201
|
Overgaard CE, Daugherty BL, Mitchell LA, Koval M. Claudins: control of barrier function and regulation in response to oxidant stress. Antioxid Redox Signal 2011; 15:1179-93. [PMID: 21275791 PMCID: PMC3144428 DOI: 10.1089/ars.2011.3893] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Claudins are a family of nearly two dozen transmembrane proteins that are a key part of the tight junction barrier that regulates solute movement across polarized epithelia. Claudin family members interact with each other, as well as with other transmembrane tight junction proteins (such as occludin) and cytosolic scaffolding proteins (such as zonula occludens-1 (ZO-1)). Although the interplay between all of these different classes of proteins is critical for tight junction formation and function, claudin family proteins are directly responsible for forming the equivalent of paracellular ion selective channels (or pores) with specific permeability and thus are essential for barrier function. In this review, we summarize current progress in identifying structural elements of claudins that regulate their transport, assembly, and function. The effects of oxidant stress on claudins are also examined, with particular emphasis on lung epithelial barrier function and oxidant stress induced by chronic alcohol abuse.
Collapse
Affiliation(s)
- Christian E Overgaard
- Division of Pulmonary, Allergy and Critical Care Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | | | | | |
Collapse
|
202
|
Goolaerts A, Lafargue M, Song Y, Miyazawa B, Arjomandi M, Carlès M, Roux J, Howard M, Parks DA, Iles KE, Pittet JF. PAI-1 is an essential component of the pulmonary host response during Pseudomonas aeruginosa pneumonia in mice. Thorax 2011; 66:788-96. [PMID: 21768189 PMCID: PMC3282176 DOI: 10.1136/thx.2010.155788] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
RATIONALE Elevated plasma and bronchoalveolar lavage fluid plasminogen activator inhibitor 1 (PAI-1) levels are associated with adverse clinical outcome in patients with pneumonia caused by Pseudomonas aeruginosa. However, whether PAI-1 plays a pathogenic role in the breakdown of the alveolar-capillary barrier caused by P aeruginosa is unknown. OBJECTIVES The role of PAI-1 in pulmonary host defence and survival during P aeruginosa pneumonia in mice was tested. The in vitro mechanisms by which P aeruginosa causes PAI-1 gene and protein expression in lung endothelial and epithelial cells were also examined. METHODS AND RESULTS PAI-1 null and wild-type mice that were pretreated with the PAI-1 inhibitor Tiplaxtinin had a significantly lower increase in lung vascular permeability than wild-type littermates after the airspace instillation of 1×10(7) colony-forming units (CFU) of P aeruginosa bacteria. Furthermore, P aeruginosa in vitro induced the expression of the PAI-1 gene and protein in a TLR4/p38/RhoA/NF-κB (Toll-like receptor 4/p38/RhoA/nuclear factor-κB) manner in lung endothelial and alveolar epithelial cells. However, in vivo disruption of PAI-1 signalling was associated with higher mortality at 24 h (p<0.03) and higher bacterial burden in the lungs secondary to decreased neutrophil migration into the distal airspace in response to P aeruginosa. CONCLUSIONS The results indicate that PAI-1 is a critical mediator that controls the development of the early lung inflammation that is required for the activation of the later innate immune response necessary for the eradication of P aeruginosa from the distal airspaces of the lung.
Collapse
Affiliation(s)
- Arnaud Goolaerts
- Department of Anesthesiology, Cardiovascular Research Institute, University of California San Francisco, San Francisco, California, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
203
|
Rogel MR, Soni PN, Troken JR, Sitikov A, Trejo HE, Ridge KM. Vimentin is sufficient and required for wound repair and remodeling in alveolar epithelial cells. FASEB J 2011; 25:3873-83. [PMID: 21803859 DOI: 10.1096/fj.10-170795] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The physiological and pathophysiological implications of the expression of vimentin, a type III intermediate filament protein, in alveolar epithelial cells (AECs) are unknown. We provide data demonstrating that vimentin is regulated by TGFβ1, a major cytokine released in response to acute lung injury and that vimentin is required for wound repair and remodeling of the alveolar epithelium. Quantitative real-time PCR shows a 16-fold induction of vimentin mRNA in TGFβ1-treated transformed AECs. Luciferase assays identify a Smad-binding element in the 5' promoter of vimentin responsible for TGFβ1-induced transcription. Notably, TGFβ1 induces vimentin protein expression in AECs, which is associated with a 2.5-fold increase in cell motility, resulting in increased rates of migration and wound closure. These effects are independent of cell proliferation. TGFβ1-mediated vimentin protein expression, cell migration, and wound closure are prevented by a pharmacological inhibitor of the Smad pathway and by expression of Ad-shRNA against vimentin. Conversely, overexpression of mEmerald-vimentin is sufficient for increased cell-migration and wound-closure rates. These results demonstrate that vimentin is required and sufficient for increased wound repair in an in vitro model of lung injury.
Collapse
Affiliation(s)
- Micah R Rogel
- Department of Biomedical Engineering, Northwestern University, Chicago, Illinois 60611, USA
| | | | | | | | | | | |
Collapse
|
204
|
Wang X, Wu G, Gou L, Liu Z, Wang X, Fan X, Wu L, Liu N. A novel single-chain-Fv antibody against connective tissue growth factor attenuates bleomycin-induced pulmonary fibrosis in mice. Respirology 2011; 16:500-7. [PMID: 21265950 DOI: 10.1111/j.1440-1843.2011.01938.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND AND OBJECTIVE Connective tissue growth factor (CTGF) has been identified as playing critical roles in fibrosis and is a promising therapeutic target. In a previous study, we used a phage display library to develop a humanized single-chain variable fragment antibody (scFv) against CTGF. In the present study, the protective effect of anti-CTGF scFv against bleomycin (BL)-induced pulmonary fibrosis was investigated in mice. METHODS The expression of α-smooth muscle actin in human embryonic lung fibroblast (HELF) cells was analysed by western blotting. A mouse model of pulmonary fibrosis was established by tracheal injection of BL (5 mg/kg). Mice received anti-CTGF scFv (4 mg/kg, three times a week) by i.v. injection. The effects of anti-CTGF scFv were evaluated by leukocyte counts in BAL fluid, hydroxyproline measurements in lung tissue and pathological examination. RESULTS α-Smooth muscle actin expression was decreased in HELF cells treated with anti-CTGF scFv. Anti-CTGF scFv significantly reduced the numbers of inflammatory leukocytes (total and differential count) in BAL fluid, as well as the hydroxyproline content of lung tissue. The severity of alveolitis and fibrosis in the mouse model was markedly attenuated by treatment with anti-CTGF scFv. CONCLUSIONS Anti-CTGF scFv may potentially be developed as a useful inhibitor of pulmonary fibrosis.
Collapse
Affiliation(s)
- Xihua Wang
- Respiratory Department, Institute of Biotechnology and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | | | | | | | | | | | | | | |
Collapse
|
205
|
England KA, Price AP, Tram KV, Shapiro SD, Blazar BR, Panoskaltsis-Mortari A. Evidence for early fibrosis and increased airway resistance in bone marrow transplant recipient mice deficient in MMP12. Am J Physiol Lung Cell Mol Physiol 2011; 301:L519-26. [PMID: 21784967 DOI: 10.1152/ajplung.00383.2009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Idiopathic pneumonia syndrome (IPS) is a significant cause of morbidity and mortality post-bone marrow transplantation (BMT) in humans. In our established murine IPS model in which lethally conditioned recipients are given allogeneic bone marrow and splenocytes, recruitment of host monocytes occurs early post-BMT, followed by donor T cells concomitant with development of severe lung dysfunction. Because matrix metalloproteinase 12 (MMP12) is important for macrophage infiltration and injury in other mouse models of lung disease such as emphysema, lethally conditioned MMP12(-/-) mice were used as allogeneic recipients to determine whether MMP12 plays a similar role in potentiating lung injury in IPS. Surprisingly, MMP12(-/-) mice developed IPS and exhibited an accelerated allogeneic T cell-dependent decrease in compliance compared with wild-type (WT) recipients. MMP12(-/-), but not WT, mice also had allogeneic T cell-dependent elevated lung resistance post-BMT. Recruitment of monocytes and T cells into the lungs was not altered on day 7 post-BMT, but the lungs of MMP12(-/-) recipients had increased collagen deposition, a feature normally not seen in our IPS model. MMP12(-/-) mice had a compensatory increase in MMP2 in the lungs post-BMT, as well as increased β6-integrin compared with WT recipients, and only in the presence of allogeneic T cells. Levels of total transforming growth factor (TGF)-β1 protein in the lungs were elevated compared with WT recipients, consistent with the profibrotic function of β6-integrin as an activator of TGF-β. These data indicate that host-derived MMP12 may be important in limiting development of IPS by allowing proper remodeling of extracellular matrix and effective repair of BMT-related injury.
Collapse
Affiliation(s)
- Kristen A England
- Department of Pediatrics, Heme/Onc/BMT Division, University of Minnesota Cancer Center, USA
| | | | | | | | | | | |
Collapse
|
206
|
González-López A, Astudillo A, García-Prieto E, Fernández-García MS, López-Vázquez A, Batalla-Solís E, Taboada F, Fueyo A, Albaiceta GM. Inflammation and matrix remodeling during repair of ventilator-induced lung injury. Am J Physiol Lung Cell Mol Physiol 2011; 301:L500-9. [PMID: 21743031 DOI: 10.1152/ajplung.00010.2011] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
High-pressure ventilation triggers different inflammatory and matrix remodeling responses within the lung. Although some of them may cause injury, the involvement of these mediators in repair is largely unknown. To identify mechanisms of repair after ventilator-induced lung injury (VILI), mice were randomly assigned to baseline conditions (no ventilation), injury [90 min of high-pressure ventilation without positive end-expiratory pressure (PEEP)], repair (injury followed by 4 h of low-pressure ventilation with PEEP), and ventilated controls (low-pressure ventilation with PEEP for 90 and 330 min). Histological injury and lung permeability increased during injury, but were partially reverted in the repair group. This was accompanied by a proinflammatory response, together with increases in TNF-α and IFN-γ, which returned to baseline during repair, and a decrease in IL-10. However, macrophage inflammatory protein-2 (MIP-2) and matrix metalloproteinases (MMP)-2 and -9 increased after injury and persisted in being elevated during repair. Mortality in the repair phase was 50%. Survivors showed increased cell proliferation, lower levels of collagen, and higher levels of MIP-2 and MMP-2. Pan-MMP or specific MMP-2 inhibition (but not MIP-2, TNF-α, or IL-4 inhibition) delayed epithelial repair in an in vitro wound model using murine or human alveolar cells cultured in the presence of bronchoalveolar lavage fluid from mice during the repair phase or from patients with acute respiratory distress syndrome, respectively. Similarly, MMP inhibition with doxycycline impaired lung repair after VILI in vivo. In conclusion, VILI can be reverted by normalizing ventilation pressures. An adequate inflammatory response and extracellular matrix remodeling are essential for recovery. MMP-2 could play a key role in epithelial repair after VILI and acute respiratory distress syndrome.
Collapse
|
207
|
Leikauf GD, Concel VJ, Liu P, Bein K, Berndt A, Ganguly K, Jang AS, Brant KA, Dietsch M, Pope-Varsalona H, Dopico RA, Di YPP, Li Q, Vuga LJ, Medvedovic M, Kaminski N, You M, Prows DR. Haplotype association mapping of acute lung injury in mice implicates activin a receptor, type 1. Am J Respir Crit Care Med 2011; 183:1499-509. [PMID: 21297076 PMCID: PMC3137140 DOI: 10.1164/rccm.201006-0912oc] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2010] [Accepted: 02/04/2011] [Indexed: 01/11/2023] Open
Abstract
RATIONALE Because acute lung injury is a sporadic disease produced by heterogeneous precipitating factors, previous genetic analyses are mainly limited to candidate gene case-control studies. OBJECTIVES To develop a genome-wide strategy in which single nucleotide polymorphism associations are assessed for functional consequences to survival during acute lung injury in mice. METHODS To identify genes associated with acute lung injury, 40 inbred strains were exposed to acrolein and haplotype association mapping, microarray, and DNA-protein binding were assessed. MEASUREMENTS AND MAIN RESULTS The mean survival time varied among mouse strains with polar strains differing approximately 2.5-fold. Associations were identified on chromosomes 1, 2, 4, 11, and 12. Seven genes (Acvr1, Cacnb4, Ccdc148, Galnt13, Rfwd2, Rpap2, and Tgfbr3) had single nucleotide polymorphism (SNP) associations within the gene. Because SNP associations may encompass "blocks" of associated variants, functional assessment was performed in 91 genes within ± 1 Mbp of each SNP association. Using 10% or greater allelic frequency and 10% or greater phenotype explained as threshold criteria, 16 genes were assessed by microarray and reverse real-time polymerase chain reaction. Microarray revealed several enriched pathways including transforming growth factor-β signaling. Transcripts for Acvr1, Arhgap15, Cacybp, Rfwd2, and Tgfbr3 differed between the strains with exposure and contained SNPs that could eliminate putative transcriptional factor recognition sites. Ccdc148, Fancl, and Tnn had sequence differences that could produce an amino acid substitution. Mycn and Mgat4a had a promoter SNP or 3'untranslated region SNPs, respectively. Several genes were related and encoded receptors (ACVR1, TGFBR3), transcription factors (MYCN, possibly CCDC148), and ubiquitin-proteasome (RFWD2, FANCL, CACYBP) proteins that can modulate cell signaling. An Acvr1 SNP eliminated a putative ELK1 binding site and diminished DNA-protein binding. CONCLUSIONS Assessment of genetic associations can be strengthened using a genetic/genomic approach. This approach identified several candidate genes, including Acvr1, associated with increased susceptibility to acute lung injury in mice.
Collapse
Affiliation(s)
- George D Leikauf
- Department of Environmental and Occupational Health, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA 15219-3130, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
208
|
Guimarães-Fernandes F, Samano MN, Vieira RP, Carvalho CR, Pazetti R, Moreira LFP, Pêgo-Fernandes PM, Jatene FB. Effect of methylprednisolone on perivascular pulmonary edema, inflammatory infiltrate, VEGF and TGF-beta immunoexpression in the remaining lungs of rats after left pneumonectomy. Braz J Med Biol Res 2011; 44:647-51. [PMID: 21584441 DOI: 10.1590/s0100-879x2011007500061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2010] [Accepted: 04/18/2011] [Indexed: 11/22/2022] Open
Abstract
Pneumonectomy is associated with high rates of morbimortality, with postpneumonectomy pulmonary edema being one of the leading causes. An intrinsic inflammatory process following the operation has been considered in its physiopathology. The use of corticosteroids is related to prevention of this edema, but no experimental data are available to support this hypothesis. We evaluated the effect of methylprednisolone on the remaining lungs of rats submitted to left pneumonectomy concerning edema and inflammatory markers. Forty male Wistar rats weighing 300 g underwent left pneumonectomy and were randomized to receive corticosteroids or not. Methylprednisolone at a dose of 10 mg/kg was given before the surgery. After recovery, the animals were sacrificed at 48 and 72 h, when the pO(2)/FiO(2) ratio was determined. Right lung perivascular edema was measured by the index between perivascular and vascular area and neutrophil density by manual count. Tissue expression of vascular endothelial growth factor (VEGF) and transforming growth factor-beta (TGF-β) were evaluated by immunohistochemistry light microscopy. There was perivascular edema formation after 72 h in both groups (P = 0.0031). No difference was observed between operated animals that received corticosteroids and those that did not concerning the pO(2)/FiO(2) ratio, neutrophil density or TGF-β expression. The tissue expression of VEGF was elevated in the animals that received methylprednisolone both 48 and 72 h after surgery (P = 0.0243). Methylprednisolone was unable to enhance gas exchange and avoid an inflammatory infiltrate and TGF-β expression also showed that the inflammatory process was not correlated with pulmonary edema formation. However, the overexpression of VEGF in this group showed that methylprednisolone is related to this elevation.
Collapse
Affiliation(s)
- F Guimarães-Fernandes
- Departamento de Cardiopneumologia, Instituto do Coração, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, Brasil
| | | | | | | | | | | | | | | |
Collapse
|
209
|
McMaken S, Exline MC, Mehta P, Piper M, Wang Y, Fischer SN, Newland CA, Schrader CA, Balser SR, Sarkar A, Baran CP, Marsh CB, Cook CH, Phillips GS, Ali NA. Thrombospondin-1 contributes to mortality in murine sepsis through effects on innate immunity. PLoS One 2011; 6:e19654. [PMID: 21573017 PMCID: PMC3090410 DOI: 10.1371/journal.pone.0019654] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2010] [Accepted: 04/13/2011] [Indexed: 01/15/2023] Open
Abstract
Background Thrombospondin-1 (TSP-1) is involved in many biological processes, including immune and tissue injury response, but its role in sepsis is unknown. Cell surface expression of TSP-1 on platelets is increased in sepsis and could activate the anti-inflammatory cytokine transforming growth factor beta (TGFβ1) affecting outcome. Because of these observations we sought to determine the importance of TSP-1 in sepsis. Methodology/Principal Findings We performed studies on TSP-1 null and wild type (WT) C57BL/6J mice to determine the importance of TSP-1 in sepsis. We utilized the cecal ligation puncture (CLP) and intraperitoneal E.coli injection (IP E.coli) models of peritoneal sepsis. Additionally, bone-marrow-derived macrophages (BMMs) were used to determine phagocytic activity. TSP-1−/− animals experienced lower mortality than WT mice after CLP. Tissue and peritoneal lavage TGFβ1 levels were unchanged between animals of each genotype. In addition, there is no difference between the levels of major innate cytokines between the two groups of animals. PLF from WT mice contained a greater bacterial load than TSP-1−/− mice after CLP. The survival advantage for TSP-1−/− animals persisted when IP E.coli injections were performed. TSP-1−/− BMMs had increased phagocytic capacity compared to WT. Conclusions TSP-1 deficiency was protective in two murine models of peritoneal sepsis, independent of TGFβ1 activation. Our studies suggest TSP-1 expression is associated with decreased phagocytosis and possibly bacterial clearance, leading to increased peritoneal inflammation and mortality in WT mice. These data support the contention that TSP-1 should be more fully explored in the human condition.
Collapse
Affiliation(s)
- Sara McMaken
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Internal Medicine, The Dorothy M. Davis Heart and Lung Research Institute, Ohio State University, Columbus, Ohio, United States of America
| | - Matthew C. Exline
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Internal Medicine, The Dorothy M. Davis Heart and Lung Research Institute, Ohio State University, Columbus, Ohio, United States of America
| | - Payal Mehta
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Internal Medicine, The Dorothy M. Davis Heart and Lung Research Institute, Ohio State University, Columbus, Ohio, United States of America
| | - Melissa Piper
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Internal Medicine, The Dorothy M. Davis Heart and Lung Research Institute, Ohio State University, Columbus, Ohio, United States of America
| | - Yijie Wang
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Internal Medicine, The Dorothy M. Davis Heart and Lung Research Institute, Ohio State University, Columbus, Ohio, United States of America
| | - Sara N. Fischer
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Internal Medicine, The Dorothy M. Davis Heart and Lung Research Institute, Ohio State University, Columbus, Ohio, United States of America
| | - Christie A. Newland
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Internal Medicine, The Dorothy M. Davis Heart and Lung Research Institute, Ohio State University, Columbus, Ohio, United States of America
| | - Carrie A. Schrader
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Internal Medicine, The Dorothy M. Davis Heart and Lung Research Institute, Ohio State University, Columbus, Ohio, United States of America
| | - Shannon R. Balser
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Internal Medicine, The Dorothy M. Davis Heart and Lung Research Institute, Ohio State University, Columbus, Ohio, United States of America
| | - Anasuya Sarkar
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Internal Medicine, The Dorothy M. Davis Heart and Lung Research Institute, Ohio State University, Columbus, Ohio, United States of America
| | - Christopher P. Baran
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Internal Medicine, The Dorothy M. Davis Heart and Lung Research Institute, Ohio State University, Columbus, Ohio, United States of America
| | - Clay B. Marsh
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Internal Medicine, The Dorothy M. Davis Heart and Lung Research Institute, Ohio State University, Columbus, Ohio, United States of America
| | - Charles H. Cook
- Department of Surgery, Ohio State University, Columbus, Ohio, United States of America
| | - Gary S. Phillips
- The Center for Biostatistics, Ohio State University, Columbus, Ohio, United States of America
| | - Naeem A. Ali
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Internal Medicine, The Dorothy M. Davis Heart and Lung Research Institute, Ohio State University, Columbus, Ohio, United States of America
- * E-mail:
| |
Collapse
|
210
|
Bai L, Yu Z, Wang C, Qian G, Wang G. Dual role of TGF-β1 on Fas-induced apoptosis in lung epithelial cells. Respir Physiol Neurobiol 2011; 177:241-6. [PMID: 21539941 DOI: 10.1016/j.resp.2011.04.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2011] [Revised: 04/15/2011] [Accepted: 04/17/2011] [Indexed: 10/18/2022]
Abstract
Recent evidence suggests that TGF-β1 has a dual role in regulating cell response to Fas/Fas ligand (FasL)-induced apoptosis. TGF-β1 may play a positive or negative role on cell sensitivity to apoptosis via Fas/FasL system, depending on cell types and their specific environment. TGF-β1 and the Fas/FasL system are also involved in pathological processes of acute lung injury (ALI) and interstitial lung diseases including early lung injury and subsequent tissue repair. However, it is not well understood how TGF-β1 regulates Fas/FasL mediated apoptotic signaling in lung epithelium. In this study, we found that TGF-β1 could affect the sensitivity of lung epithelial A549 cells to Fas/FasL mediated apoptosis in a time-dependent manner. Apoptosis of A549 cells could be enhanced significantly by co-treatment with TGF-β1 and FasL, or pretreatment with TGF-β1 followed by FasL exposure, as evidenced by markedly increased caspase-8 and JNK activities. However, prolonged exposure to TGF-β1 could result in an obvious inhibition of the Fas/FasL-induced apoptosis, accompanied by down-regulation of Fas and up-regulation of c-Flip. Our results also showed that the effect of TGF-β1 on cell sensitivity to Fas-mediated apoptosis was independent of Akt pathway activation. These findings suggest that timely interplay of TGF-β1 and the Fas/FasL system could determine the final outcomes of cell survival/death signaling, for example, switching cell death signaling to survival signaling during early injury and later repair process of lung epithelium.
Collapse
Affiliation(s)
- Li Bai
- Institute of Respiratory Diseases, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, PR China.
| | | | | | | | | |
Collapse
|
211
|
Wang Y, Chang H, Zou J, Jin X, Qi Z. The effect of atorvastatin on mRNA levels of inflammatory genes expression in human peripheral blood lymphocytes by DNA microarray. Biomed Pharmacother 2011; 65:118-22. [DOI: 10.1016/j.biopha.2010.12.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2010] [Accepted: 12/07/2010] [Indexed: 11/15/2022] Open
|
212
|
Kim JW, Rhee CK, Kim TJ, Kim YH, Lee SH, Yoon HK, Kim SC, Lee SY, Kwon SS, Kim KH, Kim YK. Effect of pravastatin on bleomycin-induced acute lung injury and pulmonary fibrosis. Clin Exp Pharmacol Physiol 2011; 37:1055-63. [PMID: 20659133 DOI: 10.1111/j.1440-1681.2010.05431.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
1. Pravastatin is best known for its antilipidemic action. Recent studies have shown that statins have immunomodulatory and anti-inflammatory effects. The present study aimed to determine whether or not pravastatin can attenuate acute lung injury and fibrosis in a mouse model. 2. Bleomycin was given to C57BL6 mice through intratracheal instillation. Pravastatin was given through intraperitoneal injection. To study the effect of pravastatin on the early inflammatory phase and the late fibrotic phase, mice were killed on days 3, 7, 14 and 21. 3. Pravastatin attenuated the histopathological change of bleomycin-induced lung injury and fibrosis. The accumulation of neutrophils and increased production of tumor necrosis factor-α in bronchoalveolar lavage fluid were inhibited in the early inflammatory phase. Pravastatin effectively inhibited the increase of lung hydroxyproline content induced by bleomycin. Furthermore, pravastatin reduced the increased expression of transforming growth factor (TGF)-β1, connective tissue growth factor (CTGF), RhoA and cyclin D1. The increased levels of TGF-β1 and CTGF mRNA expression were also significantly inhibited by pravastatin. 4. Pravastatin effectively attenuated bleomycin-induced lung injury and pulmonary fibrosis in mice. Our results provide evidence for the therapeutic potential of pravastatin in the treatment of acute lung injury and pulmonary fibrosis.
Collapse
Affiliation(s)
- Jin Woo Kim
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Catholic University of Korea, Seoul, Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
213
|
Causey MW, Hoffer ZS, Miller SL, Huston LJ, Satterly SA, Martin M, Stallings JD. Microarray and functional cluster analysis implicates transforming growth factor beta1 in endothelial cell dysfunction in a swine hemorrhagic shock model. J Surg Res 2011; 170:120-32. [PMID: 21392802 DOI: 10.1016/j.jss.2011.01.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2010] [Revised: 12/21/2010] [Accepted: 01/06/2011] [Indexed: 11/26/2022]
Abstract
BACKGROUND Trauma leading to massive hemorrhage results in widespread tissue hypoxia, anaerobic metabolism, and production of inflammatory cytokines and oxidative molecules injurious to the vascular endothelium. Although trauma-related endothelial cell pathophysiology has been extensively studied, very little is known regarding gene transcriptional changes that occur during the event, particularly in endothelia. Thus, we employed fluorescent microarray analysis of gene transcription to elucidate critical pathways and gene products involved in endothelial dysfunction. MATERIALS AND METHODS A trauma-hemorrhage/shock (T-H/S) model mimicking the physiologic changes seen in human trauma was performed on 10 Yorkshire swine, consisting of 35% blood volume hemorrhage followed by 6 h of full resuscitation. Aortic endothelium was analyzed by microarray and functional clusters were identified through the use of Database for Annotation, Visualization, and Integrated Discovery (DAVID) software. RESULTS Injured swine developed profound acidosis, coagulopathy, massive resuscitative fluid requirements, and microscopic changes of ischemia/reperfusion injury. While 1007 transcripts were down-regulated, 529 transcripts were up-regulated. DAVID functional clustering analysis revealed 21 significantly altered biological processes that were grouped into 12 distinct functional categories. The transforming growth factor beta (TGFβ) family of genes was the most interrelated. In addition, vascular endothelial growth factor (VEGF) signaling members and leukocyte chemoattractants were also altered. CONCLUSIONS Our model identified two major signaling pathways, TGFβ and VEGF, which undergo early transcriptional changes in injured endothelial cells. Our results suggest that TGFβ and VEGF may play a crucial role in the development of endothelial cell injury leading to increased vascular permeability during shock-trauma.
Collapse
|
214
|
Bir N, Lafargue M, Howard M, Goolaerts A, Roux J, Carles M, Cohen MJ, Iles KE, Fernández JA, Griffin JH, Pittet JF. Cytoprotective-selective activated protein C attenuates Pseudomonas aeruginosa-induced lung injury in mice. Am J Respir Cell Mol Biol 2011; 45:632-41. [PMID: 21257925 DOI: 10.1165/rcmb.2010-0397oc] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Inhibition of the small GTPase RhoA attenuates the development of pulmonary edema and restores positive alveolar fluid clearance in a murine model of Pseudomonas aeruginosa pneumonia. Activated protein C (aPC) blocks the development of an unfavorably low ratio of small GTPase Rac1/RhoA activity in lung endothelium through endothelial protein C receptor (EPCR)/protease-activated receptor-1 (PAR-1)-dependent signaling mechanisms that include transactivating the sphingosine-1-phosphate (S1P) pathway. However, whether aPC's cytoprotective effects can attenuate the development of pulmonary edema and death associated with P. aeruginosa pneumonia in mice remains unknown. Thus, we determined whether the normalization of a depressed ratio of activated Rac1/RhoA by aPC would attenuate the P. aeruginosa-mediated increase in protein permeability across lung endothelial and alveolar epithelial barriers. Pretreatment with aPC significantly reduced P. aeruginosa-induced increases in paracellular permeability across pulmonary endothelial cell and alveolar epithelial monolayers via an inhibition of RhoA activation and a promotion of Rac1 activation that required the EPCR-PAR-1 and S1P pathways. Furthermore, pretreatment with aPC attenuated the development of pulmonary edema in a murine model of P. aeruginosa pneumonia. Finally, a cytoprotective-selective aPC mutant, aPC-5A, which lacks most of aPC's anticoagulant activity, reproduced the protective effect of wild-type aPC by attenuating the development of pulmonary edema and decreasing mortality in a murine model of P. aeruginosa pneumonia. Taken together, these results demonstrate a critical role for the cytoprotective activities of aPC in attenuating P. aeruginosa-induced lung vascular permeability and mortality, suggesting that cytoprotective-selective aPC-5A with diminished bleeding risks could attenuate the lung damage caused by P. aeruginosa in critically ill patients.
Collapse
Affiliation(s)
- Nastasha Bir
- Cardiovascular Research Institute and Institute of Molecular Medicine, Department of Anesthesia, University of California at San Francisco, San Francisco, California, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
215
|
Cho JH, Gelinas R, Wang K, Etheridge A, Piper MG, Batte K, Dakhallah D, Price J, Bornman D, Zhang S, Marsh C, Galas D. Systems biology of interstitial lung diseases: integration of mRNA and microRNA expression changes. BMC Med Genomics 2011; 4:8. [PMID: 21241464 PMCID: PMC3035594 DOI: 10.1186/1755-8794-4-8] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2010] [Accepted: 01/17/2011] [Indexed: 11/17/2022] Open
Abstract
Background The molecular pathways involved in the interstitial lung diseases (ILDs) are poorly understood. Systems biology approaches, with global expression data sets, were used to identify perturbed gene networks, to gain some understanding of the underlying mechanisms, and to develop specific hypotheses relevant to these chronic lung diseases. Methods Lung tissue samples from patients with different types of ILD were obtained from the Lung Tissue Research Consortium and total cell RNA was isolated. Global mRNA and microRNA were profiled by hybridization and amplification-based methods. Differentially expressed genes were compiled and used to identify critical signaling pathways and potential biomarkers. Modules of genes were identified that formed a regulatory network, and studies were performed on cultured cells in vitro for comparison with the in vivo results. Results By profiling mRNA and microRNA (miRNA) expression levels, we found subsets of differentially expressed genes that distinguished patients with ILDs from controls and that correlated with different disease stages and subtypes of ILDs. Network analysis, based on pathway databases, revealed several disease-associated gene modules, involving genes from the TGF-β, Wnt, focal adhesion, and smooth muscle actin pathways that are implicated in advancing fibrosis, a critical pathological process in ILDs. A more comprehensive approach was also adapted to construct a putative global gene regulatory network based on the perturbation of key regulatory elements, transcription factors and microRNAs. Our data underscores the importance of TGF-β signaling and the persistence of smooth muscle actin-containing fibroblasts in these diseases. We present evidence that, downstream of TGF-β signaling, microRNAs of the miR-23a cluster and the transcription factor Zeb1 could have roles in mediating an epithelial to mesenchymal transition (EMT) and the resultant persistence of mesenchymal cells in these diseases. Conclusions We present a comprehensive overview of the molecular networks perturbed in ILDs, discuss several potential key molecular regulatory circuits, and identify microRNA species that may play central roles in facilitating the progression of ILDs. These findings advance our understanding of these diseases at the molecular level, provide new molecular signatures in defining the specific characteristics of the diseases, suggest new hypotheses, and reveal new potential targets for therapeutic intervention.
Collapse
Affiliation(s)
- Ji-Hoon Cho
- Institute for Systems Biology, Seattle, WA, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
216
|
Ueno M, Maeno T, Nomura M, Aoyagi-Ikeda K, Matsui H, Hara K, Tanaka T, Iso T, Suga T, Kurabayashi M. Hypoxia-inducible factor-1α mediates TGF-β-induced PAI-1 production in alveolar macrophages in pulmonary fibrosis. Am J Physiol Lung Cell Mol Physiol 2011; 300:L740-52. [PMID: 21239537 DOI: 10.1152/ajplung.00146.2010] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Hypoxia-inducible factor-1α (HIF-1α), a transcription factor that functions as a master regulator of oxygen homeostasis, has been implicated in fibrinogenesis. Here, we explore the role of HIF-1α in transforming growth factor-β (TGF-β) signaling by examining the effects of TGF-β(1) on the expression of plasminogen activator inhibitor-1 (PAI-1). Immunohistochemistry of lung tissue from a mouse bleomycin (BLM)-induced pulmonary fibrosis model revealed that expression of HIF-1α and PAI-1 was predominantly induced in alveolar macrophages. Real-time RT-PCR and ELISA analysis showed that PAI-1 mRNA and activated PAI-1 protein level were strongly induced 7 days after BLM instillation. Stimulation of cultured mouse alveolar macrophages (MH-S cells) with TGF-β(1) induced PAI-1 production, which was associated with HIF-1α protein accumulation. This accumulation of HIF-1α protein was inhibited by SB431542 (type I TGF-β receptor/ALK receptor inhibitor) but not by PD98059 (MEK1 inhibitor) and SB203580 (p38 MAP kinase inhibitor). Expression of prolyl-hydroxylase domain (PHD)-2, which is essential for HIF-1α degradation, was inhibited by TGF-β(1), and this decrease was abolished by SB431542. TGF-β(1) induction of PAI-1 mRNA and its protein expression were significantly attenuated by HIF-1α silencing. Transcriptome analysis by cDNA microarray of MH-S cells after HIF-1α silencing uncovered several pro-fibrotic genes whose regulation by TGF-β(1) required HIF-1α, including platelet-derived growth factor-A. Taken together, these findings expand our concept of the role of HIF-1α in pulmonary fibrosis in mediating the effects of TGF-β(1) on the expression of the pro-fibrotic genes in activated alveolar macrophages.
Collapse
Affiliation(s)
- Manabu Ueno
- Department of Medicine and Biological Science, Gunma University Graduate School of Medicine, Maebashi, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
217
|
Abstract
Integrins are adhesive proteins that have evolved to mediate cell-cell and cell-matrix communication that is indispensable for development and postnatal physiology. Despite their widespread expression, the genetic deletion of specific integrin family members in lower organisms as well as mammals leads to relatively distinct abnormalities. Many of the processes in which integrins participate have a requirement for strong adhesion coincident with times of mechanical stress. In Drosophila, the absence of specific integrins leads to detachment of muscle from the gut and body wall and separation of the two epithelial layers in the wing. In mice and humans, a deletion of either subunit of the laminin-binding integrin, α6β4 leads to severe skin blistering and defects in other epithelial layers. In addition, integrins have also evolved to serve more subspecialized roles ranging from the establishment of a stem cell niche in Drosophila and mammals, to the regulation of pathogenic tumor vascularization, platelet adhesion, and leukocyte transmigration in mammalian systems. However, some cells seem to function normally in the absence of all integrins, as revealed by the very surprising finding that deletion of all the major integrin types on dendritic cells of mice has no effect on the ability of these cells to migrate within the interstitium of the skin and enter into lymphatics. In addition to serving as transmembrane mechanical links, integrins in vertebrates synergize with a number of receptors including growth factor receptors, to enhance responses. This leads to the activation of a large signaling network that affects cell proliferation and differentiation, as well as cell shape and migration. In vivo studies, in lower organisms, knockout mouse models as well as in inherited human diseases together have provided important insights into how this major, primordial family of adhesion receptors have remained true to their name "integrins" as their diverse functions have in common the ability to integrate extracellular stimuli into intracellular signals that affect cell behavior.
Collapse
|
218
|
Li M, Krishnaveni MS, Li C, Zhou B, Xing Y, Banfalvi A, Li A, Lombardi V, Akbari O, Borok Z, Minoo P. Epithelium-specific deletion of TGF-β receptor type II protects mice from bleomycin-induced pulmonary fibrosis. J Clin Invest 2010; 121:277-87. [PMID: 21135509 DOI: 10.1172/jci42090] [Citation(s) in RCA: 187] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2009] [Accepted: 10/13/2010] [Indexed: 01/10/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic fibroproliferative pulmonary disorder for which there are currently no treatments. Although the etiology of IPF is unknown, dysregulated TGF-β signaling has been implicated in its pathogenesis. Recent studies also suggest a central role for abnormal epithelial repair. In this study, we sought to elucidate the function of epithelial TGF-β signaling via TGF-β receptor II (TβRII) and its contribution to fibrosis by generating mice in which TβRII was specifically inactivated in mouse lung epithelium. These mice, which are referred to herein as TβRIINkx2.1-cre mice, were used to determine the impact of TβRII inactivation on (a) embryonic lung morphogenesis in vivo; and (b) the epithelial cell response to TGF-β signaling in vitro and in a bleomycin-induced, TGF-β-mediated mouse model of pulmonary fibrosis. Although postnatally viable with no discernible abnormalities in lung morphogenesis and epithelial cell differentiation, TβRIINkx2.1-cre mice developed emphysema, suggesting a requirement for epithelial TβRII in alveolar homeostasis. Absence of TβRII increased phosphorylation of Smad2 and decreased, but did not entirely block, phosphorylation of Smad3 in response to endogenous/physiologic TGF-β. However, TβRIINkx2.1-cre mice exhibited increased survival and resistance to bleomycin-induced pulmonary fibrosis. To our knowledge, these findings are the first to demonstrate a specific role for TGF-β signaling in the lung epithelium in the pathogenesis of pulmonary fibrosis.
Collapse
Affiliation(s)
- Min Li
- Division of Neonatology, Department of Pediatrics, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
219
|
Carlson CM, Turpin EA, Moser LA, O'Brien KB, Cline TD, Jones JC, Tumpey TM, Katz JM, Kelley LA, Gauldie J, Schultz-Cherry S. Transforming growth factor-β: activation by neuraminidase and role in highly pathogenic H5N1 influenza pathogenesis. PLoS Pathog 2010; 6:e1001136. [PMID: 20949074 PMCID: PMC2951376 DOI: 10.1371/journal.ppat.1001136] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2010] [Accepted: 09/07/2010] [Indexed: 01/02/2023] Open
Abstract
Transforming growth factor-beta (TGF-β), a multifunctional cytokine regulating several immunologic processes, is expressed by virtually all cells as a biologically inactive molecule termed latent TGF-β (LTGF-β). We have previously shown that TGF-β activity increases during influenza virus infection in mice and suggested that the neuraminidase (NA) protein mediates this activation. In the current study, we determined the mechanism of activation of LTGF-β by NA from the influenza virus A/Gray Teal/Australia/2/1979 by mobility shift and enzyme inhibition assays. We also investigated whether exogenous TGF-β administered via a replication-deficient adenovirus vector provides protection from H5N1 influenza pathogenesis and whether depletion of TGF-β during virus infection increases morbidity in mice. We found that both the influenza and bacterial NA activate LTGF-β by removing sialic acid motifs from LTGF-β, each NA being specific for the sialic acid linkages cleaved. Further, NA likely activates LTGF-β primarily via its enzymatic activity, but proteases might also play a role in this process. Several influenza A virus subtypes (H1N1, H1N2, H3N2, H5N9, H6N1, and H7N3) except the highly pathogenic H5N1 strains activated LTGF-β in vitro and in vivo. Addition of exogenous TGF-β to H5N1 influenza virus-infected mice delayed mortality and reduced viral titers whereas neutralization of TGF-β during H5N1 and pandemic 2009 H1N1 infection increased morbidity. Together, these data show that microbe-associated NAs can directly activate LTGF-β and that TGF-β plays a pivotal role protecting the host from influenza pathogenesis.
Collapse
Affiliation(s)
- Christina M. Carlson
- Department of Medical Microbiology and Immunology, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Elizabeth A. Turpin
- Pfizer Inc., Department of Viral Vaccines, Research Triangle Park, North Carolina, United States of America
| | - Lindsey A. Moser
- Department of Medical Microbiology and Immunology, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Kevin B. O'Brien
- Department of Medical Microbiology and Immunology, University of Wisconsin, Madison, Wisconsin, United States of America
- Department of Infectious Disease, St. Jude Children's Research Hospital, Memphis, Tennessee, United States of America
| | - Troy D. Cline
- Department of Infectious Disease, St. Jude Children's Research Hospital, Memphis, Tennessee, United States of America
| | - Jeremy C. Jones
- Department of Infectious Disease, St. Jude Children's Research Hospital, Memphis, Tennessee, United States of America
| | - Terrence M. Tumpey
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Jacqueline M. Katz
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Laura A. Kelley
- Biosciences Research Laboratory, USDA Agricultural Research Station, Fargo, North Dakota, United States of America
| | - Jack Gauldie
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Stacey Schultz-Cherry
- Department of Infectious Disease, St. Jude Children's Research Hospital, Memphis, Tennessee, United States of America
- * E-mail:
| |
Collapse
|
220
|
TGFβ: a sleeping giant awoken by integrins. Trends Biochem Sci 2010; 36:47-54. [PMID: 20870411 DOI: 10.1016/j.tibs.2010.08.002] [Citation(s) in RCA: 172] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2010] [Revised: 08/19/2010] [Accepted: 08/20/2010] [Indexed: 11/23/2022]
Abstract
Transforming growth factor beta (TGFβ) controls numerous cellular responses, including proliferation, differentiation, apoptosis and migration. This cytokine is produced by many different cell types and has been implicated in the pathogenesis of many diseases, ranging from autoimmune disorders and infectious diseases to fibrosis and cancer. However, TGFβ is always produced as an inactive complex that must be activated to enable binding to its receptor and subsequent function. Recent evidence highlights a crucial role for members of the integrin receptor family in controlling the activation of TGFβ. These pathways are important in human health and disease, and new insights into the biochemical mechanisms that allow integrins to control TGFβ activation could prove useful in the design of therapeutics.
Collapse
|
221
|
Carey WA, Taylor GD, Dean WB, Bristow JD. Tenascin-C deficiency attenuates TGF-ß-mediated fibrosis following murine lung injury. Am J Physiol Lung Cell Mol Physiol 2010; 299:L785-93. [PMID: 20833777 DOI: 10.1152/ajplung.00385.2009] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Tenascin-C (TNC) is an extracellular matrix glycoprotein of unknown function that is highly expressed in adult lung parenchyma following acute lung injury (ALI). Here we report that mice lacking TNC are protected from interstitial fibrosis in the bleomycin model of ALI. Three weeks after exposure to bleomycin, TNC-null mice had accumulated 85% less lung collagen than wild-type mice. The lung interstitium of TNC-null mice also appeared to contain fewer myofibroblasts and fewer cells with intranuclear Smad-2/3 staining, suggesting impaired TGF-β activation or signaling. In vitro, TNC-null lung fibroblasts exposed to constitutively active TGF-β expressed less α-smooth muscle actin and deposited less collagen I into the matrix than wild-type cells. Impaired TGF-β responsiveness was correlated with dramatically reduced Smad-3 protein levels and diminished nuclear translocation of Smad-2 and Smad-3 in TGF-β-exposed TNC-null cells. Reduced Smad-3 in TNC-null cells reflects both decreased transcript abundance and enhanced ubiquitin-proteasome-mediated protein degradation. Together, these studies suggest that TNC is essential for maximal TGF-β action after ALI. The clearance of TNC that normally follows ALI may restrain TGF-β action during lung healing, whereas prolonged or exaggerated TNC expression may facilitate TGF-β action and fibrosis after ALI.
Collapse
Affiliation(s)
- William A Carey
- Cardiovascular Research Institute, University of California, San Francisco, USA.
| | | | | | | |
Collapse
|
222
|
Zarin AA, Behmanesh M, Tavallaei M, Shohrati M, Ghanei M. Overexpression of transforming growth factor (TGF)-beta1 and TGF-beta3 genes in lung of toxic-inhaled patients. Exp Lung Res 2010; 36:284-91. [PMID: 20497023 DOI: 10.3109/01902140903578868] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Iraq frequently used toxic inhalants during the war with Iran, exposing over 100,000 people to chemical reagents. Bronchiolitis obliterans (BO) is a major pulmonary disease caused by exposure to harmful gases. Recently defect in clearance of apoptotic cells (efferocytosis) has been suggested as a mechanism that leads to several lung diseases. Transforming growth factor (TGF)-beta, a cytokine produced by efferocytotic macrophages, suppresses the inflammation and enhances the regeneration of tissue. In this study, the authors compared the expression of these 3 isoforms of TGF-beta at mRNA level in lung biopsies of Iranian victims of chemical gases with lung biopsies of control healthy volunteers. Semiquantitative reverse transcriptase-polymerase chain reaction (RT-PCR) technique was used to examine the expression level of TGF-beta isoforms using glyceraldehyde 3-phosphate dehydrogenase (GAPDH) gene as an internal control. The results indicated that that levels of TGF-beta1 and TGF-beta3 mRNAs were significantly higher in chemical gas-injured patients than noninjured group (P < .05). Therefore, the authors speculate that TGF-beta1 and TGFbeta3, but not TGF-beta2, secretion is a result of efficient efferocytosis in chemically injured patients, playing a protective role by improving airway remodeling and lung homeostasis in this group. These properties of TGF-beta are consistent with long-time survival of chemical-injured people suffering from BO.
Collapse
Affiliation(s)
- Aref Arzan Zarin
- Department of Genetics, Faculty of Biological Science, Tarbiat Modares University, Tehran, Iran
| | | | | | | | | |
Collapse
|
223
|
Bone marrow-derived mononuclear cell therapy in experimental pulmonary and extrapulmonary acute lung injury. Crit Care Med 2010; 38:1733-41. [PMID: 20562701 DOI: 10.1097/ccm.0b013e3181e796d2] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
OBJECTIVE To hypothesize that bone marrow-derived mononuclear cell (BMDMC) therapy might act differently on lung and distal organs in models of pulmonary or extrapulmonary acute lung injury with similar mechanical compromises. The pathophysiology of acute lung injury differs according to the type of primary insult. DESIGN Prospective, randomized, controlled, experimental study. SETTING University research laboratory. MEASUREMENTS AND MAIN RESULTS In control animals, sterile saline solution was intratracheally (0.05 mL) or intraperitoneally (0.5 mL) injected. Acute lung injury animals received Escherichia coli lipopolysaccharide intratracheally (40 microg, ALIp) or intraperitoneally (400 microg, ALIexp). Six hours after lipopolysaccharide administration, ALIp and ALIexp animals were further randomized into subgroups receiving saline (0.05 mL) or BMDMC (2 x 10) intravenously. On day 7, BMDMC led to the following: 1) increase in survival rate; 2) reduction in static lung elastance, alveolar collapse, and bronchoalveolar lavage fluid cellularity (higher in ALIexp than ALIp); 3) decrease in collagen fiber content, cell apoptosis in lung, kidney, and liver, levels of interleukin-6, KC (murine interleukin-8 homolog), and interleukin-10 in bronchoalveolar lavage fluid, and messenger RNA expression of insulin-like growth factor, platelet-derived growth factor, and transforming growth factor-beta in both groups, as well as repair of basement membrane, epithelium and endothelium, regardless of acute lung injury etiology; 4) increase in vascular endothelial growth factor levels in bronchoalveolar lavage fluid and messenger RNA expression in lung tissue in both acute lung injury groups; and 5) increase in number of green fluorescent protein-positive cells in lung, kidney, and liver in ALIexp. CONCLUSIONS BMDMC therapy was effective at modulating the inflammatory and fibrogenic processes in both acute lung injury models; however, survival and lung mechanics and histology improved more in ALIexp. These changes may be attributed to paracrine effects balancing pro- and anti-inflammatory cytokines and growth factors, because a small degree of pulmonary BMDMC engraftment was observed.
Collapse
|
224
|
Sun Y, Yang F, Yan J, Li Q, Wei Z, Feng H, Wang R, Zhang L, Zhang X. New anti-fibrotic mechanisms of n-acetyl-seryl-aspartyl-lysyl-proline in silicon dioxide-induced silicosis. Life Sci 2010; 87:232-9. [DOI: 10.1016/j.lfs.2010.06.016] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2010] [Revised: 06/01/2010] [Accepted: 06/14/2010] [Indexed: 11/25/2022]
|
225
|
Roles of epithelial cell-derived periostin in TGF-beta activation, collagen production, and collagen gel elasticity in asthma. Proc Natl Acad Sci U S A 2010; 107:14170-5. [PMID: 20660732 DOI: 10.1073/pnas.1009426107] [Citation(s) in RCA: 304] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Periostin is considered to be a matricellular protein with expression typically confined to cells of mesenchymal origin. Here, by using in situ hybridization, we show that periostin is specifically up-regulated in bronchial epithelial cells of asthmatic subjects, and in vitro, we show that periostin protein is basally secreted by airway epithelial cells in response to IL-13 to influence epithelial cell function, epithelial-mesenchymal interactions, and extracellular matrix organization. In primary human bronchial epithelial cells stimulated with periostin and epithelial cells overexpressing periostin, we reveal a function for periostin in stimulating the TGF-beta signaling pathway in a mechanism involving matrix metalloproteinases 2 and 9. Furthermore, conditioned medium from the epithelial cells overexpressing periostin caused TGF-beta-dependent secretion of type 1 collagen by airway fibroblasts. In addition, mixing recombinant periostin with type 1 collagen in solution caused a dramatic increase in the elastic modulus of the collagen gel, indicating that periostin alters collagen fibrillogenesis or cross-linking and leads to stiffening of the matrix. Epithelial cell-derived periostin in asthma has roles in TGF-beta activation and collagen gel elasticity in asthma.
Collapse
|
226
|
Lindsay CD. Novel therapeutic strategies for acute lung injury induced by lung damaging agents: the potential role of growth factors as treatment options. Hum Exp Toxicol 2010; 30:701-24. [PMID: 20621953 DOI: 10.1177/0960327110376982] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The increasing threat from terrorism has brought attention to the possible use of toxic industrial compounds (TICs) and other lung-damaging agents as weapons against civilian populations. The way in which these agents could be used favours the development of generic countermeasures. Improved medical countermeasures would increase survivability and improve the quality of recovery of lung damaged casualties. It is evident that there is a dearth of therapeutic regimes available to treat those forms of lung damage that currently require intensive care management. It is quite possible that mass casualties from a terrorist incident or major industrial accident involving the release of large quantities of inhaled TICs would place a severe burden on already scarce intensive care facilities. The development of effective pharmacological approaches to assist the recovery of casualties suffering from acute lung injury (ALI)/acute respiratory distress syndrome (ARDS) may improve the prognosis of such patients (which is currently poor) and would ideally be used as a means of preventing subjects from developing the pulmonary oedema characteristic of ALI/ARDS. Many promising candidate pharmacological treatments have been evaluated for the treatment of ALI/ARDS, but their clinical value is often debatable. Thus, despite improvements in ventilation strategies, pharmacological intervention for ALI/ARDS remains problematical. A new approach is clearly required for the treatment of patients with severely compromised lungs. Whilst the pathology of ALI/ARDS associated with exposure to a variety of agents is complex, numerous experimental studies suggest that generic therapeutic intervention directed at approaches that aim to upregulate repair of the damaged alveolar blood/air barrier of the lung may be of value, particularly with respect to chemical-induced injury. To this end, keratinocyte growth factor (KGF), epithelial growth factor (EGF) and basic fibroblast growth factor (bFGF) are emerging as the most important candidates. Hepatocyte growth factor (HGF) does not have epithelial specificity for lung tissue. However, the enhanced effects of combinations of growth factors, such as the synergistic effect of HGF upon vascular endothelial growth factor (VEGF)-mediated endothelial cell activity, and the combined effect of HGF and KGF in tissue repair should be investigated, particularly as the latter pair of growth factors are frequently implicated in processes associated with the repair of lung damage. Synergistic interactions also occur between trefoil factor family (TFF) peptides and growth factors such as EGF. TFF peptides are most likely to be of value as a short term therapeutic intervention strategy in stimulating epithelial spreading activities which allow damaged mucosal surfaces to be rapidly covered by epithelial cells.
Collapse
Affiliation(s)
- Christopher D Lindsay
- Biomedical Sciences Department, Defence Science and Technology Laboratory, Porton Down, Salisbury, Wiltshire, UK.
| |
Collapse
|
227
|
Bioscreening of phage display antibody library and expression of a humanized single-chain variable fragment antibody against human connective tissue growth factor (CTGF/CCN2). Biotechnol Appl Biochem 2010; 56:95-102. [PMID: 20491654 DOI: 10.1042/ba20100031] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Excessive expression of CTGF (connective tissue growth factor)/CCN2 has been observed in many fibrotic diseases. The inhibition of the CTGF/CCN2 by antibody has been shown to be clinically useful for the management of fibrosis. A phage display humanized single-chain Fv antibody library was screened using CTGF/C (CTGF/CCN2 C-terminal domain) as the target. A phage ELISA was performed after four rounds of biopanning, and ten positive clones were further evaluated by ELISA and were chosen for DNA sequencing. The DNA encoding scFv (single-chain variable fragment) containing a full-length variable domain fragment of heavy chain and light chain of human immunoglobulin was inserted into pET-32(a)+ vector, and the fusion protein (TrxA-scFv) containing a thrombin cleavage site was expressed mainly in soluble form. The scFv was obtained by purified fusion protein digested with thrombin and then separated from the fusion partner TrxA by gel-filtration chromatography. An immunological assay showed that the purified scFv reacted with CTGF/CCN2 in a concentration-dependent manner. The result of the cell migration assay demonstrated that the scFv at 100 ng/ml could effectively inhibit the migration of HUVEC (human umbilical-vein endothelial cells) caused by CTGF/C. The number of migratory cells was significantly decreased as compared with the negative control (1062+/-92 versus 3269+/-288, P<0.001) and the inhibition rate was 90.5%.
Collapse
|
228
|
Bry K, Hogmalm A, Bäckström E. Mechanisms of inflammatory lung injury in the neonate: lessons from a transgenic mouse model of bronchopulmonary dysplasia. Semin Perinatol 2010; 34:211-21. [PMID: 20494738 DOI: 10.1053/j.semperi.2010.02.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The role of inflammation in the pathogenesis of bronchopulmonary dysplasia (BPD) is not well understood. By using a transgenic mouse expressing the inflammatory cytokine interleukin (IL)-1beta in the lung, we have shown that perinatal expression of IL-1beta causes a BPD-like illness in infant mice. We have used this model to identify mechanisms by which inflammation causes neonatal lung injury. Increased matrix metalloproteinase (MMP)-9 activity is associated with BPD. MMP-9 deficiency worsens alveolar hypoplasia in IL-1beta-expressing newborn mice, suggesting that MMP-9 has a protective role in neonatal inflammatory lung injury. The beta6 integrin subunit, an activator of transforming growth factor-beta, is involved in adult lung disease. Absence of the beta6 integrin subunit improves alveolar development in IL-1beta-expressing mice, suggesting that the beta6 integrin subunit is a pathogenetic factor in inflammatory lung disease in the newborn. The authors of clinical studies who have examined maternal inflammation as a risk factor for BPD have found variable results. We have shown that maternal IL-1beta production preceding fetal IL-1beta production prevents lung inflammation, alveolar hypoplasia, and airway remodeling in newborn IL-1beta-expressing mice. Thus, maternal inflammation may protect the newborn lung against subsequent inflammatory injury. In contrast, when maternal and fetal production of IL-1beta are induced simultaneously, the development of IL-1beta-induced lung disease in the newborn is not prevented.
Collapse
Affiliation(s)
- Kristina Bry
- Department of Pediatrics, University of Gothenburg, Gothenburg, Sweden.
| | | | | |
Collapse
|
229
|
Xiangdong Jian, Ming Li, Yijing Zhang, Yanjun Ruan, Guangran Guo, Hong Sui, Yuanchao Zhang. Role of growth factors in acute lung injury induced by paraquat in a rat model. Hum Exp Toxicol 2010; 30:460-9. [PMID: 20498031 DOI: 10.1177/0960327110372648] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Paraquat (PQ) can cause acute lung injury in humans and experimental animals. However, the role of growth factors in the progression of injury has not been clearly established. We developed an animal model of PQ-induced lung injury using Wistar rats. One milliliter of PQ solution (30, 60, and 120 mg/kg) was applied through the lavage, while the same amount of vehicle was applied to control rats. Based on histopathology, the lungs of some animals exposed to PQ showed acute fulmination, resulting in death, while others showed a more protracted injury, resulting in typical pulmonary fibrosis at 21 days. Using this PQ-poisoned rat model, we examined the intrapulmonary gene expression and circulatory level of cytokines and growth factors at 8 hours, 24 hours, 3 days, 7 days, 14 days, and 21 days after PQ administration. Semi-quantitative reverse transcription-polymerase chain reaction (RT-PCR) analysis demonstrated that the gene expression levels of interleukin-1 beta and interleukin-6 were significantly increased at 21 days after PQ challenge compared with the controls. The mRNA expression of tumor necrosis factor-alpha was also significantly increased except on days 14 and 21 after PQ treatment. Moreover, PQ-treated rats showed enhanced gene expression of growth factors such as platelet-derived growth factor-A and insulin-like growth factor-1 at 21 days and transforming growth factor-beta 1 at 14 days. ELISA results showed the circulatory level of cytokines and growth factors coincided with intrapulmonary gene expression. The synergistic effects of these molecules are presumed to cause pulmonary damage due to PQ challenge and may become targets of treatment.
Collapse
Affiliation(s)
- Xiangdong Jian
- Department of Occupational Disease and Rheumatology, Qilu Hospital affiliated to Shandong University, Jinan, P.R. CHINA.
| | | | | | | | | | | | | |
Collapse
|
230
|
Matsui K, Ueda H, Terada M, Azuma N, Okamura H, Sano H. Mizoribine protects against bleomycin-induced lung injury. Mod Rheumatol 2010; 20:471-7. [PMID: 20490597 DOI: 10.1007/s10165-010-0312-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2009] [Accepted: 04/16/2010] [Indexed: 10/19/2022]
Abstract
Bleomycin (BLM)-induced lung injury has become a model for studies of interstitial pneumonitis and pulmonary fibrosis. BLM induces lung injury in two phases: early inflammation characterized by infiltration of inflammatory cells into the lungs, followed by a late phase of fibrosis characterized by deposition of collagen. In this study, we examined the role of mizoribine (MZB) in the regulation of inflammatory tissue injury caused by BLM. We examined the role of MZB using a mouse model of BLM-induced lung injury. We demonstrated that mice subjected to instillation of BLM into the lungs had a significantly increased number of macrophages and lymphocytes in bronchoalveolar lavage fluid (BALF), but that those treated with MZB in the early phase showed a significant reduction in the total number of BALF macrophages and lymphocytes. However, MZB was unable to inhibit fibrosis in the late phase of BLM injury. Our findings suggest that MZB inhibits the proliferation of both lymphocytes and macrophages in the early phase of the BLM-induced acute inflammatory response, as well as its development and amplification, but does not inhibit fibrotic change in the late phase.
Collapse
Affiliation(s)
- Kiyoshi Matsui
- Division of Rheumatology, Department of Internal Medicine, Hyogo College of Medicine, 1-1 Mukogawa-cho, Nishinomiya, Hyogo 663-8501, Japan.
| | | | | | | | | | | |
Collapse
|
231
|
Zander DS, Popper HH, Jagirdar J, Haque AK, Cagle PT, Barrios R. Epithelial Repair and Regeneration. MOLECULAR PATHOLOGY OF LUNG DISEASES 2010; 1. [PMCID: PMC7147447 DOI: 10.1007/978-0-387-72430-0_45] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Contact with the environment positions the respiratory epithelium at risk for acute and chronic injury from infectious pathogens, noxious agents, and inflammatory processes. Thus, to protect gas transfer within the lung the epithelium is programmed for routine maintenance and repair. Programs for repair are directed by epithelial, mesenchymal, and inflammatory signals that collectively constitute highly regulated networks. Principal components of the repair network are developmental morphogens, integrin and growth factor signaling molecules, and transcription factors. The epithelium responds to these signals with a remarkable plasticity and is bulwarked by a population of lung progenitor cells to ensure maintenance and repair for fluid balance and host defense functions.
Collapse
Affiliation(s)
- Dani S. Zander
- grid.240473.60000000405439901Department of Pathology, Penn State Milton S. Hershey Medical Center, Hershey, PA USA
| | - Helmut H. Popper
- grid.11598.340000000089882476Institute of Pathology, Laboratories for Molecular Cytogenetics, Medical University of Graz, Graz, Austria
| | - Jaishree Jagirdar
- grid.267309.90000000106295880Department of Pathology, University of Texas Health Science Center, San Antonio, TX USA
| | - Abida K. Haque
- grid.5386.8000000041936877XWeill Medical College of Cornell University, New York, NY ,grid.415073.4Department of Pathology, San Jacinto Methodist Hospital, Baytown, TX USA
| | - Philip T. Cagle
- grid.5386.8000000041936877XPathology and Laboratory Medicine, Weill Medical College of Cornell University, New York, NY ,grid.63368.380000000404450041The Methodist Hospital, Houston, TX USA
| | - Roberto Barrios
- grid.5386.8000000041936877XPathology and Laboratory Medicine, Weill Medical College of Cornell University, New York, NY ,grid.63368.380000000404450041The Methodist Hospital, Houston, TX USA
| |
Collapse
|
232
|
Sounni NE, Dehne K, van Kempen L, Egeblad M, Affara NI, Cuevas I, Wiesen J, Junankar S, Korets L, Lee J, Shen J, Morrison CJ, Overall CM, Krane SM, Werb Z, Boudreau N, Coussens LM. Stromal regulation of vessel stability by MMP14 and TGFbeta. Dis Model Mech 2010; 3:317-32. [PMID: 20223936 PMCID: PMC2860851 DOI: 10.1242/dmm.003863] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2009] [Accepted: 11/21/2009] [Indexed: 12/12/2022] Open
Abstract
Innate regulatory networks within organs maintain tissue homeostasis and facilitate rapid responses to damage. We identified a novel pathway regulating vessel stability in tissues that involves matrix metalloproteinase 14 (MMP14) and transforming growth factor beta 1 (TGFbeta(1)). Whereas plasma proteins rapidly extravasate out of vasculature in wild-type mice following acute damage, short-term treatment of mice in vivo with a broad-spectrum metalloproteinase inhibitor, neutralizing antibodies to TGFbeta(1), or an activin-like kinase 5 (ALK5) inhibitor significantly enhanced vessel leakage. By contrast, in a mouse model of age-related dermal fibrosis, where MMP14 activity and TGFbeta bioavailability are chronically elevated, or in mice that ectopically express TGFbeta in the epidermis, cutaneous vessels are resistant to acute leakage. Characteristic responses to tissue damage are reinstated if the fibrotic mice are pretreated with metalloproteinase inhibitors or TGFbeta signaling antagonists. Neoplastic tissues, however, are in a constant state of tissue damage and exhibit altered hemodynamics owing to hyperleaky angiogenic vasculature. In two distinct transgenic mouse tumor models, inhibition of ALK5 further enhanced vascular leakage into the interstitium and facilitated increased delivery of high molecular weight compounds into premalignant tissue and tumors. Taken together, these data define a central pathway involving MMP14 and TGFbeta that mediates vessel stability and vascular response to tissue injury. Antagonists of this pathway could be therapeutically exploited to improve the delivery of therapeutics or molecular contrast agents into tissues where chronic damage or neoplastic disease limits their efficient delivery.
Collapse
Affiliation(s)
| | | | - Leon van Kempen
- Cancer Research Institute
- Present address: Department of Pathology, Radboud University Nijmegen Medical Centre, 6500 HB Nijmegen, The Netherlands
| | - Mikala Egeblad
- Department of Anatomy
- Present address: Cold Spring Harbor Laboratory, One Bungtown Rd, Cold Spring Harbor, NY 11724, USA
| | | | | | | | | | | | | | | | - Charlotte J. Morrison
- Department of Oral Biological and Medical Sciences
- Department of Biochemistry and Molecular Biology, University of British Columbia, Centre for Blood Research, Life Sciences Institute, 2350 Health Science Mall, Vancouver, British Columbia V6T 1Z3, Canada
| | - Christopher M. Overall
- Department of Oral Biological and Medical Sciences
- Department of Biochemistry and Molecular Biology, University of British Columbia, Centre for Blood Research, Life Sciences Institute, 2350 Health Science Mall, Vancouver, British Columbia V6T 1Z3, Canada
| | | | - Zena Werb
- Department of Anatomy
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, 513 Parnassus Ave., San Francisco, CA 94143, USA
| | - Nancy Boudreau
- Department of Surgery
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, 513 Parnassus Ave., San Francisco, CA 94143, USA
| | - Lisa M. Coussens
- Cancer Research Institute
- Department of Pathology
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, 513 Parnassus Ave., San Francisco, CA 94143, USA
| |
Collapse
|
233
|
Crocidolite induces prostaglandin I(2) release mediated by vitronectin receptor and cyclooxygenase-2 in lung cells. Lung 2010; 188:133-41. [PMID: 20155273 DOI: 10.1007/s00408-010-9229-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2009] [Accepted: 01/25/2010] [Indexed: 10/19/2022]
Abstract
Interstitial lung disease (ILD) produces disruption of alveolar walls with loss of functionality and scar tissue accumulation. Asbestosis is the ILD produced by the inhalation of asbestos fibers. This study attempts to elucidate the role of lung epithelial cells in the generation of asbestos-induced ILD. When exposed to crocidolite LA-4 cells had a decrease in viability and an increase in the release of lactate dehydrogenase (LDH) and 6-keto PGF(1alpha), a PGI(2) metabolite. PGI(2) release was mediated by cyclooxygenase-2 (COX-2) and vitronectin receptor (VNR). When LA-4 cells were treated with VNR inhibitors, either RGD (Arg-Gly-Asp) peptide or VNR blocking antibody, a statistically significant decrease in PGI(2) metabolite production was observed, but crocidolite-induced cytotoxicity was not prevented. These findings propose that crocidolite is coated by an RGD protein and binds VNR-inducing COX-2 expression and PGI(2) release. Moreover, when LA-4 cells were exposed to crocidolite in the presence of reduced serum culture media, PGI(2) production was prevented, and when bronchoalveolar lavage fluid (BALF) was added, PGI(2) production was rescued. Cytotoxicity did not occur, either in reduced serum culture media or when BALF was added. In conclusion, crocidolite requires the presence of an RGD protein coating the fibers to induce inflammation (PGI(2) production) and crocidolite alone cannot induce cytotoxicity in lung cells.
Collapse
|
234
|
Effects of different resuscitation fluids on acute lung injury in a rat model of uncontrolled hemorrhagic shock and infection. ACTA ACUST UNITED AC 2010; 67:1213-9. [PMID: 20009669 DOI: 10.1097/ta.0b013e31818cc1e4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
BACKGROUND To investigate the effects of different resuscitation fluids on acute lung injury in a rat model of uncontrolled hemorrhagic shock (HS) followed by mimicked infection. METHODS Sixty Sprague-Dawley rats were randomly assigned to one of the five groups (n = 12 per group) to receive the following treatments: (1) control group (group C), surgery, no hemorrhage, and no resuscitation; (2) no fluid resuscitation group; (3) lactated Ringer's solution group; (4) 7.5% hypertonic saline (HTS) group; and (5) hydroxyethyl starch group (group HES). All experimental groups were subjected to three phases: phase I entailed massive hemorrhage with a mean arterial pressure of 35 mm Hg to 40 mm Hg for 60 minutes by tail amputation and followed by mimicked infection by intratracheal administration of lipopolysaccharide 2 mg/kg. The animals in each group were then partially resuscitated with the fluid assigned to the group. Phase II of 60 minutes commenced at tail ligation, involved hemostasis, and return of all the blood initially shed. Phase III was an observation phase with no any further treatment and lasted for 3.5 hours. The survival rate at the end of the phase III was recorded. After phase III, arterial blood gases were recorded. The wet to dry lung weight ratio, pulmonary microvascular permeability, the expression of transforming growth factor (TGF)-beta1, and Smad2 were determined. The lung histology was also assessed. RESULTS HES and HTS solutions were more effective than no fluid resuscitation and lactated Ringer's solution in reducing the detrimental effects of HS and infection on the lungs, as seen by the significantly lower pulmonary microvascular permeability and wet to dry lung weight ratio, the improved arterial blood gases and lower levels of TGF-beta1and Smad2 expression in lung tissues. These beneficial effects were most pronounced in the group HES. CONCLUSIONS This study demonstrated that resuscitation with HTS and especially with HES could reduce lung tissue damage and pulmonary edema after severe uncontrolled HS. The TGF-beta1/Smad2 signaling pathway might play a key role in regulation of pulmonary permeability and formation of pulmonary edema in a rat model of uncontrolled HS and infection.
Collapse
|
235
|
Xin Wang, Lina Lv, Ying Chen, Jie Chen. A CD36 synthetic peptide inhibits silica-induced lung fibrosis in the mice. Toxicol Ind Health 2010; 26:47-53. [DOI: 10.1177/0748233709359274] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Silicosis is a kind of pneumoconiosis caused by inhalation of silica dust, which is characterized by lung fibrosis. The biologically active form of transforming growth factor-β1 (TGF-β1) plays a key role in the development of lung fibrosis. CD36 is involved in the transformation of latent TGF-β1 (L-TGF-β1) to active TGF-β1. The antagonistic effect of the synthetic peptide was analyzed by the administration of CD36 (93-110) synthetic peptide to the silicosis model of mice. The hydroxyproline content of the silica + CD36 (93-110) synthetic peptide group was significantly lower than that of the other experimental groups [silica and silica + CD36 (208-225) synthetic peptide groups] (p < .05). Inflammation, fibrotic degree and distribution of collagen fibers in silicotic nodules of the silica + CD36 (93-110) synthetic peptide group were less than those of the other experimental groups. The expressions of collagen I and III of the silica + CD36 (93-110) synthetic peptide group were significantly lower than those of the other experimental groups (p < .05). CD36 (93-110) synthetic peptide reduced the tissue fibrotic pathologies and collagen accumulation in the silicosis model of mice, resulting in the decreased severity of silica-induced lung fibrosis.
Collapse
Affiliation(s)
- Xin Wang
- Division of Pneumoconiosis, School of Public Health, China Medical University, Shenyang, PR China
| | - Lina Lv
- Division of Pneumoconiosis, School of Public Health, China Medical University, Shenyang, PR China
| | - Ying Chen
- Division of Pneumoconiosis, School of Public Health, China Medical University, Shenyang, PR China
| | - Jie Chen
- Division of Pneumoconiosis, School of Public Health, China Medical University, Shenyang, PR China,
| |
Collapse
|
236
|
Liu RM, Gaston Pravia KA. Oxidative stress and glutathione in TGF-beta-mediated fibrogenesis. Free Radic Biol Med 2010; 48:1-15. [PMID: 19800967 PMCID: PMC2818240 DOI: 10.1016/j.freeradbiomed.2009.09.026] [Citation(s) in RCA: 349] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2009] [Revised: 09/24/2009] [Accepted: 09/26/2009] [Indexed: 12/16/2022]
Abstract
Transforming growth factor beta (TGF-beta) is the most potent and ubiquitous profibrogenic cytokine, and its expression is increased in almost all the fibrotic diseases and in experimental fibrosis models. TGF-beta increases reactive oxygen species production and decreases the concentration of glutathione (GSH), the most abundant intracellular free thiol and an important antioxidant, which mediates many of the fibrogenic effects of TGF-beta in various types of cells. A decreased GSH concentration is also observed in human fibrotic diseases and in experimental fibrosis models. Although the biological significance of GSH depletion in the development of fibrosis remains obscure, GSH and N-acetylcysteine, a precursor of GSH, have been used in clinics for the treatment of fibrotic diseases. This review summarizes recent findings in the field to address the potential mechanism whereby oxidative stress mediates fibrogenesis induced by TGF-beta and the potential therapeutic value of antioxidant treatment in fibrotic diseases.
Collapse
Affiliation(s)
- R-M Liu
- Department of Environmental Health Sciences, School of Public Health, Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| | | |
Collapse
|
237
|
Roux J, Carles M, Koh H, Goolaerts A, Ganter MT, Chesebro BB, Howard M, Houseman BT, Finkbeiner W, Shokat KM, Paquet AC, Matthay MA, Pittet JF. Transforming growth factor beta1 inhibits cystic fibrosis transmembrane conductance regulator-dependent cAMP-stimulated alveolar epithelial fluid transport via a phosphatidylinositol 3-kinase-dependent mechanism. J Biol Chem 2009; 285:4278-90. [PMID: 19996317 DOI: 10.1074/jbc.m109.036731] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Exogenous or endogenous beta(2)-adrenergic receptor agonists enhance alveolar epithelial fluid transport via a cAMP-dependent mechanism that protects the lungs from alveolar flooding in acute lung injury. However, impaired alveolar fluid clearance is present in most of the patients with acute lung injury and is associated with increased mortality, although the mechanisms responsible for this inhibition of the alveolar epithelial fluid transport are not completely understood. Here, we found that transforming growth factor beta1 (TGF-beta1), a critical mediator of acute lung injury, inhibits beta(2)-adrenergic receptor agonist-stimulated vectorial fluid and Cl(-) transport across primary rat and human alveolar epithelial type II cell monolayers. This inhibition is due to a reduction in the cystic fibrosis transmembrane conductance regulator activity and biosynthesis mediated by a phosphatidylinositol 3-kinase (PI3K)-dependent heterologous desensitization and down-regulation of the beta(2)-adrenergic receptors. Consistent with these in vitro results, inhibition of the PI3K pathway or pretreatment with soluble chimeric TGF-beta type II receptor restored beta(2)-adrenergic receptor agonist-stimulated alveolar epithelial fluid transport in an in vivo model of acute lung injury induced by hemorrhagic shock in rats. The results demonstrate a novel role for TGF-beta1 in impairing the beta- adrenergic agonist-stimulated alveolar fluid clearance in acute lung injury, an effect that could be corrected by using PI3K inhibitors that are safe to use in humans.
Collapse
Affiliation(s)
- Jérémie Roux
- Laboratory of Surgical Research, Department of Anesthesia, University of California, San Francisco, California 94110, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
238
|
Gao J, Zhao WX, Xue FS, Zhou LJ, Xu SQ, Ding N. Early administration of propofol protects against endotoxin-induced acute lung injury in rats by inhibiting the TGF-β1-Smad2 dependent pathway. Inflamm Res 2009; 59:491-500. [DOI: 10.1007/s00011-009-0110-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2008] [Revised: 09/28/2009] [Accepted: 10/12/2009] [Indexed: 01/29/2023] Open
|
239
|
Eaton DC, Helms MN, Koval M, Bao HF, Jain L. The contribution of epithelial sodium channels to alveolar function in health and disease. Annu Rev Physiol 2009; 71:403-23. [PMID: 18831683 DOI: 10.1146/annurev.physiol.010908.163250] [Citation(s) in RCA: 141] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Amiloride-sensitive epithelial sodium channels (ENaC) play an important role in lung sodium transport. Sodium transport is closely regulated to maintain an appropriate fluid layer on the alveolar surface. Both alveolar type I and II cells have several different sodium-permeable channels in their apical membranes that play a role in normal lung physiology and pathophysiology. In many epithelial tissues, ENaC is formed from three subunit proteins: alpha, beta, and gamma ENaC. Part of the diversity of sodium-permeable channels in lung arises from assembling different combinations of these subunits to form channels with different biophysical properties and different mechanisms for regulation. Thus, lung epithelium has enormous flexibility to alter the magnitude of salt and water transport. In lung, ENaC is regulated by many transmitter and hormonal agents. Regulation depends upon the type of sodium channel but involves controlling the number of apical channels and/or the activity of individual channels.
Collapse
Affiliation(s)
- Douglas C Eaton
- Department of Physiology, Emory University School of Medicine, Atlanta, Georgia 30322, USA.
| | | | | | | | | |
Collapse
|
240
|
D'Alessio FR, Tsushima K, Aggarwal NR, West EE, Willett MH, Britos MF, Pipeling MR, Brower RG, Tuder RM, McDyer JF, King LS. CD4+CD25+Foxp3+ Tregs resolve experimental lung injury in mice and are present in humans with acute lung injury. J Clin Invest 2009; 119:2898-913. [PMID: 19770521 DOI: 10.1172/jci36498] [Citation(s) in RCA: 431] [Impact Index Per Article: 26.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2008] [Accepted: 07/15/2009] [Indexed: 01/11/2023] Open
Abstract
Acute lung injury (ALI) is characterized by rapid alveolar injury, inflammation, cytokine induction, and neutrophil accumulation. Although early events in the pathogenesis of ALI have been defined, the mechanisms underlying resolution are unknown. As a model of ALI, we administered intratracheal (i.t.) LPS to mice and observed peak lung injury 4 days after the challenge, with resolution by day 10. Numbers of alveolar lymphocytes increased as injury resolved. To examine the role of lymphocytes in this response, lymphocyte-deficient Rag-1-/- and C57BL/6 WT mice were exposed to i.t. LPS. The extent of injury was similar between the groups of mice through day 4, but recovery was markedly impaired in the Rag-1-/- mice. Adoptive transfer studies revealed that infusion of CD4+CD25+Foxp3+ Tregs as late as 24 hours after i.t. LPS normalized resolution in Rag-1-/- mice. Similarly, Treg depletion in WT mice delayed recovery. Treg transfer into i.t. LPS-exposed Rag-1-/- mice also corrected the elevated levels of alveolar proinflammatory cytokines and increased the diminished levels of alveolar TGF-beta and neutrophil apoptosis. Mechanistically, Treg-mediated resolution of lung injury was abrogated by TGF-beta inhibition. Moreover, BAL of patients with ALI revealed dynamic changes in CD3+CD4+CD25hiCD127loFoxp3+ cells. These results indicate that Tregs modify innate immune responses during resolution of lung injury and suggest potential targets for treating ALI, for which there are no specific therapies currently available.
Collapse
Affiliation(s)
- Franco R D'Alessio
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins Asthma and Allergy Center, 5501 Hopkins Bayview Circle, Baltimore, Maryland 21224, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
241
|
Su X, Matthay MA. Role of protease activated receptor 2 in experimental acute lung injury and lung fibrosis. Anat Rec (Hoboken) 2009; 292:580-6. [PMID: 19226616 DOI: 10.1002/ar.20846] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Protease activated receptor 2 (PAR2) is widely-distributed (lung, liver, kidney, etc.) and expressed by variety of cells (i.e. leukocytes, epithelial cells, endothelial cells, and fibroblast). PAR2 may participate in many pathological processes, such as, inflammation, injury, as well as fibrosis. Therefore, in this study, we tested whether PAR2 would exert a role in acid-induced acute lung injury, E. coli pneumonia, bleomycin-induced acute lung injury and fibrosis. Acid, E. coli, or bleomycin were intratracheally instilled into the lungs of both wildtype and PAR2 knockout mice to detect differences in pulmonary edema, lung vascular permeability, lung fibrosis, and other parameters. Knockout of PAR2 did not affect the extent of pulmonary edema and lung vascular permeability in acid-induced acute lung injury. Also, both activation of PAR2 in the airspaces of the lung and deletion of PAR2 did not alter the magnitude of pulmonary edema and lung vascular permeability in E. coli pneumonia. Finally, PAR2 deficiency did not affect the severity of lung inflammation and lung fibrosis in bleomycin-induced acute lung injury and lung fibrosis models. Thus, PAR2 does not appear to play a critical role in the pathogeneses of experimental acid-induced acute lung injury, E. coli pneumonia, and bleomycin-induced acute lung injury and pulmonary fibrosis in mice.
Collapse
Affiliation(s)
- Xiao Su
- Cardiovascular Research Institute, University of California, San Francisco, CA 94143-0130, USA.
| | | |
Collapse
|
242
|
Nishimura SL. Integrin-mediated transforming growth factor-beta activation, a potential therapeutic target in fibrogenic disorders. THE AMERICAN JOURNAL OF PATHOLOGY 2009; 175:1362-70. [PMID: 19729474 DOI: 10.2353/ajpath.2009.090393] [Citation(s) in RCA: 113] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A subset of integrins function as cell surface receptors for the profibrotic cytokine transforming growth factor-beta (TGF-beta). TGF-beta is expressed in an inactive or latent form, and activation of TGF-beta is a major mechanism that regulates TGF-beta function. Indeed, important TGF-beta activation mechanisms involve several of the TGF-beta binding integrins. Knockout mice suggest essential roles for integrin-mediated TGF-beta activation in vessel and craniofacial morphogenesis during development and in immune homeostasis and the fibrotic wound healing response in the adult. Amplification of integrin-mediated TGF-beta activation in fibrotic disorders and data from preclinical models suggest that integrins may therefore represent novel targets for antifibrotic therapies.
Collapse
Affiliation(s)
- Stephen L Nishimura
- Department of Anatomic Pathology, University of California San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
243
|
Hogmalm A, Sheppard D, Lappalainen U, Bry K. beta6 Integrin subunit deficiency alleviates lung injury in a mouse model of bronchopulmonary dysplasia. Am J Respir Cell Mol Biol 2009; 43:88-98. [PMID: 19717813 DOI: 10.1165/rcmb.2008-0480oc] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Pulmonary inflammation is associated with the development of bronchopulmonary dysplasia in premature infants. We have previously shown that perinatal pulmonary expression of human IL-1beta is sufficient to cause a lung disease similar to bronchopulmonary dysplasia, characterized by inflammation, impaired alveolarization, poor postnatal growth, and increased mortality in infant mice. The alphavbeta6 integrin plays a critical role in regulating inflammation in the adult lung. To study the role of the beta6 integrin subunit in neonatal inflammatory lung disease, we compared the pulmonary development in IL-1beta-expressing infant mice with wild-type or null beta6 integrin loci. Absence of the beta6 integrin subunit decreased the mortality and improved the postnatal growth of IL-1beta-expressing pups. The disrupted alveolar development of IL-1beta-expressing mice was improved by beta6 integrin deficiency. IL-1beta-expressing beta6(-/-) pups had shorter alveolar chord length and thinner alveolar walls than IL-1beta-expressing beta6(+/+) pups. In addition, the absence of the beta6 integrin subunit reduced IL-1beta-induced neutrophil and macrophage infiltration into the alveolar spaces. beta6 integrin subunit deficiency suppressed inflammation and goblet cell hyperplasia in the airways and alleviated airway remodeling in IL-1beta-expressing mice. The expression of the chemoattractant proteins, keratinocyte-derived chemokine, macrophage-inflammatory protein-2, calgranulin A, and calgranulin B, of osteopontin, and of the chitinase-like lectins, Ym1 and Ym2, was lower in IL-1beta-expressing beta6(-/-) than in IL-1beta-expressing beta6(+/+) mice. We conclude that absence of the beta6 integrin subunit protects the infant murine lung against IL-1beta-induced inflammation and injury.
Collapse
Affiliation(s)
- Anna Hogmalm
- University of Gothenburg, Department of Pediatrics, the Queen Silvia Children's Hospital, SWE-416 85 Gothenburg, Sweden
| | | | | | | |
Collapse
|
244
|
KUROISHI S, SUDA T, FUJISAWA T, IDE K, INUI N, NAKAMURA Y, NAKAMURA H, CHIDA K. Epithelial-mesenchymal transition induced by transforming growth factor-β1 in mouse tracheal epithelial cells. Respirology 2009; 14:828-37. [DOI: 10.1111/j.1440-1843.2009.01561.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
245
|
Felton VM, Borok Z, Willis BC. N-acetylcysteine inhibits alveolar epithelial-mesenchymal transition. Am J Physiol Lung Cell Mol Physiol 2009; 297:L805-12. [PMID: 19648289 DOI: 10.1152/ajplung.00009.2009] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The ability of transforming growth factor-beta1 (TGF-beta1) to induce epithelial-mesenchymal transition (EMT) in alveolar epithelial cells (AEC) in vitro and in vivo, together with the demonstration of EMT in biopsies of idiopathic pulmonary fibrosis (IPF) patients, suggests a role for TGF-beta1-induced EMT in disease pathogenesis. We investigated the effects of N-acetylcysteine (NAC) on TGF-beta1-induced EMT in a rat epithelial cell line (RLE-6TN) and in primary rat alveolar epithelial cells (AEC). RLE-6TN cells exposed to TGF-beta1 for 5 days underwent EMT as evidenced by acquisition of a fibroblast-like morphology, downregulation of the epithelial-specific protein zonula occludens-1, and induction of the mesenchymal-specific proteins alpha-smooth muscle actin (alpha-SMA) and vimentin. These changes were inhibited by NAC, which also prevented Smad3 phosphorylation. Similarly, primary alveolar epithelial type II cells exposed to TGF-beta1 also underwent EMT that was prevented by NAC. TGF-beta1 decreased cellular GSH levels by 50-80%, whereas NAC restored them to approximately 150% of those found in TGF-beta1-treated cells. Treatment with glutathione monoethyl ester similarly prevented an increase in mesenchymal marker expression. Consistent with its role as an antioxidant and cellular redox stabilizer, NAC dramatically reduced intracellular reactive oxygen species production in the presence of TGF-beta1. Finally, inhibition of intracellular ROS generation during TGF-beta1 treatment prevented alveolar EMT, but treatment with H2O2 alone did not induce EMT. We conclude that NAC prevents EMT in AEC in vitro, at least in part through replenishment of intracellular GSH stores and limitation of TGF-beta1-induced intracellular ROS generation. We speculate that beneficial effects of NAC on pulmonary function in IPF may be mediated by inhibitory effects on alveolar EMT.
Collapse
Affiliation(s)
- V M Felton
- Heart and Lung Institute, St. Joseph's Hospital and Medical Center, Department of Pediatrics, University of Arizona College of Medicine, 500 W. Thomas Rd., Suite 500, Phoenix, AZ 85013, USA
| | | | | |
Collapse
|
246
|
Molina V, Haj-Yahia S, Solodeev I, Levy Y, Blank M, Shoenfeld Y. Immunomodulation of experimental pulmonary fibrosis by intravenous immunoglobulin (IVIG). Autoimmunity 2009; 39:711-7. [PMID: 17178568 DOI: 10.1080/08916930601061272] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
OBJECTIVES To assess the immunomodulatory effect of intravenous immunoglobulin (IVIG) using an experimental model of bleomycin-induced pulmonary fibrosis. METHODS Pulmonary fibrosis was induced in C57BL/6 mice by direct intratracheal injection of bleomycin. Mice were treated with IVIG 1 week prior to (prevention protocol), or 10 days following bleomycin injection, when the disease was in progress. The controls used in the study included mice given phosphate buffered saline (PBS) and mice subjected to a commercial individual-IgG. Collagen-I deposits in the affected lungs were detected by Sirius red staining of paraffin embedded lung sections. The collagen-I content was measured by employing the hydroxyproline assay. RESULTS Prevention of bleomycin-induced pulmonary fibrosis by IVIG has been demonstrated by reduced expression of collagen-I protein in the affected lungs. The hydroxyproline levels in the lungs of the IVIG-treated mice were 214.33 +/- 13.56 microg/1 g tissue, compared to the higher levels in lungs of IgG treated mice (342.44 +/- 35.60 microg/1 g tissue) or untreated controls 328.00 +/- 45.55 microg/1 g tissue, (p < 0.0001). Effective treatment of bleomycin-induced pulmonary fibrosis by IVIG has been demonstrated by the reduced expression of collagen-I protein in the affected lungs, detected by sirius red histological staining. The hydroxyproline levels in the lungs of the IVIG-treated mice were 261.00 +/- 18.81 microg/1 g tissue, in comparison to the higher levels in the lungs of the IgG treated mice (342.43 +/- 32.89 microg/1 g tissue) and of untreated controls (344.33 +/- 49.85 microg/1 g tissue), (p < 0.001). CONCLUSIONS Based on these preliminary studies, we conclude that IVIG may have a beneficial effect in the down regulation of collagen-I levels in the lungs of mice with bleomycin-induced pulmonary fibrosis.
Collapse
Affiliation(s)
- Vered Molina
- Department of Medicine B, The Sackler School of Medicine, The Center for Autoimmune Diseases, Sheba Medical Center, Tel-Hashomer, Tel-Aviv University, Tel-Aviv, Israel
| | | | | | | | | | | |
Collapse
|
247
|
Ponticos M, Holmes AM, Shi-Wen X, Leoni P, Khan K, Rajkumar VS, Hoyles RK, Bou-Gharios G, Black CM, Denton CP, Abraham DJ, Leask A, Lindahl GE. Pivotal role of connective tissue growth factor in lung fibrosis: MAPK-dependent transcriptional activation of type I collagen. ACTA ACUST UNITED AC 2009; 60:2142-55. [DOI: 10.1002/art.24620] [Citation(s) in RCA: 190] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
248
|
Wang X, Chen Y, Lv L, Chen J. Silencing CD36 gene expression results in the inhibition of latent-TGF-beta1 activation and suppression of silica-induced lung fibrosis in the rat. Respir Res 2009; 10:36. [PMID: 19439069 PMCID: PMC2698900 DOI: 10.1186/1465-9921-10-36] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2009] [Accepted: 05/13/2009] [Indexed: 01/01/2023] Open
Abstract
Background The biologically active form of transforming growth factor-β1 (TGF-β1) plays a key role in the development of lung fibrosis. CD36 is involved in the transformation of latent TGF-β1 (L-TGF-β1) to active TGF-β1. To clarify the role of CD36 in the development of silica-induced lung fibrosis, a rat silicosis model was used to observe both the inhibition of L-TGF-β1 activation and the antifibrotic effect obtained by lentiviral vector silencing of CD36 expression. Methods The rat silicosis model was induced by intratracheal injection of 10 mg silica per rat and CD36 expression was silenced by administration of a lentiviral vector (Lv-shCD36). The inhibition of L-TGF-β1 activation was examined using a CCL-64 mink lung epithelial growth inhibition assay, while determination of hydroxyproline content along with pathological and immunohistochemical examinations were used for observation of the inhibition of silica-induced lung fibrosis. Results The lentiviral vector (Lv-shCD36) silenced expression of CD36 in alveolar macrophages (AMs) obtained from bronchoalveolar lavage fluid (BALF) and the activation of L-TGF-β1 in the BALF was inhibited by Lv-shCD36. The hydroxyproline content of silica+Lv-shCD36 treated groups was significantly lower than in other experimental groups. The degree of fibrosis in the silica+Lv-shCD36-treated groups was less than observed in other experimental groups. The expression of collagen I and III in the silica+Lv-shCD36-treated group was significantly lower than in the other experimental groups. Conclusion These results indicate that silencing expression of CD36 can result in the inhibition of L-TGF-β1 activation in a rat silicosis model, thus further preventing the development of silica-induced lung fibrosis.
Collapse
Affiliation(s)
- Xin Wang
- Division of Pneumoconiosis, School of Public Health, China Medical University, Shenyang, PR China.
| | | | | | | |
Collapse
|
249
|
Finigan JH, Boueiz A, Wilkinson E, Damico R, Skirball J, Pae HH, Damarla M, Hasan E, Pearse DB, Reddy SP, Grigoryev DN, Cheadle C, Esmon CT, Garcia JGN, Hassoun PM. Activated protein C protects against ventilator-induced pulmonary capillary leak. Am J Physiol Lung Cell Mol Physiol 2009; 296:L1002-11. [PMID: 19363121 DOI: 10.1152/ajplung.90555.2008] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The coagulation system is central to the pathophysiology of acute lung injury. We have previously demonstrated that the anticoagulant activated protein C (APC) prevents increased endothelial permeability in response to edemagenic agonists in endothelial cells and that this protection is dependent on the endothelial protein C receptor (EPCR). We currently investigate the effect of APC in a mouse model of ventilator-induced lung injury (VILI). C57BL/6J mice received spontaneous ventilation (control) or mechanical ventilation (MV) with high (HV(T); 20 ml/kg) or low (LV(T); 7 ml/kg) tidal volumes for 2 h and were pretreated with APC or vehicle via jugular vein 1 h before MV. In separate experiments, mice were ventilated for 4 h and received APC 30 and 150 min after starting MV. Indices of capillary leakage included bronchoalveolar lavage (BAL) total protein and Evans blue dye (EBD) assay. Changes in pulmonary EPCR protein and Rho-associated kinase (ROCK) were assessed using SDS-PAGE. Thrombin generation was measured via plasma thrombin-antithrombin complexes. HV(T) induced pulmonary capillary leakage, as evidenced by significant increases in BAL protein and EBD extravasation, without significantly increasing thrombin production. HV(T) also caused significant decreases in pulmonary, membrane-bound EPCR protein levels and increases in pulmonary ROCK-1. APC treatment significantly decreased pulmonary leakage induced by MV when given either before or after initiation of MV. Protection from capillary leakage was associated with restoration of EPCR protein expression and attenuation of ROCK-1 expression. In addition, mice overexpressing EPCR on the pulmonary endothelium were protected from HV(T)-mediated injury. Finally, gene microarray analysis demonstrated that APC significantly altered the expression of genes relevant to vascular permeability at the ontology (e.g., blood vessel development) and specific gene (e.g., MAPK-associated kinase 2 and integrin-beta(6)) levels. These findings indicate that APC is barrier-protective in VILI and that EPCR is a critical participant in APC-mediated protection.
Collapse
Affiliation(s)
- James H Finigan
- Division of Pulmonary and Critical Care Medicine, 5501 Hopkins Bayview Circle, Baltimore, MD 21224, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
250
|
Moon C, Han JR, Park HJ, Hah JS, Kang JL. Synthetic RGDS peptide attenuates lipopolysaccharide-induced pulmonary inflammation by inhibiting integrin signaled MAP kinase pathways. Respir Res 2009; 10:18. [PMID: 19272161 PMCID: PMC2666640 DOI: 10.1186/1465-9921-10-18] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2008] [Accepted: 03/09/2009] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Synthetic peptides containing the RGD sequence inhibit integrin-related functions in different cell systems. Here, we investigated the effects of synthetic Arg-Gly-Asp-Ser (RGDS) peptide on key inflammatory responses to intratracheal (i.t.) lipopolysaccharide (LPS) treatment and on the integrin signaled mitogen-activated protein (MAP) kinase pathway during the development of acute lung injury. METHODS Saline or LPS (1.5 mg/kg) was administered i.t. with or without a single dose of RGDS (1, 2.5, or 5 mg/kg, i.p.), anti-alphav or anti-beta3 mAb (5 mg/kg, i.p.). Mice were sacrificed 4 or 24 h post-LPS. RESULTS A pretreatment with RGDS inhibited LPS-induced increases in neutrophil and macrophage numbers, total protein levels and TNF-alpha and MIP-2 levels, and matrix metalloproteinase-9 activity in bronchoalveolar lavage (BAL) fluid at 4 or 24 h post-LPS treatment. RGDS inhibited LPS-induced phosphorylation of focal adhesion kinase and MAP kinases, including ERK, JNK, and p38 MAP kinase, in lung tissue. Importantly, the inhibition of the inflammatory responses and the kinase pathways were still evident when this peptide was administered 2 h after LPS treatment. Similarly, a blocking antibody against integrin alphav significantly inhibited LPS-induced inflammatory cell migration into the lung, protein accumulation and proinflammatory mediator production in BAL fluid, at 4 or 24 h post-LPS. Anti-beta3 also inhibited all LPS-induced inflammatory responses, except the accumulation of BAL protein at 24 h post-LPS. CONCLUSION These results suggest that RGDS with high specificity for alphavintegrins attenuates inflammatory cascade during LPS-induced development of acute lung injury.
Collapse
Affiliation(s)
- Changsuk Moon
- Department of Physiology, Division of Cell Biology, Ewha Medical Research Center, School of Medicine, Ewha Womans University, Seoul, Seoul, Korea
| | - Jeong Ran Han
- Department of Physiology, Division of Cell Biology, Ewha Medical Research Center, School of Medicine, Ewha Womans University, Seoul, Seoul, Korea
| | - Hyun-Jung Park
- Department of Physiology, Division of Cell Biology, Ewha Medical Research Center, School of Medicine, Ewha Womans University, Seoul, Seoul, Korea
| | - Jong Sik Hah
- Department of Physiology, Division of Cell Biology, Ewha Medical Research Center, School of Medicine, Ewha Womans University, Seoul, Seoul, Korea
| | - Jihee Lee Kang
- Department of Physiology, Division of Cell Biology, Ewha Medical Research Center, School of Medicine, Ewha Womans University, Seoul, Seoul, Korea
| |
Collapse
|