201
|
Smyth JW, Hong TT, Gao D, Vogan JM, Jensen BC, Fong TS, Simpson PC, Stainier DYR, Chi NC, Shaw RM. Limited forward trafficking of connexin 43 reduces cell-cell coupling in stressed human and mouse myocardium. J Clin Invest 2009; 120:266-79. [PMID: 20038810 DOI: 10.1172/jci39740] [Citation(s) in RCA: 201] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2009] [Accepted: 11/11/2009] [Indexed: 12/25/2022] Open
Abstract
Gap junctions form electrical conduits between adjacent myocardial cells, permitting rapid spatial passage of the excitation current essential to each heartbeat. Arrhythmogenic decreases in gap junction coupling are a characteristic of stressed, failing, and aging myocardium, but the mechanisms of decreased coupling are poorly understood. We previously found that microtubules bearing gap junction hemichannels (connexons) can deliver their cargo directly to adherens junctions. The specificity of this delivery requires the microtubule plus-end tracking protein EB1. We performed this study to investigate the hypothesis that the oxidative stress that accompanies acute and chronic ischemic disease perturbs connexon forward trafficking. We found that EB1 was displaced in ischemic human hearts, stressed mouse hearts, and isolated cells subjected to oxidative stress. As a result, we observed limited microtubule interaction with adherens junctions at intercalated discs and reduced connexon delivery and gap junction coupling. A point mutation within the tubulin-binding domain of EB1 reproduced EB1 displacement and diminished connexon delivery, confirming that EB1 displacement can limit gap junction coupling. In zebrafish hearts, oxidative stress also reduced the membrane localization of connexin and slowed the spatial spread of excitation. We anticipate that protecting the microtubule-based forward delivery apparatus of connexons could improve cell-cell coupling and reduce ischemia-related cardiac arrhythmias.
Collapse
Affiliation(s)
- James W Smyth
- Cardiovascular Research Institute, Department of Medicine, University of California-San Francisco, 505 Parnassus Avenue, San Francisco, CA 94143, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
202
|
Christensen MD, Dun W, Boyden PA, Anderson ME, Mohler PJ, Hund TJ. Oxidized calmodulin kinase II regulates conduction following myocardial infarction: a computational analysis. PLoS Comput Biol 2009; 5:e1000583. [PMID: 19997488 PMCID: PMC2778128 DOI: 10.1371/journal.pcbi.1000583] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2009] [Accepted: 10/30/2009] [Indexed: 01/05/2023] Open
Abstract
Calmodulin kinase II (CaMKII) mediates critical signaling pathways responsible for divergent functions in the heart including calcium cycling, hypertrophy and apoptosis. Dysfunction in the CaMKII signaling pathway occurs in heart disease and is associated with increased susceptibility to life-threatening arrhythmia. Furthermore, CaMKII inhibition prevents cardiac arrhythmia and improves heart function following myocardial infarction. Recently, a novel mechanism for oxidative CaMKII activation was discovered in the heart. Here, we provide the first report of CaMKII oxidation state in a well-validated, large-animal model of heart disease. Specifically, we observe increased levels of oxidized CaMKII in the infarct border zone (BZ). These unexpected new data identify an alternative activation pathway for CaMKII in common cardiovascular disease. To study the role of oxidation-dependent CaMKII activation in creating a pro-arrhythmia substrate following myocardial infarction, we developed a new mathematical model of CaMKII activity including both oxidative and autophosphorylation activation pathways. Computer simulations using a multicellular mathematical model of the cardiac fiber demonstrate that enhanced CaMKII activity in the infarct BZ, due primarily to increased oxidation, is associated with reduced conduction velocity, increased effective refractory period, and increased susceptibility to formation of conduction block at the BZ margin, a prerequisite for reentry. Furthermore, our model predicts that CaMKII inhibition improves conduction and reduces refractoriness in the BZ, thereby reducing vulnerability to conduction block and reentry. These results identify a novel oxidation-dependent pathway for CaMKII activation in the infarct BZ that may be an effective therapeutic target for improving conduction and reducing heterogeneity in the infarcted heart. Calmodulin kinase II (CaMKII) is a multifunctional serine/threonine kinase that regulates diverse functions in heart. Recently, a novel pathway for CaMKII activation was discovered where oxidation of the kinase at specific methionine residues produces persistent activity. This alternative oxidation-dependent pathway has important implications for heart disease where oxidative stress is increased (e.g., heart failure and following myocardial infarction). We hypothesized that myocardial infarction caused by occlusion of a coronary artery would increase levels of oxidized CaMKII. Moreover, we hypothesized that oxidative CaMKII activation represents an important mechanistic link between increased oxidative stress and life-threatening heart rhythm disturbances (arrhythmias) in heart disease. We report a dramatic increase in levels of oxidized CaMKII following myocardial infarction in the canine. Based on these experimental data, we developed a novel mathematical model of CaMKII activity to study the role of oxidation-dependent CaMKII activation in regulating cardiac cell excitability. Our findings identify a novel role for oxidation-dependent CaMKII activation following myocardial infarction and provide a mechanistic link between oxidative stress and lethal cardiac arrhythmias in heart disease.
Collapse
Affiliation(s)
- Matthew D Christensen
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Iowa Carver College of Medicine, Iowa City, Iowa, United States of America
| | | | | | | | | | | |
Collapse
|
203
|
Zhang Y, Wang H, Kovacs A, Kanter EM, Yamada KA. Reduced expression of Cx43 attenuates ventricular remodeling after myocardial infarction via impaired TGF-beta signaling. Am J Physiol Heart Circ Physiol 2009; 298:H477-87. [PMID: 19966054 DOI: 10.1152/ajpheart.00806.2009] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
In addition to mediating cell-to-cell electrical coupling, gap junctions are important in tissue repair, wound healing, and scar formation. The expression and distribution of connexin43 (Cx43), the major gap junction protein expressed in the heart, are altered substantially after myocardial infarction (MI); however, the effects of Cx43 remodeling on wound healing and the attendant ventricular dysfunction are incompletely understood. Cx43-deficient and wild-type mice were subjected to proximal ligation of the anterior descending coronary artery and followed for 6 days or 4 wk to test the hypothesis that reduced expression of Cx43 influences wound healing, fibrosis, and ventricular remodeling after MI. We quantified the progression of infarct healing by measuring neutrophil expression, collagen content, and myofibroblast expression. We found significantly reduced transformation of fibroblasts to myofibroblasts at 6 days and significantly reduced collagen deposition both in the infarct at 6 days and at 4 wk in the noninfarcted region of Cx43-deficient mice. As expected, transforming growth factor (TGF)-beta, a profibrotic cytokine, was dramatically upregulated in MI hearts, but its phosphorylated comediator (pSmad) was significantly downregulated in the nuclei of Cx43-deficient hearts post-MI, suggesting that downstream signaling of TGF-beta is diminished substantially in Cx43-deficient hearts. This diminution in profibrotic TGF-beta signaling resulted in the attenuation of adverse structural remodeling as assessed by echocardiography. These findings suggest that efforts to enhance the expression of Cx43 to maintain intercellular coupling or reduce susceptibility to arrhythmias should be met with caution until the role of Cx43 in infarct healing is fully understood.
Collapse
Affiliation(s)
- Yan Zhang
- Cardiovascular Division, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | | | | | |
Collapse
|
204
|
Bouvier D, Spagnol G, Chenavas S, Kieken F, Vitrac H, Brownell S, Kellezi A, Forge V, Sorgen PL. Characterization of the structure and intermolecular interactions between the connexin40 and connexin43 carboxyl-terminal and cytoplasmic loop domains. J Biol Chem 2009; 284:34257-71. [PMID: 19808665 PMCID: PMC2797195 DOI: 10.1074/jbc.m109.039594] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2009] [Revised: 09/10/2009] [Indexed: 11/06/2022] Open
Abstract
Gap junctions are intercellular channels that allow the passage of ions, small molecules, and second messengers that are essential for the coordination of cellular function. They are formed by two hemichannels, each constituted by the oligomerization of six connexins (Cx). Among the 21 different human Cx isoforms, studies have suggested that in the heart, Cx40 and Cx43 can oligomerize to form heteromeric hemichannels. The mechanism of heteromeric channel regulation has not been clearly defined. Tissue ischemia leads to intracellular acidification and closure of Cx43 and Cx40 homomeric channels. However, coexpression of Cx40 and Cx43 in Xenopus oocytes enhances the pH sensitivity of the channel. This phenomenon requires the carboxyl-terminal (CT) part of both connexins. In this study we used different biophysical methods to determine the structure of the Cx40CT and characterize the Cx40CT/Cx43CT interaction. Our results revealed that the Cx40CT is an intrinsically disordered protein similar to the Cx43CT and that the Cx40CT and Cx43CT can interact. Additionally, we have identified an interaction between the Cx40CT and the cytoplasmic loop of Cx40 as well as between the Cx40CT and the cytoplasmic loop of Cx43 (and vice versa). Our studies support the "particle-receptor" model for pH gating of Cx40 and Cx43 gap junction channels and suggest that interactions between cytoplasmic regulatory domains (both homo- and hetero-connexin) could be important for the regulation of heteromeric channels.
Collapse
Affiliation(s)
- Denis Bouvier
- From the Department of Biochemistry and Molecular Biology and
| | - Gaelle Spagnol
- From the Department of Biochemistry and Molecular Biology and
| | - Sylvie Chenavas
- From the Department of Biochemistry and Molecular Biology and
| | - Fabien Kieken
- From the Department of Biochemistry and Molecular Biology and
| | - Heidi Vitrac
- the Laboratoire de Chimie et Biologie des Métaux (UMR 5249), Commissariat à l'Energie Atomique, 17 rue des Martyrs, Grenoble F-38054, France
| | - Sarah Brownell
- From the Department of Biochemistry and Molecular Biology and
| | - Admir Kellezi
- the Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska 68198 and
| | - Vincent Forge
- the Laboratoire de Chimie et Biologie des Métaux (UMR 5249), Commissariat à l'Energie Atomique, 17 rue des Martyrs, Grenoble F-38054, France
| | - Paul L. Sorgen
- From the Department of Biochemistry and Molecular Biology and
| |
Collapse
|
205
|
Jie X, Trayanova NA. Mechanisms for initiation of reentry in acute regional ischemia phase 1B. Heart Rhythm 2009; 7:379-86. [PMID: 20097623 DOI: 10.1016/j.hrthm.2009.11.014] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2009] [Accepted: 11/10/2009] [Indexed: 12/15/2022]
Abstract
BACKGROUND During phase 1B of acute regional ischemia, the subepicardial and subendocardial layers coupled to the inexcitable midmyocardium remain viable. OBJECTIVE The purpose of this study was to examine how the degree of hyperkalemia in the surviving layers, the lateral width of border zone between the normal tissue and the central ischemic zone, and the degree of cellular uncoupling between the surviving layers and the midmyocardium contribute to initiation of reentry. METHODS Simulations were conducted on the state-of-the-art model of rabbit ventricles with realistic representation of the spatial distribution of the ischemic insult. RESULTS Hyperkalemia in the surviving layers led to induction of reentry by increasing refractoriness and slowing conduction in the layers. Such reentries were formed solely in the subepicardium. A minimal level of hyperkalemia was required for induction of reentry. Progress increase in hyperkalemia led to a biphasic change in vulnerability to reentry. For each level of hyperkalemia, increased cellular uncoupling between subepicardium and midmyocardium increased inducibility of reentry by restoring subepicardial tissue excitability via blocking midmyocardial electrotonic effect. In addition, increased lateral width of the border zone prevented inducibility of reentry as conduction block occurred in the central ischemic zone when the wave propagated across the border zone from the normal zone. CONCLUSION The degree of hyperkalemia in the surviving subepicardium, the lateral width of border zone, and cellular uncoupling between the subepicardium and midmyocardium determine dispersion of refractoriness, conduction velocity, excitability, and, therefore, inducibility of reentry during phase 1B.
Collapse
Affiliation(s)
- Xiao Jie
- Department of Biomedical Engineering and Institute for Computational Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | | |
Collapse
|
206
|
Jin H, Chemaly ER, Lee A, Kho C, Hadri L, Hajjar RJ, Akar FG. Mechanoelectrical remodeling and arrhythmias during progression of hypertrophy. FASEB J 2009; 24:451-63. [PMID: 19825979 DOI: 10.1096/fj.09-136622] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Despite a clear association between left ventricular (LV) mechanical dysfunction in end-stage heart failure and the incidence of arrhythmias, the majority of sudden cardiac deaths occur at earlier stages of disease development. The mechanisms by which structural, mechanical, and molecular alterations predispose to arrhythmias at the tissue level before the onset of LV dysfunction remain unclear. In a rat model of pressure overload hypertrophy (PoH) produced by ascending aortic banding, we correlated mechanical and structural changes measured in vivo with key electrophysiological changes measured ex vivo in the same animals. We found that action potential prolongation, a hallmark of electrical remodeling at the tissue level, is highly correlated with changes in LV wall thickness but not mechanical function. In contrast, conduction delays are not predicted by either mechanical or structural changes during disease development. Moreover, disrupted Cx43 phosphorylation at intermediate (increased) and late (decreased) stages of PoH are associated with moderate and severe conduction delays, respectively. Interestingly, the level of interaction between Cx43 and the cytoskeletal protein ZO-1 is exclusively decreased at the late stage of PoH. Closely coupled action potentials consistent with afterdepolarization-mediated triggered beats were readily observed in 6 of 15 PoH hearts but never in controls. Similarly, PoH (8/15) but not control hearts exhibited sustained episodes of ventricular tachycardia after rapid stimulation. The initiation and early maintenance of arrhythmias in PoH were formed by rapid and highly uniform activation wavefronts emanating from sites distal to the former site of stimulation. In conclusion, repolarization but not conduction delays are predicted by structural remodeling in PoH. Cx43 phosphorylation is disrupted at intermediate (increased) and late (decreased) stages, which are associated with conduction delays. Dephosphorylation of Cx43 is associated with loss of interaction with ZO-1 and severe conduction delays. Remodeling at all stages of PoH predisposes to triggers and focal arrhythmias.
Collapse
Affiliation(s)
- Hongwei Jin
- Cardiovascular Research Center, Division of Cardiology, Mount Sinai School of Medicine, One Gustave L. Levy Pl., New York, NY 10029, USA
| | | | | | | | | | | | | |
Collapse
|
207
|
Abstract
Imaging myocardial angiogenesis presents a major technical challenge because the ideal spatial resolution required is substantially higher than that available with standard X-ray angiography and nuclear medicine imaging. Moreover, these clinical imaging methods are currently inadequate (because of insufficient resolution) for clinical trials of angiogenic agents for the treatment of ischemic heart disease. Specialized techniques in MRI, ultrasonography, echocardiography and CT that are under development might provide improved means of imaging myocardial angiogenesis. Molecular imaging technologies are also being developed to improve resolution and to provide a better mechanistic insight into angiogenic therapies for ischemic heart diseases. This Review examines advanced methods for imaging angiogenesis. These technologies might soon permit data to be obtained directly from scientific studies and clinical trials.
Collapse
|
208
|
Jansen JA, van Veen TAB, de Bakker JMT, van Rijen HVM. Cardiac connexins and impulse propagation. J Mol Cell Cardiol 2009; 48:76-82. [PMID: 19729017 DOI: 10.1016/j.yjmcc.2009.08.018] [Citation(s) in RCA: 127] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2009] [Revised: 07/29/2009] [Accepted: 08/21/2009] [Indexed: 12/15/2022]
Abstract
Gap junctions form the intercellular pathway for cell-to-cell transmission of the cardiac impulse from its site of origin, the sinoatrial node, along the atria, the atrioventricular conduction system to the ventricular myocardium. The component parts of gap junctions are proteins called connexins (Cx), of which three main isoforms are found in the conductive and working myocardial cells: Cx40, Cx43, and Cx45. These isoforms are regionally expressed in the heart, which suggests a specific role or function of a specific connexin in a certain part of the heart. Using genetically modified mice, the function of these connexins in the different parts of the heart have been assessed in the past years. This review will follow the cardiac impulse on its path through the heart and recapitulate the role of the different connexins in the different cardiac compartments.
Collapse
Affiliation(s)
- John A Jansen
- Department of Medical Physiology, Division Heart and Lungs, University Medical Center Utrecht, The Netherlands
| | | | | | | |
Collapse
|
209
|
Procida K, Jørgensen L, Schmitt N, Delmar M, Taffet SM, Holstein-Rathlou NH, Nielsen MS, Braunstein TH. Phosphorylation of connexin43 on serine 306 regulates electrical coupling. Heart Rhythm 2009; 6:1632-8. [PMID: 19879542 DOI: 10.1016/j.hrthm.2009.07.043] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2009] [Accepted: 07/24/2009] [Indexed: 10/20/2022]
Abstract
BACKGROUND Phosphorylation is a key regulatory event in controlling the function of the cardiac gap junction protein connexin43 (Cx43). Three new phosphorylation sites (S296, S297, S306) have been identified on Cx43; two of these sites (S297 and S306) are dephosphorylated during ischemia. The functional significance of these new sites is currently unknown. OBJECTIVE The purpose of this study was to examine the role of S296, S297, and S306 in the regulation of electrical intercellular communication. METHODS To mimic constitutive dephosphorylation, serine was mutated to alanine at the three sites and expressed in HeLa cells. Electrical coupling and single channel measurements were performed by double patch clamp. Protein expression levels were assayed by western blotting, localization of Cx43, and phosphorylation of S306 by immunolabeling. Free hemichannels were assessed by biotinylation. RESULTS Macroscopic conductance in cells expressing S306A was reduced to 57% compared to wild type (WT), whereas coupling was not significantly changed in cells expressing either S296A or S297A. S306A-expressing cells displayed similar protein and free hemichannel abundance compared to WT Cx43, whereas the fractional area of plaques in cell-to-cell interfaces was increased. However, single channel measurements showed a WT Cx43 main state conductance of 119 pS, whereas the main state conductance of S306A channels was reduced to 95 pS. Furthermore, channel gating was affected in S306A channels. CONCLUSION Lack of phosphorylation at serine 306 results in reduced coupling, which can be explained by reduced single channel conductance. We suggest that dephosphorylation of S306 partly explains the electrical uncoupling seen in myocardial ischemia.
Collapse
Affiliation(s)
- Kristina Procida
- Danish National Research Foundation Centre for Cardiac Arrhythmia at Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | | | | | | | | | | | | |
Collapse
|
210
|
Pacing-induced cardiac gap junction remodeling: modulation of connexin43 phosphorylation state. Am J Ther 2009; 16:224-30. [PMID: 19454861 DOI: 10.1097/mjt.0b013e31818be50f] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
BACKGROUND Altered myocardial distribution of gap junctions and intercellular coupling have been implicated in nonuniform conduction of the depolarization wave and repolarization asynchrony in the mammalian heart. We tested the hypothesis that short-term cardiac pacing is associated with structural remodeling of gap junctions and their altered spatial distribution in cardiac myocytes in the immediate vicinity of the pacing site. MATERIALS AND METHODS Isolated adult male rat hearts (n = 8) were perfused using a Langendorff apparatus. A multimicroelectrode array pacing catheter was positioned in the endocardial apical region of the right ventricle. Pacing (330 bpm; stimulus: 1.5 V, 5 milliseconds) was applied for 3 hours. Immunoblotting and immunohistochemical assays [using serine specific (Ser368) anti-connexin43 and anti-phosphoserine antibody] were used to determine the phosphorylation state of connexin43 (Cx43) and to determine its spatial distribution. RESULTS Pacing was associated with a consistent, increased dephosphorylation state of Cx43 at the pacing site when compared to remote regions. In control hearts, Cx43 manifested a predominantly phosphorylated state; Western blotting analysis showed that dephosphorylated Cx43 was more abundant (1.5 +/- 0.33-fold) in the paced hearts than in controls (P < 0.02). Global cardiac function parameters, such as developed left ventricular pressure and oxygen demand index (rate-pressure product), did not differ significantly in paced hearts compared with controls (P > 0.05). CONCLUSIONS A relatively short period of cardiac asynchronous pacing is associated with remodeling of gap junctions as manifested in the altered phosphorylation state of their constituent Cx43. This effect is confined to the myocardial tissue surrounding the pacing electrodes and does not alter global cardiac mechanics and energetics. These results, considered together with the known involvement of Ser368 in the gating of Cx43 and the putative role of Cx43 in the intercellular conductance, suggest that pacing-induced localized gap junctional remodeling could contribute to the creation of a reentrant substrate.
Collapse
|
211
|
Maass K, Chase SE, Lin X, Delmar M. Cx43 CT domain influences infarct size and susceptibility to ventricular tachyarrhythmias in acute myocardial infarction. Cardiovasc Res 2009; 84:361-7. [PMID: 19620131 DOI: 10.1093/cvr/cvp250] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
AIMS Hearts of mice expressing K258stop in place of connexin43 (Cx43) protein were subjected to acute myocardial infarction in order to assess the importance of Cx43 regulation on infarct size and arrhythmia susceptibility. This mutation K258stop prevents chemical regulation of Cx43 channels, including by low intracellular pH. METHODS AND RESULTS Langendorff-perfused hearts of mice harbouring one Cx43 knockout (KO) allele and one K258stop or Cx43 allele (K258stop/KO; Cx43/KO as control) were subjected to 1 h of ischaemia and 4 h of reperfusion by reversibly occluding the left anterior descending (LAD) coronary artery. Inducibility of ventricular tachyarrhythmias (VTs) was tested by applying an endocardial burst-pacing protocol during LAD occlusion. Separately, time course and the extent of acidification-induced closure of gap junction channels were tested by dual-voltage clamp. Infarct volume (as per cent of area at risk) was significantly larger in K258stop/KO hearts compared with Cx43/KO controls (42.2 +/- 3 vs. 30.4 +/- 1.7%, P = 0.004, n = 8 each). During LAD occlusion, K258stop/KO hearts had a higher incidence of pacing-induced VT and a higher frequency of occurrence of spontaneous premature ventricular beats. The occurrence of ventricular arrhythmias was also significantly larger in the K258stop/KO hearts during reperfusion. In separate experiments, we demonstrated reduced sensitivity to acidification-induced uncoupling in cell pairs obtained from K258stop/KO hearts. CONCLUSION Loss of the regulatory domain of Cx43 leads to an increase in infarct size and increased susceptibility to arrhythmias following acute coronary occlusion.
Collapse
Affiliation(s)
- Karen Maass
- SUNY Upstate Medical University, Syracuse, NY, USA
| | | | | | | |
Collapse
|
212
|
Li W, Ripplinger CM, Lou Q, Efimov IR. Multiple monophasic shocks improve electrotherapy of ventricular tachycardia in a rabbit model of chronic infarction. Heart Rhythm 2009; 6:1020-7. [PMID: 19560090 PMCID: PMC2813769 DOI: 10.1016/j.hrthm.2009.03.015] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2008] [Accepted: 03/04/2009] [Indexed: 12/30/2022]
Abstract
BACKGROUND We previously showed that the cardioversion threshold (CVT) for ventricular tachycardia (VT) is phase dependent when a single monophasic shock (1MP) is used. OBJECTIVE The purpose of this study was to extend these findings to a biphasic shock (1BP) and to compare the efficacy of phase-independent multiple monophasic (5MP) and biphasic shocks (5BP). METHODS Panoramic optical mapping with blebbistatin (5 microM) was performed in postmyocardial infarction rabbit hearts (n = 8). Flecainide (1.64 +/- 0.68 microM) was administered to promote sustained arrhythmias. 5MP and 5BP were applied within one VT cycle length (CL). Results were compared to 1BP and antitachycardia pacing. RESULTS We observed monomorphic VT with CL = 149.6 +/- 18.0 ms. Similar to 1MP, CVTs of 1BP were found to be phase dependent, and the maximum versus minimum CVT was 8.6 +/- 1.7 V/cm versus 3.7 +/- 1.9 V/cm, respectively (P = .0013). Efficacy of 5MP was higher than that of 1BP and 5BP. CVT was 3.2 +/- 1.4 V/cm for 5MP versus 5.3 +/- 1.9 V/cm for 5BP (P = .00027). 5MP versus averaged 1BP CVT was 3.6 +/- 2.1 V/cm versus. 6.8 +/- 1.5 V/cm, respectively (P = .00024). Antitachycardia pacing was found to be completely ineffective in this model. CONCLUSION Maintenance of shock-induced virtual electrode polarization by multiple monophasic shocks over a VT cycle is responsible for unpinning of reentry leading to self-termination. Elimination of virtual electrode polarization by shock polarity reversal during multiple biphasic shocks proved ineffective. A significant reduction in CVT can be achieved by applying multiple monophasic shocks within one VT CL or one single shock at the proper coupling interval.
Collapse
Affiliation(s)
- Wenwen Li
- Department of Biomedical Engineering, Washington University, St. Louis, MO, USA
| | | | - Qing Lou
- Department of Biomedical Engineering, Washington University, St. Louis, MO, USA
| | - Igor R. Efimov
- Department of Biomedical Engineering, Washington University, St. Louis, MO, USA
| |
Collapse
|
213
|
Imanaga I. Pathological remodeling of cardiac gap junction connexin 43-With special reference to arrhythmogenesis. ACTA ACUST UNITED AC 2009; 17:73-81. [PMID: 19540736 DOI: 10.1016/j.pathophys.2009.03.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2008] [Revised: 01/15/2009] [Accepted: 03/23/2009] [Indexed: 11/16/2022]
Abstract
A dysfunction of the cardiac gap junction, which contributes to electrical cell-to-cell coupling is one of essential factors known to generate arrhythmias. The function of the gap junction depends on the regulation of connexin which composes the gap junction channel. A dysfunction of the gap junction is possibly caused by the down-regulation of connexin. In this review, the relationship between pathological remodeling of connexin 43 (Cx43) and susceptibility of the heart to the ventricular fibrillation, which is a lethal ventricular tachyarrhythmia, is addressed. A suppression of the PKA-mediated phosphorylation or an augmentation of the PKC-mediated phosphorylation of Cx43 induces the downward remodeling of Cx43. Factors regarding downward remodeling of Cx43, such as hypoxia (including intracellular Ca overload and intracellular acidosis), angiotensin II or an activation of PKCvarepsilon make the heart more susceptible to the ventricular fibrillation, while factors regarding upward remodeling of Cx43, such as cyclic AMP or an activation of PKA, lower susceptibility. As a result, from a clinical point of view, angiotensin II antagonists (synthesis inhibitors or receptor blockades), PKC inhibitors or PKA activators are thus considered to provide a therapeutic approach for the treatment of the initiation or advancement of the ventricular fibrillation.
Collapse
Affiliation(s)
- Issei Imanaga
- Department of Physiology, Fukuoka University, Faculty of Medicine, Health Care Center, Nagomi Sato, Japan
| |
Collapse
|
214
|
Liu L, Li Y, Lin J, Liang Q, Sheng X, Wu J, Huang R, Liu S, Li Y. Connexin43 interacts with Caveolin-3 in the heart. Mol Biol Rep 2009; 37:1685-91. [PMID: 19544087 DOI: 10.1007/s11033-009-9584-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2009] [Accepted: 06/08/2009] [Indexed: 02/05/2023]
Abstract
Gap junctions (GJs), collections of multiple intercellular channels between neighboring cells, are specialized channels facilitating intercellular electrical and chemical communication. GJs are important for synchronizing coupling and coordinated contraction in the heart, and are crucial regulators of heart gene transcription, cardiac development, and protection of ischemic cardiomyocytes through second messenger communication. Identification of proteins that interact with Connexin43 (Cx43), the predominant protein in cardiac GJs, may contribute to the understanding of GJ functional regulation. Using a yeast two-hybrid system, we identified Caveolin-3 (Cav3) as a new Cx43-interacting protein. This interaction was confirmed by co-immunoprecipitation and co-localization experiments. CX43 interacts with Cav3, suggesting that Cav3 may participate in the functional regulation of GJs.
Collapse
Affiliation(s)
- Limei Liu
- Department of Cardiology, The First Affiliated Hospital, Shantou University Medical College, 57 Changping Road, 515041, Shantou, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
215
|
Rodrigo R, Vinay J, Castillo R, Cereceda M, Asenjo R, Zamorano J, Araya J, Castillo-Koch R, Espinoza J, Larraín E. Use of vitamins C and E as a prophylactic therapy to prevent postoperative atrial fibrillation. Int J Cardiol 2009; 138:221-8. [PMID: 19446899 DOI: 10.1016/j.ijcard.2009.04.043] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2008] [Revised: 04/07/2009] [Accepted: 04/23/2009] [Indexed: 02/07/2023]
Abstract
Oxidative stress has been strongly involved in the underlying mechanism of atrial fibrillation, particularly in the arrhythmia occurring in patients undergoing cardiac surgery with extracorporeal circulation (postoperative atrial fibrillation). The ischemia/reperfusion injury thus occurring in the myocardial tissue contributes to the development of tissue remodeling, thought to be responsible for the functional heart impairment. Consequently, structural changes due to the cardiac tissue biomolecules attack by reactive oxygen and/or nitrogen species could account for functional changes in ion channels, transporters, membrane conductance, cytosolic transduction signals, and other events, all associated with the occurrence of arrhythmic consequences. The lack of success and significant side effects of anti-arrhythmic drugs have given rise to attempts aimed to develop alternative novel pharmacologic treatments. On this line, the biological properties of the antioxidant vitamins C and E suggest that they could decrease the vulnerability of the heart to the oxidative damage. Nevertheless, very few studies to assess their anti-arrhythmic effects have been reported in humans. The clinical and experimental evidence supporting the view that the pharmacological use of antioxidant vitamins could contribute to prevent postoperative atrial fibrillation is presented.
Collapse
Affiliation(s)
- Ramón Rodrigo
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, University of Chile, Independencia 1027, Casilla 70058, Santiago 7, Chile.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
216
|
Kieken F, Mutsaers N, Dolmatova E, Virgil K, Wit AL, Kellezi A, Hirst-Jensen BJ, Duffy HS, Sorgen PL. Structural and molecular mechanisms of gap junction remodeling in epicardial border zone myocytes following myocardial infarction. Circ Res 2009; 104:1103-12. [PMID: 19342602 PMCID: PMC2892879 DOI: 10.1161/circresaha.108.190454] [Citation(s) in RCA: 118] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Lateralization of the ventricular gap junction protein connexin 43 (Cx43) occurs in epicardial border zone myocytes following myocardial infarction (MI) and is arrhythmogenic. Alterations in Cx43 protein partners have been hypothesized to play a role in lateralization although mechanisms by which this occurs are unknown. To examine potential mechanisms we did nuclear magnetic resonance, yeast 2-hybrid, and surface plasmon resonance studies and found that the SH3 domain of the tyrosine kinase c-Src binds to the Cx43 scaffolding protein zonula occludens-1 (ZO-1) with a higher affinity than does Cx43. This suggests c-Src outcompetes Cx43 for binding to ZO-1, thus acting as a chaperone for ZO-1 and causing unhooking from Cx43. To determine whether c-Src/ZO-1 interactions affect Cx43 lateralization within the epicardial border zone, we performed Western blot, immunoprecipitation, and immunolocalization for active c-Src (p-cSrc) post-MI using a canine model of coronary occlusion. We found that post-MI p-cSrc interacts with ZO-1 as Cx43 begins to decrease its interaction with ZO-1 and undergo initial loss of intercalated disk localization. This indicates that the molecular mechanisms by which Cx43 is lost from the intercalated disk following MI includes an interaction of p-cSrc with ZO-1 and subsequent loss of scaffolding of Cx43 leaving Cx43 free to diffuse in myocyte membranes from areas of high Cx43, as at the intercalated disk, to regions of lower Cx43 content, the lateral myocyte membrane. Therefore shifts in Cx43 protein partners may underlie, in part, arrhythmogenesis in the post-MI heart.
Collapse
Affiliation(s)
- Fabien Kieken
- Department of Cardiology, Center for Life Sciences 9-913, Beth Israel Deaconess Medical Center, 3 Blackfan Circle, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
217
|
Stein M, van Veen TAB, Remme CA, Boulaksil M, Noorman M, van Stuijvenberg L, van der Nagel R, Bezzina CR, Hauer RNW, de Bakker JMT, van Rijen HVM. Combined reduction of intercellular coupling and membrane excitability differentially affects transverse and longitudinal cardiac conduction. Cardiovasc Res 2009; 83:52-60. [PMID: 19389723 DOI: 10.1093/cvr/cvp124] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
AIMS Reduced excitability and gap junction expression are commonly found in electrically remodelled diseased hearts, but their contribution to slow conduction and arrhythmias is unclear. In this study, we have investigated the effect of isolated and combined reductions in membrane excitability and intercellular coupling on impulse propagation and arrhythmogeneity in genetically modified mice. METHODS AND RESULTS Cx43 and Scn5a(1798insD/+) heterozygous (HZ) mice were crossbred to create a mixed offspring: wild-type (WT, n = 15), Cx43 HZ (n = 14), Scn5a(1798insD/+) (Scn5a) HZ (n = 17), and Cx43/Scn5a(1798insD/+) (Cx43/Scn5a) HZ (n = 15) mice. After ECG recording, epicardial activation mapping (208 recording sites) was performed on Langendorff-perfused hearts. Arrhythmia inducibility was tested by one to three premature stimuli and burst pacing. Conduction velocity longitudinal (CV(L)) and transverse (CV(T)) to fibre orientation and dispersion of conduction were determined during S1-S1 pacing (150 ms). Connexin43 (Cx43) and sodium channel Nav1.5 protein expression and myocardial tissue collagen content were determined by immunohistology. Compared with WT animals, P, QRS, and QTc intervals were prolonged in Scn5a HZ and Cx43/Scn5a HZ, but not in Cx43 HZ animals. Scn5a HZ mice showed decreased CV(L) in right ventricle (RV) but not in left ventricle compared with WT. In the RV of Cx43/Scn5a HZ, CV(T) was reduced, but CV(L) was not different from WT. Arrhythmia inducibility was low and not increased in either single- or double-mutant mice. CONCLUSION Reduction of both electrical coupling and excitability results in normal conduction velocity parallel to fibre orientation but in pronounced conduction slowing transverse to fibre orientation in RV only, although this does not affect arrhythmogeneity.
Collapse
Affiliation(s)
- Mèra Stein
- Division of Heart and Lungs, Department of Medical Physiology, University Medical Center Utrecht, Yalelaan 50, Utrecht, The Netherlands
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
218
|
Wiegerinck RF, de Bakker JMT, Opthof T, de Jonge N, Kirkels H, Wilms-Schopman FJG, Coronel R. The effect of enhanced gap junctional conductance on ventricular conduction in explanted hearts from patients with heart failure. Basic Res Cardiol 2009; 104:321-32. [PMID: 19139945 DOI: 10.1007/s00395-008-0771-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2008] [Accepted: 11/24/2008] [Indexed: 11/24/2022]
Abstract
AIM To investigate ventricular conduction and refractoriness before and after application of rotigaptide, an enhancer of gap junctional conductance, to explanted hearts of patients with heart failure (HF). METHODS AND RESULTS In six explanted perfused hearts of patients with end-stage HF, activation/repolarization mapping was performed and refractory periods (RPs) and activation recovery intervals (ARIs) were measured before and after application of 50 nM rotigaptide. Rotigaptide caused a decrease of RP from 476 +/- 36 to 453 +/- 31 ms (P < 0.05), but did not change ARI-dispersion. During premature activation along the fibers rotigaptide decreased the minimal activation time (AT(min)) and maximal activation time (AT(max)) significantly from 35 +/- 12 to 24 +/- 9 and from 97 +/- 38 to 43 +/- 7 ms, respectively. Rotigaptide did not change AT(min) and AT(max) during activation perpendicular to the fiber direction. After application of rotigaptide conduction curves normalized in five/six recordings when activation was parallel, but destabilized in three/six hearts when activation was perpendicular to fiber direction. The destabilization was associated with local conduction delays rather than with facilitation of conduction. CONCLUSION Rotigaptide applied to hearts of patients with end-stage HF shortened RPs normalized conduction curves and increased conduction parallel to fiber direction. However, in 50% of the hearts local slowing of conduction with destabilization of conduction (curves) occurs at sites close to the stimulation site, when activation is perpendicular to fiber direction.
Collapse
Affiliation(s)
- Rob F Wiegerinck
- Experimental Cardiology Group (ECG), Dept. of Experimental Cardiology, Center for Heart Failure Research, Academic Medical Center, Amsterdam, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
219
|
Cx43 contributes to TGF-beta signaling to regulate differentiation of cardiac fibroblasts into myofibroblasts. Exp Cell Res 2009; 315:1190-9. [PMID: 19162006 DOI: 10.1016/j.yexcr.2008.12.021] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2008] [Revised: 12/02/2008] [Accepted: 12/20/2008] [Indexed: 01/09/2023]
Abstract
Differentiation and activation of fibroblasts into myofibroblasts which express alpha-smooth muscle actin (alpha-SMA) are essential for wound healing and tissue repair. Change in fibroblast properties is initiated by transforming growth factor beta (TGF-beta). Here, we sought to investigate whether connexin43 (Cx43), a gap-junctional protein, contributes to differentiation of cardiac fibroblasts to myofibroblasts. In cultured neonatal rat cardiac fibroblasts, we found that expression of alpha-SMA increases in parallel with Cx43 by using immunocytochemistry, and that knockdown of the endogenous Cx43 activity with antisense oligodeoxynucleotides (AS) inhibits alpha-SMA expression significantly, while overexpression of Cx43 increases alpha-SMA expression remarkably. These findings demonstrate that Cx43 contributes to TGF-beta signaling to regulate alpha-SMA expression. Thus, we propose a novel physiologic function of Cx43, which plays a critical role in the pathological activation of cardiac fibroblasts in the myocardial fibrosis associated with heart failure.
Collapse
|
220
|
Ripplinger CM, Lou Q, Li W, Hadley J, Efimov IR. Panoramic imaging reveals basic mechanisms of induction and termination of ventricular tachycardia in rabbit heart with chronic infarction: implications for low-voltage cardioversion. Heart Rhythm 2009; 6:87-97. [PMID: 18996057 PMCID: PMC2650268 DOI: 10.1016/j.hrthm.2008.09.019] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2008] [Accepted: 09/17/2008] [Indexed: 11/24/2022]
Abstract
BACKGROUND Sudden cardiac death due to arrhythmia in the settings of chronic myocardial infarction (MI) is an important clinical problem. Arrhythmic risk post-MI continues indefinitely even if heart failure and acute ischemia are not present due to the anatomic substrate of the scar and border zone (BZ) tissue. OBJECTIVE The purpose of this study was to determine mechanisms of arrhythmia initiation and termination in a rabbit model of chronic MI. METHODS Ligation of the lateral division of the left circumflex artery was performed 72 +/- 29 days before acute experiments (n = 11). Flecainide (2.13 +/- 0.64 microM) was administered to promote sustained arrhythmias, which were induced with burst pacing or a multiple shock protocol (four pulses, 140-200 ms coupling interval). RESULTS Panoramic optical mapping with blebbistatin (5 microM) revealed monomorphic ventricular tachycardia (VT) maintained by a single mother rotor (cycle length [CL] = 174.7 +/- 38.4 ms) as the primary mechanism of arrhythmia. Mother rotors were anchored to the scar or BZ for 16 of the 19 rotor locations recorded. Cardioversion thresholds (CVTs) were determined at various phases throughout the VT CL from external shock electrodes. CVTs were found to be phase dependent, and the maximum versus minimum CVT was 7.8 +/- 1.9 vs. 4.1 +/- 1.6 V/cm, respectively (P = .005). Antitachycardia pacing was found to be effective in only 2.7% of cases in this model. CONCLUSIONS These results indicate that scar and BZ tissue heterogeneity provide the substrate for VT by attracting and stabilizing rotors. Additionally, a significant reduction in CVT may be achieved by appropriately timed shocks in which the shock-induced virtual electrode polarization interacts with the rotor to destabilize VT.
Collapse
Affiliation(s)
| | - Qing Lou
- Department of Biomedical Engineering, Washington University, St. Louis, Missouri
| | - Wenwen Li
- Department of Biomedical Engineering, Washington University, St. Louis, Missouri
| | - Jennifer Hadley
- Department of Biomedical Engineering, Washington University, St. Louis, Missouri
| | - Igor R. Efimov
- Department of Biomedical Engineering, Washington University, St. Louis, Missouri
| |
Collapse
|
221
|
Gomes J, Lambiase PD. Putative druggable targets for selective enhancement of cardiac conduction. Curr Opin Pharmacol 2008; 9:154-9. [PMID: 19109070 DOI: 10.1016/j.coph.2008.11.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2008] [Accepted: 11/06/2008] [Indexed: 01/01/2023]
Abstract
Putative druggable targets to selectively enhance cardiac conduction can be considered from the level of the ion channels determining the initiation and duration of the cardiac action potential to the gap junction proteins responsible for optimal cellular electrical coupling. Nature has provided a number of inherited disorders of conduction, the pathophysiology of which offer novel insights into future therapeutic targets. This review will focus upon the potential cellular and molecular targets for drug development based upon our knowledge of their pathophysiological impact.
Collapse
Affiliation(s)
- John Gomes
- The Heart Hospital, University College Hospital & Institute of Cardiovascular Sciences, UCL, 16-18 Westmoreland Street, London W1G 8PH, United Kingdom
| | | |
Collapse
|
222
|
Hund TJ, Wright PJ, Dun W, Snyder JS, Boyden PA, Mohler PJ. Regulation of the ankyrin-B-based targeting pathway following myocardial infarction. Cardiovasc Res 2008; 81:742-9. [PMID: 19074823 DOI: 10.1093/cvr/cvn348] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
AIMS Ion channel reorganization is a critical step in the pro-arrhythmogenic remodelling process that occurs in heart disease. Ankyrin-B (AnkB) is required for targeting and stabilizing ion channels, exchangers, and pumps. Despite a wealth of knowledge implicating the importance of AnkB in human cardiovascular physiology, nothing is known regarding the role of AnkB in common forms of acquired human disease. METHODS AND RESULTS We present the first report of AnkB regulation following myocardial infarction (MI). AnkB protein levels were reduced in the infarct border zone 5 days following coronary artery occlusion in the canine. We also observed a dramatic increase in AnkB mRNA levels 5 days post-occlusion. Surprisingly, the expression of the upstream AnkB cytoskeletal component beta2-spectrin was unchanged in post-infarct tissues. However, protein levels and/or membrane expression of downstream AnkB-associated ion channels and transporters Na+/K+ ATPase, Na+/Ca2+ exchanger, and IP3 receptor were altered 5 days post-occlusion. Interestingly, protein levels of the protein phosphatase 2A, an AnkB-associated signalling protein, were significantly affected 5 days post-occlusion. AnkB and PP2A protein levels recovered by 14 days post-occlusion, whereas Na+/K+ ATPase levels recovered by 2 months post-occlusion. CONCLUSION These findings reveal the first evidence of ankyrin remodelling following MI and suggest an unexpected divergence point for regulation between ankyrin and the underlying cytoskeletal network. These findings suggest a logical, but unexpected, molecular mechanism underlying ion channel and transporter remodelling following MI.
Collapse
Affiliation(s)
- Thomas J Hund
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Iowa Carver College of Medicine, 285 Newton Road, CBRB 2283, Iowa City, IA 52242, USA.
| | | | | | | | | | | |
Collapse
|
223
|
Abstract
Life-threatening ventricular tachyarrhythmias are common clinical complications in ischemic heart diseases, especially infarcted heart. Although electrophysiological mechanisms have been extensively clarified for the genesis of arrhythmias in myocardial infarct, arrhythmogenic substrates in the infarct that eventually lead to electrical derangements are not fully understood. This review focuses on the intracellular calcium ion (Ca2+) dynamics and connexin43 (Cx43) gap junctions that play pivotal roles in excitation/contraction processes and intercellular communication, respectively, in heart muscle cells. Recent development of Ca2+-sensitive fluorescent dyes as well as microscopy imaging techniques has contributed substantially to a more precise understanding of spatiotemporal aspects in the intra- and inter-cellular dynamics of Ca2+ in cardiomyocytes. Ca2+ waves, heterogeneous wave-like elevations of the intracellular Ca2+ concentrations ([Ca2+](i)) that develop under [Ca2+](i)-overloaded conditions of the injured myocardium, play an essential role in arrhythmias, especially in triggered arrhythmias. Alteration of Cx43-mediated electrical coupling, that is, gap junction remodeling that arises at myocyte-myocyte and myocyte-myofibroblast interfaces, would also be an important substrate for arrhythmias, especially re-entrant tachyarrhythmias. Clarification of these substrates would provide not only deeper insights into the upstream events of life-threatening tachyarrhythmias in the infarcted heart but also bases for new therapeutic strategies for cardiovascular diseases.
Collapse
Affiliation(s)
- Tetsuro Takamatsu
- Department of Pathology and Cell Regulation, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, Kawaramachi-Hirokoji, Kamigyo-Ku, Kyoto 602-8566, Japan.
| |
Collapse
|
224
|
Kontogeorgis A, Li X, Kang EY, Feig JE, Ponzio M, Kang G, Kaba RA, Wit AL, Fisher EA, Morley GE, Peters NS, Coetzee WA, Gutstein DE. Decreased connexin43 expression in the mouse heart potentiates pacing-induced remodeling of repolarizing currents. Am J Physiol Heart Circ Physiol 2008; 295:H1905-16. [PMID: 18757477 PMCID: PMC2614590 DOI: 10.1152/ajpheart.590.2008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2008] [Accepted: 08/26/2008] [Indexed: 11/26/2022]
Abstract
Gap junction redistribution and reduced expression, a phenomenon termed gap junction remodeling (GJR), is often seen in diseased hearts and may predispose toward arrhythmias. We have recently shown that short-term pacing in the mouse is associated with changes in connexin43 (Cx43) expression and localization but not with increased inducibility into sustained arrhythmias. We hypothesized that short-term pacing, if imposed on murine hearts with decreased Cx43 abundance, could serve as a model for evaluating the electrophysiological effects of GJR. We paced wild-type (normal Cx43 abundance) and heterozygous Cx43 knockout (Cx43+/-; 66% mean reduction in Cx43) mice for 6 h at 10-15% above their average sinus rate. We investigated the electrophysiological effects of pacing on the whole animal using programmed electrical stimulation and in isolated ventricular myocytes with patch-clamp studies. Cx43+/- myocytes had significantly shorter action potential durations (APD) and increased steady-state (Iss) and inward rectifier (I(K1)) potassium currents compared with those of wild-type littermate cells. In Cx43+/- hearts, pacing resulted in a significant prolongation of ventricular effective refractory period and APD and significant diminution of Iss compared with unpaced Cx43+/- hearts. However, these changes were not seen in paced wild-type mice. These data suggest that Cx43 abundance plays a critical role in regulating currents involved in myocardial repolarization and their response to pacing. Our study may aid in understanding how dyssynchronous activation of diseased, Cx43-deficient myocardial tissue can lead to electrophysiological changes, which may contribute to the worsened prognosis often associated with pacing in the failing heart.
Collapse
Affiliation(s)
- Andrianos Kontogeorgis
- Leon H. Charney Division of Cardiology, Department of Medicine, New York University School of Medicine, New York, NY 10016, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
225
|
Protas L, Dun W, Jia Z, Lu J, Bucchi A, Kumari S, Chen M, Cohen IS, Rosen MR, Entcheva E, Robinson RB. Expression of skeletal but not cardiac Na+ channel isoform preserves normal conduction in a depolarized cardiac syncytium. Cardiovasc Res 2008; 81:528-35. [PMID: 18977767 DOI: 10.1093/cvr/cvn290] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
AIMS Reentrant arrhythmias often develop in the setting of myocardial infarction and ensuing slow propagation. Increased Na(+) channel expression could prevent or disrupt reentrant circuits by speeding conduction if channel availability is not limited by membrane depolarization within the diseased myocardium. We therefore asked if, in the setting of membrane depolarization, action potential (AP) upstroke and normal conduction can be better preserved by the expression of a Na(+) channel isoform with altered biophysical properties compared to the native cardiac Na(+) channel isoform, namely having a positively shifted, voltage-dependent inactivation. METHODS AND RESULTS The skeletal Na(+) channel isoform (SkM1) and the cardiac Na(+) channel isoform (Nav1.5) were expressed in newborn rat ventricular myocyte cultures with a point mutation introduced in Nav1.5 to increase tetrodotoxin (TTX) sensitivity so native and expressed currents could be distinguished. External K(+) was increased from 5.4 to 10 mmol/L to induce membrane depolarization. APs, Na(+) currents, and conduction velocity (CV) were measured. In control cultures, elevated K(+) significantly reduced AP upstroke ( approximately 75%) and CV ( approximately 25%). Expression of Nav1.5 did not protect AP upstroke from K(+) depolarization. In contrast, in SkM1 expressing cultures, high K(+) reduced AP upstroke <50% and conduction was not significantly reduced. In a simulated anatomical reentry setting (using a void), the angular velocity (AV) of induced reentry was faster and the excitable gap shorter in SkM1 cultures compared to control for both normal and high K(+). CONCLUSION Expression of SkM1 but not Nav1.5 preserves AP upstroke and CV in a K(+)-depolarized syncytium. The higher AV and shorter excitable gap observed during reentry excitation around a void in SkM1 cultures would be expected to facilitate reentry self-termination. SkM1 Na(+) channel expression represents a novel gene therapy for the treatment of reentrant arrhythmias.
Collapse
Affiliation(s)
- Lev Protas
- Department of Pharmacology, College of Physicians and Surgeons, Columbia University, 630 West 168 Street, Room PH7West-318, New York, NY 10032, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
226
|
Granulocyte Colony-stimulating Factor Reduces Mortality by Suppressing Ventricular Arrhythmias in Acute Phase of Myocardial Infarction in Rats. J Cardiovasc Pharmacol 2008; 52:375-80. [DOI: 10.1097/fjc.0b013e31818a2bb0] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
227
|
High-output pacing in mapping of postinfarction ventricular tachycardia. Heart Rhythm 2008; 5:1709-14. [PMID: 19084809 DOI: 10.1016/j.hrthm.2008.08.034] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2008] [Accepted: 08/27/2008] [Indexed: 11/20/2022]
Abstract
BACKGROUND Pace mapping is used to identify critical areas for postinfarction ventricular tachycardia (VT). Unexcitable scar during pacing with standard output can identify borders of the reentry circuit. Unexcitable scar is not thought to contain surviving muscle fibers critical to the circuit. Due to current-to-load mismatch or a deep seated isthmus, higher power might be required in order to obtain capture. OBJECTIVE The purpose of this study was to evaluate the value of high-output pacing in patients with postinfarction VT. METHODS In a consecutive series of 18 patients (15 men, age 62 +/- 9, EF 0.29 +/- 0.15) with postinfarction VT, a voltage map was obtained and bipolar pace mapping was performed in areas with low voltage (<1.5 mV) at an output of 10 mA and 2 ms pulse width (PW). High-output capture was defined as capture that failed at these settings but succeeded at higher pacing output. The pacing output was increased to 20 mA at 2 ms, and the PW was increased to 10 ms as required to achieve capture. RESULTS Seventy-seven VTs were induced. Thirty-nine isthmus sites were identified. Focal areas with high-output capture were observed in 12/18 patients (output: 20 mA; mean PW: 7.3 +/- 3.5 ms). In 9/18 patients, this area was critical for the reentry circuit of 10 clinical VTs (23% of isthmus sites). In one third of patients, isthmus sites were identified only by high-output pacing. CONCLUSION High-output pacing can be helpful in identifying critical areas of postinfarction VT that otherwise may be missed.
Collapse
|
228
|
Lyon AR, Harding SE, Peters NS. Cardiac stem cell therapy and arrhythmogenicity: prometheus and the arrows of Apollo and Artemis. J Cardiovasc Transl Res 2008; 1:207-16. [PMID: 20559921 DOI: 10.1007/s12265-008-9045-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2008] [Accepted: 06/18/2008] [Indexed: 01/02/2023]
Abstract
Cardiac cell therapy is an expanding scientific field which is yielding new insights into the pathogenesis of cardiac disease and offers new therapeutic strategies. Inherent to both these areas of research are the electrical properties of individual cells, the electrical interplay between cardiomyocytes, and their roles in arrhythmogenesis. This review discusses the potential mechanisms by which various candidate cells for cardiac therapy may modulate the ventricular arrhythmic substrate and highlights the data and lessons learnt from the clinical cardiac cell therapy trials published to date. Pro- and antiarrhythmic mechanistic factors are discussed, and the importance of their consideration in the design of any future clinical cell therapy trials.
Collapse
Affiliation(s)
- Alexander R Lyon
- National Heart and Lung Institute, Faculty of Medicine, Imperial College, London, UK
| | | | | |
Collapse
|
229
|
Hund TJ, Decker KF, Kanter E, Mohler PJ, Boyden PA, Schuessler RB, Yamada KA, Rudy Y. Role of activated CaMKII in abnormal calcium homeostasis and I(Na) remodeling after myocardial infarction: insights from mathematical modeling. J Mol Cell Cardiol 2008; 45:420-8. [PMID: 18639555 PMCID: PMC2587155 DOI: 10.1016/j.yjmcc.2008.06.007] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2008] [Accepted: 06/13/2008] [Indexed: 10/21/2022]
Abstract
Ca(2+)/calmodulin-dependent protein kinase II is a multifunctional serine/threonine kinase with diverse cardiac roles including regulation of excitation contraction, transcription, and apoptosis. Dynamic regulation of CaMKII activity occurs in cardiac disease and is linked to specific disease phenotypes through its effects on ion channels, transporters, transcription and cell death pathways. Recent mathematical models of the cardiomyocyte have incorporated limited elements of CaMKII signaling to advance our understanding of how CaMKII regulates cardiac contractility and excitability. Given the importance of CaMKII in cardiac disease, it is imperative that computer models evolve to capture the dynamic range of CaMKII activity. In this study, using mathematical modeling combined with biochemical and imaging techniques, we test the hypothesis that CaMKII signaling in the canine infarct border zone (BZ) contributes to impaired calcium homeostasis and electrical remodeling. We report that the level of CaMKII autophosphorylation is significantly increased in the BZ region. Computer simulations using an updated mathematical model of CaMKII signaling reproduce abnormal Ca(2+) transients and action potentials characteristic of the BZ. Our simulations show that CaMKII hyperactivity contributes to abnormal Ca(2+) homeostasis and reduced action potential upstroke velocity due to effects on I(Na) gating kinetics. In conclusion, we present a new mathematical tool for studying effects of CaMKII signaling on cardiac excitability and contractility over a dynamic range of kinase activities. Our experimental and theoretical findings establish abnormal CaMKII signaling as an important component of remodeling in the canine BZ.
Collapse
Affiliation(s)
- Thomas J. Hund
- Department of Surgery Washington University in St. Louis St. Louis, MO
- Department of Internal Medicine University of Iowa Carver College of Medicine Iowa City, IA
| | - Keith F. Decker
- Department of Biomedical Engineering Washington University in St. Louis St. Louis, MO
- Cardiac Bioelectricity and Arrhythmia Center Washington University in St. Louis St. Louis, MO
| | - Evelyn Kanter
- Department of Medicine, Cardiovascular Division Washington University in St. Louis St. Louis, MO
| | - Peter J. Mohler
- Department of Internal Medicine University of Iowa Carver College of Medicine Iowa City, IA
| | - Penelope A. Boyden
- Department of Pharmacology, Center for Molecular Therapeutics Columbia University, New York, NY 10032
| | - Richard B. Schuessler
- Department of Surgery Washington University in St. Louis St. Louis, MO
- Cardiac Bioelectricity and Arrhythmia Center Washington University in St. Louis St. Louis, MO
| | - Kathryn A. Yamada
- Cardiac Bioelectricity and Arrhythmia Center Washington University in St. Louis St. Louis, MO
- Department of Medicine, Cardiovascular Division Washington University in St. Louis St. Louis, MO
- Center for Cardiovascular Research Washington University in St. Louis St. Louis, MO
| | - Yoram Rudy
- Department of Biomedical Engineering Washington University in St. Louis St. Louis, MO
- Cardiac Bioelectricity and Arrhythmia Center Washington University in St. Louis St. Louis, MO
- Department of Medicine, Cardiovascular Division Washington University in St. Louis St. Louis, MO
| |
Collapse
|
230
|
Hucker WJ, Ripplinger CM, Fleming CP, Fedorov VV, Rollins AM, Efimov IR. Bimodal biophotonic imaging of the structure-function relationship in cardiac tissue. JOURNAL OF BIOMEDICAL OPTICS 2008; 13:054012. [PMID: 19021392 PMCID: PMC2719892 DOI: 10.1117/1.2975826] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The development of systems physiology is hampered by the limited ability to relate tissue structure and function in intact organs in vivo or in vitro. Here, we show the application of a bimodal biophotonic imaging approach that employs optical coherence tomography and fluorescent imaging to investigate the structure-function relationship at the tissue level in the heart. Reconstruction of cardiac excitation and structure was limited by the depth penetration of bimodal imaging to approximately 2 mm in atrial tissue, and approximately 1 mm in ventricular myocardium. The subcellular resolution of optical coherence tomography clearly demonstrated that microscopic fiber orientation governs the pattern of wave propagation in functionally characterized rabbit sinoatrial and atrioventricular nodal preparations and revealed structural heterogeneities contributing to ventricular arrhythmias. The combination of this bimodal biophotonic imaging approach with histology and/or immunohistochemistry can span multiple scales of resolution for the investigation of the molecular and structural determinants of intact tissue physiology.
Collapse
Affiliation(s)
- William J Hucker
- Washington University, Department of Biomedical Engineering, St. Louis, Missouri 63130, USA
| | | | | | | | | | | |
Collapse
|
231
|
Abstract
BACKGROUND Heart failure (HF) claims over 200,000 lives annually in the United States alone. Approximately 50% of these deaths are sudden and unexpected, and presumably the consequence of lethal ventricular tachyarrhythmias. Electrical remodeling that occurs at the cellular and tissue network levels predisposes patients with HF to malignant arrhythmias. Our limited understanding of fundamental arrhythmia mechanisms has hampered the development of effective treatment strategies for these patients. METHODS AND CONCLUSIONS In this review, we outline recent advances in our understanding of arrhythmia mechanisms in the failing heart, highlighting various aspects of remodeling of ion channels, calcium handling proteins, and gap junction-related molecules. As will be discussed, these changes promote the prolongation of the action potential, the enhancement of spatio-temporal gradients of repolarization, the formation of calcium-mediated triggers and conduction abnormalities, all of which combine to form an electrophysiological substrate that is ripe for the genesis of lethal arrhythmias and sudden cardiac death.
Collapse
Affiliation(s)
- Hongwei Jin
- Division of Cardiology, Cardiovascular Research Center, Department of Pharmacology and Systems Therapeutics, Mount Sinai School of Medicine, New York, New York, USA
| | | | | |
Collapse
|
232
|
Ciaccio EJ, Chow AW, Kaba RA, Davies DW, Segal OR, Peters NS. Detection of the diastolic pathway, circuit morphology, and inducibility of human postinfarction ventricular tachycardia from mapping in sinus rhythm. Heart Rhythm 2008; 5:981-91. [PMID: 18598952 PMCID: PMC2593141 DOI: 10.1016/j.hrthm.2008.03.062] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2006] [Accepted: 03/31/2008] [Indexed: 10/22/2022]
Abstract
OBJECTIVE The purpose of this study was to determine whether sinus rhythm activation maps could be used to detect the origin and characteristics of reentrant ventricular tachycardia in postinfarction patients. METHODS In each of 11 post-myocardial infarction patients, unipolar electrograms were acquired at 256 virtual endocardial sites using noncontact mapping. Electrograms were marked for activation time and mapped on a three-dimensional grid. Spatial differences in sinus rhythm activation time were correlated to isthmus characteristics and to activation through the diastolic pathway during tachycardia on the basis of the presence of contiguous lines of slow conduction and block. RESULTS Twenty tachycardia morphologies were analyzed. Fourteen sustained reentrant circuit morphologies occurred in nine patients, with dual morphologies having a shared isthmus occurring in five of nine patients. Dual morphologies were caused by changes in entrance-exit point location about a common isthmus. One transient circuit morphology of <10 beats occurred in three of nine patients also having sustained reentry. The estimated isthmus determined from sinus rhythm activation overlapped the diastolic pathway determined from tachycardia maps with 83.8% sensitivity and 89.2% specificity. The mean difference in sinus rhythm activation time across the isthmus border was larger in transient compared with sustained morphologies (32.8 +/- 9.5 ms vs. 22.8 +/- 1.8 ms), with smaller isthmus size (4.8 +/- 1.1 cm(2) vs. 10.0 +/- 1.1 cm(2); P < .05), narrower entrance-exit points (7.0 +/- 1.5 mm vs. 9.3 +/- 0.8 mm; P < .05), and greater activation time difference across them (16.3 +/- 3.5 ms vs. 10.1 +/- 1.0 ms; P < .05). CONCLUSION In post-myocardial infarction patients, the reentry isthmus can be localized in the endocardial border zone from sinus rhythm activation maps. Nonsustained reentry occurs when isthmus size is small and entrance-exit points are narrow and more electrically discontinuous.
Collapse
Affiliation(s)
- Edward J Ciaccio
- Department of Pharmacology, Columbia University, New York, New York 10032, USA.
| | | | | | | | | | | |
Collapse
|
233
|
Severs NJ, Bruce AF, Dupont E, Rothery S. Remodelling of gap junctions and connexin expression in diseased myocardium. Cardiovasc Res 2008; 80:9-19. [PMID: 18519446 PMCID: PMC2533424 DOI: 10.1093/cvr/cvn133] [Citation(s) in RCA: 406] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Gap junctions form the cell-to-cell pathways for propagation of the precisely orchestrated patterns of current flow that govern the regular rhythm of the healthy heart. As in most tissues and organs, multiple connexin types are expressed in the heart: connexin43 (Cx43), Cx40 and Cx45 are found in distinctive combinations and relative quantities in different, functionally-specialized subsets of cardiac myocyte. Mutations in genes that encode connexins have only rarely been identified as being a cause of human cardiac disease, but remodelling of connexin expression and gap junction organization are well documented in acquired adult heart disease, notably ischaemic heart disease and heart failure. Remodelling may take the form of alterations in (i) the distribution of gap junctions and (ii) the amount and type of connexins expressed. Heterogeneous reduction in Cx43 expression and disordering in gap junction distribution feature in human ventricular disease and correlate with electrophysiologically identified arrhythmic changes and contractile dysfunction in animal models. Disease-related alterations in Cx45 and Cx40 expression have also been reported, and some of the functional implications of these are beginning to emerge. Apart from ventricular disease, various features of gap junction organization and connexin expression have been implicated in the initiation and persistence of the most common form of atrial arrhythmia, atrial fibrillation, though the disparate findings in this area remain to be clarified. Other major tasks ahead focus on the Purkinje/working ventricular myocyte interface and its role in normal and abnormal impulse propagation, connexin-interacting proteins and their regulatory functions, and on defining the precise functional properties conferred by the distinctive connexin co-expression patterns of different myocyte types in health and disease.
Collapse
Affiliation(s)
- Nicholas J Severs
- National Heart and Lung Institute, Imperial College London, Dovehouse Street, London SW3 6LY, UK.
| | | | | | | |
Collapse
|
234
|
|
235
|
Kontogeorgis A, Kaba RA, Kang E, Feig JE, Gupta PP, Ponzio M, Liu F, Rindler MJ, Wit AL, Fisher EA, Peters NS, Gutstein DE. Short-term pacing in the mouse alters cardiac expression of connexin43. BMC PHYSIOLOGY 2008; 8:8. [PMID: 18460209 PMCID: PMC2396665 DOI: 10.1186/1472-6793-8-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2007] [Accepted: 05/06/2008] [Indexed: 11/10/2022]
Abstract
BACKGROUND Cardiac insults such as ischemia, infarction, hypertrophy and dilatation are often accompanied by altered abundance and/or localization of the connexin43 gap junction protein, which may predispose towards arrhythmic complications. Models of chronic dyssynchronous cardiac activation have also been shown to result in redistribution of connexin43 in cardiomyocytes. We hypothesized that alterations in connexin43 expression and localization in the mouse heart might be induced by ventricular pacing over a short period of time. RESULTS The subdiaphragmatic approach was used to pace a series of wild type mice for six hours before the hearts were removed for analysis. Mice were paced at 10-15% above their average anesthetized sinus rate and monitored to ensure 1:1 capture. Short-term pacing resulted in a significant reduction in connexin43 mRNA abundance, a partial redistribution of connexin43 from the sarcolemma to a non-sarcolemmal fraction, and accumulation of ubiquitinated connexin43 without a significant change in overall connexin43 protein levels. These early pacing-induced changes in connexin43 expression were not accompanied by decreased cardiac function, prolonged refractoriness or increased inducibility into sustained arrhythmias. CONCLUSION Our data suggest that short-term pacing is associated with incipient changes in the expression of the connexin43 gap junction, possibly including decreased production and a slowed rate of degradation. This murine model may facilitate the study of early molecular changes induced by pacing and may ultimately assist in the development of strategies to prevent gap junction remodeling and the associated arrhythmic complications of cardiac disease.
Collapse
Affiliation(s)
- Andrianos Kontogeorgis
- Leon H. Charney Division of Cardiology, Department of Medicine, New York University School of Medicine, New York, NY, USA
- Department of Cardiology, St Mary's Hospital, Imperial College London, UK
| | - Riyaz A Kaba
- Department of Pharmacology, Columbia University College of Physicians and Surgeons, New York, NY, USA
- Department of Cardiology, St Mary's Hospital, Imperial College London, UK
| | - Eunice Kang
- Leon H. Charney Division of Cardiology, Department of Medicine, New York University School of Medicine, New York, NY, USA
| | - Jonathan E Feig
- Leon H. Charney Division of Cardiology, Department of Medicine, New York University School of Medicine, New York, NY, USA
| | - Pritha P Gupta
- Leon H. Charney Division of Cardiology, Department of Medicine, New York University School of Medicine, New York, NY, USA
| | - Marc Ponzio
- Leon H. Charney Division of Cardiology, Department of Medicine, New York University School of Medicine, New York, NY, USA
| | - Fangyu Liu
- Leon H. Charney Division of Cardiology, Department of Medicine, New York University School of Medicine, New York, NY, USA
| | - Michael J Rindler
- Department of Cell Biology, New York University School of Medicine, New York, NY, USA
| | - Andrew L Wit
- Department of Pharmacology, Columbia University College of Physicians and Surgeons, New York, NY, USA
| | - Edward A Fisher
- Leon H. Charney Division of Cardiology, Department of Medicine, New York University School of Medicine, New York, NY, USA
- Department of Cell Biology, New York University School of Medicine, New York, NY, USA
| | - Nicholas S Peters
- Department of Pharmacology, Columbia University College of Physicians and Surgeons, New York, NY, USA
- Department of Cardiology, St Mary's Hospital, Imperial College London, UK
| | - David E Gutstein
- Leon H. Charney Division of Cardiology, Department of Medicine, New York University School of Medicine, New York, NY, USA
- Department of Cell Biology, New York University School of Medicine, New York, NY, USA
| |
Collapse
|
236
|
Nakagami T, Tanaka H, Dai P, Lin SF, Tanabe T, Mani H, Fujiwara K, Matsubara H, Takamatsu T. Generation of reentrant arrhythmias by dominant-negative inhibition of connexin43 in rat cultured myocyte monolayers. Cardiovasc Res 2008; 79:70-9. [DOI: 10.1093/cvr/cvn084] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
237
|
Sato T, Ohkusa T, Honjo H, Suzuki S, Yoshida MA, Ishiguro YS, Nakagawa H, Yamazaki M, Yano M, Kodama I, Matsuzaki M. Altered expression of connexin43 contributes to the arrhythmogenic substrate during the development of heart failure in cardiomyopathic hamster. Am J Physiol Heart Circ Physiol 2008; 294:H1164-73. [DOI: 10.1152/ajpheart.00960.2007] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Heart failure is known to predispose to life-threatening ventricular tachyarrhythmias even before compromising the systemic circulation, but the underlying mechanism is not well understood. The aim of this study was to clarify the connexin43 (Cx43) gap junction remodeling and its potential role in the pathogenesis of arrhythmias during the development of heart failure. We investigated stage-dependent changes in Cx43 expression in UM-X7.1 cardiomyopathic hamster hearts and associated alterations in the electrophysiological properties using a high-resolution optical mapping system. UM-X7.1 hamsters developed left ventricular (LV) hypertrophy by ages 6∼10 wk and showed a moderate reduction in LV contractility at age 20 wk. Appreciable interstitial fibrosis was recognized at these stages. LV mRNA and protein levels of Cx43 in UM-X7.1 were unaffected at age 10 wk but significantly reduced at 20 wk. The expression level of Ser255-phosphorylated Cx43 in UM-X7.1 at age 20 wk was significantly greater than that in control golden hamsters at the same age. In UM-X7.1 at age 10 wk, almost normal LV conduction was preserved, whereas the dispersion of action potential duration was significantly increased. UM-X7.1 at age 20 wk showed significant reduction of cardiac space constant, significant decrease in conduction velocity, marked distortion of activation fronts, and pronounced increase in action potential duration dispersion. Programmed stimulation resulted in sustained ventricular tachycardia or fibrillation in UM-X7.1. LV activation during polymorphic ventricular tachycardia was characterized by multiple phase singularities or wavebreaks. During the development of heart failure in the cardiomyopathic hamster, alterations of Cx43 expression and phosphorylation in concert with interstitial fibrosis may create serious arrhythmogenic substrate through an inhibition of cell-to-cell coupling.
Collapse
|
238
|
Kjølbye AL, Haugan K, Hennan JK, Petersen JS. Pharmacological modulation of gap junction function with the novel compound rotigaptide: a promising new principle for prevention of arrhythmias. Basic Clin Pharmacol Toxicol 2008; 101:215-30. [PMID: 17845503 DOI: 10.1111/j.1742-7843.2007.00123.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Existing anti-arrhythmic therapy is hampered by lack of efficacy and unacceptable side effects. Thus, ventricular tachycardia and fibrillation remains the strongest predictor of in-hospital mortality in patients with myocardial infarction. In atrial fibrillation, rhythm control with conventional ion channel blockers provide no therapeutic benefit relative to rate control. Several lines of research indicate that impaired gap junctional cell-to-cell coupling between neighbouring cardiomyocytes is critical for the development of cardiac re-entry arrhythmias. Rotigaptide is the first drug that has been developed to prevent arrhythmias by re-establishing gap junctional intercellular communication. During conditions with acute cardiac ischaemia, rotigaptide effectively prevents induction of both ventricular and atrial tachyarrhythmia. Moreover, rotigaptide effectively prevents ischaemia reperfusion arrhythmias. At the cellular level, rotigaptide inhibits ischaemia-induced dephosphorylation of Ser297 and Ser368, which is considered important for the gating of connexin43 gap junction channels. No drug-related toxicity has been demonstrated at plasma concentrations 77,000 times above therapeutic concentrations. In rats and dogs, rotigaptide reduces infarct size following myocardial infarction. A series of phase I trials has been completed in which rotigaptide has been administered intravenously to ~200 healthy persons. No drug-related side effects have been demonstrated in healthy human beings. Clinical safety, tolerability and efficacy in patients with heart disease are being evaluated in ongoing clinical trials. Rotigaptide represents a pioneering pharmacological principle with a highly favourable preclinical and clinical safety profile, which makes this molecule a promising drug candidate for the prevention of cardiac arrhythmias.
Collapse
|
239
|
Maharaj T, Blake R, Trayanova N, Gavaghan D, Rodriguez B. The role of transmural ventricular heterogeneities in cardiac vulnerability to electric shocks. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2008; 96:321-38. [PMID: 17915299 PMCID: PMC2821334 DOI: 10.1016/j.pbiomolbio.2007.07.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Transmural electrophysiological heterogeneities have been shown to contribute to arrhythmia induction in the heart; however, their role in defibrillation failure has never been examined. The goal of this study is to investigate how transmural heterogeneities in ionic currents and gap-junctional coupling contribute to arrhythmia generation following defibrillation strength shocks. This study used a 3D anatomically realistic bidomain model of the rabbit ventricles. Transmural heterogeneity in ionic currents and reduced sub-epicardial intercellular coupling were incorporated based on experimental data. The ventricles were paced apically, and truncated-exponential monophasic shocks of varying strength and timing were applied via large external electrodes. Simulations demonstrate that inclusion of transmural heterogeneity in ionic currents results in an increase in vulnerability to shocks, reflected in the increased upper limit of vulnerability, ULV, and the enlarged vulnerable window, VW. These changes in vulnerability stem from increased post-shock dispersion in repolarisation as it increases the likelihood of establishment of re-entrant circuits. In contrast, reduced sub-epicardial coupling results in decrease in both ULV and VW. This decrease is caused by altered virtual electrode polarisation around the region of sub-epicardal uncoupling, and specifically, by the increase in (1) the amount of positively polarised myocardium at shock-end and (2) the spatial extent of post-shock wavefronts.
Collapse
Affiliation(s)
- Thushka Maharaj
- Computing Laboratory, University of Oxford, Oxford, OX1 3PG, UK.
| | | | | | | | | |
Collapse
|
240
|
Duffy HS, Wit AL. Is there a role for remodeled connexins in AF? No simple answers. J Mol Cell Cardiol 2008; 44:4-13. [PMID: 17935733 PMCID: PMC2243184 DOI: 10.1016/j.yjmcc.2007.08.016] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2007] [Revised: 08/20/2007] [Accepted: 08/22/2007] [Indexed: 01/19/2023]
Abstract
Gap junctions provide direct cytoplasmic continuity between cells forming a low resistivity barrier to electrical propagation. As such, aberrant regulation of these low resistive conduits has been blamed for electrical conduction disorders in diseased myocardium. While there is a plethora of evidence that abnormalities in gap junctional communication underlie many forms of ventricular arrhythmias, the role of gap junctions in atrial conduction disorders has been less well studied. The atria are the most heterogeneous cardiac structures in terms of the gap junction proteins, connexins (Cx), which are present. Cx40 is the primary, or most abundant, gap junction protein in atria although Cx43 is also abundantly expressed. Cx45 is also expressed in atria, although at low levels. This heterogeneity in connexins leads to a complexity that makes understanding the role of cell coupling in conduction disorders and arrhythmogenesis difficult. In this review we focus on what is known about atrial connexins and their role in atrial fibrillation but also on the challenges presented in understanding the complex interplay between the individual connexin isoforms.
Collapse
|
241
|
Abstract
Atrial fibrillation (AF) is the most common encountered sustained arrhythmia in clinical practice. The last decade the result of large 'rate' versus 'rhythm' control trials have been published that have changed the current day practise of AF treatment. It has become clear that rate control is at least equally effective as a rhythm control strategy in ameliorating morbidity as well as mortality. Moreover, in each individual patient the risk of thromboembolic events should be assessed and antithrombotic treatment be initiated. There have also been great advances in understanding the mechanisms of AF. Experimental studies showed that as a result of electrical and structural remodelling of the atria, 'AF begets AF'. Pharmacological prevention of atrial electrical remodelling has been troublesome, but it seems that blockers of the renin angiotensin system, and perhaps statins, may reduce atrial structural remodelling by preventing atrial fibrosis. Clinical studies demonstrated that the pulmonary veins exhibit foci that can act as initiator and perpetuator of the arrhythmia. Isolation of the pulmonary veins using radiofrequency catheter ablation usually abolishes AF. The most promising advances in the pharmacological treatment of AF include atrial specific antiarrhythmic drugs and direct thrombin inhibitors. In the present review we will describe the results of recent experimental studies, discuss the latest clinical trials, and we will focus on novel treatment modalities.
Collapse
Affiliation(s)
- Y Blaauw
- Department of Cardiology, University Hospital Maastricht, Maastricht, The Netherlands
| | | |
Collapse
|
242
|
Del Rio CL, McConnell PI, Kukielka M, Dzwonczyk R, Clymer BD, Howie MB, Billman GE. Electrotonic remodeling following myocardial infarction in dogs susceptible and resistant to sudden cardiac death. J Appl Physiol (1985) 2007; 104:386-93. [PMID: 18048585 DOI: 10.1152/japplphysiol.01106.2007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Passive electrical remodeling following myocardial infarction (MI) is well established. These changes can alter electrotonic loading and trigger the remodeling of repolarization currents, a potential mechanism for ventricular fibrillation (VF). However, little is known about the role of passive electrical markers as tools to identify VF susceptibility post-MI. This study investigated electrotonic remodeling in the post-MI ventricle, as measured by myocardial electrical impedance (MEI), in animals prone to and resistant to VF. MI was induced in dogs by a two-stage left anterior descending (LAD) coronary artery ligation. Before infarction, MEI electrodes were placed in remote (left circumflex, LCX) and infarcted (LAD) myocardium. MEI was measured in awake animals 1, 2, 7, and 21 days post-MI. Subsequently, VF susceptibility was tested by a 2-min LCX occlusion during exercise; 12 animals developed VF (susceptible, S) and 12 did not (resistant, R). The healing infarct had lower MEI than the normal myocardium. This difference was stable by day 2 post-MI (287 +/- 32 Omega vs. 425 +/- 62 Omega, P < 0.05). Significant differences were observed between resistant and susceptible animals 7 days post-MI; susceptible dogs had a wider electrotonic gradient between remote and infarcted myocardium (R: 89 +/- 60 Omega vs. S: 180 +/- 37 Omega). This difference increased over time in susceptible animals (252 +/- 53 Omega at 21 days) due to post-MI impedance changes on the remote myocardium. These data suggest that early electrotonic changes post-MI could be used to assess later arrhythmia susceptibility. In addition, passive-electrical changes could be a mechanism driving active-electrical remodeling post-MI, thereby facilitating the induction of arrhythmias.
Collapse
Affiliation(s)
- Carlos L Del Rio
- Dept. of Physiology and Cell Biology, The Ohio State Univ., 1645 Neil Ave., 305 Hamilton Hall, Columbus, OH 43210, USA
| | | | | | | | | | | | | |
Collapse
|
243
|
Heper G, Korkmaz ME, Kilic A. Reperfusion arrhythmias: are they only a marker of epicardial reperfusion or continuing myocardial ischemia after acute myocardial infarction? Angiology 2007; 58:663-70. [PMID: 17989422 DOI: 10.1177/0003319707308891] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Reperfusion arrhythmias are associated with epicardial reperfusion but may also be a sign of vascular reperfusion injury which can be seen as no-reflow phenomenon on coronary angiography and predicts in-hospital complications and recovery of left ventricular (LV) function. No-reflow phenomenon (thrombolysis in myocardial infarction [TIMI] <or=2 flow) is frequently observed in patients after mechanical or medical reperfusion procedures for acute myocardial infarction (AMI). The authors hypothesized that reperfusion arrhythmias (or peri-infarct arrhythmias) may be related to continuing myocardial ischemia. They documented all arrhythmia episodes in patients with AMI and compared arrhythmia rates in different therapy groups. They also compared arrhythmia rates according to TIMI flow achieved and those after MI. The highest arrhythmia rate was detected in patients to whom thrombolytic therapy was given for AMI (64%). The arrhythmia rate was lower in patients with primary PCI performed for AMI (46.2%) than in those receiving thrombolytic therapy. The arrhythmia rates according to therapy modalities for AMI were significantly different (p < 0.01). The achieved mean TIMI flow with primary PCI (2.46 +/-0.21 ) was higher than the mean flow achieved after thrombolytic therapy (2.12 +/-0.16). When compared to the arrhythmia rate according to TIMI flow, it was shown that the lowest arrhythmia rate was found in patients with TIMI 3 flow (17.2%) achieved with any procedure after AMI. The arrhythmia rate was 84% in patients with TIMI 2 flow and 33.3% with TIMI 0-1 flow (p <0.001). The arrhythmia rate was appreciably lower after 48 hours of MI. This finding suggests that the continuing myocardial ischemia represented by TIMI flow at the coronary angiography after acute myocardial infarction may have an important role in the pathogenesis of reperfusion arrhythmias.
Collapse
|
244
|
Joung B, Kim IK, Lee MH, Yoo KJ, Kim SS. Bone marrow mononuclear stem cells transplanted in rat infarct myocardium improved the electrical conduction without evidence of proarrhythmic effects. Yonsei Med J 2007; 48:754-64. [PMID: 17963331 PMCID: PMC2628140 DOI: 10.3349/ymj.2007.48.5.754] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
PURPOSE The arrhythmogenic effect of stem cells transplantation (SCT) in an infarct myocardium is still unknown. We investigated arrhythmogenicity of SCT in rat cryo-infarct model. MATERIALS AND METHODS In rat cryo-infarct model, bone marrow mononuclear stem cells (MNSC, 1 x 10(7) cells) were transplanted into the infarct border zone (BZ) of the LV epicardium. We compared the optical mapping and inducibility of ventricular tachycardia/fibrillation (VT/VF) among normal (n=5), cryo-infarct (n=6), and SCT rats (n=6). RESULTS The VT/VF inducibility was higher in the cryo- infarct (47.2%, p=0.001) and SCT groups (34.6%, p=0.01) than in the normal group (12.8%). The induced VT/VF episodes persisted for more than 2 minutes in 4.3%, 26.4% and 17.3% in the normal, cryo-infarct and SCT group, respectively. In the SCT group, the action potential duration at 70% was shorter at the SCT site than the BZ during SR (75.2 +/- 8.1 vs. 145.6 +/- 4.4 ms, p=0.001) and VT (78.2 +/- 13.0 vs. 125.7 +/- 21.0 ms, p= 0.001). Conduction block was observed at the SCT site and BZ during VT. However, no reentry or ectopic foci were observed around the SCT sites. CONCLUSION The electrical conduction was improved by SCT without evidence of augmentation of arrhythmia in the rat cryo-infarct model.
Collapse
Affiliation(s)
- Boyoung Joung
- Division of Cardiology, Yonsei Cardiovascular Center and Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Il-kwon Kim
- Division of Cardiology, Yonsei Cardiovascular Center and Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Moon-Hyoung Lee
- Division of Cardiology, Yonsei Cardiovascular Center and Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Kyung-Jong Yoo
- Department of Cardiovascular Surgery, Yonsei Cardiovascular Center and Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Sung-Soon Kim
- Division of Cardiology, Yonsei Cardiovascular Center and Research Institute, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
245
|
Jaworski J, Hoogenraad CC, Akhmanova A. Microtubule plus-end tracking proteins in differentiated mammalian cells. Int J Biochem Cell Biol 2007; 40:619-37. [PMID: 18023603 DOI: 10.1016/j.biocel.2007.10.015] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2007] [Revised: 09/16/2007] [Accepted: 10/11/2007] [Indexed: 11/16/2022]
Abstract
Differentiated mammalian cells are often characterized by highly specialized and polarized structure. Its formation and maintenance depends on cytoskeletal components, among which microtubules play an important role. The shape and dynamic properties of microtubule networks are controlled by multiple microtubule-associated factors. These include molecular motors and non-motor proteins, some of which accumulate specifically at the growing microtubule plus-ends (the so-called microtubule plus-end tracking proteins). Plus-end tracking proteins can contribute to the regulation of microtubule dynamics, mediate the cross-talk between microtubule ends, the actin cytoskeleton and the cell cortex, and participate in transport and positioning of structural and regulatory factors and membrane organelles. Malfunction of these proteins results in various human diseases including some forms of cancer, neurodevelopmental disorders and mental retardation. In this article we discuss recent data on microtubule dynamics and activities of microtubule plus-end binding proteins important for the physiology and pathology of differentiated mammalian cells such as neurons, polarized epithelia, muscle and sperm cells.
Collapse
Affiliation(s)
- Jacek Jaworski
- International Institute of Molecular and Cell Biology , Warsaw, Poland.
| | | | | |
Collapse
|
246
|
Smith G. Matters of the heart: the physiology of cardiac function and failure. Exp Physiol 2007. [DOI: 10.1113/expphysiol.2006.034314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
247
|
Ciaccio EJ, Ashikaga H, Kaba RA, Cervantes D, Hopenfeld B, Wit AL, Peters NS, McVeigh ER, Garan H, Coromilas J. Model of reentrant ventricular tachycardia based on infarct border zone geometry predicts reentrant circuit features as determined by activation mapping. Heart Rhythm 2007; 4:1034-45. [PMID: 17675078 PMCID: PMC2626544 DOI: 10.1016/j.hrthm.2007.04.015] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2007] [Accepted: 04/07/2007] [Indexed: 11/16/2022]
Abstract
BACKGROUND Infarct border zone (IBZ) geometry likely affects inducibility and characteristics of postinfarction reentrant ventricular tachycardia, but the connection has not been established. OBJECTIVE The purpose of this study was to determine characteristics of postinfarction ventricular tachycardia in the IBZ. METHODS A geometric model describing the relationship between IBZ geometry and wavefront propagation in reentrant circuits was developed. Based on the formulation, slow conduction and block were expected to coincide with areas where IBZ thickness (T) is minimal and the local spatial gradient in thickness (DeltaT) is maximal, so that the degree of wavefront curvature rho proportional, variant DeltaT/T is maximal. Regions of fastest conduction velocity were predicted to coincide with areas of minimum DeltaT. In seven arrhythmogenic postinfarction canine heart experiments, tachycardia was induced by programmed stimulation, and activation maps were constructed from multichannel recordings. IBZ thickness was measured in excised hearts from histologic analysis or magnetic resonance imaging. Reentrant circuit properties were predicted from IBZ geometry and compared with ventricular activation maps after tachycardia induction. RESULTS Mean IBZ thickness was 231 +/- 140 microm at the reentry isthmus and 1440 +/- 770 microm in the outer pathway (P <0.001). Mean curvature rho was 1.63 +/- 0.45 mm(-1) at functional block line locations, 0.71 +/- 0.18 mm(-1) at isthmus entrance-exit points, and 0.33 +/- 0.13 mm(-1) in the outer reentrant circuit pathway. The mean conduction velocity about the circuit during reentrant tachycardia was 0.32 +/- 0.04 mm/ms at entrance-exit points, 0.42 +/- 0.13 mm/ms for the entire outer pathway, and 0.64 +/- 0.16 mm/ms at outer pathway regions with minimum DeltaT. Model sensitivity and specificity to detect isthmus location was 75.0% and 97.2%. CONCLUSIONS Reentrant circuit features as determined by activation mapping can be predicted on the basis of IBZ geometrical relationships.
Collapse
Affiliation(s)
- Edward J Ciaccio
- Department of Pharmacology, Columbia University, New York, New York, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
248
|
|
249
|
Axelsen LN, Haugan K, Stahlhut M, Kjølbye AL, Hennan JK, Holstein-Rathlou NH, Petersen JS, Nielsen MS. Increasing Gap Junctional Coupling: A Tool for Dissecting the Role of Gap Junctions. J Membr Biol 2007; 216:23-35. [PMID: 17568971 DOI: 10.1007/s00232-007-9026-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2007] [Accepted: 04/04/2007] [Indexed: 11/30/2022]
Abstract
Much of our current knowledge about the physiological and pathophysiological role of gap junctions is based on experiments where coupling has been reduced by either chemical agents or genetic modification. This has brought evidence that gap junctions are important in many physiological processes. In a number of cases, gap junctions have been implicated in the initiation and progress of disease, and experimental uncoupling has been used to investigate the exact role of coupling. The inverse approach, i.e., to increase coupling, has become possible in recent years and represents a new way of testing the role of gap junctions. The aim of this review is to summarize the current knowledge obtained with agents that selectively increase gap junctional intercellular coupling. Two approaches will be reviewed: increasing coupling by the use of antiarrhythmic peptide and its synthetic analogs and by interfering with the gating of gap junctional channels.
Collapse
|
250
|
Falcao S, Rousseau G, Baroudi G, Vermeulen M, Bouchard C, Jones DL, Cardinal R. Combined effects of reduced connexin 43, depressed active generator properties and energetic stress on conduction disturbances in canine failing myocardium. Pflugers Arch 2007; 454:999-1009. [PMID: 17534653 DOI: 10.1007/s00424-007-0266-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2007] [Accepted: 04/05/2007] [Indexed: 11/25/2022]
Abstract
To show that reductions in connexin43 (Cx43) can contribute, in association with electrophysiological alterations identified from unipolar recordings, to conduction disturbances in a realistic model of heart failure, canines were subjected to chronic rapid pacing (240/min for 4 weeks) and progressive occlusion of the left coronary circumflex artery (LCx) by an ameroid constrictor. Alterations identified from 191 epicardial recordings included abrupt activation delay, functional block, ST segment potential elevation, and reduced maximum negative slope (-dV/dt (max)). The LCx territory was divided into apical areas with depressed conduction velocity (LCx1: 0.06 +/- 0.04 m/s, mean +/- SD) and basal areas with relatively preserved conduction (LCx2: 0.28 +/- 0.01 m/s). Subepicardial Cx43 immunoblot measurements (percent of corresponding healthy heart measurements) were reduced in LCx1 ( approximately 40%) and LCx2 ( approximately 60%). In addition, -dV/dt (max) was significantly depressed (-3.8 +/- 3.3 mV/ms) and ST segment potential elevated (23.3 +/- 14.6 mV) in LCx1 compared to LCx2 (-9.5 +/- 3.4 mV/ms and 0.3 +/- 1.4 mV). Anisotropic conduction, Cx43 and ST segment potential measurements from the left anterior descending coronary artery territory, and interstitial collagen from all regions were similar to the healthy. Thus, moderate Cx43 reduction to "clinically relevant" levels can, in conjunction with regional energetic stress and depression of sarcolemmal active generator properties, provide a substrate for conduction disturbances.
Collapse
Affiliation(s)
- Stéphanie Falcao
- Centre de recherche, Hôpital du Sacré-Coeur de Montréal, 5400 Gouin Blvd. West, Montréal, H4J 1C5, Québec, Canada
| | | | | | | | | | | | | |
Collapse
|