Ersanda Nurma Praditapuspa
- Master Program of Pharmaceutical Science, Faculty of Pharmacy, Universitas Airlangga, Surabaya
60115, Indonesia
| | - Dini Kesuma
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Universitas Surabaya, Surabaya
60293, Indonesia
| | - Hadi Poerwono
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Universitas Airlangga, Surabaya
60115, Indonesia
| | - Tri Widiandani
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Universitas Airlangga, Surabaya
60115, Indonesia
| |
Collapse
|
205
|
Arango-Varela SS, Luzardo-Ocampo I, Maldonado-Celis ME. Andean berry (Vaccinium meridionale Swartz) juice, in combination with Aspirin, displayed antiproliferative and pro-apoptotic mechanisms in vitro while exhibiting protective effects against AOM-induced colorectal cancer in vivo. Food Res Int 2022; 157:111244. [DOI: 10.1016/j.foodres.2022.111244] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 04/08/2022] [Accepted: 04/09/2022] [Indexed: 12/16/2022]
|
206
|
Liang H, Wang W, Zhu F, Chen S, Liu D, Sheng C. Discovery of novel bis-evodiamine derivatives with potent antitumor activity. Bioorg Med Chem 2022; 65:116793. [PMID: 35550978 DOI: 10.1016/j.bmc.2022.116793] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 04/19/2022] [Accepted: 04/30/2022] [Indexed: 11/27/2022]
Abstract
Inspired by antitumor natural product evodiamine, a series of novel bis-evodiamine derivatives were designed and synthesized, which showed potent antitumor activity. In particular, compound 13b effectively inhibited the proliferation and migration of HCT116 cells. Further mechanism studies revealed that compound 13b acted by inducing HCT116 cell apoptosis and arresting the cell cycle at the G2/M phase. Thus, compound 13b represents a promising lead compound for the discovery of novel antitumor agents.
Collapse
Affiliation(s)
- Huixin Liang
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, PR China; Department of Medicinal Chemistry, School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, PR China
| | - Wei Wang
- Department of Medicinal Chemistry, School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, PR China
| | - Fugui Zhu
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, PR China; Department of Medicinal Chemistry, School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, PR China
| | - Shuqiang Chen
- Department of Medicinal Chemistry, School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, PR China.
| | - Dan Liu
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, PR China.
| | - Chunquan Sheng
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, PR China; Department of Medicinal Chemistry, School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, PR China.
| |
Collapse
|
207
|
Dunsmore L, Navo CD, Becher J, de Montes EG, Guerreiro A, Hoyt E, Brown L, Zelenay V, Mikutis S, Cooper J, Barbieri I, Lawrinowitz S, Siouve E, Martin E, Ruivo PR, Rodrigues T, da Cruz FP, Werz O, Vassiliou G, Ravn P, Jiménez-Osés G, Bernardes GJL. Controlled masking and targeted release of redox-cycling ortho-quinones via a C-C bond-cleaving 1,6-elimination. Nat Chem 2022; 14:754-765. [PMID: 35764792 PMCID: PMC9252919 DOI: 10.1038/s41557-022-00964-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 05/03/2022] [Indexed: 12/15/2022]
Abstract
Natural products that contain ortho-quinones show great potential as anticancer agents but have been largely discarded from clinical development because their redox-cycling behaviour results in general systemic toxicity. Here we report conjugation of ortho-quinones to a carrier, which simultaneously masks their underlying redox activity. C-benzylation at a quinone carbonyl forms a redox-inactive benzyl ketol. Upon a specific enzymatic trigger, an acid-promoted, self-immolative C-C bond-cleaving 1,6-elimination mechanism releases the redox-active hydroquinone inside cells. By using a 5-lipoxygenase modulator, β-lapachone, we created cathepsin-B-cleavable quinone prodrugs. We applied the strategy for intracellular release of β-lapachone upon antibody-mediated delivery. Conjugation of protected β-lapachone to Gem-IgG1 antibodies, which contain the variable region of gemtuzumab, results in homogeneous, systemically non-toxic and conditionally stable CD33+-specific antibody-drug conjugates with in vivo efficacy against a xenograft murine model of acute myeloid leukaemia. This protection strategy could allow the use of previously overlooked natural products as anticancer agents, thus extending the range of drugs available for next-generation targeted therapeutics.
Collapse
Affiliation(s)
- Lavinia Dunsmore
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Claudio D Navo
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio-Bizkaia, Spain
| | - Julie Becher
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
| | | | - Ana Guerreiro
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
| | - Emily Hoyt
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Libby Brown
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
- Biologics Engineering, R&D, AstraZeneca, Cambridge, UK
| | | | - Sigitas Mikutis
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Jonathan Cooper
- Wellcome-MRC Cambridge Stem Cell Institute, Department of Haematology, University of Cambridge, Cambridge, UK
| | - Isaia Barbieri
- Division of Cellular and Molecular Pathology, Department of Pathology, University of Cambridge, Cambridge, UK
| | - Stefanie Lawrinowitz
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University Jena, Jena, Germany
| | - Elise Siouve
- Biologics Engineering, R&D, AstraZeneca, Cambridge, UK
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK
| | - Esther Martin
- Biologics Engineering, R&D, AstraZeneca, Cambridge, UK
| | - Pedro R Ruivo
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
| | - Tiago Rodrigues
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
| | - Filipa P da Cruz
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Oliver Werz
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University Jena, Jena, Germany
| | - George Vassiliou
- Wellcome-MRC Cambridge Stem Cell Institute, Department of Haematology, University of Cambridge, Cambridge, UK
| | - Peter Ravn
- Biologics Engineering, R&D, AstraZeneca, Cambridge, UK
- Department of Biotherapeutic Discovery, H. Lundbeck A/S, Valby, Denmark
| | - Gonzalo Jiménez-Osés
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio-Bizkaia, Spain.
- Ikerbasque, Basque Foundation for Science, Bilbao, Spain.
| | - Gonçalo J L Bernardes
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK.
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal.
| |
Collapse
|
208
|
Kaewpiboon C, Boonnak N, Kaowinn S, Yawut N, Chung YH. Formoxanthone C Inhibits Malignant Tumor Phenotypes of Human A549 Multidrug Resistant-cancer Cells through Signal Transducer and Activator of Transcription 1-Histone Deacetylase 4 Signaling. J Cancer Prev 2022; 27:112-121. [PMID: 35864853 PMCID: PMC9271403 DOI: 10.15430/jcp.2022.27.2.112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 06/09/2022] [Accepted: 06/09/2022] [Indexed: 11/12/2022] Open
Abstract
Considering that presence of cancer stem cell (CSC) subpopulation in tumor tissues confers anticancer drug resistance, we investigated whether human A549 lung cancer cells resistant to etoposide possess CSC-like phenotypes. Furthermore, it is known that these malignant tumor features are the leading cause of treatment failure in cancer. We have thus attempted to explore new therapeutic agents from natural products targeting these malignancies. We found that formoxanthone C (XanX), a 1,3,5,6-tetraoxygenated xanthone from Cratoxylum formosum ssp. pruniflorum, at a non-cytotoxic concentration reduced the expression of the signal transducer and activator of transcription 1 (STAT1) and histone deacetylase 4 (HDAC4) proteins, leading to inhibition of CSC-like phenotypes such as cell migration, invasion, and sphere-forming ability. Moreover, we found that treatment with STAT1 or HDAC4 small interfering RNAs significantly hindered these CSC-like phenotypes, indicating that STAT1 and HDAC4 play a role in the malignant tumor features. Taken together, our findings suggest that XanX may be a potential new therapeutic agent targeting malignant lung tumors.
Collapse
Affiliation(s)
- Chutima Kaewpiboon
- Department of Biology, Faculty of Science, Thaksin University, Phatthalung, Thailand
| | - Nawong Boonnak
- Department of Basic Science and Mathematics, Faculty of Science, Thaksin University, Songkhla, Thailand
| | - Sirichat Kaowinn
- Department of General Science and Liberal Arts, King Mongkut’s Institute of Technology Ladkrabang Prince of Chumphon Campus, Chumphon, Thailand
| | - Natpaphan Yawut
- Department of Cogno-Mechatronics Engineering, Pusan National University, Busan, Korea
| | - Young-Hwa Chung
- Department of Cogno-Mechatronics Engineering, Pusan National University, Busan, Korea
| |
Collapse
|
209
|
Kocovic A, Jeremic J, Bradic J, Sovrlic M, Tomovic J, Vasiljevic P, Andjic M, Draginic N, Grujovic M, Mladenovic K, Baskic D, Popovic S, Matic S, Zivkovic V, Jeremic N, Jakovljevic V, Manojlovic N. Phytochemical Analysis, Antioxidant, Antimicrobial, and Cytotoxic Activity of Different Extracts of Xanthoparmelia stenophylla Lichen from Stara Planina, Serbia. PLANTS (BASEL, SWITZERLAND) 2022; 11:1624. [PMID: 35807576 PMCID: PMC9269301 DOI: 10.3390/plants11131624] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 06/08/2022] [Accepted: 06/13/2022] [Indexed: 06/15/2023]
Abstract
The aim of this study was to identify some of the secondary metabolites present in acetonic, methanolic, and hexanic extracts of lichen Xanthoparmelia stenophylla and to examine their antioxidant, antimicrobial, and cytotoxic activity. Compounds of the depsid structure of lecanoric acid, obtusic acid, and atranorin as well as usnic acid with a dibenzofuran structure were identified in the extracts by HPLC. The acetone extract was shown to have the highest total phenolic (167.03 ± 1.12 mg GAE/g) and total flavonoid content (178.84 ± 0.93 mg QE/g) as well as the best antioxidant activity (DPPH IC50 = 81.22 ± 0.54). However, the antimicrobial and antibiofilm tests showed the best activity of hexanic extract, especially against strains of B. cereus, B. subtilis, and S. aureus (MIC < 0.08, and 0.3125 mg/mL, respectively). Additionally, by using the MTT method, the acetonic extract was reported to exhibit a strong cytotoxic effect on the HeLa and HCT-116 cell lines, especially after 72 h (IC50 = 21.17 ± 1.85 and IC50 = 21.48 ± 3.55, respectively). The promising antioxidant, antimicrobial, and cytotoxic effects of Xanthoparmelia stenophylla extracts shown in the current study should be further investigated in vivo and under clinical conditions.
Collapse
Affiliation(s)
- Aleksandar Kocovic
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia; (A.K.); (J.B.); (M.S.); (J.T.); (M.A.); (N.D.); (S.M.); (N.J.); (N.M.)
| | - Jovana Jeremic
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia; (A.K.); (J.B.); (M.S.); (J.T.); (M.A.); (N.D.); (S.M.); (N.J.); (N.M.)
| | - Jovana Bradic
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia; (A.K.); (J.B.); (M.S.); (J.T.); (M.A.); (N.D.); (S.M.); (N.J.); (N.M.)
| | - Miroslav Sovrlic
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia; (A.K.); (J.B.); (M.S.); (J.T.); (M.A.); (N.D.); (S.M.); (N.J.); (N.M.)
| | - Jovica Tomovic
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia; (A.K.); (J.B.); (M.S.); (J.T.); (M.A.); (N.D.); (S.M.); (N.J.); (N.M.)
| | - Perica Vasiljevic
- Department of Biology and Ecology, Faculty of Sciences and Mathematics, University of Niš, 18000 Niš, Serbia;
| | - Marijana Andjic
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia; (A.K.); (J.B.); (M.S.); (J.T.); (M.A.); (N.D.); (S.M.); (N.J.); (N.M.)
| | - Nevena Draginic
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia; (A.K.); (J.B.); (M.S.); (J.T.); (M.A.); (N.D.); (S.M.); (N.J.); (N.M.)
- Department of Human Pathology, IM Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia;
| | - Mirjana Grujovic
- Department of Science, Institute for Information Technologies, University of Kragujevac, 34000 Kragujevac, Serbia; (M.G.); (K.M.)
| | - Katarina Mladenovic
- Department of Science, Institute for Information Technologies, University of Kragujevac, 34000 Kragujevac, Serbia; (M.G.); (K.M.)
| | - Dejan Baskic
- Centre for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia; (D.B.); (S.P.)
- Institute of Public Health Kragujevac, 34000 Kragujevac, Serbia
| | - Suzana Popovic
- Centre for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia; (D.B.); (S.P.)
| | - Sanja Matic
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia; (A.K.); (J.B.); (M.S.); (J.T.); (M.A.); (N.D.); (S.M.); (N.J.); (N.M.)
| | - Vladimir Zivkovic
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia;
| | - Nevena Jeremic
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia; (A.K.); (J.B.); (M.S.); (J.T.); (M.A.); (N.D.); (S.M.); (N.J.); (N.M.)
- Faculty of Pharmacy, IM Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia
| | - Vladimir Jakovljevic
- Department of Human Pathology, IM Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia;
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia;
| | - Nedeljko Manojlovic
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia; (A.K.); (J.B.); (M.S.); (J.T.); (M.A.); (N.D.); (S.M.); (N.J.); (N.M.)
| |
Collapse
|
210
|
Moshari M, Wang Q, Michalak M, Klobukowski M, Tuszynski JA. Computational Prediction and Experimental Validation of the Unique Molecular Mode of Action of Scoulerine. Molecules 2022; 27:molecules27133991. [PMID: 35807231 PMCID: PMC9268612 DOI: 10.3390/molecules27133991] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/17/2022] [Accepted: 06/17/2022] [Indexed: 11/16/2022] Open
Abstract
Scoulerine is a natural compound that is known to bind to tubulin and has anti-mitotic properties demonstrated in various cancer cells. Its molecular mode of action has not been precisely known. In this work, we perform computational prediction and experimental validation of the mode of action of scoulerine. Based on the existing data in the Protein Data Bank (PDB) and using homology modeling, we create human tubulin structures corresponding to both free tubulin dimers and tubulin in a microtubule. We then perform docking of the optimized structure of scoulerine and find the highest affinity binding sites located in both the free tubulin and in a microtubule. We conclude that binding in the vicinity of the colchicine binding site and near the laulimalide binding site are the most likely locations for scoulerine interacting with tubulin. Thermophoresis assays using scoulerine and tubulin in both free and polymerized form confirm these computational predictions. We conclude that scoulerine exhibits a unique property of a dual mode of action with both microtubule stabilization and tubulin polymerization inhibition, both of which have similar affinity values.
Collapse
Affiliation(s)
- Mahshad Moshari
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada; (M.M.); (M.K.)
| | - Qian Wang
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada; (Q.W.); (M.M.)
| | - Marek Michalak
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada; (Q.W.); (M.M.)
| | - Mariusz Klobukowski
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada; (M.M.); (M.K.)
| | - Jack Adam Tuszynski
- Department of Physics, University of Alberta, Edmonton, AB T6G 2E1, Canada
- Dipartimento di Ingegneria Meccanica e Aerospaziale (DIMEAS), Politecnico di Torino, I-10129 Turin, Italy
- Correspondence:
| |
Collapse
|
211
|
Ullah R, Rehman NU, Jamshidi-Adegani F, Bari A. Editorial: Medicinal Plants and Marine-Derived Natural Products as Cancer Chemopreventive Agents. Front Pharmacol 2022; 13:900275. [PMID: 35721167 PMCID: PMC9205221 DOI: 10.3389/fphar.2022.900275] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 05/17/2022] [Indexed: 11/13/2022] Open
Affiliation(s)
- Riaz Ullah
- Medicinal Aromatic and Poisonous Plants Research Center (MAPPRC), College of Pharmacy, King Saud University, Riyadh, Saudi Arabia.,Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Najeeb Ur Rehman
- Natural Products Laboratory, Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, Oman
| | - Fatemeh Jamshidi-Adegani
- Laboratory for Stem Cell and Regenerative Medicine, Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, Oman
| | - Ahmed Bari
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University Riyadh, Riyadh, Saudi Arabia
| |
Collapse
|
212
|
Zayed A, Sobeh M, Farag MA. Dissecting dietary and semisynthetic volatile phenylpropenes: A compile of their distribution, food properties, health effects, metabolism and toxicities. Crit Rev Food Sci Nutr 2022; 63:11105-11124. [PMID: 35708064 DOI: 10.1080/10408398.2022.2087175] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Phenylpropenes represent a major subclass of plant volatiles, including eugenol, and (E)-anethole. They contribute to the flavor and aroma of many chief herbs and spices, to exert distinct notes in food, i.e., spicy anise- and clove-like to fruit. Asides from their culinary use, they appear to exert general health effects, whereas some effects are specific, e.g., eugenol being a natural local anesthetic. This review represents the most comprehensive overview of phenylpropenes with respect to their chemical structures, different health effects, and their food applications as flavor and food preservatives. Side effects and toxicities of these compounds represent the second main part of this review, as some were reported for certain metabolites generated inside the body. Several metabolic reactions mediating for phenylpropenes metabolism in rodents via cytochrome P450 (CYP450) and sulfotransferase (SULT) enzymes are presented being involved in their toxicities. Such effects can be lessened by influencing their pharmacokinetics through a matrix-derived combination effect via administration of herbal extracts containing SULT inhibitors, i.e., nevadensin in sweet basil. Moreover, structural modification of phenylpropanes appears to improve their effects and broaden their applications. Hence, such review capitalizing on phenylpropenes can help optimize their applications in nutraceuticals, cosmeceuticals, and food applications.
Collapse
Affiliation(s)
- Ahmed Zayed
- Pharmacognosy Department, College of Pharmacy, Tanta University, Tanta, Egypt
- Institute of Bioprocess Engineering, Technical University of Kaiserslautern, Kaiserslautern, Germany
| | - Mansour Sobeh
- AgroBioSciences, Mohammed VI Polytechnic University, Ben-Guerir, Morocco
| | - Mohamed A Farag
- Pharmacognosy Department, College of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
213
|
Lei F, Xiong Y, Wang Y, Zhang H, Liang Z, Li J, Feng Y, Hao X, Wang Z. Design, Synthesis, and Biological Evaluation of Novel Evodiamine Derivatives as Potential Antihepatocellular Carcinoma Agents. J Med Chem 2022; 65:7975-7992. [PMID: 35639640 DOI: 10.1021/acs.jmedchem.2c00520] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Evodiamine has many biological activities. Herein, we synthesize 23 disubstituted derivatives of N14-phenyl or the E-ring of evodiamine and conduct systematic structure-activity relationship studies. In vitro antiproliferative activity indicated that compounds F-3 and F-4 dramatically inhibited the proliferation of Huh7 (IC50 = 0.05 or 0.04 μM, respectively) and SK-Hep-1 (IC50 = 0.07 or 0.06 μM, respectively) cells. Furthermore, compounds F-3 and F-4 could double inhibit topoisomerases I and II, inhibit invasion and migration, block the cell cycle to the G2/M stage, and induce apoptosis as well. Additionally, compounds F-3 and F-4 could also inhibit the activation of HSC-T6 and reduce the secretion of collagen type I to slow down the progression of liver fibrosis. Most importantly, compound F-4 (TGI = 60.36%) inhibited tumor growth more significantly than the positive drug sorafenib. To sum up, compound F-4 has excellent potential as a strong candidate for the therapy of hepatocellular carcinoma.
Collapse
Affiliation(s)
- Fang Lei
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Yongxia Xiong
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Yuqing Wang
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Honghua Zhang
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Ziyi Liang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Junfang Li
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Yiyue Feng
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Xiangyong Hao
- Department of General Surgery, Gansu Provincial Hospital, Lanzhou 730000, China
| | - Zhen Wang
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China.,School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China.,State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
214
|
Pham DT, Tran TQ, Van Chinh L, Nguyen LP, An TNT, Anh NHT, Nguyen DT. Anti-tumor effect of liposomes containing extracted Murrayafoline A against liver cancer cells in 2D and 3D cultured models. OPEN CHEM 2022. [DOI: 10.1515/chem-2022-0122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Abstract
Murrayafoline A (MuA) is a natural compound with diverse biological activities, including cytotoxicity against cancer cells, but suffers from poor water solubility and low specificity. In order to improve the potential of MuA as a candidate for cancer treatment, MuA-loaded liposomes were prepared with the liposomal membrane consisting of dioleoylphosphatidylcholine and cholesterol. Dynamic light scattering measurements showed that the MuA-loaded liposomes had a z-average particle size of 104.3 ± 6.4 nm (mean ± SD; n = 3) and a polydispersity index of 0.15 ± 0.02 (mean ± SD; n = 3). The encapsulation efficiency was 55.3 ± 2.3% (mean ± SD; n = 3). The in vitro cytotoxicity of encapsulated MuA was attenuated at IC50 = 21.97 µg/mL compared to 6.24 µg/mL for free MuA, against HepG2. In contrast, MuA-loaded liposomes were significantly more effective at inhibiting cell growth in HepG2 cancer spheroids, which indicated that they were able to reach the interior layers of the microtumor. Taken together, these results showed that the encapsulation of MuA in liposomes is a good research direction to improve this natural compound’s potential as a candidate for cancer treatment.
Collapse
Affiliation(s)
- Dan The Pham
- University of Science and Technology, Department of Life Sciences Hanoi (USTH) , 18 Hoang Quoc Viet St., Cau Giay Dist. , Hanoi , Vietnam
| | - Toan Quoc Tran
- Institute of Natural Products Chemistry , 18 Hoang Quoc Viet St., Cau Giay Dist. , Hanoi , Vietnam
- Graduate University of Science and Technology , 18 Hoang Quoc Viet St., Cau Giay Dist. , Hanoi , Vietnam
| | - Luu Van Chinh
- Institute of Natural Products Chemistry , 18 Hoang Quoc Viet St., Cau Giay Dist. , Hanoi , Vietnam
| | - Linh Phuong Nguyen
- Hanoi Medical University , 1 Ton That Tung St., Dong Da Dist. , Hanoi , Vietnam
| | - Ton Nu Thuy An
- Institute of Environmental Technology and Sustainable Development, Nguyen Tat Thanh University , Ho Chi Minh City , Vietnam
- Faculty of Food and Environmental Engineering, Nguyen Tat Thanh University , Ho Chi Minh City , Vietnam
| | - Nguyen Huu Thuan Anh
- Institute of Environmental Technology and Sustainable Development, Nguyen Tat Thanh University , Ho Chi Minh City , Vietnam
- Faculty of Food and Environmental Engineering, Nguyen Tat Thanh University , Ho Chi Minh City , Vietnam
| | - Duong Thanh Nguyen
- Graduate University of Science and Technology , 18 Hoang Quoc Viet St., Cau Giay Dist. , Hanoi , Vietnam
- Institute of Marine Biochemistry, Vietnam Academy of Science and Technology (VAST) , 18 Hoang Quoc Viet St., Cau Giay Dist. , Hanoi , Vietnam
- Institute of Chemistry, Vietnam Academy of Science and Technology (VAST) , 18 Hoang Quoc Viet St., Cau Giay Dist. , Hanoi , Vietnam
| |
Collapse
|
215
|
A comprehensive insight into the antineoplastic activities and molecular mechanisms of deoxypodophyllotoxin: Recent trends, challenges, and future outlook. Eur J Pharmacol 2022; 928:175089. [PMID: 35688183 DOI: 10.1016/j.ejphar.2022.175089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 05/31/2022] [Accepted: 06/03/2022] [Indexed: 11/20/2022]
Abstract
Lignans constitute an important group of polyphenols, which have been demonstrated to potently suppress cancer cell proliferation. Numerous in vitro and in vivo studies indicate that deoxypodophyllotoxin as a natural lignan possesses potent anticancer activities against various types of human cancer. The purpose of current review is to provide the reader with the latest findings in understanding the anticancer effects and molecular mechanisms of deoxypodophyllotoxin. This review comprehensively describes the influence of deoxypodophyllotoxin on signaling cascades and molecular targets implicated in cancer cell proliferation and invasion. A number of various signaling molecules and pathways, including apoptosis, necroptosis, cell cycle, angiogenesis, vascular disruption, ROS, MMPs, glycolysis, and microtubules as well as NF-κB, PI3K/Akt/mTOR, and MAPK cascades have been reported to be responsible for the anticancer activities of deoxypodophyllotoxin. The results of present review suggest that the cyclolignan deoxypodophyllotoxin can be developed as a novel and potent anticancer agent, especially as an alternative option for treatment of resistant tumors to chemotherapy.
Collapse
|
216
|
Peraza-Labrador A, Buitrago DM, Coy-Barrera E, Perdomo-Lara SJ. Antiproliferative and Pro-Apoptotic Effects of a Phenolic-Rich Extract from Lycium barbarum Fruits on Human Papillomavirus (HPV) 16-Positive Head Cancer Cell Lines. Molecules 2022; 27:molecules27113568. [PMID: 35684505 PMCID: PMC9182172 DOI: 10.3390/molecules27113568] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/04/2022] [Accepted: 05/05/2022] [Indexed: 11/16/2022] Open
Abstract
The in vitro antiproliferative activity of a phenolic-rich extract from Lycium barbarum fruits against head and neck HPV16 squamous cell carcinoma (OSCC) has been demonstrated, indicating for the first time that L. barbarum extract inhibits human papillomavirus (HPV) type 16 cell lines. Ethanol extract of L. barbarum was used for cell viability evaluation on SCC090, CAL27, and HGnF cell lines. After 24 and 48 h, the cell cycle effect of L. barbarum extract (at 1.0, 10, and 100 µg/mL) was measured via flow cytometry. In addition, the mRNA expression on E6/E7 and p53 via RT-PCR and the expression of p16, p53, Ki-67, and Bcl-2 via immunohistochemistry were also determined. Untreated cells, 20 µM cisplatin, and a Camellia sinensis-derived extract were used as negative and positive controls, respectively. We demonstrated that the studied L. barbarum extract resulted in G0/G1 arrest and S phase accumulation in SCC090 at 1.0 and 10 μg/mL. A reduction in mRNA levels of E6/E7 oncogenes (p < 0.05) with p53 overexpression was also observed through PCR, while immunohistochemical analyses indicated p16 overexpression (p > 0.05) and a decrease in p53 overexpression. The observed effects were associated with anticancer and immunomodulatory phenolics, such as flavonols/flavan-3-ols and tyramine-conjugated hydroxycinnamic acid amides, identified in the studied extract. These findings revealed that the phenolic-rich extract of L. barbarum fruits has promising properties to be considered further for developing new therapies against oral and oropharyngeal HPV lesions.
Collapse
Affiliation(s)
- Alberto Peraza-Labrador
- Unit of Basic Oral Investigation-UIBO, School of Dentistry, Universidad El Bosque, Bogotá 110121, Colombia; (A.P.-L.); (D.M.B.)
- Cellular and Molecular Immunology Group-INMUBO, School of Dentistry, Universidad El Bosque, Bogotá 110121, Colombia
| | - Diana Marcela Buitrago
- Unit of Basic Oral Investigation-UIBO, School of Dentistry, Universidad El Bosque, Bogotá 110121, Colombia; (A.P.-L.); (D.M.B.)
| | - Ericsson Coy-Barrera
- Bioorganic Chemistry Laboratory, Department of Chemistry, Universidad Militar Nueva Granada, Cajicá 250247, Colombia;
| | - Sandra J. Perdomo-Lara
- Cellular and Molecular Immunology Group-INMUBO, School of Dentistry, Universidad El Bosque, Bogotá 110121, Colombia
- Correspondence: ; Tel.: +57-164-89000
| |
Collapse
|
217
|
Vo GV, Nguyen THT, Nguyen TP, Do THT, Tran NMA, Nguyen HT, Nguyen TT. In silico and in vitro studies on the anti-cancer activity of artemetin, vitexicarpin and penduletin compounds from Vitex negundo. Saudi Pharm J 2022; 30:1301-1314. [PMID: 36249935 PMCID: PMC9561309 DOI: 10.1016/j.jsps.2022.06.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 06/17/2022] [Indexed: 11/28/2022] Open
Abstract
Vitex negundo L. (V. negundo) is one of the important medicinal and anticancer enhancer herbs. This plant is commonly used in the preparation of traditional drugs to treat numerous diseases. Inspired by the medicinal properties of this plant, the current study aimed to investigate antiproliferative potential and the primary molecular mechanisms of the apoptotic induction against human HepG2 and MCF-7 cell lines, by pure compounds isolated from targeted fractions of V. negundo which were characterized by NMR, FTIR and HRMS analysis and identified as artemetin (FLV1), vitexicarpin (FLV2), and penduletin (FLV3) compounds. The FLV1, FLV2, and FLV3 compounds were evaluated for the antiproliferative potential against HepG2 and MCF-7 cell lines by cell viability assay and exhibited IC50 values of 2.3, 23.9 and 5.6 µM and 3.9, 25.8, and 6.4 µM, respectively. In addition, those compounds increased the level of reactive oxygen species production, induced cell death occurred via apoptosis, demonstrated by Annexin V-staining cells, contributed significantly to DNA damage, and led to the activation of caspase3/caspase8 pathways.Additionally, molecular docking was also conducted to rationalize the cancer cells inhibitory and to evaluate the ability of the FLV1, FLV2, and FLV3 compounds to be developed as good drug candidates for cancers treatment.
Collapse
Affiliation(s)
- Giau Van Vo
- Department of Biomedical Engineering, School of Medicine, Vietnam National University – Ho Chi Minh City (VNU-HCM), Ho Chi Minh City 70000, Vietnam
- Research Center for Genetics and Reproductive Health (CGRH), School of Medicine, Vietnam National University, Ho Chi Minh City (VNU-HCM), Ho Chi Minh City 70000, Vietnam
- Vietnam National University Ho Chi Minh City (VNU-HCM), Ho Chi Minh City 70000, Vietnam
| | - Thi-Hoai-Thu Nguyen
- Faculty of Basic Sciences, University of Medicine and Pharmacy at Ho Chi Minh City, 217 Hong Bang Street, Dist. 5, Ho Chi Minh City 72714, Vietnam
| | - Thi-Phuong Nguyen
- NTT Hi-Tech Institute, Nguyen Tat Thanh University, Ho Chi Minh City 70000, Vietnam
| | - Thi-Hong-Tuoi Do
- Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh City, 41 Dinh Tien Hoang Street, Dist. 1, Ho Chi Minh City 72714, Vietnam
| | - Nguyen-Minh-An Tran
- Faculty of Chemical Engineering, Industrial University of Ho Chi Minh City, Ho Chi Minh City 71420, Vietnam
| | - Huy Truong Nguyen
- Application in Pharmaceutical Sciences Research Group, Faculty of Pharmacy, Ton Duc Thang University, Ho Chi Minh City, Vietnam
- Corresponding authors.
| | - Thuy Trang Nguyen
- Faculty of Pharmacy, HUTECH University, Ho Chi Minh City 70000, Vietnam
- Corresponding authors.
| |
Collapse
|
218
|
Noori S, Nourbakhsh M, Imani H, Deravi N, Salehi N, Abdolvahabi Z. Naringenin and cryptotanshinone shift the immune response towards Th1 and modulate T regulatory cells via JAK2/STAT3 pathway in breast cancer. BMC Complement Med Ther 2022; 22:145. [PMID: 35606804 PMCID: PMC9125892 DOI: 10.1186/s12906-022-03625-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 05/16/2022] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Use of natural products has been proposed as an efficient method in modulation of immune system and treatment of cancers. The aim of this study was to investigate the potential of cryptotanshinone (CPT), naringenin, and their combination in modulating the immune response towards Th1 cells and the involvement of JAK2/STAT3 signaling pathway in these effects. METHODS Mouse models of delayed type hypersensitivity (DTH) were produced and treated with naringenin and CPT. The proliferation of spleen cells were assessed by Bromodeoxyuridine (BrdU) assay. Flowcytometry and enzyme-linked immunosorbent assay (ELISA) tests were employed to evaluate subpopulation of T-lymphocytes and the levels of cytokines, respectively. The JAK/STAT signaling pathway was analyzed by Western blotting. RESULTS We showed higher DTH, increased lymphocyte proliferation, decreased tumor growth and reduced JAK2/STAT3 phosphorylation in mice treated with naringenin and CPT. Moreover, a significant decline in the production of IL-4 and an upsurge in the production of IFN-γ by splenocytes were observed. Additionally, the population of intra-tumor CD4+CD25+Foxp3+ T cells was significantly lower in naringenin + CPT treated animals than that in controls. CONCLUSION Naringenin-CPT combination could exert immunomodulatory effects, suggesting this combination as a novel complementary therapeutic regimen for breast cancer.
Collapse
Affiliation(s)
- Shokoofe Noori
- Department of Biochemistry, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mitra Nourbakhsh
- Finetech in Medicine Research Center, Iran University of Medical Sciences, Tehran, Iran.
- Department of Biochemistry, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Hossein Imani
- Nutrition Department, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Niloofar Deravi
- Department of Biochemistry, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Niloufar Salehi
- Department of Biochemistry, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zohreh Abdolvahabi
- Metabolic Diseases Research Center, Research Institute for Prevention of Non-Communicable Diseases, Qazvin University of Medical Sciences, Qazvin, Iran
| |
Collapse
|
219
|
Choodej S, Koopklang K, Raksat A, Chuaypen N, Pudhom K. Bioactive xanthones, benzophenones and biphenyls from mangosteen root with potential anti-migration against hepatocellular carcinoma cells. Sci Rep 2022; 12:8605. [PMID: 35597781 PMCID: PMC9124209 DOI: 10.1038/s41598-022-12507-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 05/11/2022] [Indexed: 11/23/2022] Open
Abstract
Liver cancer refers primarily to hepatocellular carcinoma (HCC) accounting for over 90% of cases and is the highest incidence in men in Thailand. Over the past decades, the incidence of HCC dramatically increased with a strong rise of mortality rates. Garcinia mangostana, “Queen of Fruit” of Thailand, is known as a rich source of xanthones with potent cytotoxic properties against various cancer cells. Study on xanthones is provoking not only due to the structural diversity but also a wide variety of pharmacological activities. Hence the aim of the current study is to determine the effects of metabolites from G. mangostana root on cell proliferation and migration of hepatocellular carcinoma cells. Twenty-two metabolites, including two new benzophenones and one new biphenyl, were isolated and characterized. Five xanthones with a prenyl moiety showed significant cytotoxicity against both HCC cells tested; however, only dulxanthone D displayed the most promising activity on the migration of Huh7 HCC cells, comparable to sorafenib, a standard drug. Moreover, the compound dose-dependently induced apoptosis in Huh7 cells via mitochondrial pathway. Accordingly, dulxanthone D held a great potential for development as a novel migration inhibitor for effective HCC treatment.
Collapse
Affiliation(s)
- Siwattra Choodej
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Kedkarn Koopklang
- Program in Biotechnology, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Achara Raksat
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Natthaya Chuaypen
- Center of Excellence in Hepatitis and Liver Cancer, Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Khanitha Pudhom
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
220
|
Kretschmer N, Durchschein C, Hufner A, Rinner B, Lohberger B, Bauer R. SK119, a Novel Shikonin Derivative, Leads to Apoptosis in Melanoma Cell Lines and Exhibits Synergistic Effects with Vemurafenib and Cobimetinib. Int J Mol Sci 2022; 23:ijms23105684. [PMID: 35628494 PMCID: PMC9145845 DOI: 10.3390/ijms23105684] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/16/2022] [Accepted: 05/17/2022] [Indexed: 11/22/2022] Open
Abstract
Melanoma is a complex and heterogenous disease, displays the deadliest form of skin cancer, and accounts for approx. 80% of all skin cancer deaths. In this study, we reported on the synthesis and pharmacological effects of a novel shikonin derivative (SK119), which is active in a nano-molar range and exhibits several promising in vitro effects in different human melanoma cells. SK119 was synthesized from shikonin as part of our search for novel, promising shikonin derivatives. It was screened against a panel of melanoma and non-tumorigenic cell lines using XTT viability assays. Moreover, we studied its pharmacological effects using apoptosis and Western blot experiments. Finally, it was combined with current clinically used melanoma therapeutics. SK119 exhibited IC50 values in a nano-molar range, induced apoptosis and led to a dose-dependent increase in the expression and protein phosphorylation of HSP27 and HSP90 in WM9 and MUG-Mel 2 cells. Combinatorial treatment, which is highly recommended in melanoma, revealed the synergistic effects of SK119 with vemurafenib and cobimetinib. SK119 treatment changed the expression levels of apoptosis genes and death receptor expression and exhibited synergistic effects with vemurafenib and cobimetinib in human melanoma cells. Further research indicates a promising potential in melanoma therapy.
Collapse
Affiliation(s)
- Nadine Kretschmer
- Institute of Pharmaceutical Sciences, Department of Pharmacognosy, University of Graz, Beethovenstr. 8, 8010 Graz, Austria; (N.K.); (C.D.); (R.B.)
- Division of Biomedical Research, Medical University Graz, Roseggerweg 48, 8036 Graz, Austria;
| | - Christin Durchschein
- Institute of Pharmaceutical Sciences, Department of Pharmacognosy, University of Graz, Beethovenstr. 8, 8010 Graz, Austria; (N.K.); (C.D.); (R.B.)
| | - Antje Hufner
- Institute of Pharmaceutical Sciences, Department of Pharmaceutical Chemistry, University of Graz, Universitaetsplatz 1, 8010 Graz, Austria;
| | - Beate Rinner
- Division of Biomedical Research, Medical University Graz, Roseggerweg 48, 8036 Graz, Austria;
| | - Birgit Lohberger
- Department of Orthopedics and Trauma, Medical University Graz, Auenbruggerplatz 5, 8036 Graz, Austria
- Correspondence:
| | - Rudolf Bauer
- Institute of Pharmaceutical Sciences, Department of Pharmacognosy, University of Graz, Beethovenstr. 8, 8010 Graz, Austria; (N.K.); (C.D.); (R.B.)
| |
Collapse
|
221
|
Zakhireh S, Omidi Y, Beygi-Khosrowshahi Y, Barzegari A, Barar J, Adibkia K. Synthesis and biological impacts of pollen shells/Fe 3O 4 nanoparticles composites on human MG-63 osteosarcoma cells. J Trace Elem Med Biol 2022; 71:126921. [PMID: 35033859 DOI: 10.1016/j.jtemb.2022.126921] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 12/04/2021] [Accepted: 01/03/2022] [Indexed: 02/04/2023]
Abstract
INTRODUCTION Cell-adhesive surfaces play a pivotal role in biomedical engineering, as most biological reactions take place on surfaces. Pollen shell (PSh) ofPistacia vera L., as a new medical device, has previously been reported to cause cytotoxicity and apoptosis in MG-63 bone cancer cells. METHODS Iron oxide nanoparticles (Fe3O4NPs) were synthesized and their reaction to PShs was gauged at different concentrations, and then characterized using field emission scanning electron microscopy (FESEM), Fourier-transform infrared spectroscopy, energy dispersion X-ray spectrometer, X-ray diffraction spectra, dynamic light scattering, and vibrating sample magnetometer. Then, the biological impacts of PShs/Fe3O4NPs composites on MG-63 cells were investigated in-vitro using MTT assay, quantitative polymerase chain reaction (qPCR), Annexin V/propidium iodide, FESEM, and DAPI staining. RESULTS Fe3O4NPs with a size range of 24-40 nm and a zeta potential value of -37.4 mV were successfully assembled on the PShs. The viability of MG-63 cells was significantly decreased when cultured on the magnetic PShs as compared to non-magnetic PShs, in Fe3O4 concentration and time-dependent manner. In contrast, magnetic PShs had a positive effect on the viability of normal human bone marrow-derived mesenchymal stem cells (hBM-MSCs). The analysis of apoptosis-related genes in cancer cells revealed that loading Fe3O4NPs on PShs increased expression of BAX/BCL2 and caspase-3 genes. The increased apoptotic activity of combined PShs/Fe3O4NPs was further confirmed by flow cytometric measurement, morphological analysis, and DAPI staining. CONCLUSION The incorporation of Fe3O4NPs into PShs could effectively increase anticancer effects on MG-63 cells via the mitochondria-mediated apoptosis pathway, evident by upregulation of BAX/BCL2 ratio and caspase-3.
Collapse
Affiliation(s)
- Solmaz Zakhireh
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Yadollah Omidi
- Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, USA
| | - Younes Beygi-Khosrowshahi
- Chemical Engineering Department, Faculty of Engineering, Azarbaijan Shahid Madani University, Tabriz, Iran
| | - Abolfazl Barzegari
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Jaleh Barar
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Khosro Adibkia
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
222
|
Enhanced Anticancer Activity of Hymenocardia acida Stem Bark Extract Loaded into PLGA Nanoparticles. Pharmaceuticals (Basel) 2022; 15:ph15050535. [PMID: 35631361 PMCID: PMC9147688 DOI: 10.3390/ph15050535] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/19/2022] [Accepted: 04/22/2022] [Indexed: 01/27/2023] Open
Abstract
Hymenocardia acida (H. acida) is an African well-known shrub recognized for numerous medicinal properties, including its cancer management potential. The advent of nanotechnology in delivering bioactive medicinal plant extract with poor solubility has improved the drug delivery system, for a better therapeutic value of several drugs from natural origins. This study aimed to evaluate the anticancer properties of H. acida using human lung (H460), breast (MCF-7), and colon (HCT 116) cancer cell lines as well as the production, characterization, and cytotoxicity study of H. acida loaded into PLGA nanoparticles. Benchtop models of Saccharomyces cerevisiae and Raniceps ranninus were used for preliminary toxicity evaluation. Notable cytotoxic activity in benchtop models and human cancer cell lines was observed for H. acida crude extract. The PLGA nanoparticles loading H. acida had a size of about 200 nm and an association efficiency of above 60%, making them suitable to be delivered by different routes. The outcomes from this research showed that H. acida has anticancer activity as claimed from an ethnomedical point of view; however, a loss in activity was noted upon encapsulation, due to the sustained release of the drug.
Collapse
|
223
|
Bhardwaj P, Kumar M, Dhatwalia SK, Garg ML, Dhawan DK. Protective role of AKBA against benzo(a)pyrene-induced lung carcinogenesis by modulating biotransformation enzymes and oxidative stress. J Biochem Mol Toxicol 2022; 36:e23072. [PMID: 35437857 DOI: 10.1002/jbt.23072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 02/07/2022] [Accepted: 04/01/2022] [Indexed: 12/24/2022]
Abstract
The present study was designed to explore the chemopreventive potential of 3-acetyl-11-keto-β-boswellic acid (AKBA) during the initiation and promotion stage of lung carcinogenesis induced by benzo(a)pyrene (BaP) in female Sprague Dawley rats. BaP was administered at a dose level of 50 mg/kg b.wt. twice a week orally in olive oil for 4 weeks. AKBA administration was started 4 weeks before BaP treatment and continued for another 8 weeks at a dose level of 50 mg/kg b.wt. orally in olive oil three times a week. BaP treatment showed significantly increased in the activities of Phase I biotransformation enzymes (Cytochrome P450 , b5 , and aryl hydrocarbon hydrolase) and inhibited the activity of Phase II enzyme (glutathione-S-transferase). Also, a significant elevation in oxidative stress biomarkers lipid peroxidation, reactive oxygen species, and protein carbonyl content concentration. Further, an appreciable decrease was observed in the activities of endogenous antioxidant enzymes superoxide dismutase, CAT, GPx, GR, and a decline in nonenzymatic GSH levels. As a result of BaP induced oxidative stress, alteration in erythrocytes morphology was observed. Fourier transform infrared spectroscopy spectrum of lung tissue showed structural changes due to BaP exposure. Moreover, levels of tumor biomarkers such as total sialic acid, carcinoembryonic antigen, and alkaline phosphatase were significantly elevated following BaP treatment which was substantiated by alterations noticed in the histoarchitecture of lung tissue. Interestingly, AKBA administration to BaP treated rats appreciably alleviated the changes inflicted by BaP on various biochemical indices and histoarchitecture of lungs. Therefore, the study clearly revealed that AKBA by containing oxidative stress shall prove to be quite effective in providing chemoprevention against BaP induced lung carcinogenesis.
Collapse
Affiliation(s)
- Priti Bhardwaj
- Department of Biophysics, Panjab University, Chandigarh, India.,Electron microscopy facility, National Centre for Biological Sciences, TIFR, Bangalore, India
| | - Manoj Kumar
- Department of Biophysics, Panjab University, Chandigarh, India.,Department of Higher Education Shimla, Govt. College Chowari, Shimla, Himachal Pradesh, India
| | - Sunil Kumar Dhatwalia
- Department of Biophysics, Panjab University, Chandigarh, India.,Department of Zoology and Environmental Sciences, Maharaja Agarsen University, Baddi Solan, Himachal Pradesh, India
| | - Mohan Lal Garg
- Department of Biophysics, Panjab University, Chandigarh, India
| | | |
Collapse
|
224
|
DU X, Zhang J, Liu L, Xu B, Han H, Dai W, Pei X, Fu X, Hou S. A novel anticancer property of Lycium barbarum polysaccharide in triggering ferroptosis of breast cancer cells. J Zhejiang Univ Sci B 2022; 23:286-299. [PMID: 35403384 PMCID: PMC9002246 DOI: 10.1631/jzus.b2100748] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Accepted: 12/08/2021] [Indexed: 12/17/2022]
Abstract
Breast cancer is one of the most malignant tumors and is associated with high mortality rates among women. Lycium barbarum polysaccharide (LBP) is an extract from the fruits of the traditional Chinese herb, L. barbarum. LBP is a promising anticancer drug, due to its high activity and low toxicity. Although it has anticancer properties, its mechanisms of action have not been fully established. Ferroptosis, which is a novel anticancer strategy, is a cell death mechanism that relies on iron-dependent lipid reactive oxygen species (ROS) accumulation. In this study, human breast cancer cells (Michigan Cancer Foundation-7 (MCF-7) and MD Anderson-Metastatic Breast-231 (MDA-MB-231)) were treated with LBP. LBP inhibited their viability and proliferation in association with high levels of ferroptosis. Therefore, we aimed to ascertain whether LBP reduced cell viability through ferroptosis. We found that the structure and function of mitochondria, lipid peroxidation, and expression of solute carrier family 7 member 11 (SLC7A11, also known as xCT, the light-chain subunit of cystine/glutamate antiporter system Xc-) and glutathione peroxidase 4 (GPX4) were altered by LBP. Moreover, the ferroptosis inhibitor, Ferrostatin-1 (Fer-1), rescued LBP-induced ferroptosis-associated events including reduced cell viability and glutathione (GSH) production, accumulation of intracellular free divalent iron ions and malondialdehyde (MDA), and down-regulation of the expression of xCT and GPX4. Erastin (xCT inhibitor) and RSL3 (GPX4 inhibitor) inhibited the expression of xCT and GPX4, respectively, which was lower after the co-treatment of LBP with Erastin and RSL3. These results suggest that LBP effectively prevents breast cancer cell proliferation and promotes ferroptosis via the xCT/GPX4 pathway. Therefore, LBP exhibits novel anticancer properties by triggering ferroptosis, and may be a potential therapeutic option for breast cancer.
Collapse
Affiliation(s)
- Xing DU
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, China
| | - Jingjing Zhang
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, China
- Department of Clinical Pathology, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, China
| | - Ling Liu
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, China
| | - Bo Xu
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, China
| | - Hang Han
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, China
| | - Wenjie Dai
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, China
| | - Xiuying Pei
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, China
| | - Xufeng Fu
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, China.
| | - Shaozhang Hou
- Department of Clinical Pathology, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, China. ,
| |
Collapse
|
225
|
Zaroubi L, Ozugergin I, Mastronardi K, Imfeld A, Law C, Gélinas Y, Piekny A, Findlay BL. The Ubiquitous Soil Terpene Geosmin Acts as a Warning Chemical. Appl Environ Microbiol 2022; 88:e0009322. [PMID: 35323022 PMCID: PMC9004350 DOI: 10.1128/aem.00093-22] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 02/26/2022] [Indexed: 12/29/2022] Open
Abstract
Known as the smell of earth after rain, geosmin is an odorous terpene detectable by humans at picomolar concentrations. Geosmin production is heavily conserved in actinobacteria, myxobacteria, cyanobacteria, and some fungi, but its biological activity is poorly understood. We theorized that geosmin was an aposematic signal used to indicate the unpalatability of toxin-producing microbes, discouraging predation by eukaryotes. Consistent with this hypothesis, we found that geosmin altered the behavior of the bacteriophagous nematode Caenorhabditis elegans on agar plates in the absence of bacteria. Normal movement was restored in mutant worms lacking differentiated ASE (amphid neurons, single ciliated endings) neurons, suggesting that geosmin is a taste detected by the nematodal gustatory system. In a predation assay, geosmin and the related terpene 2-methylisoborneol reduced grazing on the bacterium Streptomyces coelicolor. Predation was restored by the removal of both terpene biosynthetic pathways or the introduction of C. elegans that lacked differentiated ASE taste neurons, leading to the apparent death of both bacteria and worms. While geosmin and 2-methylisoborneol appeared to be nontoxic, grazing triggered bacterial sporulation and the production of actinorhodin, a pigment coproduced with a number of toxic metabolites. In this system, geosmin thus appears to act as a warning signal indicating the unpalatability of its producers and reducing predation in a manner that benefits predator and prey. This suggests that molecular signaling may affect microbial predator-prey interactions in a manner similar to that of the well-studied visual markers of poisonous animal prey. IMPORTANCE One of the key chemicals that give soil its earthy aroma, geosmin is a frequent water contaminant produced by a range of unrelated microbes. Many animals, including humans, are able to detect geosmin at minute concentrations, but the benefit that this compound provides to its producing organisms is poorly understood. We found that geosmin repelled the bacterial predator Caenorhabditis elegans in the absence of bacteria and reduced contact between the worms and the geosmin-producing bacterium Streptomyces coelicolor in a predation assay. While geosmin itself appears to be nontoxic to C. elegans, these bacteria make a wide range of toxic metabolites, and grazing on them harmed the worms. In this system, geosmin thus appears to indicate unpalatable bacteria, reducing predation and benefiting both predator and prey. Aposematic signals are well known in animals, and this work suggests that metabolites may play a similar role in the microbial world.
Collapse
Affiliation(s)
- Liana Zaroubi
- Department of Chemistry and Biochemistry, Concordia University, Montreal, Québec, Canada
| | - Imge Ozugergin
- Department of Biology, Concordia University, Montreal, Québec, Canada
| | | | - Anic Imfeld
- Department of Chemistry and Biochemistry, Concordia University, Montreal, Québec, Canada
| | - Chris Law
- Department of Biology, Concordia University, Montreal, Québec, Canada
| | - Yves Gélinas
- Department of Chemistry and Biochemistry, Concordia University, Montreal, Québec, Canada
| | - Alisa Piekny
- Department of Biology, Concordia University, Montreal, Québec, Canada
| | - Brandon L. Findlay
- Department of Chemistry and Biochemistry, Concordia University, Montreal, Québec, Canada
| |
Collapse
|
226
|
Makhija P, Handral HK, Mahadevan G, Kathuria H, Sethi G, Grobben B. Black cardamom (Amomum subulatum Roxb.) fruit extracts exhibit apoptotic activity against lung cancer cells. JOURNAL OF ETHNOPHARMACOLOGY 2022; 287:114953. [PMID: 34968666 DOI: 10.1016/j.jep.2021.114953] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 12/14/2021] [Accepted: 12/23/2021] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The dried fruits of Amomum subulatum Roxb. (A. subulatum) are widely used as a spice. It is a part of official ayurvedic formulations used in folklore medicine to treat cancer.A. subulatum has been used in ayurvedic formulations to treat various lung conditions such as cough, lung congestion, pulmonary tuberculosis. The present traditional knowledge highlights the effectiveness of A. subulatum in treating cancer and its lung-specific efficacy. AIM OF THE STUDY This study aims to investigate the cytotoxic potential of A. subulatum on the phenomenal and mechanistic level of lung cancer cells and identify the presence of A. subulatum actives. MATERIALS AND METHODS The bioactivity of the extracts was tested using MTT assay, apoptotic assay, cell cycle analysis, superoxide production assay, reactive oxygen species (ROS) assay, and western blot analysis. Firstly, five different extracts were prepared using sequential extraction, and then screening of cell lines was performed using MTT assay. RESULTS Lung cancer cells were selected as the most sensitive target, and dichloromethane extract (DE) was the most active extract. Annexin assay confirmed the mode of cell death as apoptosis. SubG1 peak found in cell cycle analysis substantiated this finding. ROS generation and superoxide showed association with apoptotic death. The upregulation and overexpression of cleaved poly(ADP-ribose)polymerase-1 (PARP-1) showed the failure of DNA repairing machinery contributes to apoptosis. LC-MS findings show the presence of cytotoxic actives cardamonin and alpinetin. CONCLUSIONS In summary, this study shows the apoptosis-inducing potential of A. subulatum fruit extracts and confirms DNA damage as one of the causes of cell death. Further explorations using bio-fractionation and in-vivo studies are required to determine the most active constituents in A. subulatum.
Collapse
Affiliation(s)
- Pooja Makhija
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543, Singapore.
| | - Harish K Handral
- Stem Cell Bioprocessing Technology Institute (BTI), Agency for Science, Technology, and Research (A*STAR), 20 Biopolis Way, 138668, Singapore
| | - Gomathi Mahadevan
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543, Singapore
| | - Himanshu Kathuria
- Department of Pharmacy, National University of Singapore, 117543, Singapore; Nusmetics Pte Ltd, Makerspace, i4 building, 3 Research Link, 117602, Singapore.
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Blk MD3, 16 Medical Drive, 117600, Singapore
| | - Bert Grobben
- Budding Innovations Pte Ltd, 06-02 80 Jellicoe Rd, 208766, Singapore.
| |
Collapse
|
227
|
Cytokinins: Wide-Spread Signaling Hormones from Plants to Humans with High Medical Potential. Nutrients 2022; 14:nu14071495. [PMID: 35406107 PMCID: PMC9003334 DOI: 10.3390/nu14071495] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 03/29/2022] [Accepted: 03/31/2022] [Indexed: 02/04/2023] Open
Abstract
Nature is a rich source of biologically active novel compounds. Sixty years ago, the plant hormones cytokinins were first discovered. These play a major role in cell division and cell differentiation. They affect organogenesis in plant tissue cultures and contribute to many other physiological and developmental processes in plants. Consequently, the effect of cytokinins on mammalian cells has caught the attention of researchers. Many reports on the contribution and potential of cytokinins in the therapy of different human diseases and pathophysiological conditions have been published and are reviewed here. We compare cytokinin effects and pathways in plants and mammalian systems and highlight the most important biological activities. We present the strong profile of the biological actions of cytokinins and their possible therapeutic applications.
Collapse
|
228
|
Ibrahim EH, Alshahrani MY, Ghramh HA, Alothaid H, Kilany M, Morsy K, El-kott AF, Taha R, El-Mekkawy HI, EL-Shaboury GA, El-Mansi AA, Mohammed ME, Sayed MA, Yahia IS. Origanum majorana harvested from Al-Soda, Saudi Arabia promotes mitotic arrest and apoptosis in colon cancer cells. JOURNAL OF KING SAUD UNIVERSITY - SCIENCE 2022; 34:101878. [DOI: 10.1016/j.jksus.2022.101878] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2025]
|
229
|
Qi Q, Wang Q, Wang Z, Gao W, Gong X, Wang L. Visnagin inhibits cervical cancer cells proliferation through the induction of apoptosis and modulation of PI3K/AKT/mTOR and MAPK signaling pathway. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2021.103684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
230
|
Jehan S, Huang J, Farooq U, Basheer I, Zhou W. Combinatorial effect of thymoquinone with chemo agents for tumor therapy. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 98:153936. [PMID: 35114449 DOI: 10.1016/j.phymed.2022.153936] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 12/04/2021] [Accepted: 01/12/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Most chemotherapeutics used in cancer therapies exhibit considerable side effects to the patients. Thus, developing new chemo agents to treat cancer patients with minimal toxic and side effects is urgently needed. Recently, the combination of different chemotherapeutics has become a promising strategy to treat malignancies. Thymoquinone (TQ) is a primary bioactive compound derived from the folk medicinal plant Nigella sativa, which has been found an antitumor, chemopreventive and chemopotentiating agent against human neoplastic diseases. PURPOSE We briefly summarize the current research of the biomolecular mechanisms of TQ and evaluate the existing literature on TQ adjuvant therapies against various cancers. METHOD The data in this review were gathered by several search engines including, Google Scholar, PubMed and ScienceDirect. We highlighted and classified the outcomes of both in vitro and in vivo experiments of TQ adjuvant therapies against human cancers and their chemopreventive activities on vital organs. RESULTS Several studies have shown that TQ synergistically potentiated the antitumor activity of numerous chemo agents against human neoplastic disease, including lung, breast, liver, colorectal, skin, prostate, stomach, bone and blood cancers. TQ also acted as a chemopreventive agent and reduced the toxicity of many chemo agents to vital organs, such as the heart, liver, kidneys and lungs. CONCLUSION In summary, we highly recommend an advanced evaluation of TQ adjuvant therapies at the level of preclinical and clinical trials, which could lead to a novel combinatorial therapy for cancer treatment with low or tolerable adverse effects on patients.
Collapse
Affiliation(s)
- Shah Jehan
- Xiangya School of Pharmaceutical Sciences, Central South University, Tongzipo Road 172, Changsha, Hunan 410013, China; Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Jiaxin Huang
- Xiangya School of Pharmaceutical Sciences, Central South University, Tongzipo Road 172, Changsha, Hunan 410013, China
| | - Umar Farooq
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Irum Basheer
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Wenhu Zhou
- Xiangya School of Pharmaceutical Sciences, Central South University, Tongzipo Road 172, Changsha, Hunan 410013, China.
| |
Collapse
|
231
|
Wufuer Y, Yang X, Guo L, Aximujiang K, Zhong L, Yunusi K, Wu G. The Antitumor Effect and Mechanism of Total Flavonoids From Coreopsis Tinctoria Nutt (Snow Chrysanthemum) on Lung Cancer Using Network Pharmacology and Molecular Docking. Front Pharmacol 2022; 13:761785. [PMID: 35350758 PMCID: PMC8957955 DOI: 10.3389/fphar.2022.761785] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 02/11/2022] [Indexed: 12/12/2022] Open
Abstract
Coreopsis tinctoria Nutt (C. tinctoria), also known as Snow Chrysanthemum, is rich in polyphenols and flavonoids. It has important pharmacological effects such as lowering blood lipids, regulating blood glucose, and anti-tumor effect. However, its anti-tumor mechanism has not yet been investigated thoroughly. This study aimed to explore the anti-tumor effect of total flavonoids extracted from C. tinctoria (CTFs) on lung cancer and the possible mechanism. The components of CTFs were analyzed using Ultra-high-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS). The active components of CTFs were screened according to oral bioavailability (OB) and drug-likeness (DL). Totally, 68 components of CTFs were identified and 23 active components were screened. Network pharmacological analysis on the active components identified 288 potential targets associated with lung cancer. After protein-protein interaction (PPI) network topology analysis, 17 key protein targets including Akt1, MAPK1, TP53, Bcl-2, Caspase-3, Bax, GSK3B and CCND1 were screened. The molecular docking results showed that the active components of CTFs had good binding activity with key targets. GO and KEGG analysis of candidate targets found that the main enrichment was in PI3K/Akt-mediated intrinsic apoptotic pathways. Finally, according to the results of network pharmacology, the potential molecular mechanism of CTFs intervention in lung cancer was validated experimentally in vitro and in vivo. The experimental validation results demonstrated that the antitumor activity of CTFs on lung cancer may be related to inhibiting the PI3K-Akt signaling pathway and activating the mitochondrial-mediated apoptosis pathway.
Collapse
Affiliation(s)
- Yilimire Wufuer
- School of Basic Medical Science, Xinjiang Medical University, Urumqi, China
| | - Xu Yang
- Department of Obstetrics and Gynecology, The Fifth Affiliated People's Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Luyuan Guo
- School of Basic Medical Science, Xinjiang Medical University, Urumqi, China
| | | | - Li Zhong
- School of Basic Medical Science, Xinjiang Medical University, Urumqi, China
| | - Kurexi Yunusi
- Uygur Medical College, Xinjiang Medical University, Urumqi, China
| | - Guixia Wu
- School of Basic Medical Science, Xinjiang Medical University, Urumqi, China
| |
Collapse
|
232
|
Chavda VP, Patel AB, Mistry KJ, Suthar SF, Wu ZX, Chen ZS, Hou K. Nano-Drug Delivery Systems Entrapping Natural Bioactive Compounds for Cancer: Recent Progress and Future Challenges. Front Oncol 2022; 12:867655. [PMID: 35425710 PMCID: PMC9004605 DOI: 10.3389/fonc.2022.867655] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 02/24/2022] [Indexed: 02/05/2023] Open
Abstract
Cancer is a prominent cause of mortality globally, and it becomes fatal and incurable if it is delayed in diagnosis. Chemotherapy is a type of treatment that is used to eliminate, diminish, or restrict tumor progression. Chemotherapeutic medicines are available in various formulations. Some tumors require just one type of chemotherapy medication, while others may require a combination of surgery and/or radiotherapy. Treatments might last from a few minutes to many hours to several days. Each medication has potential adverse effects associated with it. Researchers have recently become interested in the use of natural bioactive compounds in anticancer therapy. Some phytochemicals have effects on cellular processes and signaling pathways with potential antitumor properties. Beneficial anticancer effects of phytochemicals were observed in both in vivo and in vitro investigations. Encapsulating natural bioactive compounds in different drug delivery methods may improve their anticancer efficacy. Greater in vivo stability and bioavailability, as well as a reduction in undesirable effects and an enhancement in target-specific activity, will increase the effectiveness of bioactive compounds. This review work focuses on a novel drug delivery system that entraps natural bioactive substances. It also provides an idea of the bioavailability of phytochemicals, challenges and limitations of standard cancer therapy. It also encompasses recent patents on nanoparticle formulations containing a natural anti-cancer molecule.
Collapse
Affiliation(s)
- Vivek P. Chavda
- Department of Pharmaceutics and Pharmaceutical Technology, L.M. College of Pharmacy, Ahmedabad, India
| | | | - Kavya J. Mistry
- Pharmacy Section, L.M. College of Pharmacy, Ahmedabad, India
| | | | - Zhuo-Xun Wu
- Department of Pharmaceutical Science, College of Pharmacy and Health Sciences, St. John’s University, New York, NY, United States
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Science, College of Pharmacy and Health Sciences, St. John’s University, New York, NY, United States
| | - Kaijian Hou
- Department of Preventive Medicine,Shantou University Medical College, Shantou, China
- Department of Endocrine and Metabolic Diseases, Longhu Hospital, The First Afliated Hospital of Shantou University Medical College, Shantou, China
| |
Collapse
|
233
|
Gaja SK, Bandi S, Pavuluri PK, Sambyal S, Jaina VK, Sampath Kumar HM, Andugulapati SB, V R, Babu KS. Synthesis and antiproliferative activities of novel piscidinol a derivatives as potential anticancer agents. Nat Prod Res 2022:1-7. [PMID: 35343322 DOI: 10.1080/14786419.2022.2056889] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Piscidinol A (1), a major compound isolated from Aphanamixis polystachya, showed modest anticancer activity against cancer cell lines. Subsequently, a series of analogues were synthesised by modification of the key structural functionalities of this high yield natural product and assessed for their anticancer potential against various cancer cell lines. Among the tested derivatives, the compounds 6e and 6i are significantly reduced the cell viability at 5.38 and 5.02 µM against DU145 prostate cancer cells, respectively. Additionally, both the compounds arrested the cell cycle at S phase and induced the late apoptosis in DU145 cells. Together, the results demonstrated that the compounds 6e and 6i could be a promising lead for the development of anticancer agents against DU145 and well worth further investigation aiming to generate potential anticancer agents.
Collapse
Affiliation(s)
- Swarna Kumari Gaja
- Centre for Natural Products & Traditional Knowledge, CSIR-Indian Institute of Chemical Technology, Hyderabad, Telangana, India
| | - Siva Bandi
- Centre for Natural Products & Traditional Knowledge, CSIR-Indian Institute of Chemical Technology, Hyderabad, Telangana, India
| | - Pavan Kumar Pavuluri
- Centre for Natural Products & Traditional Knowledge, CSIR-Indian Institute of Chemical Technology, Hyderabad, Telangana, India
| | - Shainy Sambyal
- Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad, Telangana, India
| | - Vinod Kumar Jaina
- Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad, Telangana, India
| | - H M Sampath Kumar
- Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad, Telangana, India
| | - Sai Balaji Andugulapati
- Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad, Telangana, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| | - Ramalingam V
- Centre for Natural Products & Traditional Knowledge, CSIR-Indian Institute of Chemical Technology, Hyderabad, Telangana, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| | - K Suresh Babu
- Centre for Natural Products & Traditional Knowledge, CSIR-Indian Institute of Chemical Technology, Hyderabad, Telangana, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| |
Collapse
|
234
|
Lardos A, Aghaebrahimian A, Koroleva A, Sidorova J, Wolfram E, Anisimova M, Gil M. Computational Literature-based Discovery for Natural Products Research: Current State and Future Prospects. FRONTIERS IN BIOINFORMATICS 2022; 2:827207. [PMID: 36304281 PMCID: PMC9580913 DOI: 10.3389/fbinf.2022.827207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 02/28/2022] [Indexed: 11/21/2022] Open
Abstract
Literature-based discovery (LBD) mines existing literature in order to generate new hypotheses by finding links between previously disconnected pieces of knowledge. Although automated LBD systems are becoming widespread and indispensable in a wide variety of knowledge domains, little has been done to introduce LBD to the field of natural products research. Despite growing knowledge in the natural product domain, most of the accumulated information is found in detached data pools. LBD can facilitate better contextualization and exploitation of this wealth of data, for example by formulating new hypotheses for natural product research, especially in the context of drug discovery and development. Moreover, automated LBD systems promise to accelerate the currently tedious and expensive process of lead identification, optimization, and development. Focusing on natural product research, we briefly reflect the development of automated LBD and summarize its methods and principal data sources. In a thorough review of published use cases of LBD in the biomedical domain, we highlight the immense potential of this data mining approach for natural product research, especially in context with drug discovery or repurposing, mode of action, as well as drug or substance interactions. Most of the 91 natural product-related discoveries in our sample of reported use cases of LBD were addressed at a computer science audience. Therefore, it is the wider goal of this review to introduce automated LBD to researchers who work with natural products and to facilitate the dialogue between this community and the developers of automated LBD systems.
Collapse
Affiliation(s)
- Andreas Lardos
- Natural Product Chemistry and Phytopharmacy Research Group, Institute of Chemistry and Biotechnology, School of Life Sciences and Facility Management, Zurich University of Applied Sciences (ZHAW), Waedenswil, Switzerland
| | - Ahmad Aghaebrahimian
- Institute of Applied Simulation, School of Life Sciences and Facility Management, Zürich University of Applied Sciences (ZHAW), Waedenswil, Switzerland
- Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland
| | - Anna Koroleva
- Institute of Applied Simulation, School of Life Sciences and Facility Management, Zürich University of Applied Sciences (ZHAW), Waedenswil, Switzerland
- Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland
| | - Julia Sidorova
- Instituto de Tecnología del Conocimiento, Universidad Complutense de Madrid, Madrid, Spain
| | - Evelyn Wolfram
- Natural Product Chemistry and Phytopharmacy Research Group, Institute of Chemistry and Biotechnology, School of Life Sciences and Facility Management, Zurich University of Applied Sciences (ZHAW), Waedenswil, Switzerland
| | - Maria Anisimova
- Institute of Applied Simulation, School of Life Sciences and Facility Management, Zürich University of Applied Sciences (ZHAW), Waedenswil, Switzerland
- Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland
| | - Manuel Gil
- Institute of Applied Simulation, School of Life Sciences and Facility Management, Zürich University of Applied Sciences (ZHAW), Waedenswil, Switzerland
- Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland
| |
Collapse
|
235
|
Kowalczyk T, Merecz-Sadowska A, Rijo P, Mori M, Hatziantoniou S, Górski K, Szemraj J, Piekarski J, Śliwiński T, Bijak M, Sitarek P. Hidden in Plants-A Review of the Anticancer Potential of the Solanaceae Family in In Vitro and In Vivo Studies. Cancers (Basel) 2022; 14:1455. [PMID: 35326606 PMCID: PMC8946528 DOI: 10.3390/cancers14061455] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/01/2022] [Accepted: 03/09/2022] [Indexed: 02/04/2023] Open
Abstract
Many of the anticancer agents that are currently in use demonstrate severe side effects and encounter increasing resistance from the target cancer cells. Thus, despite significant advances in cancer therapy in recent decades, there is still a need to discover and develop new, alternative anticancer agents. The plant kingdom contains a range of phytochemicals that play important roles in the prevention and treatment of many diseases. The Solanaceae family is widely used in the treatment of various diseases, including cancer, due to its bioactive ingredient content. The purpose of this literature review is to highlight the antitumour activity of Solanaceae extracts-single isolated compounds and nanoparticles with extracts-and their synergistic effect with chemotherapeutic agents in various in vitro and in vivo cancer models. In addition, the biological properties of many plants of the Solanaceae family have not yet been investigated, which represents a challenge and an opportunity for future anticancer therapy.
Collapse
Affiliation(s)
- Tomasz Kowalczyk
- Department of Molecular Biotechnology and Genetics, University of Lodz, 90-237 Lodz, Poland;
| | - Anna Merecz-Sadowska
- Department of Computer Science in Economics, University of Lodz, 90-214 Lodz, Poland;
| | - Patricia Rijo
- CBIOS—Research Center for Biosciences & Health Technologies, Universidade Lusófona de Humanidades e Tecnologias, 1749-024 Lisbon, Portugal;
- iMed.ULisboa—Research Institute for Medicines, Faculdade de Farmácia da Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal
| | - Mattia Mori
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy;
| | - Sophia Hatziantoniou
- Laboratory of Pharmaceutical Technology, Department of Pharmacy, School of Health Sciences, University of Patras, 26504 Patras, Greece;
| | - Karol Górski
- Department of Clinical Pharmacology, Medical University of Lodz, 90-151 Lodz, Poland;
| | - Janusz Szemraj
- Department of Medical Biochemistry, Medical University of Lodz, 92-215 Lodz, Poland;
| | - Janusz Piekarski
- Department of Surgical Oncology, Chair of Oncology, Medical University in Lodz, Nicolaus Copernicus Multidisciplinary Centre for Oncology and Traumatology, 93-513 Lodz, Poland;
| | - Tomasz Śliwiński
- Laboratory of Medical Genetics, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland;
| | - Michał Bijak
- Biohazard Prevention Centre, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland;
| | - Przemysław Sitarek
- Department of Biology and Pharmaceutical Botany, Medical University of Lodz, 90-151 Lodz, Poland
| |
Collapse
|
236
|
De Luca A, Bellavia D, Raimondi L, Carina V, Costa V, Fini M, Giavaresi G. Multiple Effects of Resveratrol on Osteosarcoma Cell Lines. Pharmaceuticals (Basel) 2022; 15:342. [PMID: 35337142 PMCID: PMC8956103 DOI: 10.3390/ph15030342] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/08/2022] [Accepted: 03/09/2022] [Indexed: 02/04/2023] Open
Abstract
Osteosarcoma (OS) is the most common primary bone sarcoma affecting the life of pediatric patients. The clinical treatment faces numerous difficulties, including the adverse effects of chemotherapies, chemoresistance, and recurrences. In this study, the effects of resveratrol (RSV), a natural polyphenol, on OS cell lines were investigated to evaluate its action as an adjuvant therapy to the current chemotherapy regimens. RSV exhibited multiple tumor-suppressing activities on OS cell lines, inducing a series of critical events. We found (1) a cell growth inhibition due to an increase in cell distress, which was, in part, due to the involvement of the AKT and caspase-3 pathways, (2) an increase in cellular differentiation due to major gene expression levels of the osteoblastic differentiation genes, (3) an inhibition of IL-6 secretion due to an epigenetic effect on the IL-6 promoter, and (4) an inhibition of OS cells migration related to the decrease in IL-8 secretion levels due to an epigenetic effect on its promoter. Finally, the cotreatment of RSV with doxorubicin and cisplatin increased their cytotoxic effect on OS cells. Although further investigations are mandatory, it seems RSV might be a promising therapeutic adjuvant agent for OS cell treatment, exerting an antitumor effect when combined with chemotherapy.
Collapse
Affiliation(s)
- Angela De Luca
- IRCCS Istituto Ortopedico Rizzoli, CS Surgical Sciences and Technologies—SS Omics Science Platform for Personalized Orthopedics, 40136 Bologna, Italy; (D.B.); (L.R.); (V.C.); (V.C.); (M.F.); (G.G.)
| | | | | | | | | | | | | |
Collapse
|
237
|
Kamal N, Ilowefah MA, Hilles AR, Anua NA, Awin T, Alshwyeh HA, Aldosary SK, Jambocus NGS, Alosaimi AA, Rahman A, Mahmood S, Mediani A. Genesis and Mechanism of Some Cancer Types and an Overview on the Role of Diet and Nutrition in Cancer Prevention. Molecules 2022; 27:1794. [PMID: 35335158 PMCID: PMC8955916 DOI: 10.3390/molecules27061794] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 02/28/2022] [Accepted: 03/07/2022] [Indexed: 02/01/2023] Open
Abstract
Cancer is a major disease with a high mortality rate worldwide. In many countries, cancer is considered to be the second most common cause of death after cardiovascular disease. The clinical management of cancer continues to be a challenge as conventional treatments, such as chemotherapy and radiation therapy, have limitations due to their toxicity profiles. Unhealthy lifestyle and poor dietary habits are the key risk factors for cancer; having a healthy diet and lifestyle may minimize the risk. Epidemiological studies have shown that a high fruit and vegetable intake in our regular diet can effectively reduce the risk of developing certain types of cancers due to the high contents of antioxidants and phytochemicals. In vitro and in vivo studies have shown that phytochemicals exert significant anticancer effects due to their free radical scavenging capacity potential. There has been extensive research on the protective effects of phytochemicals in different types of cancers. This review attempts to give an overview of the etiology of different types of cancers and assesses the role of phytonutrients in the prevention of cancers, which makes the present review distinct from the others available.
Collapse
Affiliation(s)
- Nurkhalida Kamal
- Institute of Systems Biology, Universiti Kebangsaan Malaysia (UKM), Bangi 43600, Malaysia; (N.K.); (N.A.A.)
| | - Muna Abdulsalam Ilowefah
- Department of Food Technology, Faculty of Engineering and Technology, Sabha University, Sabha 00218, Libya;
| | - Ayah Rebhi Hilles
- Institute for Halal Research and Training (INHART), International Islamic University Malaysia, Kuala Lumpur 53100, Malaysia;
| | - Nurul Adlina Anua
- Institute of Systems Biology, Universiti Kebangsaan Malaysia (UKM), Bangi 43600, Malaysia; (N.K.); (N.A.A.)
| | - Tahani Awin
- Department of Chemistry, Faculty of Science, University of Benghazi, Qar Yunis, Benghazi 5341, Libya;
| | - Hussah Abdullah Alshwyeh
- Department of Biology, College of Science, Imam Abdulrahman Bin Faisal University, Dammam 34212, Saudi Arabia; (H.A.A.); (S.K.A.); (A.A.A.)
- Basic & Applied Scientific Research Centre, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Sahar Khamees Aldosary
- Department of Biology, College of Science, Imam Abdulrahman Bin Faisal University, Dammam 34212, Saudi Arabia; (H.A.A.); (S.K.A.); (A.A.A.)
| | - Najla Gooda Sahib Jambocus
- Ministry of Education, Tertiary Education, Science and Technology, MITD House, Phoenix 73544, Mauritius;
| | - Areej A. Alosaimi
- Department of Biology, College of Science, Imam Abdulrahman Bin Faisal University, Dammam 34212, Saudi Arabia; (H.A.A.); (S.K.A.); (A.A.A.)
| | - Azizur Rahman
- Department of Clinical Pharmacy, Faculty of Pharmaceutical Sciences, UCSI University, Kuala Lumpur 56000, Malaysia;
| | - Syed Mahmood
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Ahmed Mediani
- Institute of Systems Biology, Universiti Kebangsaan Malaysia (UKM), Bangi 43600, Malaysia; (N.K.); (N.A.A.)
| |
Collapse
|
238
|
Li X, Jin L, Yuchao M, Jiang Z, Tang H, Tong X. Xanthohumol inhibits non-small cell lung cancer by activating PUMA-mediated apoptosis. Toxicology 2022; 470:153141. [DOI: 10.1016/j.tox.2022.153141] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 03/01/2022] [Accepted: 03/02/2022] [Indexed: 12/25/2022]
|
239
|
Ali MA, Mahmoud SA, Alkhedaide A, Soliman MM, Al-Shafie TA, El-Sayed YS, Shukry M, Ghamry HI, Elblehi SS. Boosting effects of Cranberry and Cinnamaldehyde for pioglitazone amelioration of liver steatosis in rat via suppression of HIF-1α/Smad/β-catenin signaling. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.104973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
240
|
Saleh N, Allam T, Korany RMS, Abdelfattah AM, Omran AM, Abd Eldaim MA, Hassan AM, El-Borai NB. Protective and Therapeutic Efficacy of Hesperidin versus Cisplatin against Ehrlich Ascites Carcinoma-Induced Renal Damage in Mice. Pharmaceuticals (Basel) 2022; 15:ph15030294. [PMID: 35337092 PMCID: PMC8953897 DOI: 10.3390/ph15030294] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 02/11/2022] [Accepted: 02/22/2022] [Indexed: 01/07/2023] Open
Abstract
This study evaluates the antitumor efficacy of hesperidin (Hesp) versus cisplatin (Cis) in Ehrlich ascites carcinoma (EAC)-bearing mice, as well as its protective effect against Cis-triggered nephrotoxicity. Seventy female mice were allocated into control, Hesp, EAC, Hesp-protected, Hesp-treated, Cis-treated, and Cis+Hesp-treated groups. The inoculation of mice with EAC cells significantly reduced the mean survival time, while significantly increased the body weight, abdominal circumference, ascitic fluid volume, viable tumor cell count, and serum carcinoembryonic antigen, urea and creatinine levels, besides various hematological changes. Additionally, kidney tissue of EAC-bearing mice showed a significant increase in the malondialdehyde level, significant decreases in the reduced glutathione content and catalase activity, marked pathological alterations, and a strong Ki-67 expression with a weak caspase-3 expression in neoplastic cells infiltrating the renal capsule. Conversely, the administration of Hesp and/or Cis to the EAC-bearing mice induced, to various degrees, antitumor responses and alleviated the cytotoxic effects of EAC. In addition to the potent antitumor effect of the concomitant administration of Hesp and Cis, Hesp minimized the renal adverse side effects of Cis. In conclusion, Hesp may open new avenues for safe and effective cancer therapy and could be valuable for enhancing the antitumor potency and minimizing the renal adverse side effects of chemotherapeutic drugs.
Collapse
Affiliation(s)
- Nahed Saleh
- Department of Clinical Pathology, Faculty of Veterinary Medicine, University of Sadat City, Sadat City 32897, Menoufia, Egypt; (N.S.); (T.A.); (A.M.A.); (A.M.O.)
| | - Tamer Allam
- Department of Clinical Pathology, Faculty of Veterinary Medicine, University of Sadat City, Sadat City 32897, Menoufia, Egypt; (N.S.); (T.A.); (A.M.A.); (A.M.O.)
| | - Reda M. S. Korany
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt;
| | - Abdelfattah M. Abdelfattah
- Department of Clinical Pathology, Faculty of Veterinary Medicine, University of Sadat City, Sadat City 32897, Menoufia, Egypt; (N.S.); (T.A.); (A.M.A.); (A.M.O.)
| | - Ahmed M. Omran
- Department of Clinical Pathology, Faculty of Veterinary Medicine, University of Sadat City, Sadat City 32897, Menoufia, Egypt; (N.S.); (T.A.); (A.M.A.); (A.M.O.)
| | - Mabrouk Attia Abd Eldaim
- Department of Biochemistry and Chemistry of Nutrition, Faculty of Veterinary Medicine, Menoufia University, Sheben El-Kom 32511, Egypt
- Correspondence: (M.A.A.E.); or (N.B.E.-B.); Tel./Fax: +20-1-1748-4718 (M.A.A.E.); +20-4-8260-3215 or +20-10-0736-5569 (N.B.E.-B.)
| | - Aziza M. Hassan
- Department of Biotechnology, Collage of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia;
| | - Nermeen Borai El-Borai
- Department of Forensic Medicine & Toxicology, Faculty of Veterinary Medicine, University of Sadat City, Sadat City 32897, Menoufia, Egypt
- Correspondence: (M.A.A.E.); or (N.B.E.-B.); Tel./Fax: +20-1-1748-4718 (M.A.A.E.); +20-4-8260-3215 or +20-10-0736-5569 (N.B.E.-B.)
| |
Collapse
|
241
|
Melim C, Magalhães M, Santos AC, Campos EJ, Cabral C. Nanoparticles as phytochemical carriers for cancer treatment: News of the last decade. Expert Opin Drug Deliv 2022; 19:179-197. [PMID: 35166619 DOI: 10.1080/17425247.2022.2041599] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
INTRODUCTION The development and application of novel therapeutic medicines for the treatment of cancer are of vital importance to improve the disease's outcome and survival rate. One noteworthy treatment approach is the use of biologically active compounds present in natural products. Even though these phytocompounds present anti-inflammatory, antioxidant, and anticancer properties, their use is limited essentially due to poor systemic delivery, low bioavailability, and water solubility concerns. To make full use of the anticancer potential of natural products, these limitations need to be technologically addressed. In this sense, nanotechnology emerges as a promising drug delivery system strategy. AREAS COVERED In this review, the benefits and potential of nanodelivery systems for natural products encapsulation as promising therapeutic approaches for cancer, which were developed during the last decade, are highlighted. EXPERT OPINION The nanotechnology area has been under extensive research in the medical field given its capacity for improving the therapeutic potential of drugs by increasing their bioavailability and allowing a targeted delivery to the tumor site. Thereby, the nanoencapsulation of phytocompounds can have a direct impact on the recognized therapeutic activity of natural products towards cancer.
Collapse
Affiliation(s)
- Catarina Melim
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,University of Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Clinic Academic Center of Coimbra (CACC), Faculty of Medicine, 3000-548 Coimbra, Portugal.,University of Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), 3000-548 Coimbra, Portugal
| | - Mariana Magalhães
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,University of Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Clinic Academic Center of Coimbra (CACC), Faculty of Medicine, 3000-548 Coimbra, Portugal.,University of Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), 3000-548 Coimbra, Portugal.,PhD Programme in Experimental Biology and Biomedicine, Institute for Interdisciplinary Research (IIIUC), University of Coimbra, Casa Costa Alemão, 3030-789 Coimbra, Portugal
| | - Ana Cláudia Santos
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Polo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal.,REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| | - Elisa Julião Campos
- University of Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Clinic Academic Center of Coimbra (CACC), Faculty of Medicine, 3000-548 Coimbra, Portugal.,University of Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), 3000-548 Coimbra, Portugal.,Association for Innovation and Biomedical Research on Light and Image (AIBILI), 3000-548 Coimbra, Portugal
| | - Célia Cabral
- University of Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Clinic Academic Center of Coimbra (CACC), Faculty of Medicine, 3000-548 Coimbra, Portugal.,University of Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), 3000-548 Coimbra, Portugal.,Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal
| |
Collapse
|
242
|
Cell Culture-Based Assessment of Toxicity and Therapeutics of Phytochemical Antioxidants. Molecules 2022; 27:molecules27031087. [PMID: 35164354 PMCID: PMC8839249 DOI: 10.3390/molecules27031087] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 01/31/2022] [Accepted: 02/03/2022] [Indexed: 12/13/2022] Open
Abstract
Plant-derived natural products are significant resources for drug discovery and development including appreciable potentials in preventing and managing oxidative stress, making them promising candidates in cancer and other disease therapeutics. Their effects have been linked to phytochemicals such as phenolic compounds and their antioxidant activities. The abundance and complexity of these bio-constituents highlight the need for well-defined in vitro characterization and quantification of the plant extracts/preparations that can translate to in vivo effects and hopefully to clinical use. This review article seeks to provide relevant information about the applicability of cell-based assays in assessing anti-cytotoxicity of phytochemicals considering several traditional and current methods.
Collapse
|
243
|
Karkanrood MV, Homayouni Tabrizi M, Ardalan T, Soltani M, Khadem F, Nosrat T, Moeini S. Pistacia atlantica fruit essential oil nanoemulsions (PAEO-NE), an effective antiangiogenic therapeutic and cell-dependent apoptosis inducer on A549 human lung cancer cells. INORG NANO-MET CHEM 2022. [DOI: 10.1080/24701556.2022.2034008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
| | | | - Touran Ardalan
- Department of Chemistry, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Mozhgan Soltani
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | | | - Toktam Nosrat
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Soheila Moeini
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran
- Department of Biology, Neyshabur Branch, Islamic Azad University, Neyshabur, Iran
| |
Collapse
|
244
|
Nabizadeh F, Momtaz S, Ghanbari-Movahed M, Qalekhani F, Mohsenpour H, Aneva IY, Bishayee A, Farzaei MH, Bishayee A. Pediatric acute lymphoblastic leukemia management using multitargeting bioactive natural compounds: A systematic and critical review. Pharmacol Res 2022; 177:106116. [PMID: 35122954 DOI: 10.1016/j.phrs.2022.106116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/19/2022] [Accepted: 02/01/2022] [Indexed: 11/16/2022]
Abstract
Pediatric acute lymphoblastic leukemia (pALL), a malignancy of the lymphoid line of blood cells, accounts for a large percentage of all childhood leukemia cases. Although the 5-year survival rate for children with ALL has greatly improved over years, using chemotherapeutics as its first-line treatment still causes short- and long-term side effects. Furthermore, induction of toxicity and resistance, as well as the high cost, limit their application. Phytochemicals, with remarkable cancer preventive and chemotherapeutic characteristics, may serve as old solutions to new challenges. Bioactive plant secondary metabolites have exhibited promising antileukemic and adjunctive effects by targeting various molecular processes, including autophagy, cell cycle, angiogenesis, and extrinsic/intrinsic apoptotic pathways. Although numerous reports have shown that numerous plant secondary metabolites can interfere with the progression of malignancies, including leukemia, there was no comprehensive review article on the effect of phytochemicals on pALL. This systematic review aims to provide critical and cohesive analysis of the potential of various naturally-occurring metabolites in the management of pALL with the understanding of underlying molecular and cellular mechanisms of action.
Collapse
Affiliation(s)
- Fatemeh Nabizadeh
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran
| | - Saeideh Momtaz
- Medicinal Plants Research Center, Institute of Medicinal Plants, Karaj 141554364, Iran; Toxicology and Diseases Group, Pharmaceutical Sciences Research Center, The Institute of Pharmaceutical Sciences, and Department of Toxicology and Pharmacology, School of Pharmacy, Tehran University of Medical Sciences, Tehran 1417614411, Iran
| | - Maryam Ghanbari-Movahed
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran
| | - Farshad Qalekhani
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran; Medical Biology Research Center, Health Technologies Institute, Kermanshah University of Medical Sciences, Kermanshah 6714415185, Iran
| | - Hadi Mohsenpour
- Department of Pediatrics, Imam Reza Hospital, Kermanshah University of Medical Sciences, Kermanshah 6742775333, Iran
| | - Ina Yosifova Aneva
- Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | | | - Mohammad Hosein Farzaei
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran.
| | - Anupam Bishayee
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA.
| |
Collapse
|
245
|
Jain R, Hussein MA, Pierce S, Martens C, Shahagadkar P, Munirathinam G. Oncopreventive and oncotherapeutic potential of licorice triterpenoid compound glycyrrhizin and its derivatives: Molecular insights. Pharmacol Res 2022; 178:106138. [PMID: 35192957 PMCID: PMC8857760 DOI: 10.1016/j.phrs.2022.106138] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 02/14/2022] [Accepted: 02/17/2022] [Indexed: 02/06/2023]
Abstract
Licorice (Glycyrrhiza glabra) is a well-known natural herb used to treat different ailments since ancient times. Glycyrrhizin (GL), which is the primary triterpenoid compound of licorice extract, has been known to have broad-spectrum pharmacological effects. GL is cleaved into glucuronide and the aglycone, glycyrrhetinic acid (GA), which exists in two stereoisomeric forms: 18α- and 18β-GA. It is well documented that GL and GA have great potential as anti-inflammatory, anticancer, antiviral, anti-diabetic, antioxidant, and hepatoprotective agents. Studies undertaken during the coronavirus disease 2019 pandemic suggest that GL is effective at inhibiting the viral replication of severe acute respiratory syndrome coronavirus 2. The anticancer effects of GL and GA involve modulating various signaling pathways, such as the phosphatase and tensin homolog/phosphatidylinositol 3-kinase/protein kinase B pathway, the mitogen-activated protein kinase, and the mammalian target of rapamycin/signal transducer and activator of transcription 3, which are mainly involved in regulating cancer cell death, oxidative stress, and inflammation. The potential of GL and GA in preventing cancer development and suppressing the growth and invasion of different cancer types has been reviewed in this paper. This review also provides molecular insights on the mechanism of action for the oncopreventive and oncotherapeutic effects of GL and its derivative, GA, which could help develop more specific forms of these agents for clinical use.
Collapse
|
246
|
Banik K, Khatoon E, Harsha C, Rana V, Parama D, Thakur KK, Bishayee A, Kunnumakkara AB. Wogonin and its analogs for the prevention and treatment of cancer: A systematic review. Phytother Res 2022; 36:1854-1883. [DOI: 10.1002/ptr.7386] [Citation(s) in RCA: 80] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 12/18/2021] [Accepted: 01/08/2022] [Indexed: 12/24/2022]
Affiliation(s)
- Kishore Banik
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering Indian Institute of Technology‐Guwahati Guwahati India
- DBT‐AIST International Center for Translational and Environmental Research Indian Institute of Technology‐Guwahati Guwahati India
| | - Elina Khatoon
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering Indian Institute of Technology‐Guwahati Guwahati India
- DBT‐AIST International Center for Translational and Environmental Research Indian Institute of Technology‐Guwahati Guwahati India
| | - Choudhary Harsha
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering Indian Institute of Technology‐Guwahati Guwahati India
- DBT‐AIST International Center for Translational and Environmental Research Indian Institute of Technology‐Guwahati Guwahati India
| | - Varsha Rana
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering Indian Institute of Technology‐Guwahati Guwahati India
- DBT‐AIST International Center for Translational and Environmental Research Indian Institute of Technology‐Guwahati Guwahati India
| | - Dey Parama
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering Indian Institute of Technology‐Guwahati Guwahati India
- DBT‐AIST International Center for Translational and Environmental Research Indian Institute of Technology‐Guwahati Guwahati India
| | - Krishan Kumar Thakur
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering Indian Institute of Technology‐Guwahati Guwahati India
- DBT‐AIST International Center for Translational and Environmental Research Indian Institute of Technology‐Guwahati Guwahati India
| | - Anupam Bishayee
- College of Osteopathic medicine Lake Erie College of Osteopathic Medicine Bradenton Florida USA
| | - Ajaikumar B. Kunnumakkara
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering Indian Institute of Technology‐Guwahati Guwahati India
- DBT‐AIST International Center for Translational and Environmental Research Indian Institute of Technology‐Guwahati Guwahati India
| |
Collapse
|
247
|
Potential Anticancer Activity of the Furanocoumarin Derivative Xanthotoxin Isolated from Ammi majus L. Fruits: In Vitro and In Silico Studies. Molecules 2022; 27:molecules27030943. [PMID: 35164207 PMCID: PMC8839012 DOI: 10.3390/molecules27030943] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/22/2022] [Accepted: 01/25/2022] [Indexed: 01/27/2023] Open
Abstract
Ammi majus L., an indigenous plant in Egypt, is widely used in traditional medicine due to its various pharmacological properties. We aimed to evaluate the anticancer properties of Ammi majus fruit methanol extract (AME) against liver cancer and to elucidate the active compound(s) and their mechanisms of action. Three fractions from AME (Hexane, CH2Cl2, and EtOAc) were tested for their anticancer activities against HepG2 cell line in vitro (cytotoxicity assay, cell cycle analysis, annexin V-FITC apoptosis assay, and autophagy efflux assay) and in silico (molecular docking). Among the AME fractions, CH2Cl2 fraction revealed the most potent cytotoxic activity. The structures of compounds isolated from the CH2Cl2 fraction were elucidated using 1H- and 13C-NMR and found that Compound 1 (xanthotoxin) has the strongest cytotoxic activity against HepG2 cells (IC50 6.9 ± 1.07 µg/mL). Treating HepG2 cells with 6.9 µg/mL of xanthotoxin induced significant changes in the DNA-cell cycle (increases in apoptotic pre-G1 and G2/M phases and a decrease in the S-phase). Xanthotoxin induced significant increase in Annexin-V-positive HepG2 cells both at the early and late stages of apoptosis, as well as a significant decrease in autophagic flux in cancer compared with control cells. In silico analysis of xanthotoxin against the DNA-relaxing enzyme topoisomease II (PDB code: 3QX3) revealed strong interaction with the key amino acid Asp479 in a similar fashion to that of the co-crystallized inhibitor (etoposide), implying that xanthotoxin has a potential of a broad-spectrum anticancer activity. Our results indicate that xanthotoxin exhibits anticancer effects with good biocompatibility toward normal human cells. Further studies are needed to optimize its antitumor efficacy, toxicity, solubility, and pharmacokinetics.
Collapse
|
248
|
Turna O, Baykal A, Sozen Kucukkara E, Deveci Ozkan A, Guney Eskiler G, Yıldırım F. Evaluation of Curcumin Therapeutic Effects on Histological Subtypes of Canine Mammary Gland Tumours. Nutr Cancer 2022; 74:3015-3025. [PMID: 35089107 DOI: 10.1080/01635581.2022.2032216] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Canine mammary gland tumors (CMGTs) are the most frequent types of cancer in bitches and proposed as a model of human breast cancer. The anticancer effect of curcumin on human breast cancer has been extensively studied. The aim of this study was to evaluate the therapeutic effect of curcumin in two different histologies (simple carcinoma [SC] and squamous cell carcinoma [SCC]) of CMGTs. Primary canine mammary cells were isolated from the tumoral tissues surgically resected from two bitches (Case 1 and Case 2). Cell viability, apoptotic percentage, cell cycle progression and the changes in the cell morphology were evaluated. Curcumin inhibited the growth of both SC (Case 1) and SCC (Case 2) cells. However, Case 1 cells (43.48% ± 3.87% at 0.5 µM) were more sensitive to curcumin than Case 2 cells (59.36% ± 2.09% at 0.5 µM). Curcumin induced total apoptotic cell death through G0/G1 arrest, and this effect was more profound in Case 1 cells. Furthermore, cytoplasmic vacuolization, apoptotic bodies and membrane blebbing were observed in both cells following curcumin treatment. Our findings provide a novel approach for the effects of curcumin as a natural compound on CMGTs. Further investigations should be performed to investigate the molecular mechanisms of the differences in curcumin efficacy for different histological subtypes.
Collapse
Affiliation(s)
- Ozge Turna
- Department of Obstetrics and Gynecology, Faculty of Veterinary Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Aslihan Baykal
- Department of Obstetrics and Gynecology, Faculty of Veterinary Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Elif Sozen Kucukkara
- Department of Medical Biochemistry, Institute of Health Science, Sakarya University, Sakarya, Turkey
| | - Asuman Deveci Ozkan
- Department of Medical Biology, Faculty of Medicine, Sakarya University, Sakarya, Turkey
| | - Gamze Guney Eskiler
- Department of Medical Biology, Faculty of Medicine, Sakarya University, Sakarya, Turkey
| | - Funda Yıldırım
- Department of Pathology, Faculty of Veterinary Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| |
Collapse
|
249
|
Bishayee A, Patel PA, Sharma P, Thoutireddy S, Das N. Lotus (Nelumbo nucifera Gaertn.) and Its Bioactive Phytocopounds: A Tribute to Cancer Prevention and Intervention. Cancers (Basel) 2022; 14:cancers14030529. [PMID: 35158798 PMCID: PMC8833568 DOI: 10.3390/cancers14030529] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 01/15/2022] [Accepted: 01/17/2022] [Indexed: 02/07/2023] Open
Abstract
Simple Summary The plant Nelumbo nucifera (Gaertn.), commonly known as lotus, sacred lotus, Indian lotus, water lily, or Chinese water lily, is an aquatic perennial crop belonging to the family of Nelumbonaceae. N. nucifera has traditionally been used as an herbal medicine and functional food in many parts of Asia. It has been found that different parts of this plant consist of various bioactive phytocompounds. Within the past few decades, N. nucifera and its phytochemicals have been subjected to intense cancer research. In this review, we critically evaluate the potential of N. nucifera phytoconstituents in cancer prevention and therapy with related mechanisms of action. Abstract Cancer is one of the major leading causes of death worldwide. Accumulating evidence suggests a strong relationship between specific dietary habits and cancer development. In recent years, a food-based approach for cancer prevention and intervention has been gaining tremendous attention. Among diverse dietary and medicinal plants, lotus (Nelumbo nucifera Gaertn., family Nymphaeaceae), also known as Indian lotus, sacred lotus or Chinese water lily, has the ability to effectively combat this disease. Various parts of N. nucifera have been utilized as a vegetable as well as an herbal medicine for more than 2000 years in the Asian continent. The rhizome and seeds of N. nucifera represent the main edible parts. Different parts of N. nucifera have been traditionally used to manage different disorders, such as fever, inflammation, insomnia, nervous disorders, epilepsy, hypertension, cardiovascular diseases, obesity, and hyperlipidemia. It is believed that numerous bioactive components, including alkaloids, polyphenols, terpenoids, steroids, and glycosides, are responsible for its various biological and pharmacological activities, such as antioxidant, anti-inflammatory, immune-modulatory, antiviral, hepatoprotective, cardioprotective, and hypoglycemic activities. Nevertheless, there is no comprehensive review with an exclusive focus on the anticancer attributes of diverse phytochemicals from different parts of N. nucifera. In this review, we have analyzed the effects of N. nucifera extracts, fractions and pure compounds on various organ-specific cancer cells and tumor models to understand the cancer-preventive and therapeutic potential and underlying cellular and molecular mechanisms of action of this interesting medicinal and dietary plant. In addition, the bioavailability, pharmacokinetics, and possible toxicity of N. nucifera-derived phytochemicals, as well as current limitations, challenges and future research directions, are also presented.
Collapse
Affiliation(s)
- Anupam Bishayee
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA; (P.A.P.); (P.S.); (S.T.)
- Correspondence: or
| | - Palak A. Patel
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA; (P.A.P.); (P.S.); (S.T.)
| | - Priya Sharma
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA; (P.A.P.); (P.S.); (S.T.)
| | - Shivani Thoutireddy
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA; (P.A.P.); (P.S.); (S.T.)
| | - Niranjan Das
- Department of Chemistry, Iswar Chandra Vidyasagar College, Belonia 799155, Tripura, India;
| |
Collapse
|
250
|
Pharmacophore screening to identify natural origin compounds to target RNA-dependent RNA polymerase (RdRp) of SARS-CoV2. Mol Divers 2022; 26:2613-2629. [PMID: 35000060 PMCID: PMC8742708 DOI: 10.1007/s11030-021-10358-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 11/26/2021] [Indexed: 01/01/2023]
Abstract
Several existing drugs have gained initial consideration due to their therapeutic characteristics against COVID-19 (Corona Virus Disease 2019). Hydroxychloroquine (HCQ) was proposed as possible therapy for shortening the duration of COVID-19, but soon after this, it was discarded. Similarly, known antiviral compounds were also proposed and investigated to treat COVID-19. We report a pharmacophore screening using essential chemical groups derived from HCQ and known antivirals to search a natural compound chemical space. Molecular docking of HCQ under physiological condition with spike protein, 3C-like protease (3CLpro), and RNA-dependent RNA polymerase (RdRp) of SARS-CoV2 showed - 8.52 kcal/mole binding score with RdRp, while the other two proteins showed relatively weaker binding affinity. Docked complex of RdRp-HCQ is further examined using 100 ns molecular dynamic simulation. Docking and simulation study confirmed active chemical moieties of HCQ, treated as 6-point pharmacophore to screen ZINC natural compound database. Pharmacophore screening resulted in the identification of potent hit molecule [(3S,3aR,6R,6aS)-3-(5-phenylsulfanyltetrazol-1-yl)-2,3,3a,5,6,6a-hexahydrofuro[3,2-b]furan-6-yl]N-naphthalen-ylcarbamate from natural compound library. Additionally, a set of antiviral compounds with similar chemical scaffolds are also used to design a separate ligand-based pharmacophore screening. Antiviral pharmacophore screening produced a potent hit 4-[(1,5-dimethyl-3-oxo-2-phenylpyrazol-4-yl)-(2-hydroxyphenyl)methyl]-1,5-dimethyl-2-phenylpyrazol-3-one containing essential moieties that showed affinity towards RdRp. Further, both these screened compounds are docked (- 8.69 and - 8.86 kcal/mol) and simulated with RdRp protein for 100 ns in explicit solvent medium. They bind at the active site of RdRp and form direct/indirect interaction with ASP618, ASP760, and ASP761 catalytic residues of the protein. Successively, their molecular mechanics Poisson Boltzmann surface area (MMPBSA) binding energies are calculated over the simulation trajectory to determine the dynamic atomistic interaction details. Overall, this study proposes two key natural chemical moieties: (a) tetrazol and (b) phenylpyrazol that can be investigated as a potential chemical group to design inhibitors against SARS-CoV2 RdRp.
Collapse
|