201
|
Ali AH, Tabibian JH, Carey EJ, Lindor KD. Emerging drugs for the treatment of Primary Biliary Cholangitis. Expert Opin Emerg Drugs 2016; 21:39-56. [PMID: 26901615 DOI: 10.1517/14728214.2016.1150999] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Primary biliary cholangitis (PBC) is an autoimmune chronic disease of the liver that can progress to cirrhosis and hepatocellular carcinoma. It affects approximately 1 in 4,000 with a 10:1 female to male ratio. The diagnosis of PBC can be made based on serum antimitochondrial antibodies (AMA) in a patient with abnormally high serum alkaline phosphatase after ruling out other causes of cholestasis and biliary obstruction. Genome-wide association studies have revealed several human leukocyte antigen (HLA) and non-HLA risk loci in PBC, and complex environmental-host immunogenetic interactions are believed to underlie the etiopathogenesis of the disease. Fatigue and pruritus are the most common and often problematic symptoms; although often mild, these can be severe and life-alternating in a subset of patients. Ursodeoxycholic acid (UDCA) is the only drug approved by the United States Food and Drug Administration for the treatment of PBC. Clinical trials have shown that UDCA significantly improves transplant-free survival. However, nearly 40% of PBC patients do not respond adequately to PBC and are at higher risk for serious complications when compared to PBC patients with complete response to UDCA. AREAS COVERED Here we provide a detailed discussion regarding novel therapeutic agents and potential areas for further investigation in PBC-related research. EXPERT OPINION Results of ongoing clinical trials and emerging treatment paradigms for PBC will likely further improve medical management of this disorder in the near future.
Collapse
|
202
|
Pellicciari R, Passeri D, De Franco F, Mostarda S, Filipponi P, Colliva C, Gadaleta RM, Franco P, Carotti A, Macchiarulo A, Roda A, Moschetta A, Gioiello A. Discovery of 3α,7α,11β-Trihydroxy-6α-ethyl-5β-cholan-24-oic Acid (TC-100), a Novel Bile Acid as Potent and Highly Selective FXR Agonist for Enterohepatic Disorders. J Med Chem 2016; 59:9201-9214. [PMID: 27652492 DOI: 10.1021/acs.jmedchem.6b01126] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
As a continuation of previous efforts in mapping functional hot spots on the bile acid scaffold, we here demonstrate that the introduction of a hydroxy group at the C11β position affords high selectivity for FXR. In particular, the synthesis and FXR/TGR5 activity of novel bile acids bearing different hydroxylation patterns at the C ring are reported and discussed from a structure-activity standpoint. The results obtained led us to discover the first bile acid derivative endowed with high potency and selectivity at the FXR receptor, 3α,7α,11β-trihydroxy-6α-ethyl-5β-cholan-24-oic acid (TC-100, 7) which also shows a remarkable physicochemical and pharmacological profile. Compound 7 combines the excellent physicochemical properties of hydrophilic bile acids such as ursodeoxycholic acid, with the distinct ability to specifically bind and regulate FXR activity in vivo, thus providing a bona fide novel therapeutic agent to treat enterohepatic disorders such as cholestasis, NASH, and inflammatory bowel disease.
Collapse
Affiliation(s)
- Roberto Pellicciari
- TES Pharma S.r.l. , Via Palmiro Togliatti 22bis, I-06073 Loc. Terrioli, Corciano, Perugia, Italy
| | - Daniela Passeri
- TES Pharma S.r.l. , Via Palmiro Togliatti 22bis, I-06073 Loc. Terrioli, Corciano, Perugia, Italy
| | - Francesca De Franco
- TES Pharma S.r.l. , Via Palmiro Togliatti 22bis, I-06073 Loc. Terrioli, Corciano, Perugia, Italy
| | - Serena Mostarda
- Department of Pharmaceutical Sciences, University of Perugia , Via del Liceo 1, 06123 Perugia, Italy
| | - Paolo Filipponi
- Department of Pharmaceutical Sciences, University of Perugia , Via del Liceo 1, 06123 Perugia, Italy
| | - Carolina Colliva
- TES Pharma S.r.l. , Via Palmiro Togliatti 22bis, I-06073 Loc. Terrioli, Corciano, Perugia, Italy
| | - Raffaella Maria Gadaleta
- Interdisciplinary Department of Medicine, University of Bari , Piazza Giulio Cesare 11, 70124 Bari, Italy
| | - Placido Franco
- Department of Chemistry, University of Bologna , Via Selmi 2, 40126 Bologna, Italy
| | - Andrea Carotti
- Department of Pharmaceutical Sciences, University of Perugia , Via del Liceo 1, 06123 Perugia, Italy
| | - Antonio Macchiarulo
- Department of Pharmaceutical Sciences, University of Perugia , Via del Liceo 1, 06123 Perugia, Italy
| | - Aldo Roda
- Department of Chemistry, University of Bologna , Via Selmi 2, 40126 Bologna, Italy
| | - Antonio Moschetta
- Interdisciplinary Department of Medicine, University of Bari , Piazza Giulio Cesare 11, 70124 Bari, Italy
| | - Antimo Gioiello
- Department of Pharmaceutical Sciences, University of Perugia , Via del Liceo 1, 06123 Perugia, Italy
| |
Collapse
|
203
|
Finamore C, Festa C, Renga B, Sepe V, Carino A, Masullo D, Biagioli M, Marchianò S, Capolupo A, Monti MC, Fiorucci S, Zampella A. Navigation in bile acid chemical space: discovery of novel FXR and GPBAR1 ligands. Sci Rep 2016; 6:29320. [PMID: 27381677 PMCID: PMC4933954 DOI: 10.1038/srep29320] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 06/16/2016] [Indexed: 02/07/2023] Open
Abstract
Bile acids are signaling molecules interacting with nuclear receptors and membrane G-protein-coupled receptors. Among these receptors, the farnesoid X receptor (FXR) and the membrane G-coupled receptor (GPBAR1) have gained increasing consideration as druggable receptors and their exogenous dual regulation represents an attractive strategy in the treatment of enterohepatic and metabolic disorders. However, the therapeutic use of dual modulators could be associated to severe side effects and therefore the discovery of selective GPBAR1 and FXR agonists is an essential step in the medicinal chemistry optimization of bile acid scaffold. In this study, a new series of 6-ethylcholane derivatives modified on the tetracyclic core and on the side chain has been designed and synthesized and their in vitro activities on FXR and GPBAR1 were assayed. This speculation resulted in the identification of compound 7 as a potent and selective GPBAR1 agonist and of several derivatives showing potent dual agonistic activity.
Collapse
Affiliation(s)
- Claudia Finamore
- Department of Pharmacy, University of Naples "Federico II", Via D. Montesano, 49, 80131 Naples, Italy
| | - Carmen Festa
- Department of Pharmacy, University of Naples "Federico II", Via D. Montesano, 49, 80131 Naples, Italy
| | - Barbara Renga
- Department of Surgery and Biomedical Sciences, Nuova Facoltà di Medicina, P.zza L. Severi 1, 06132 Perugia, Italy
| | - Valentina Sepe
- Department of Pharmacy, University of Naples "Federico II", Via D. Montesano, 49, 80131 Naples, Italy
| | - Adriana Carino
- Department of Surgery and Biomedical Sciences, Nuova Facoltà di Medicina, P.zza L. Severi 1, 06132 Perugia, Italy
| | - Dario Masullo
- Department of Pharmacy, University of Naples "Federico II", Via D. Montesano, 49, 80131 Naples, Italy
| | - Michele Biagioli
- Department of Surgery and Biomedical Sciences, Nuova Facoltà di Medicina, P.zza L. Severi 1, 06132 Perugia, Italy
| | - Silvia Marchianò
- Department of Surgery and Biomedical Sciences, Nuova Facoltà di Medicina, P.zza L. Severi 1, 06132 Perugia, Italy
| | - Angela Capolupo
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano (Salerno), Italy
| | - Maria Chiara Monti
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano (Salerno), Italy
| | - Stefano Fiorucci
- Department of Surgery and Biomedical Sciences, Nuova Facoltà di Medicina, P.zza L. Severi 1, 06132 Perugia, Italy
| | - Angela Zampella
- Department of Pharmacy, University of Naples "Federico II", Via D. Montesano, 49, 80131 Naples, Italy
| |
Collapse
|
204
|
Hegade VS, Bolier R, Oude Elferink RPJ, Beuers U, Kendrick S, Jones DEJ. A systematic approach to the management of cholestatic pruritus in primary biliary cirrhosis. Frontline Gastroenterol 2016; 7:158-166. [PMID: 28839853 PMCID: PMC5369477 DOI: 10.1136/flgastro-2015-100618] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Revised: 07/24/2015] [Accepted: 08/04/2015] [Indexed: 02/04/2023] Open
Abstract
Pruritus (itch) is an important symptom of primary biliary cirrhosis (PBC), an archetypal cholestatic liver disease. Cholestatic pruritus can be a debilitating symptom causing significant deterioration in patients' quality of life. Effective management of pruritus in PBC involves awareness among clinicians to adequately assess its severity, and treatment with specific drug therapies in line with current practice guidelines. In PBC, antipruritic drugs are not universally effective and/or have significant side effects, and despite best efforts with various combinations of drugs, some patients remain significantly symptomatic, eventually opting for invasive or experimental treatments. Therefore, there is a clear unmet need for better alternative treatments for patients with refractory or intractable cholestatic pruritus. Recent advances in the understanding of pathogenesis of cholestatic pruritus and bile acid physiology have raised hopes for novel therapies, some of which are currently under trial. In this review, we aim to provide a practical guide to the management of this important and complex problem, discussing current knowledge and recent advances in the pathogenesis, summarise the evidence base for available therapeutic approaches and update potential novel future therapies for the management of pruritus in PBC.
Collapse
Affiliation(s)
- Vinod S Hegade
- Faculty of Medical Sciences, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Ruth Bolier
- Tytgat Institute for Liver and Intestinal Research, Department of Gastroenterology and Hepatology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Ronald PJ Oude Elferink
- Tytgat Institute for Liver and Intestinal Research, Department of Gastroenterology and Hepatology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Ulrich Beuers
- Tytgat Institute for Liver and Intestinal Research, Department of Gastroenterology and Hepatology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Stuart Kendrick
- GlaxoSmithKline Research and Development, Medicines Research Centre, Stevenage, Hertfordshire, UK
| | - David EJ Jones
- Faculty of Medical Sciences, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
205
|
Hegade VS, Speight RA, Etherington RE, Jones DEJ. Novel bile acid therapeutics for the treatment of chronic liver diseases. Therap Adv Gastroenterol 2016; 9:376-91. [PMID: 27134666 PMCID: PMC4830100 DOI: 10.1177/1756283x16630712] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Recent developments in understanding the role of bile acids (BAs) as signalling molecules in human metabolism and inflammation have opened new avenues in the field of hepatology research. BAs are no longer considered as simple molecules helping in fat digestion but as agents with real therapeutic value in treating complex autoimmune and metabolic liver diseases. BAs and their receptors such as farnesoid X receptor, transmembrane G protein-coupled receptor 5 and peroxisome proliferator-activated receptor have been identified as novel targets for drug development. Some of these novel pharmaceuticals are already in clinical evaluation with the most advanced drugs having reached phase III trials. Chronic liver diseases such as primary biliary cholangitis, primary sclerosing cholangitis and nonalcoholic fatty liver disease, for which there is no or limited pharmacotherapy, are most likely to gain from these developments. In this review we discuss recent and the most relevant basic and clinical research findings related to BAs and their implications for novel therapy for chronic liver diseases.
Collapse
Affiliation(s)
| | - R. Alexander Speight
- Institute of Cellular Medicine, Faculty of Medical Science, Newcastle University, Newcastle upon Tyne, UK
| | - Rachel E. Etherington
- Institute of Cellular Medicine, Faculty of Medical Science, Newcastle University, Newcastle upon Tyne, UK
| | - David E. J. Jones
- Institute of Cellular Medicine, Faculty of Medical Science, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
206
|
Hodge RJ, Nunez DJ. Therapeutic potential of Takeda-G-protein-receptor-5 (TGR5) agonists. Hope or hype? Diabetes Obes Metab 2016; 18:439-43. [PMID: 26818602 DOI: 10.1111/dom.12636] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 12/29/2015] [Accepted: 01/20/2016] [Indexed: 12/27/2022]
Abstract
The gastrointestinal tract regulates glucose and energy metabolism, and there is increasing recognition that bile acids function as key signalling molecules in these processes. For example, bile acid changes that occur after bariatric surgery have been implicated in the effects on satiety, lipid and cholesterol regulation, glucose and energy metabolism, and the gut microbiome. In recent years, Takeda-G-protein-receptor-5 (TGR5), a bile acid receptor found in widely dispersed tissues, has been the target of significant drug discovery efforts in the hope of identifying effective treatments for metabolic diseases including type 2 diabetes, obesity, atherosclerosis, fatty liver disease and cancer. Although the benefits of targeting the TGR5 receptor are potentially great, drug development work to date has identified risks that include histopathological changes, tumorigenesis, gender differences, and questions about the translation of animal data to humans. The present article reviews the noteworthy challenges that must be addressed along the path of development of a safe and effective TGR5 agonist therapy.
Collapse
MESH Headings
- Animals
- Anti-Obesity Agents/adverse effects
- Anti-Obesity Agents/pharmacology
- Anti-Obesity Agents/therapeutic use
- Diabetes Mellitus, Type 2/drug therapy
- Diabetes Mellitus, Type 2/metabolism
- Drug Design
- Drug Discovery/trends
- Drug Evaluation, Preclinical
- Drugs, Investigational/adverse effects
- Drugs, Investigational/pharmacology
- Drugs, Investigational/therapeutic use
- Humans
- Hypoglycemic Agents/adverse effects
- Hypoglycemic Agents/pharmacology
- Hypoglycemic Agents/therapeutic use
- Models, Biological
- Molecular Targeted Therapy
- Obesity/drug therapy
- Obesity/metabolism
- Organ Specificity
- Receptors, G-Protein-Coupled/agonists
- Receptors, G-Protein-Coupled/metabolism
- Translational Research, Biomedical/trends
Collapse
Affiliation(s)
- R J Hodge
- Discovery Medicine, Metabolic Pathways and Cardiovascular Unit, GlaxoSmithKline Research and Development, Research Triangle Park, NC, USA
| | - D J Nunez
- Discovery Medicine, Metabolic Pathways and Cardiovascular Unit, GlaxoSmithKline Research and Development, Research Triangle Park, NC, USA
| |
Collapse
|
207
|
Abstract
Itch is a unique sensation associated with the scratch reflex. Although the scratch reflex plays a protective role in daily life by removing irritants, chronic itch remains a clinical challenge. Despite urgent clinical need, itch has received relatively little research attention and its mechanisms have remained poorly understood until recently. The goal of the present review is to summarize our current understanding of the mechanisms of acute as well as chronic itch and classifications of the primary itch populations in relationship to transient receptor potential (Trp) channels, which play pivotal roles in multiple somatosensations. The convergent involvement of Trp channels in diverse itch signaling pathways suggests that Trp channels may serve as promising targets for chronic itch treatments.
Collapse
Affiliation(s)
- Shuohao Sun
- The Solomon H. Snyder Department of Neuroscience, Center for Sensory Biology, Johns Hopkins University, School of Medicine, Baltimore, MD, 21205, USA
| | - Xinzhong Dong
- The Solomon H. Snyder Department of Neuroscience, Center for Sensory Biology, Johns Hopkins University, School of Medicine, Baltimore, MD, 21205, USA.
- Howard Hughes Medical Institute, Johns Hopkins University, School of Medicine, Baltimore, MD, 21205, USA.
| |
Collapse
|
208
|
Ao M, Domingue JC, Khan N, Javed F, Osmani K, Sarathy J, Rao MC. Lithocholic acid attenuates cAMP-dependent Cl- secretion in human colonic epithelial T84 cells. Am J Physiol Cell Physiol 2016; 310:C1010-23. [PMID: 27076617 DOI: 10.1152/ajpcell.00350.2015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 04/12/2016] [Indexed: 01/14/2023]
Abstract
Bile acids (BAs) play a complex role in colonic fluid secretion. We showed that dihydroxy BAs, but not the monohydroxy BA lithocholic acid (LCA), stimulate Cl(-) secretion in human colonic T84 cells (Ao M, Sarathy J, Domingue J, Alrefai WA, Rao MC. Am J Physiol Cell Physiol 305: C447-C456, 2013). In this study, we explored the effect of LCA on the action of other secretagogues in T84 cells. While LCA (50 μM, 15 min) drastically (>90%) inhibited FSK-stimulated short-circuit current (Isc), it did not alter carbachol-stimulated Isc LCA did not alter basal Isc, transepithelial resistance, cell viability, or cytotoxicity. LCA's inhibitory effect was dose dependent, acted faster from the apical membrane, rapid, and not immediately reversible. LCA also prevented the Isc stimulated by the cAMP-dependent secretagogues 8-bromo-cAMP, lubiprostone, or chenodeoxycholic acid (CDCA). The LCA inhibitory effect was BA specific, since CDCA, cholic acid, or taurodeoxycholic acid did not alter FSK or carbachol action. While LCA alone had no effect on intracellular cAMP concentration ([cAMP]i), it decreased FSK-stimulated [cAMP]i by 90%. Although LCA caused a small increase in intracellular Ca(2+) concentration ([Ca(2+)]i), chelation by BAPTA-AM did not reverse LCA's effect on Isc LCA action does not appear to involve known BA receptors, farnesoid X receptor, vitamin D receptor, muscarinic acetylcholine receptor M3, or bile acid-specific transmembrane G protein-coupled receptor 5. LCA significantly increased ERK1/2 phosphorylation, which was completely abolished by the MEK inhibitor PD-98059. Surprisingly PD-98059 did not reverse LCA's effect on Isc Finally, although LCA had no effect on basal Isc, nystatin permeabilization studies showed that LCA both stimulates an apical cystic fibrosis transmembrane conductance regulator Cl(-) current and inhibits a basolateral K(+) current. In summary, 50 μM LCA greatly inhibits cAMP-stimulated Cl(-) secretion, making low doses of LCA of potential therapeutic interest for diarrheal diseases.
Collapse
Affiliation(s)
- Mei Ao
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, Illinois
| | - Jada C Domingue
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, Illinois
| | - Nabihah Khan
- Department of Biology, Benedictine University, Lisle, Illinois
| | - Fatima Javed
- Department of Biology, Benedictine University, Lisle, Illinois
| | - Kashif Osmani
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, Illinois
| | - Jayashree Sarathy
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, Illinois; Department of Biology, Benedictine University, Lisle, Illinois
| | - Mrinalini C Rao
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, Illinois; Department of Medicine, University of Illinois at Chicago, Chicago, Illinois; and
| |
Collapse
|
209
|
Barry DM, Li H, Liu XY, Shen KF, Liu XT, Wu ZY, Munanairi A, Chen XJ, Yin J, Sun YG, Li YQ, Chen ZF. Critical evaluation of the expression of gastrin-releasing peptide in dorsal root ganglia and spinal cord. Mol Pain 2016; 12:12/0/1744806916643724. [PMID: 27068287 PMCID: PMC4972254 DOI: 10.1177/1744806916643724] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 02/18/2016] [Indexed: 01/29/2023] Open
Abstract
There are substantial disagreements about the expression of gastrin-releasing peptide (GRP) in sensory neurons and whether GRP antibody cross-reacts with substance P (SP). These concerns necessitate a critical revaluation of GRP expression using additional approaches. Here, we show that a widely used GRP antibody specifically recognizes GRP but not SP. In the spinal cord of mice lacking SP (Tac1 KO), the expression of not only GRP but also other peptides, notably neuropeptide Y (NPY), is significantly diminished. We detected Grp mRNA in dorsal root ganglias using reverse transcription polymerase chain reaction, in situ hybridization and RNA-seq. We demonstrated that Grp mRNA and protein are upregulated in dorsal root ganglias, but not in the spinal cord, of mice with chronic itch. Few GRP+ immunostaining signals were detected in spinal sections following dorsal rhizotomy and GRP+ cell bodies were not detected in dissociated dorsal horn neurons. Ultrastructural analysis further shows that substantially more GRPergic fibers form synaptic contacts with gastrin releasing peptide receptor-positive (GRPR+) neurons than SPergic fibers. Our comprehensive study demonstrates that a majority of GRPergic fibers are of primary afferent origin. A number of factors such as low copy number of Grp transcripts, small percentage of cells expressing Grp, and the use of an eGFP GENSAT transgenic as a surrogate for GRP protein have contributed to the controversy. Optimization of experimental procedures facilitates the specific detection of GRP expression in dorsal root ganglia neurons.
Collapse
Affiliation(s)
- Devin M Barry
- Center for the Study of Itch, Washington University School of Medicine, St. Louis, MO, USA Departments of Anesthesiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Hui Li
- Center for the Study of Itch, Washington University School of Medicine, St. Louis, MO, USA Department of Anatomy, K. K. Leung Brain Research Centre, The Fourth Military Medical University, Xi'an, PR China
| | - Xian-Yu Liu
- Center for the Study of Itch, Washington University School of Medicine, St. Louis, MO, USA Departments of Anesthesiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Kai-Feng Shen
- Center for the Study of Itch, Washington University School of Medicine, St. Louis, MO, USA Department of Neurosurgery, Xinqiao Hospital, Third Military Medical University, Chongqing, PR China
| | - Xue-Ting Liu
- Center for the Study of Itch, Washington University School of Medicine, St. Louis, MO, USA Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, The State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital, Guangzhou Medical University, Guangdong, PR China
| | - Zhen-Yu Wu
- Department of Anatomy, K. K. Leung Brain Research Centre, The Fourth Military Medical University, Xi'an, PR China
| | - Admire Munanairi
- Center for the Study of Itch, Washington University School of Medicine, St. Louis, MO, USA Departments of Anesthesiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Xiao-Jun Chen
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Jun Yin
- Center for the Study of Itch, Washington University School of Medicine, St. Louis, MO, USA Departments of Anesthesiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Yan-Gang Sun
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yun-Qing Li
- Department of Anatomy, K. K. Leung Brain Research Centre, The Fourth Military Medical University, Xi'an, PR China
| | - Zhou-Feng Chen
- Center for the Study of Itch, Washington University School of Medicine, St. Louis, MO, USA Departments of Anesthesiology, Washington University School of Medicine, St. Louis, MO, USA Departments of Psychiatry, Center for the Study of Itch, Washington University School of Medicine, St. Louis, MO, USA Departments of Developmental Biology, Center for the Study of Itch, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
210
|
Abu‐Hayyeh S, Ovadia C, Lieu T, Jensen DD, Chambers J, Dixon PH, Lövgren‐Sandblom A, Bolier R, Tolenaars D, Kremer AE, Syngelaki A, Noori M, Williams D, Marin JJ, Monte MJ, Nicolaides KH, Beuers U, Oude‐Elferink R, Seed PT, Chappell L, Marschall H, Bunnett NW, Williamson C. Prognostic and mechanistic potential of progesterone sulfates in intrahepatic cholestasis of pregnancy and pruritus gravidarum. Hepatology 2016; 63:1287-98. [PMID: 26426865 PMCID: PMC4869673 DOI: 10.1002/hep.28265] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 09/28/2015] [Indexed: 12/17/2022]
Abstract
UNLABELLED A challenge in obstetrics is to distinguish pathological symptoms from those associated with normal changes of pregnancy, typified by the need to differentiate whether gestational pruritus of the skin is an early symptom of intrahepatic cholestasis of pregnancy (ICP) or due to benign pruritus gravidarum. ICP is characterized by raised serum bile acids and complicated by spontaneous preterm labor and stillbirth. A biomarker for ICP would be invaluable for early diagnosis and treatment and to enable its differentiation from other maternal diseases. Three progesterone sulfate compounds, whose concentrations have not previously been studied, were newly synthesized and assayed in the serum of three groups of ICP patients and found to be significantly higher in ICP at 9-15 weeks of gestation and prior to symptom onset (group 1 cases/samples: ICP n = 35/80, uncomplicated pregnancy = 29/100), demonstrating that all three progesterone sulfates are prognostic for ICP. Concentrations of progesterone sulfates were associated with itch severity and, in combination with autotaxin, distinguished pregnant women with itch that would subsequently develop ICP from pruritus gravidarum (group 2: ICP n = 41, pruritus gravidarum n = 14). In a third group of first-trimester samples all progesterone sulfates were significantly elevated in serum from low-risk asymptomatic women who subsequently developed ICP (ICP/uncomplicated pregnancy n = 54/51). Finally, we show mechanistically that progesterone sulfates mediate itch by evoking a Tgr5-dependent scratch response in mice. CONCLUSION Our discovery that sulfated progesterone metabolites are a prognostic indicator for ICP will help predict onset of ICP and distinguish it from benign pruritus gravidarum, enabling targeted obstetric care to a high-risk population. Delineation of a progesterone sulfate-TGR5 pruritus axis identifies a therapeutic target for itch management in ICP.
Collapse
Affiliation(s)
- Shadi Abu‐Hayyeh
- Women's Health Academic CentreKing's College LondonLondonUnited Kingdom
| | - Caroline Ovadia
- Women's Health Academic CentreKing's College LondonLondonUnited Kingdom
| | - TinaMarie Lieu
- Monash Institute of Pharmaceutical Sciences and Australian Research Council Centre of Excellence in Convergent Bio‐Nano Science and TechnologyMonash UniversityParkvilleVictoriaAustralia
| | - Dane D. Jensen
- Monash Institute of Pharmaceutical Sciences and Australian Research Council Centre of Excellence in Convergent Bio‐Nano Science and TechnologyMonash UniversityParkvilleVictoriaAustralia
| | - Jenny Chambers
- Women's Health Academic CentreKing's College LondonLondonUnited Kingdom
- Institute of Reproductive and Developmental BiologyImperial College LondonLondonUnited Kingdom
| | - Peter H. Dixon
- Women's Health Academic CentreKing's College LondonLondonUnited Kingdom
- Institute of Reproductive and Developmental BiologyImperial College LondonLondonUnited Kingdom
| | | | - Ruth Bolier
- Tytgat Institute for Liver and Intestinal ResearchAcademic Medical CentreAmsterdamThe Netherlands
| | - Dagmar Tolenaars
- Tytgat Institute for Liver and Intestinal ResearchAcademic Medical CentreAmsterdamThe Netherlands
| | - Andreas E. Kremer
- Tytgat Institute for Liver and Intestinal ResearchAcademic Medical CentreAmsterdamThe Netherlands
- Department of Medicine 1Friedrich‐Alexander‐University of Erlangen‐NurembergErlangenGermany
| | - Argyro Syngelaki
- Harris Birthright Research Centre for Fetal MedicineKing's College HospitalLondonUnited Kingdom
| | - Muna Noori
- Institute of Reproductive and Developmental BiologyImperial College LondonLondonUnited Kingdom
| | - David Williams
- Institute for Women's HealthUniversity College London HospitalsLondonUnited Kingdom
| | - Jose J.G. Marin
- Laboratory of Experimental Hepatology and Drug Targeting (HEVEFARM), Biomedical Research Institute of Salamanca (IBSAL)University of Salamanca, National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd)SalamancaSpain
| | - Maria J. Monte
- Laboratory of Experimental Hepatology and Drug Targeting (HEVEFARM), Biomedical Research Institute of Salamanca (IBSAL)University of Salamanca, National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd)SalamancaSpain
| | - Kypros H. Nicolaides
- Harris Birthright Research Centre for Fetal MedicineKing's College HospitalLondonUnited Kingdom
| | - Ulrich Beuers
- Tytgat Institute for Liver and Intestinal ResearchAcademic Medical CentreAmsterdamThe Netherlands
| | - Ronald Oude‐Elferink
- Tytgat Institute for Liver and Intestinal ResearchAcademic Medical CentreAmsterdamThe Netherlands
| | - Paul T. Seed
- Women's Health Academic CentreKing's College LondonLondonUnited Kingdom
| | - Lucy Chappell
- Women's Health Academic CentreKing's College LondonLondonUnited Kingdom
| | - Hanns‐Ulrich Marschall
- Institute of Medicine, Department of Molecular and Clinical MedicineUniversity of GothenburgGothenburgSweden
| | - Nigel W. Bunnett
- Monash Institute of Pharmaceutical Sciences and Australian Research Council Centre of Excellence in Convergent Bio‐Nano Science and TechnologyMonash UniversityParkvilleVictoriaAustralia
- Department of PharmacologyUniversity of MelbourneParkvilleVictoriaAustralia
| | - Catherine Williamson
- Women's Health Academic CentreKing's College LondonLondonUnited Kingdom
- Institute of Reproductive and Developmental BiologyImperial College LondonLondonUnited Kingdom
| |
Collapse
|
211
|
Bolier R, Tolenaars D, Kremer AE, Saris J, Parés A, Verheij J, Bosma PJ, Beuers U, Oude Elferink RP. Enteroendocrine cells are a potential source of serum autotaxin in men. Biochim Biophys Acta Mol Basis Dis 2016; 1862:696-704. [DOI: 10.1016/j.bbadis.2016.01.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 12/22/2015] [Accepted: 01/12/2016] [Indexed: 12/26/2022]
|
212
|
Abstract
OBJECTIVE Pruritus is a common symptom of cholestatic liver disorders. The present study aimed at evaluating autotaxin (ATX), a lysophospholipase recently identified as potential cause for cholestatic pruritus, in pediatric cholestatic diseases presenting with or without itching. METHODS A cohort of 45 children consisting of 14 patients experiencing itching (Alagille syndrome [n = 10], complete extrahepatic biliary atresia [n = 2], neonatal sclerosing cholangitis (n = 1), progressive familial intrahepatic cholestasis type 2 [n = 1]), 9 patients with bile acid synthesis defects (3β-hydroxy-C27-steroid-oxidoreductase [n = 7] and Δ-3-oxosteroid-5β-reductase deficiency [n = 2]), and 22 healthy children were studied. Serum ATX activity and total serum bile salt were determined enzymatically, ATX protein content was semiquantified by Western blotting. Using real-time polymerase chain reaction, ATX mRNA expression was studied in HepG2 cells treated with farnesoid-X-receptor agonists or vehicle. RESULTS Serum ATX activity was increased in pruritic children with Alagille and other cholestatic syndromes (mean ± standard deviation: 16.1 ± 4.3 nmol · mL · min) compared with children with nonpruritic cholestatic diseases with bile acid synthesis defects (10.4 ± 4.7 nmol · mL · min; P < 0.01) and healthy controls (7.6 ± 2.3 nmol · mL · min; P < 0.001). ATX protein levels closely correlated with serum ATX activity. Serum ATX activity and total serum bile salt showed a linear correlation with itch intensity (r = 0.66, P < 0.001 and r = 0.80, P < 0.001, respectively). No correlation was observed between ATX activity and bilirubin. ATX mRNA expression in HepG2 cells was not induced by farnesoid-X-receptor ligands. CONCLUSIONS Serum ATX activity correlated with itch intensity in children with cholestatic diseases. Bile salts did not increase ATX expression in vitro. ATX inhibitors may be useful antipruritic agents in pediatric cholestatic disorders.
Collapse
|
213
|
Dixon PH, Williamson C. The pathophysiology of intrahepatic cholestasis of pregnancy. Clin Res Hepatol Gastroenterol 2016; 40:141-53. [PMID: 26823041 DOI: 10.1016/j.clinre.2015.12.008] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Revised: 12/02/2015] [Accepted: 12/10/2015] [Indexed: 02/06/2023]
Abstract
A number of liver disorders are specific to pregnancy. Amongst these, intrahepatic cholestasis of pregnancy (ICP), also known as obstetric cholestasis (OC), is the commonest, affecting approximately 1 in 140 UK pregnancies. Patients commonly present in the third trimester with severe pruritus and deranged serum liver tests; bile acids are elevated, in severe cases >40 μmol/L. Although the disease is considered relatively benign for the mother, increased rates of adverse fetal outcomes, including stillbirth, are associated with ICP. As our knowledge of the mechanisms underlying bile acid homeostasis has advanced in the last 15 years our understanding of ICP has grown, in particular with respect to genetic influences on susceptibility to the disease, the role of reproductive hormones and their metabolites and the possible identity of the pruritic agents. In this review, we will describe recent advances in the understanding of this condition with a particular emphasis on how aspects of genetic and reproductive hormone involvement in pathophysiology have been elucidated. We also review recent developments regarding our knowledge of placental and fetal pathophysiology and the long-term health consequences for the mother and child.
Collapse
Affiliation(s)
- Peter H Dixon
- Division of Women's Health, 2.30W Hodgkin Building, King's College London, Guy's Campus, SE1 1UL London, United Kingdom
| | - Catherine Williamson
- Division of Women's Health, 2.30W Hodgkin Building, King's College London, Guy's Campus, SE1 1UL London, United Kingdom.
| |
Collapse
|
214
|
Luna RA, Savidge TC, Williams KC. The Brain-Gut-Microbiome Axis: What Role Does It Play in Autism Spectrum Disorder? CURRENT DEVELOPMENTAL DISORDERS REPORTS 2016; 3:75-81. [PMID: 27398286 PMCID: PMC4933016 DOI: 10.1007/s40474-016-0077-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The brain-gut-microbiome axis refers to the interactions between the central nervous system, gastrointestinal system, and microorganisms that live in the gastrointestinal tract. Exploring these interactions provides a rationale for why gastrointestinal disorders commonly occur in children with Autism Spectrum Disorders (ASD). Signs of altered brain-gut interactions that are closely associated with functional GI disorders (FGIDs) commonly occur in children with ASD. Studies of microbiome in ASD suggest that changes in the gut microbiome may be associated with ASD and with GI disorders in children with ASD. Further studies into the brain-gut-microbiome axis could lead to new techniques for identifying GI disorders in children with ASD and novel therapies for treating ASD behaviors.
Collapse
Affiliation(s)
- Ruth Ann Luna
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas, USA
- Texas Children’s Microbiome Center, Department of Pathology, Texas Children’s Hospital, Houston, Texas, USA
| | - Tor C. Savidge
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas, USA
- Texas Children’s Microbiome Center, Department of Pathology, Texas Children’s Hospital, Houston, Texas, USA
| | - Kent C. Williams
- Department of Pediatric Gastroenterology, Nationwide Children’s Hospital, Columbus, Ohio, USA
| |
Collapse
|
215
|
Abstract
Intrahepatic cholestasis of pregnancy, also known as obstetric cholestasis, is a pruritic condition of pregnancy characterized by an underlying elevation in circulating bile acids and liver derangement, and associated with adverse fetal outcomes, such as preterm labor and stillbirth. Limited understanding of the underlying pathophysiology and mechanisms involved in adverse outcomes has previously restricted treatment options and pregnancy management. Recent advances in these research fields provide tantalizing targets to improve the care of pregnant women affected by this condition.
Collapse
Affiliation(s)
- Caroline Ovadia
- Women's Health Academic Centre, King's College London, London, United Kingdom
| | | |
Collapse
|
216
|
Sepe V, Festa C, Renga B, Carino A, Cipriani S, Finamore C, Masullo D, Del Gaudio F, Monti MC, Fiorucci S, Zampella A. Insights on FXR selective modulation. Speculation on bile acid chemical space in the discovery of potent and selective agonists. Sci Rep 2016; 6:19008. [PMID: 26740187 PMCID: PMC4704022 DOI: 10.1038/srep19008] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 12/02/2015] [Indexed: 12/17/2022] Open
Abstract
Bile acids are the endogenous modulators of the nuclear receptor FXR and the membrane receptor GPBAR1. FXR represents a promising pharmacological target for the treatment of cholestatic liver disorders. Currently available semisynthetic bile acid derivatives cover the same chemical space of bile acids and therefore they are poorly selective toward BA receptors, increasing patient risk for adverse side effects. In this report, we have investigated around the structure of CDCA describing the synthesis and the in vitro and in vivo pharmacological characterization of a novel family of compounds modified on the steroidal tetracyclic core and on the side chain. Pharmacological characterization resulted in the identification of several potent and selective FXR agonists. These novel agents might add utility in the treatment of cholestatic disorders by potentially mitigating side effects linked to unwanted activation of GPBAR1.
Collapse
Affiliation(s)
- Valentina Sepe
- Department of Pharmacy, University of Naples "Federico II", Via D. Montesano, 49, 80131 Naples, Italy
| | - Carmen Festa
- Department of Pharmacy, University of Naples "Federico II", Via D. Montesano, 49, 80131 Naples, Italy
| | - Barbara Renga
- Department of Surgery and Biomedical Sciences, Nuova Facoltà di Medicina, P.zza L. Severi 1, 06132 Perugia, Italy
| | - Adriana Carino
- Department of Surgery and Biomedical Sciences, Nuova Facoltà di Medicina, P.zza L. Severi 1, 06132 Perugia, Italy
| | - Sabrina Cipriani
- Department of Surgery and Biomedical Sciences, Nuova Facoltà di Medicina, P.zza L. Severi 1, 06132 Perugia, Italy
| | - Claudia Finamore
- Department of Pharmacy, University of Naples "Federico II", Via D. Montesano, 49, 80131 Naples, Italy
| | - Dario Masullo
- Department of Pharmacy, University of Naples "Federico II", Via D. Montesano, 49, 80131 Naples, Italy
| | - Federica Del Gaudio
- PhD Program in Drug Discovery and Development, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano (Salerno), Italy.,Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano (Salerno), Italy
| | - Maria Chiara Monti
- PhD Program in Drug Discovery and Development, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano (Salerno), Italy
| | - Stefano Fiorucci
- Department of Surgery and Biomedical Sciences, Nuova Facoltà di Medicina, P.zza L. Severi 1, 06132 Perugia, Italy
| | - Angela Zampella
- Department of Pharmacy, University of Naples "Federico II", Via D. Montesano, 49, 80131 Naples, Italy
| |
Collapse
|
217
|
Sepe V, Renga B, Festa C, Finamore C, Masullo D, Carino A, Cipriani S, Distrutti E, Fiorucci S, Zampella A. Investigation on bile acid receptor regulators. Discovery of cholanoic acid derivatives with dual G-protein coupled bile acid receptor 1 (GPBAR1) antagonistic and farnesoid X receptor (FXR) modulatory activity. Steroids 2016; 105:59-67. [PMID: 26607331 DOI: 10.1016/j.steroids.2015.11.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 11/12/2015] [Accepted: 11/17/2015] [Indexed: 12/21/2022]
Abstract
Bile acids, the end products of cholesterol metabolism, activate multiple mechanisms through the interaction with membrane G-protein coupled receptors including the bile acid receptor GPBAR1 and nuclear receptors such as the bile acid sensor, farnesoid X receptor (FXR). Even if dual FXR/GPBAR1 agonists are largely considered a novel opportunity in the treatment of several liver and metabolic diseases, selective targeting of one of these receptors represents an attractive therapeutic approach for a wide range of disorders in which dual modulation is associated to severe side effects. In the present study we have investigated around the structure of LCA generating a small library of cholane derivatives, endowed with dual FXR agonism/GPBAR1 antagonism. To the best of our knowledge, this is the first report of bile acid derivatives able to antagonize GPBAR1.
Collapse
Affiliation(s)
- Valentina Sepe
- Department of Pharmacy, University of Naples "Federico II", Via D. Montesano, 49, I-80131 Naples, Italy
| | - Barbara Renga
- Department of Surgery and Biomedical Sciences, Nuova Facoltà di Medicina, P.zza L. Severi, 1-06132 Perugia, Italy
| | - Carmen Festa
- Department of Pharmacy, University of Naples "Federico II", Via D. Montesano, 49, I-80131 Naples, Italy
| | - Claudia Finamore
- Department of Pharmacy, University of Naples "Federico II", Via D. Montesano, 49, I-80131 Naples, Italy
| | - Dario Masullo
- Department of Pharmacy, University of Naples "Federico II", Via D. Montesano, 49, I-80131 Naples, Italy
| | - Adriana Carino
- Department of Surgery and Biomedical Sciences, Nuova Facoltà di Medicina, P.zza L. Severi, 1-06132 Perugia, Italy
| | - Sabrina Cipriani
- Department of Surgery and Biomedical Sciences, Nuova Facoltà di Medicina, P.zza L. Severi, 1-06132 Perugia, Italy
| | - Eleonora Distrutti
- Hospital S. Maria della Misericordia, S. Andrea delle Fratte, 06126 Perugia, Italy
| | - Stefano Fiorucci
- Department of Surgery and Biomedical Sciences, Nuova Facoltà di Medicina, P.zza L. Severi, 1-06132 Perugia, Italy
| | - Angela Zampella
- Department of Pharmacy, University of Naples "Federico II", Via D. Montesano, 49, I-80131 Naples, Italy.
| |
Collapse
|
218
|
Keitel V, Reich M, Häussinger D. TGR5: pathogenetic role and/or therapeutic target in fibrosing cholangitis? Clin Rev Allergy Immunol 2016; 48:218-25. [PMID: 25138774 DOI: 10.1007/s12016-014-8443-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Primary sclerosing cholangitis (PSC) is a chronic inflammatory disease affecting the intrahepatic and extrahepatic biliary tree leading to bile duct strictures, progressive cholestasis, and development of liver fibrosis and cirrhosis. The pathogenesis of PSC is still elusive; however, both an immune-mediated injury of the bile ducts as well as increased recruitment of intestinal-primed T lymphocytes to the biliary tracts seem to contribute to disease development and progression. TGR5 (Gpbar-1) is a G-protein-coupled receptor responsive to bile acids, which is expressed in cholangiocytes, intestinal epithelial cells, and macrophages of the liver and intestine as well as in CD14-positive monocytes of the peripheral blood. Activation of TGR5 in biliary epithelial cells promotes chloride and bicarbonate secretion, triggers cell proliferation, and prevents apoptotic cell death. In immune cells, stimulation of TGR5 inhibits cytokine expression and secretion, thus reducing systemic as well as hepatic and intestinal inflammation. The expression pattern of TGR5 in the liver and intestine as well as the potential protective functions of TGR5 suggest a role for this receptor in the pathogenesis of PSC. While mutations in the coding region of the TGR5 gene are too rare to contribute to overall disease susceptibility, the expression and localization of the receptor have not been studied in PSC livers. Pharmacological activation of TGR5 in mice promotes protective mechanisms in biliary epithelial cells and reduces hepatic and systemic inflammation; however, it also provokes pruritus. Further studies are needed to predict the potential benefits as well as side effects of TGR5 agonist treatment in PSC patients.
Collapse
Affiliation(s)
- Verena Keitel
- Clinic for Gastroenterology, Hepatology and Infectious Diseases, Heinrich-Heine-University, Moorenstrasse 5, 40225, Düsseldorf, Germany,
| | | | | |
Collapse
|
219
|
Pharmacology of bile acid receptors: Evolution of bile acids from simple detergents to complex signaling molecules. Pharmacol Res 2015; 104:9-21. [PMID: 26706784 DOI: 10.1016/j.phrs.2015.12.007] [Citation(s) in RCA: 161] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2015] [Accepted: 12/03/2015] [Indexed: 12/17/2022]
Abstract
For many years, bile acids were thought to only function as detergents which solubilize fats and facilitate the uptake of fat-soluble vitamins in the intestine. Many early observations; however, demonstrated that bile acids regulate more complex processes, such as bile acids synthesis and immune cell function through activation of signal transduction pathways. These studies were the first to suggest that receptors may exist for bile acids. Ultimately, seminal studies by many investigators led to the discovery of several bile acid-activated receptors including the farnesoid X receptor, the vitamin D receptor, the pregnane X receptor, TGR5, α5 β1 integrin, and sphingosine-1-phosphate receptor 2. Several of these receptors are expressed outside of the gastrointestinal system, indicating that bile acids may have diverse functions throughout the body. Characterization of the functions of these receptors over the last two decades has identified many important roles for these receptors in regulation of bile acid synthesis, transport, and detoxification; regulation of glucose utilization; regulation of fatty acid synthesis and oxidation; regulation of immune cell function; regulation of energy expenditure; and regulation of neural processes such as gastric motility. Through these many functions, bile acids regulate many aspects of digestion ranging from uptake of essential vitamins to proper utilization of nutrients. Accordingly, within a short time period, bile acids moved beyond simple detergents and into the realm of complex signaling molecules. Because of the important processes that bile acids regulate through activation of receptors, drugs that target these receptors are under development for the treatment of several diseases, including cholestatic liver disease and metabolic syndrome. In this review, we will describe the various bile acid receptors, the signal transduction pathways activated by these receptors, and briefly discuss the physiological processes that these receptors regulate.
Collapse
|
220
|
Carr RM, Reid AE. FXR agonists as therapeutic agents for non-alcoholic fatty liver disease. Curr Atheroscler Rep 2015; 17:500. [PMID: 25690590 DOI: 10.1007/s11883-015-0500-2] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the hepatic manifestation of the metabolic syndrome and a risk factor for both cardiovascular and hepatic related morbidity and mortality. The increasing prevalence of this disease requires novel therapeutic approaches to prevent disease progression. Farnesoid X receptors are bile acid receptors with roles in lipid, glucose, and energy homeostasis. Synthetic farnesoid X receptor (FXR) agonists have been developed to specifically target these receptors for therapeutic use in NAFLD patients. Here, we present a review of bile acid physiology and how agonism of FXR receptors has been examined in pre-clinical and clinical NAFLD. Early evidence suggests a potential role for synthetic FXR agonists in the management of NAFLD; however, additional studies are needed to clarify their effects on lipid and glucose parameters in humans.
Collapse
Affiliation(s)
- Rotonya M Carr
- Division of Gastroenterology, University of Pennsylvania, 421 Curie Boulevard, 907 Biomedical Research Building, Philadelphia, PA, 19104, USA,
| | | |
Collapse
|
221
|
Di Leva FS, Festa C, Renga B, Sepe V, Novellino E, Fiorucci S, Zampella A, Limongelli V. Structure-based drug design targeting the cell membrane receptor GPBAR1: exploiting the bile acid scaffold towards selective agonism. Sci Rep 2015; 5:16605. [PMID: 26567894 PMCID: PMC4645117 DOI: 10.1038/srep16605] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 10/16/2015] [Indexed: 12/21/2022] Open
Abstract
Bile acids can regulate nutrient metabolism through the activation of the cell membrane receptor GPBAR1 and the nuclear receptor FXR. Developing an exogenous control over these receptors represents an attractive strategy for the treatment of enterohepatic and metabolic disorders. A number of dual GPBAR1/FXR agonists are known, however their therapeutic use is limited by multiple unwanted effects due to activation of the diverse downstream signals controlled by the two receptors. On the other hand, designing selective GPBAR1 and FXR agonists is challenging since the two proteins share similar structural requisites for ligand binding. Here, taking advantage of our knowledge of the two targets, we have identified through a rational drug design study a series of amine lithocholic acid derivatives as selective GPBAR1 agonists. The presence of the 3α-NH2 group on the steroidal scaffold is responsible for the selectivity over FXR unveiling unprecedented structural insights into bile acid receptors activity modulation.
Collapse
Affiliation(s)
- Francesco Saverio Di Leva
- Department of Pharmacy, University of Naples "Federico II", Via D. Montesano 49, I-80131 Naples, Italy
| | - Carmen Festa
- Department of Pharmacy, University of Naples "Federico II", Via D. Montesano 49, I-80131 Naples, Italy
| | - Barbara Renga
- Department of Surgery and Biomedical Sciences, Nuova Facoltà di Medicina, P.zza L. Severi, I-06132 Perugia, Italy
| | - Valentina Sepe
- Department of Pharmacy, University of Naples "Federico II", Via D. Montesano 49, I-80131 Naples, Italy
| | - Ettore Novellino
- Department of Pharmacy, University of Naples "Federico II", Via D. Montesano 49, I-80131 Naples, Italy
| | - Stefano Fiorucci
- Department of Surgery and Biomedical Sciences, Nuova Facoltà di Medicina, P.zza L. Severi, I-06132 Perugia, Italy
| | - Angela Zampella
- Department of Pharmacy, University of Naples "Federico II", Via D. Montesano 49, I-80131 Naples, Italy
| | - Vittorio Limongelli
- Department of Pharmacy, University of Naples "Federico II", Via D. Montesano 49, I-80131 Naples, Italy.,Università della Svizzera Italiana (USI), Faculty of Informatics, Institute of Computational Science, via G. Buffi 13, CH-6900 Lugano, Switzerland
| |
Collapse
|
222
|
Trivedi PJ, Hirschfield GM, Gershwin ME. Obeticholic acid for the treatment of primary biliary cirrhosis. Expert Rev Clin Pharmacol 2015; 9:13-26. [PMID: 26549695 DOI: 10.1586/17512433.2015.1092381] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Primary biliary cirrhosis (PBC) is characterized by progressive nonsuppurative destruction of small bile ducts, resulting in intrahepatic cholestasis, fibrosis and ultimately end-stage liver disease. Timely intervention with ursodeoxycholic acid is associated with excellent survival, although approximately one-third of all patients fail to achieve biochemical response, signifying a critical need for additional therapeutic strategies. Obeticholic acid (OCA) is a potent ligand of the nuclear hormone receptor farnesoid X receptor (FXR). Activation of FXR inhibits bile acid synthesis and protects against toxic accumulation in models of cholestasis and facilitates hepatic regeneration in preclinical studies. Data from recent Phase II and III controlled trials suggest a therapeutic impact of OCA in PBC biochemical nonresponders, as evidenced by change in proven laboratory surrogates of long-term outcome. Dose-dependent pruritus is a common adverse effect, but may be overcome through dose-titration. Longer term studies are needed with focus on safety and long-term clinical efficacy.
Collapse
Affiliation(s)
- Palak J Trivedi
- a National Institute of Health Research (NIHR) Birmingham Liver Biomedical Research Unit (BRU), Institute of Immunology and Immunotherapy, 5th Floor IBR Building , Wolfson Drive, University of Birmingham , UK
| | - Gideon M Hirschfield
- a National Institute of Health Research (NIHR) Birmingham Liver Biomedical Research Unit (BRU), Institute of Immunology and Immunotherapy, 5th Floor IBR Building , Wolfson Drive, University of Birmingham , UK
| | - M Eric Gershwin
- b Division of Rheumatology, Allergy and Clinical Immunology, University of California at Davis , California , Birmingham , USA
| |
Collapse
|
223
|
TGR5 and Immunometabolism: Insights from Physiology and Pharmacology. Trends Pharmacol Sci 2015; 36:847-857. [PMID: 26541439 DOI: 10.1016/j.tips.2015.08.002] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 08/02/2015] [Accepted: 08/04/2015] [Indexed: 12/15/2022]
Abstract
In the past decade substantial progress has been made in understanding how the insurgence of chronic low-grade inflammation influences the physiology of several metabolic diseases. Tissue-resident immune cells have been identified as central players in these processes, linking inflammation to metabolism. The bile acid-responsive G-protein-coupled receptor TGR5 is expressed in monocytes and macrophages, and its activation mediates potent anti-inflammatory effects. Herein, we summarize recent advances in TGR5 research, focusing on the downstream effector pathways that are modulated by TGR5 activators, and on its therapeutic potential in inflammatory and metabolic diseases.
Collapse
|
224
|
Geppetti P, Veldhuis N, Lieu T, Bunnett N. G Protein-Coupled Receptors: Dynamic Machines for Signaling Pain and Itch. Neuron 2015; 88:635-49. [DOI: 10.1016/j.neuron.2015.11.001] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
225
|
Gertzen CGW, Spomer L, Smits SHJ, Häussinger D, Keitel V, Gohlke H. Mutational mapping of the transmembrane binding site of the G-protein coupled receptor TGR5 and binding mode prediction of TGR5 agonists. Eur J Med Chem 2015; 104:57-72. [PMID: 26435512 DOI: 10.1016/j.ejmech.2015.09.024] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2015] [Revised: 09/06/2015] [Accepted: 09/15/2015] [Indexed: 12/31/2022]
Abstract
TGR5 (Gpbar-1, M-Bar) is a class A G-protein coupled bile acid-sensing receptor predominately expressed in brain, liver and gastrointestinal tract, and a promising drug target for the treatment of metabolic disorders. Due to the lack of a crystal structure of TGR5, the development of TGR5 agonists has been guided by ligand-based approaches so far. Three binding mode models of bile acid derivatives have been presented recently. However, they differ from one another in terms of overall orientation or with respect to the location and interactions of the cholane scaffold, or cannot explain all results from mutagenesis experiments. Here, we present an extended binding mode model based on an iterative and integrated computational and biological approach. An alignment of 68 TGR5 agonists based on this binding mode leads to a significant and good structure-based 3D QSAR model, which constitutes the most comprehensive structure-based 3D-QSAR study of TGR5 agonists undertaken so far and suggests that the binding mode model is a close representation of the "true" binding mode. The binding mode model is further substantiated in that effects predicted for eight mutations in the binding site agree with experimental analyses on the impact of these TGR5 variants on receptor activity. In the binding mode, the hydrophobic cholane scaffold of taurolithocholate orients towards the interior of the orthosteric binding site such that rings A and B are in contact with TM5 and TM6, the taurine side chain orients towards the extracellular opening of the binding site and forms a salt bridge with R79(EL1), and the 3-hydroxyl group forms hydrogen bonds with E169(5.44) and Y240(6.51). The binding mode thus differs in important aspects from the ones recently presented. These results are highly relevant for the development of novel, more potent agonists of TGR5 and should be a valuable starting point for the development of TGR5 antagonists, which could show antiproliferative effects in tumor cells.
Collapse
Affiliation(s)
- Christoph G W Gertzen
- Institute for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Lina Spomer
- Clinic for Gastroenterology, Hepatology, and Infectious Diseases, Heinrich Heine University, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Sander H J Smits
- Institute for Biochemistry, Heinrich Heine University, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Dieter Häussinger
- Clinic for Gastroenterology, Hepatology, and Infectious Diseases, Heinrich Heine University, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Verena Keitel
- Clinic for Gastroenterology, Hepatology, and Infectious Diseases, Heinrich Heine University, Universitätsstr. 1, 40225 Düsseldorf, Germany.
| | - Holger Gohlke
- Institute for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University, Universitätsstr. 1, 40225 Düsseldorf, Germany.
| |
Collapse
|
226
|
Ji RR. Neuroimmune interactions in itch: Do chronic itch, chronic pain, and chronic cough share similar mechanisms? Pulm Pharmacol Ther 2015; 35:81-6. [PMID: 26351759 DOI: 10.1016/j.pupt.2015.09.001] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 08/27/2015] [Accepted: 09/01/2015] [Indexed: 12/30/2022]
Abstract
Itch and pain are closely related but also clearly distinct sensations. Pain is known to suppress itch, while analgesics such as morphine can provoke itch. However, in pathological and chronic conditions, pain and itch also have similarities. Dysfunction of the nervous system, as manifested by neural plastic changes in primary sensory neurons of the peripheral nervous system (peripheral sensitization) and spinal cord and brain stem neurons in the central nervous system (central sensitization) will result in chronic pain and itch. Importantly, these diseases also result from immune dysfunction, since inflammatory mediators can directly activate or sensitize nociceptive and pruriceptive neurons in the peripheral and central nervous system, leading to pain and itch hypersensitivity. In this mini-review, I discuss the roles of Toll-like receptors (TLRs), transient receptor potential ankyrin 1 (TRPA1) ion channel, and Nav1.7 sodium channel in regulating itch and inflammation, with special emphasis of neuronal TLR signaling and the interaction of TLR7 and TRPA1. Chronic pain and chronic itch are debilitating diseases and dramatically impact the life quality of patients. Targeting TLRs for the control of inflammation, neuroinflammation (inflammation restricted in the nervous system), and hyperexcitability of nociceptors and pruriceptors will lead to new therapeutics for the relief of chronic pain and chronic itch. Finally, given the shared mechanisms among chronic cough, chronic pain, and chronic itch and the demonstrated efficacy of the neuropathic pain drug gabapentin in treating chronic cough, novel therapeutics targeting TRPA1, Nav1.7, and TLRs may also help to alleviate refractory cough via modulating neuron-immune interaction.
Collapse
Affiliation(s)
- Ru-Rong Ji
- Department of Anesthesiology, Duke University Medical Center, Durham, NC, 27710, USA; Department of Neurobiology, Duke University Medical Center, Durham, NC, 27710, USA.
| |
Collapse
|
227
|
Ahmadi S, Poureidi M, Rostamzadeh J. Hepatic encephalopathy induces site-specific changes in gene expression of GluN1 subunit of NMDA receptor in rat brain. Metab Brain Dis 2015; 30:1035-41. [PMID: 25896221 DOI: 10.1007/s11011-015-9669-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Accepted: 04/01/2015] [Indexed: 01/08/2023]
Abstract
We investigate changes in gene expression of GluN1 subunit of N-Methyl-D-Aspartate (NMDA) receptor in the prefrontal cortex (PFC), hippocampus and striatum in a rat model of hepatic encephalopathy (HE). We used male Wistar rats in which HE was induced after a common bile duct ligation (BDL). The animals were divided into three sets, and each set included three groups of control, sham operated and BDL. In the first set of animals, blood samples collected for biochemical analysis on day 21 of BDL. In the second set, changes in nociception threshold was assessed on day 21 of BDL using a hotplate test. In the third set, whole brain extracted, and the PFC, the hippocampus and the striatum in each rat were immediately dissected. We used a semi-quantitative RT-PCR method for evaluating the GluN1 gene expression. The biochemical analyses showed that plasma levels of ammonia and bilirubin in BDL rats were significantly increased compared to the sham control group on day 21 of BDL (P < 0.01). Nociception threshold was also increased in rats with BDL compared to sham group (P < 0.001). The results revealed that the GluN1 gene expression at mRNA levels in BDL group was decreased by 19 % in the PFC (P < 0.05) but increased by 82 % in the hippocampus (P < 0.01) compared to the sham control group; however, no significant change was observed in the striatum. It can be concluded that HE affects the GluN1 gene expression in rat brain with a site-specific pattern, and the PFC and hippocampus are more sensitive areas than striatum.
Collapse
Affiliation(s)
- Shamseddin Ahmadi
- Department of Biological Science and Biotechnology, Faculty of Science, University of Kurdistan, P.O. Box 416, Sanandaj, Iran,
| | | | | |
Collapse
|
228
|
Sepe V, Distrutti E, Fiorucci S, Zampella A. Farnesoid X receptor modulators (2011 – 2014): a patent review. Expert Opin Ther Pat 2015; 25:885-96. [DOI: 10.1517/13543776.2015.1045413] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
229
|
Cipriani S, Renga B, D’Amore C, Simonetti M, De Tursi AA, Carino A, Monti MC, Sepe V, Zampella A, Fiorucci S. Impaired Itching Perception in Murine Models of Cholestasis Is Supported by Dysregulation of GPBAR1 Signaling. PLoS One 2015; 10:e0129866. [PMID: 26177448 PMCID: PMC4503431 DOI: 10.1371/journal.pone.0129866] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2014] [Accepted: 05/13/2015] [Indexed: 02/07/2023] Open
Abstract
Background & Aims In cholestatic syndromes, body accumulation of bile acids is thought to cause itching. However, the mechanisms supporting this effect remain elusive. Recently, GPBAR1 (TGR5) a G-protein coupled receptor has been shown to mediate itching caused by intradermal administration of DCA and LCA. 6α-ethyl-3α, 7α-dihydroxy-24-nor-5β-cholan-23-ol (BAR502) is a non-bile acid dual ligand for FXR and GPBAR1. Methods Cholestasis was induced in wild type and GPBAR1-/- mice by administration of α-naphthyl-isothiocyanate (ANIT) or 17α-ethynylestradiol. Results. In naïve mice skin application of DCA, TLCA, 6-ECDCA, oleanolic and betulinic acid induces a GPBAR1 dependent pruritogenic response that could be desensitized by re-challenging the mice with the same GPBAR1 agonist. In wild type and GPBAR1-/- mice cholestasis induced by ANIT fails to induce spontaneous itching and abrogates scratching behavior caused by intradermal administration of DCA. In this model, co-treatment with BAR502 increases survival, attenuates serum alkaline phosphatase levels and robustly modulates the liver expression of canonical FXR target genes including OSTα, BSEP, SHP and MDR1, without inducing pruritus. Betulinic acid, a selective GPBAR1 ligand, failed to rescue wild type and GPBAR1-/- mice from ANIT cholestasis but did not induced itching. In the 17α-ethynylestradiol model BAR502 attenuates cholestasis and reshapes bile acid pool without inducing itching. Conclusions The itching response to intradermal injection of GPBAR1 agonists desensitizes rapidly and is deactivated in models of cholestasis, explain the lack of correlation between bile acids levels and itching severity in cholestatic syndromes. In models of non-obstructive cholestasis, BAR502 attenuates liver injury without causing itching.
Collapse
Affiliation(s)
| | - Barbara Renga
- Department of Surgery and Biomedical Sciences, University of Perugia, Perugia, Italy
| | - Claudio D’Amore
- Department of Surgery and Biomedical Sciences, University of Perugia, Perugia, Italy
| | - Michele Simonetti
- Department of Surgery and Biomedical Sciences, University of Perugia, Perugia, Italy
| | | | - Adriana Carino
- Department of Surgery and Biomedical Sciences, University of Perugia, Perugia, Italy
| | | | - Valentina Sepe
- Department of Pharmacy, University of Naples “Federico II”, Naples, Italy
| | - Angela Zampella
- Department of Pharmacy, University of Naples “Federico II”, Naples, Italy
| | - Stefano Fiorucci
- Department of Surgery and Biomedical Sciences, University of Perugia, Perugia, Italy
- * E-mail:
| |
Collapse
|
230
|
Abstract
TGR5 (Takeda G-protein-coupled receptor 5) [also known as GPBAR1 (G-protein-coupled bile acid receptor 1), M-BAR (membrane-type receptor for bile acids) or GPR131 (G-protein-coupled receptor 131)] is a G-protein-coupled receptor that was discovered as a bile acid receptor. TGR5 has specific roles in several tissues, among which are the regulation of energy expenditure, GLP-1 (glucagon-like peptide 1) secretion and gall bladder filling. An accumulating body of evidence now demonstrates that TGR5 also acts in a number of processes important in inflammation. Most striking in this context are several observations that TGR5 signalling curbs the inflammatory response of macrophages via interfering with NF-κB (nuclear factor κB) activity. In line with this, recent animal studies also suggest that TGR5 could be exploited as a potential target for intervention in a number of inflammation-driven diseases, including atherosclerosis. In the present paper, I review our current understanding of TGR5 with a strong focus on its potential as target for intervention in inflammation-driven diseases.
Collapse
|
231
|
Li T, Apte U. Bile Acid Metabolism and Signaling in Cholestasis, Inflammation, and Cancer. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2015; 74:263-302. [PMID: 26233910 DOI: 10.1016/bs.apha.2015.04.003] [Citation(s) in RCA: 184] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Bile acids are synthesized from cholesterol in the liver. Some cytochrome P450 (CYP) enzymes play key roles in bile acid synthesis. Bile acids are physiological detergent molecules, so are highly cytotoxic. They undergo enterohepatic circulation and play important roles in generating bile flow and facilitating biliary secretion of endogenous metabolites and xenobiotics and intestinal absorption of dietary fats and lipid-soluble vitamins. Bile acid synthesis, transport, and pool size are therefore tightly regulated under physiological conditions. In cholestasis, impaired bile flow leads to accumulation of bile acids in the liver, causing hepatocyte and biliary injury and inflammation. Chronic cholestasis is associated with fibrosis, cirrhosis, and eventually liver failure. Chronic cholestasis also increases the risk of developing hepatocellular or cholangiocellular carcinomas. Extensive research in the last two decades has shown that bile acids act as signaling molecules that regulate various cellular processes. The bile acid-activated nuclear receptors are ligand-activated transcriptional factors that play critical roles in the regulation of bile acid, drug, and xenobiotic metabolism. In cholestasis, these bile acid-activated receptors regulate a network of genes involved in bile acid synthesis, conjugation, transport, and metabolism to alleviate bile acid-induced inflammation and injury. Additionally, bile acids are known to regulate cell growth and proliferation, and altered bile acid levels in diseased conditions have been implicated in liver injury/regeneration and tumorigenesis. We will cover the mechanisms that regulate bile acid homeostasis and detoxification during cholestasis, and the roles of bile acids in the initiation and regulation of hepatic inflammation, regeneration, and carcinogenesis.
Collapse
Affiliation(s)
- Tiangang Li
- Department of Pharmacology, Toxicology and Therapeutics, The University of Kansas Medical Center, Kansas City, Kansas, USA.
| | - Udayan Apte
- Department of Pharmacology, Toxicology and Therapeutics, The University of Kansas Medical Center, Kansas City, Kansas, USA
| |
Collapse
|
232
|
Grace MS, Lieu T, Darby B, Abogadie FC, Veldhuis N, Bunnett NW, McIntyre P. The tyrosine kinase inhibitor bafetinib inhibits PAR2-induced activation of TRPV4 channels in vitro and pain in vivo. Br J Pharmacol 2015; 171:3881-94. [PMID: 24779362 DOI: 10.1111/bph.12750] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Revised: 04/02/2014] [Accepted: 04/17/2014] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND AND PURPOSE Protease-activated receptor 2 (PAR2) is expressed on nociceptive neurons, and can sensitize transient receptor potential (TRP) ion channels to amplify neurogenic inflammation and pain. The mechanisms by which this occurs are not fully understood. PAR2 causes receptor-operated activation of TRPV4 channels and TRPV4 null mice have attenuated PAR2-stimulated neurogenic inflammation and mechanical hyperalgesia. Here we investigate the intracellular signalling mechanisms underlying PAR2-induced TRPV4 channel activation and pain. EXPERIMENTAL APPROACH Responses of non-transfected and TRPV4-transfected HEK293 cells to agonists of PAR2 (trypsin and SLIGRL) and TRPV4 channels (GSK1016790A) were determined using calcium imaging. Inhibitors of TRPV4 channels (HC067047), sarcoendoplasmic reticulum calcium transport ATPase (thapsigargin), Gαq (UBO-QIC), tyrosine kinases (bafetinib and dasatinib) or PI3 kinases (wortmannin and LY294002) were used to investigate signalling mechanisms. In vivo effects of tyrosine kinase inhibitors on PAR2 -induced mechanical hyperalgesia were assessed in mice. KEY RESULTS In non-transfected HEK293 cells, PAR2 activation transiently increased intracellular calcium ([Ca(2+) ]i ). Functional expression of TRPV4 channels caused a sustained increase of [Ca(2+) ]i , inhibited by HC067047, bafetinib and wortmannin; but not by thapsigargin, UBO-QIC, dasatinib or LY294002. Bafetinib but not dasatinib inhibited PAR2-induced mechanical hyperalgesia in vivo. CONCLUSIONS AND IMPLICATIONS This study supports a role for tyrosine kinases in PAR2-mediated receptor-operated gating of TRPV4 channels, independent of Gαq stimulation. The ability of a tyrosine kinase inhibitor to diminish PAR2-induced activation of TRPV4 channels and consequent mechanical hyperalgesia identifies bafetinib (which is in development in oncology) as a potential novel analgesic therapy.
Collapse
Affiliation(s)
- M S Grace
- School of Medical Sciences and Health Innovations Research Institute, RMIT University, Bundoora, VIC, Australia
| | | | | | | | | | | | | |
Collapse
|
233
|
The TRPA1 channel in inflammatory and neuropathic pain and migraine. Rev Physiol Biochem Pharmacol 2015; 167:1-43. [PMID: 24668446 DOI: 10.1007/112_2014_18] [Citation(s) in RCA: 157] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The transient receptor potential ankyrin 1 (TRPA1), a member of the TRP superfamily of channels, is primarily localized to a subpopulation of primary sensory neurons of the trigeminal, vagal, and dorsal root ganglia. This subset of nociceptors produces and releases the neuropeptides substance P (SP) and calcitonin gene-related peptide (CGRP), which mediate neurogenic inflammatory responses. TRPA1 is activated by a number of exogenous compounds, including molecules of botanical origin, environmental irritants, and medicines. However, the most prominent feature of TRPA1 resides in its unique sensitivity for large series of reactive byproducts of oxidative and nitrative stress. Here, the role of TRPA1 in models of different types of pain, including inflammatory and neuropathic pain and migraine, is summarized. Specific attention is paid to TRPA1 as the main contributing mechanism to the transition of mechanical and cold hypersensitivity from an acute to a chronic condition and as the primary transducing pathway by which oxidative/nitrative stress produces acute nociception, allodynia, and hyperalgesia. A series of migraine triggers or medicines have been reported to modulate TRPA1 activity and the ensuing CGRP release. Thus, TRPA1 antagonists may be beneficial in the treatment of inflammatory and neuropathic pain and migraine.
Collapse
|
234
|
Primary afferent and spinal cord expression of gastrin-releasing peptide: message, protein, and antibody concerns. J Neurosci 2015; 35:648-57. [PMID: 25589759 DOI: 10.1523/jneurosci.2955-14.2015] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
There is continuing controversy relating to the primary afferent neurotransmitter that conveys itch signals to the spinal cord. Here, we investigated the DRG and spinal cord expression of the putative primary afferent-derived "itch" neurotransmitter, gastrin-releasing peptide (GRP). Using ISH, qPCR, and immunohistochemistry, we conclude that GRP is expressed abundantly in spinal cord, but not in DRG neurons. Titration of the most commonly used GRP antiserum in tissues from wild-type and GRP mutant mice indicates that the antiserum is only selective for GRP at high dilutions. Paralleling these observations, we found that a GRPeGFP transgenic reporter mouse has abundant expression in superficial dorsal horn neurons, but not in the DRG. In contrast to previous studies, neither dorsal rhizotomy nor an intrathecal injection of capsaicin, which completely eliminated spinal cord TRPV1-immunoreactive terminals, altered dorsal horn GRP immunoreactivity. Unexpectedly, however, peripheral nerve injury induced significant GRP expression in a heterogeneous population of DRG neurons. Finally, dual labeling and retrograde tracing studies showed that GRP-expressing neurons of the superficial dorsal horn are predominantly interneurons, that a small number coexpress protein kinase C gamma (PKCγ), but that none coexpress the GRP receptor (GRPR). Our studies support the view that pruritogens engage spinal cord "itch" circuits via excitatory superficial dorsal horn interneurons that express GRP and that likely target GRPR-expressing interneurons. The fact that peripheral nerve injury induced de novo GRP expression in DRG neurons points to a novel contribution of this peptide to pruritoceptive processing in neuropathic itch conditions.
Collapse
|
235
|
Beuers U, Trauner M, Jansen P, Poupon R. New paradigms in the treatment of hepatic cholestasis: from UDCA to FXR, PXR and beyond. J Hepatol 2015; 62:S25-37. [PMID: 25920087 DOI: 10.1016/j.jhep.2015.02.023] [Citation(s) in RCA: 345] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Revised: 02/16/2015] [Accepted: 02/16/2015] [Indexed: 02/08/2023]
Abstract
Cholestasis is an impairment of bile formation/flow at the level of the hepatocyte and/or cholangiocyte. The first, and for the moment, most established medical treatment is the natural bile acid (BA) ursodeoxycholic acid (UDCA). This secretagogue improves, e.g. in intrahepatic cholestasis of pregnancy or early stage primary biliary cirrhosis, impaired hepatocellular and cholangiocellular bile formation mainly by complex post-transcriptional mechanisms. The limited efficacy of UDCA in various cholestatic conditions urges for development of novel therapeutic approaches. These include nuclear and membrane receptor agonists and BA derivatives. The nuclear receptors farnesoid X receptor (FXR), retinoid X receptor (RXR), peroxisome proliferator-activated receptor α (PPARα), and pregnane X receptor (PXR) are transcriptional modifiers of bile formation and at present are under investigation as promising targets for therapeutic interventions in cholestatic disorders. The membrane receptors fibroblast growth factor receptor 4 (FGFR4) and apical sodium BA transporter (ASBT) deserve attention as additional therapeutic targets, as does the potential therapeutic agent norUDCA, a 23-C homologue of UDCA. Here, we provide an overview on established and future promising therapeutic agents and their potential molecular mechanisms and sites of action in cholestatic diseases.
Collapse
Affiliation(s)
- Ulrich Beuers
- Department of Gastroenterology and Hepatology, Tytgat Institute for Liver and Intestinal Research, Academic Medical Centre University of Amsterdam, Amsterdam, The Netherlands.
| | - Michael Trauner
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Austria
| | - Peter Jansen
- Department of Gastroenterology and Hepatology, Tytgat Institute for Liver and Intestinal Research, Academic Medical Centre University of Amsterdam, Amsterdam, The Netherlands
| | - Raoul Poupon
- UPMC Université Paris 06, INSERM, UMR_S 938, Centre de Recherche Saint-Antoine, AP-HP, Hôpital Saint-Antoine, Service d'Hépatologie, F-75012 Paris, France
| |
Collapse
|
236
|
Hirschfield GM, Mason A, Luketic V, Lindor K, Gordon SC, Mayo M, Kowdley KV, Vincent C, Bodhenheimer HC, Parés A, Trauner M, Marschall HU, Adorini L, Sciacca C, Beecher-Jones T, Castelloe E, Böhm O, Shapiro D. Efficacy of obeticholic acid in patients with primary biliary cirrhosis and inadequate response to ursodeoxycholic acid. Gastroenterology 2015; 148:751-61.e8. [PMID: 25500425 DOI: 10.1053/j.gastro.2014.12.005] [Citation(s) in RCA: 400] [Impact Index Per Article: 44.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Revised: 12/05/2014] [Accepted: 12/08/2014] [Indexed: 02/08/2023]
Abstract
BACKGROUND & AIMS We evaluated the efficacy and safety of obeticholic acid (OCA, α-ethylchenodeoxycholic acid) in a randomized controlled trial of patients with primary biliary cirrhosis who had an inadequate response to ursodeoxycholic acid therapy. METHODS We performed a double-blind study of 165 patients with primary biliary cirrhosis (95% women) and levels of alkaline phosphatase (ALP) 1.5- to 10-fold the upper limit of normal. Patients were randomly assigned to groups given 10 mg, 25 mg, or 50 mg doses of OCA or placebo, once daily for 3 months. Patients maintained their existing dose of ursodeoxycholic acid throughout the study. The primary outcome was change in level of ALP from baseline (day 0) until the end of the study (day 85 or early termination). We also performed an open-label extension of the trial in which 78 patients were enrolled and 61 completed the first year. RESULTS OCA was superior to placebo in achieving the primary end point. Subjects given OCA had statistically significant relative reductions in mean ALP from baseline to the end of the study (P < .0001 all OCA groups vs placebo). Levels of ALP decreased 21%-25% on average from baseline in the OCA groups and 3% in the placebo group. Sixty-nine percent (68 of 99) of patients given OCA had at least a 20% reduction in ALP compared with 8% (3 of 37) of patients given placebo (P < .0003). Among secondary end points, levels of γ-glutamyl transpeptidase decreased 48%-63%, on average, among subjects given OCA, vs a 7% decrease in the group given placebo; levels of alanine aminotransferase decreased 21%-35% on average among subjects given OCA vs none of the patients given placebo. Pruritus was the principal adverse event; incidence values in the OCA 10 mg, 25 mg, and 50 mg groups were 47% (not significantly different), 87% (P < .0003), and 80% (P < .006), respectively, vs 50% in the placebo group. In the extension study, levels of ALP continued to decrease to a mean level of 202 ± 11 U/L after 12 months vs 285 ± 15 U/L at baseline. CONCLUSIONS Daily doses of OCA, ranging from 10 to 50 mg, significantly reduced levels of ALP, γ-glutamyl transpeptidase, and alanine aminotransferase, compared with placebo, in patients with primary biliary cirrhosis who had inadequate responses to ursodeoxycholic acid. The incidence and severity of pruritus were lowest among patients who received 10 mg/d OCA. Biochemical responses to OCA were maintained in a 12-month open-label extension trial. ClinicalTrials.gov ID: NCT00550862.
Collapse
Affiliation(s)
- Gideon M Hirschfield
- Centre for Liver Research, NIHR Birmingham Liver Biomedical Research Unit, University of Birmingham, Birmingham, UK.
| | - Andrew Mason
- Division of Gastroenterology, University of Alberta, Edmonton, Alberta, Canada
| | - Velimir Luketic
- Division of Gastroenterology, Hepatology and Nutrition, Virginia Commonwealth University School of Medicine, Richmond, Virginia; McGuire Research Institute, McGuire VA Medical Center, Richmond, VA
| | - Keith Lindor
- Division of Gastroenterology and Hepatology, Mayo Medical School, Rochester, Minnesota; School for the Science of Health Care Delivery, Arizona State University, Phoenix, Arizona
| | - Stuart C Gordon
- Division of Hepatology, Henry Ford Health Systems, Detroit, Michigan
| | - Marlyn Mayo
- Division of Digestive and Liver Diseases, University of Texas, Southwestern Medical Center, Dallas, Texas
| | - Kris V Kowdley
- Digestive Disease Institute, Virginia Mason Medical Center, Seattle, Washington
| | | | - Henry C Bodhenheimer
- Department of Medicine, Mount Sinai School of Medicine, New York, New York; Division of Digestive Diseases, Beth Israel Medical Center, New York, New York
| | - Albert Parés
- Liver Unit, Hospital Clinic, IDIBAPS, CIBERehd, University of Barcelona, Barcelona, Spain
| | - Michael Trauner
- Division of Gastroenterology and Hepatology, Department of Medicine III, Medical University of Vienna, Austria
| | - Hanns-Ulrich Marschall
- Department of Molecular and Clinical Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | | | | | | | | | - Olaf Böhm
- FGK Clinical Research, Munich, Germany
| | | |
Collapse
|
237
|
Abstract
Bile acids are the end products of cholesterol catabolism. Hepatic bile acid synthesis accounts for a major fraction of daily cholesterol turnover in humans. Biliary secretion of bile acids generates bile flow and facilitates hepatobiliary secretion of lipids, lipophilic metabolites, and xenobiotics. In the intestine, bile acids are essential for the absorption, transport, and metabolism of dietary fats and lipid-soluble vitamins. Extensive research in the last 2 decades has unveiled new functions of bile acids as signaling molecules and metabolic integrators. The bile acid-activated nuclear receptors farnesoid X receptor, pregnane X receptor, constitutive androstane receptor, vitamin D receptor, and G protein-coupled bile acid receptor play critical roles in the regulation of lipid, glucose, and energy metabolism, inflammation, and drug metabolism and detoxification. Bile acid synthesis exhibits a strong diurnal rhythm, which is entrained by fasting and refeeding as well as nutrient status and plays an important role for maintaining metabolic homeostasis. Recent research revealed an interaction of liver bile acids and gut microbiota in the regulation of liver metabolism. Circadian disturbance and altered gut microbiota contribute to the pathogenesis of liver diseases, inflammatory bowel diseases, nonalcoholic fatty liver disease, diabetes, and obesity. Bile acids and their derivatives are potential therapeutic agents for treating metabolic diseases of the liver.
Collapse
Affiliation(s)
- Tiangang Li
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas (T.L.); and Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, Ohio (J.Y.L.C.)
| | - John Y L Chiang
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas (T.L.); and Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, Ohio (J.Y.L.C.)
| |
Collapse
|
238
|
Ferrebee CB, Dawson PA. Metabolic effects of intestinal absorption and enterohepatic cycling of bile acids. Acta Pharm Sin B 2015; 5:129-34. [PMID: 26579438 PMCID: PMC4629214 DOI: 10.1016/j.apsb.2015.01.001] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 12/30/2014] [Accepted: 01/04/2015] [Indexed: 12/13/2022] Open
Abstract
The classical functions of bile acids include acting as detergents to facilitate the digestion and absorption of nutrients in the gut. In addition, bile acids also act as signaling molecules to regulate glucose homeostasis, lipid metabolism and energy expenditure. The signaling potential of bile acids in compartments such as the systemic circulation is regulated in part by an efficient enterohepatic circulation that functions to conserve and channel the pool of bile acids within the intestinal and hepatobiliary compartments. Changes in hepatobiliary and intestinal bile acid transport can alter the composition, size, and distribution of the bile acid pool. These alterations in turn can have significant effects on bile acid signaling and their downstream metabolic targets. This review discusses recent advances in our understanding of the inter-relationship between the enterohepatic cycling of bile acids and the metabolic consequences of signaling via bile acid-activated receptors, such as farnesoid X nuclear receptor (FXR) and the G-protein-coupled bile acid receptor (TGR5).
Collapse
Key Words
- ACCII, acetyl-CoA carboxylase 2
- APO, apolipoproteins
- ASBT, apical sodium-dependent bile acid transporter
- BSEP, bile salt export pump
- Bile acids
- CYP7A1, cholesterol 7α-hydroxylase
- DIO2, deiodinase 2
- Energy homeostasis
- FAS, fatty acid synthase
- FGF, fibroblast growth factor
- FGFR4, fibroblast growth factor receptor 4
- FOXO1, forkhead box protein O1
- FXR, farnesoid X-receptor
- G6Pase, glucose-6-phosphatase
- GLP-1, glucagon-like polypeptide-1
- HNF4α, hepatocyte nuclear factor 4 alpha
- IBABP, ileal bile acid binding protein
- Intestine
- LDL, low density lipoprotein
- Lipid metabolism
- Liver
- NTCP, Na+-taurocholate transporting polypeptide
- OATP, organic anion transporting polypeptide
- OST, organic solute transporter
- PEPCK, phosphoenolpyruvate carboxykinase
- PGC1α, peroxisome proliferator-activated receptor gamma coactivator 1 alpha
- PPAR, peroxisome proliferator-activated receptor
- SHP, small heterodimer partner
- SREBP1c, sterol regulatory element binding protein-1c
- T4, thyroid hormone
- TGR5, G-protein-coupled bile acid receptor
- Transporters
- VLDL, very low density lipoprotein
Collapse
|
239
|
Dyson JK, Hirschfield GM, Adams DH, Beuers U, Mann DA, Lindor KD, Jones DEJ. Novel therapeutic targets in primary biliary cirrhosis. Nat Rev Gastroenterol Hepatol 2015; 12:147-58. [PMID: 25645973 DOI: 10.1038/nrgastro.2015.12] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Primary biliary cirrhosis (PBC) is a chronic immune-mediated liver disease characterized by progressive cholestasis, biliary fibrosis and eventually cirrhosis. It results in characteristic symptoms with marked effects on life quality. The advent of large patient cohorts has challenged the view of PBC as a benign condition treated effectively by the single licensed therapy-ursodeoxycholic acid (UDCA). UDCA nonresponse or under-response has a major bearing on outcome, substantially increasing the likelihood that liver transplantation will be required or that patients will die of the disease. In patients with high-risk, treatment-unresponsive or highly symptomatic disease the need for new treatment approaches is clear. Evolution in our understanding of disease mechanisms is rapidly leading to the advent of new and re-purposed therapeutic agents targeting key processes. Notable opportunities are offered by targeting what could be considered as the 'upstream' immune response, 'midstream' biliary injury and 'downstream' fibrotic processes. Combination therapy targeting several pathways or the development of novel agents addressing multiple components of the disease pathway might be required. Ultimately, PBC therapeutics will require a stratified approach to be adopted in practice. This Review provides a current perspective on potential approaches to PBC treatment, and highlights the challenges faced in evaluating and implementing those treatments.
Collapse
Affiliation(s)
- Jessica K Dyson
- Institute of Cellular Medicine, 3rd Floor William Leech Building, Medical School, Framlington Place, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Gideon M Hirschfield
- Centre for Liver Research, NIHR Biomedical Research Unit, University of Birmingham, Wolfson Drive, Birmingham B15 2TT, UK
| | - David H Adams
- Centre for Liver Research, NIHR Biomedical Research Unit, University of Birmingham, Wolfson Drive, Birmingham B15 2TT, UK
| | - Ulrich Beuers
- Department of Gastroenterology &Hepatology, Tytgat Institute for Liver and Intestinal Research, Academic Medical Center, G4-216, University of Amsterdam, PO Box 22600, NL-1100 DD, Amsterdam, Netherlands
| | - Derek A Mann
- Institute of Cellular Medicine, 3rd Floor William Leech Building, Medical School, Framlington Place, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Keith D Lindor
- College of Health Solutions, Arizona State University, 550 North 3rd Street, Phoenix, AZ 85004, USA
| | - David E J Jones
- Institute of Cellular Medicine, 3rd Floor William Leech Building, Medical School, Framlington Place, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| |
Collapse
|
240
|
Abstract
Toll-like receptors (TLRs) are cellular sensors designed to recognize molecular danger signals associated with exogenous or endogenous threats. Their activation leads to initiation of the host's immune responses in order to remove or contain the danger. However, one of the most effective methods of defense against invading pathogens and parasites is itch. The perception of itch elicits the rapid defensive action to scratch, which can remove the offending pathogen or parasite before infection can occur. Recent findings show that TLRs such as TLR3, TLR4, and TLR7 are expressed in a subset of pruriceptive/nociceptive neurons in the dorsal root and trigeminal ganglion providing a direct link between TLR activation and itch. Activation of neuronal TLRs can initiate itch sensation by coupling with ion channels. Furthermore, TLRs are expressed in skin cells and glial cells in the spinal cord to regulate inflammation and neuroinflammation in chronic itch. Thus, identification of the role of TLRs in neurons, skin cells, and glial cells may provide new targets for the treatment of chronic itch, a common clinical problem associated with skin diseases, systemic diseases, and metabolic disorders, for which current treatments are far from sufficient.
Collapse
Affiliation(s)
- Sarah Taves
- Departments of Anesthesiology and Neurobiology, Duke University Medical Center, Durham, NC, 27710, USA
| | | |
Collapse
|
241
|
Ahmadi S, Karami Z, Mohammadian A, Khosrobakhsh F, Rostamzadeh J. Cholestasis induced antinociception and decreased gene expression of MOR1 in rat brain. Neuroscience 2015; 284:78-86. [DOI: 10.1016/j.neuroscience.2014.08.063] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2014] [Revised: 08/10/2014] [Accepted: 08/21/2014] [Indexed: 01/08/2023]
|
242
|
Lieu T, Jayaweera G, Zhao P, Poole DP, Jensen D, Grace M, McIntyre P, Bron R, Wilson YM, Krappitz M, Haerteis S, Korbmacher C, Steinhoff MS, Nassini R, Materazzi S, Geppetti P, Corvera CU, Bunnett NW. The bile acid receptor TGR5 activates the TRPA1 channel to induce itch in mice. Gastroenterology 2014; 147:1417-28. [PMID: 25194674 PMCID: PMC4821165 DOI: 10.1053/j.gastro.2014.08.042] [Citation(s) in RCA: 159] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Revised: 08/19/2014] [Accepted: 08/26/2014] [Indexed: 12/11/2022]
Abstract
BACKGROUND & AIMS Patients with cholestatic disease have increased systemic concentrations of bile acids (BAs) and profound pruritus. The G-protein-coupled BA receptor 1 TGR5 (encoded by GPBAR1) is expressed by primary sensory neurons; its activation induces neuronal hyperexcitability and scratching by unknown mechanisms. We investigated whether the transient receptor potential ankyrin 1 (TRPA1) is involved in BA-evoked, TGR5-dependent pruritus in mice. METHODS Co-expression of TGR5 and TRPA1 in cutaneous afferent neurons isolated from mice was analyzed by immunofluorescence, in situ hybridization, and single-cell polymerase chain reaction. TGR5-induced activation of TRPA1 was studied in in HEK293 cells, Xenopus laevis oocytes, and primary sensory neurons by measuring Ca(2+) signals. The contribution of TRPA1 to TGR5-induced release of pruritogenic neuropeptides, activation of spinal neurons, and scratching behavior were studied using TRPA1 antagonists or Trpa1(-/-) mice. RESULTS TGR5 and TRPA1 protein and messenger RNA were expressed by cutaneous afferent neurons. In HEK cells, oocytes, and neurons co-expressing TGR5 and TRPA1, BAs caused TGR5-dependent activation and sensitization of TRPA1 by mechanisms that required Gβγ, protein kinase C, and Ca(2+). Antagonists or deletion of TRPA1 prevented BA-stimulated release of the pruritogenic neuropeptides gastrin-releasing peptide and atrial natriuretic peptide B in the spinal cord. Disruption of Trpa1 in mice blocked BA-induced expression of Fos in spinal neurons and prevented BA-stimulated scratching. Spontaneous scratching was exacerbated in transgenic mice that overexpressed TRG5. Administration of a TRPA1 antagonist or the BA sequestrant colestipol, which lowered circulating levels of BAs, prevented exacerbated spontaneous scratching in TGR5 overexpressing mice. CONCLUSIONS BAs induce pruritus in mice by co-activation of TGR5 and TRPA1. Antagonists of TGR5 and TRPA1, or inhibitors of the signaling mechanism by which TGR5 activates TRPA1, might be developed for treatment of cholestatic pruritus.
Collapse
Affiliation(s)
- TinaMarie Lieu
- Monash Institute of Pharmaceutical Sciences, Parkville, Victoria, Australia
| | - Gihan Jayaweera
- Monash Institute of Pharmaceutical Sciences, Parkville, Victoria, Australia
| | - Peishen Zhao
- Monash Institute of Pharmaceutical Sciences, Parkville, Victoria, Australia
| | - Daniel P. Poole
- Monash Institute of Pharmaceutical Sciences, Parkville, Victoria, Australia,Department of Anatomy and Neuroscience, University of Melbourne, Parkville, Victoria, Australia
| | - Dane Jensen
- Monash Institute of Pharmaceutical Sciences, Parkville, Victoria, Australia
| | - Megan Grace
- Health Innovations Research Institute and School of Medical Sciences, RMIT University, Bundoora, Victoria, Australia
| | - Peter McIntyre
- Health Innovations Research Institute and School of Medical Sciences, RMIT University, Bundoora, Victoria, Australia
| | - Romke Bron
- Department of Anatomy and Neuroscience, University of Melbourne, Parkville, Victoria, Australia
| | - Yvette M. Wilson
- Department of Anatomy and Neuroscience, University of Melbourne, Parkville, Victoria, Australia
| | - Matteus Krappitz
- Institut für Zelluläre und Molekulare Physiologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Silke Haerteis
- Institut für Zelluläre und Molekulare Physiologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Christoph Korbmacher
- Institut für Zelluläre und Molekulare Physiologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Martin S. Steinhoff
- Charles Institute for Translational Dermatology, University College Dublin, Dublin, Ireland
| | - Romina Nassini
- Department of Health Sciences, Clinical Pharmacology Unit, University of Florence, Florence, Italy
| | - Serena Materazzi
- Department of Health Sciences, Clinical Pharmacology Unit, University of Florence, Florence, Italy
| | - Pierangelo Geppetti
- Department of Health Sciences, Clinical Pharmacology Unit, University of Florence, Florence, Italy
| | - Carlos U. Corvera
- Department of Surgery, University of California, San Francisco, San Francisco, California
| | - Nigel W. Bunnett
- Monash Institute of Pharmaceutical Sciences, Parkville, Victoria, Australia,Department of Pharmacology, University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
243
|
Abstract
This paper is the thirty-sixth consecutive installment of the annual review of research concerning the endogenous opioid system. It summarizes papers published during 2013 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides, opioid receptors, opioid agonists and opioid antagonists. The particular topics that continue to be covered include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors related to behavior, and the roles of these opioid peptides and receptors in pain and analgesia; stress and social status; tolerance and dependence; learning and memory; eating and drinking; alcohol and drugs of abuse; sexual activity and hormones, pregnancy, development and endocrinology; mental illness and mood; seizures and neurologic disorders; electrical-related activity and neurophysiology; general activity and locomotion; gastrointestinal, renal and hepatic functions; cardiovascular responses; respiration and thermoregulation; and immunological responses.
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, Flushing, NY 11367, United States.
| |
Collapse
|
244
|
Takanami K, Sakamoto H. The Gastrin-Releasing Peptide Receptor (GRPR) in the Spinal Cord as a Novel Pharmacological Target. Curr Neuropharmacol 2014; 12:434-43. [PMID: 25426011 PMCID: PMC4243033 DOI: 10.2174/1570159x12666140923201432] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Revised: 07/28/2014] [Accepted: 09/10/2014] [Indexed: 12/02/2022] Open
Abstract
Gastrin-releasing peptide (GRP) is a mammalian neuropeptide that acts through the G protein-coupled receptor, GRP receptor (GRPR). Increasing evidence indicates that GRPR-mediated signaling in the central nervous system plays an important role in many physiological processes in mammals. Additionally, we have recently reported that the GRP system within the lumbosacral spinal cord not only controls erection but also triggers ejaculation in male rats. This system of GRP neurons is sexually dimorphic, being prominent in male rats but vestigial or absent in females. It is suggested that the sexually dimorphic GRP/GRPR system in the lumbosacral spinal cord plays a critical role in the regulation of male sexual function. In parallel, it has been reported that the somatosensory GRP/GRPR system in the spinal cord contributes to the regulation of itch specific transmission independently of the pain transmission. Interestingly, these two distinct functions in the same spinal region are both regulated by the neuropeptide, GRP. In this report, we review findings on recently identified GRP/GRPR systems in the spinal cord. These GRP/GRPR systems in the spinal cord provide new insights into pharmacological treatments for psychogenic erectile dysfunction as well as for chronic pruritus.
Collapse
Affiliation(s)
- Keiko Takanami
- Department of Anatomy and Neurobiology, Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Hirotaka Sakamoto
- Ushimado Marine Institute (UMI), Graduate School of Natural Science and Technology, Okayama University, Ushimado, Setouchi, Okayama 701-4303, Japan
| |
Collapse
|
245
|
Zhang X. Targeting TRP ion channels for itch relief. Naunyn Schmiedebergs Arch Pharmacol 2014; 388:389-99. [PMID: 25418889 DOI: 10.1007/s00210-014-1068-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Accepted: 11/11/2014] [Indexed: 12/13/2022]
Abstract
Acute itch (pruritus) is unpleasant and acts as an alerting mechanism for removing irritants. However, severe chronic itch is debilitating and impairs the quality of life. Rapid progress has been made in recent years in our understanding of the fundamental neurobiology of itch. Notably, several temperature-sensitive transient receptor potential (thermo-TRP) ion channels have emerged as critical players in many types of itch, in addition to pain. They serve as markers that define the itch neural pathway. Thermo-TRP ion channels are thus becoming attractive targets for developing effective anti-pruritic therapies.
Collapse
Affiliation(s)
- Xuming Zhang
- Rowett Institute of Nutrition and Health & Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, UK,
| |
Collapse
|
246
|
Perino A, Pols TWH, Nomura M, Stein S, Pellicciari R, Schoonjans K. TGR5 reduces macrophage migration through mTOR-induced C/EBPβ differential translation. J Clin Invest 2014; 124:5424-36. [PMID: 25365223 DOI: 10.1172/jci76289] [Citation(s) in RCA: 154] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Accepted: 09/30/2014] [Indexed: 02/06/2023] Open
Abstract
The bile acid-responsive G protein-coupled receptor TGR5 is involved in several metabolic processes, and recent studies suggest that TGR5 activation may promote pathways that are protective against diet-induced diabetes. Here, we investigated the role of macrophage-specific TGR5 signaling in protecting adipose tissue from inflammation and associated insulin resistance. Examination of adipose tissue from obese mice lacking macrophage Tgr5 revealed enhanced inflammation, increased chemokine expression, and higher macrophage numbers compared with control obese animals. Moreover, macrophage-specific deletion of Tgr5 exacerbated insulin resistance in obese animals. Conversely, pharmacological activation of TGR5 markedly decreased LPS-induced chemokine expression in primary macrophages. This reduction was mediated by AKT-dependent activation of mTOR complex 1, which in turn induced the differential translation of the dominant-negative C/EBPβ isoform, liver inhibitory protein (LIP). Overall, these studies reveal a signaling pathway downstream of TGR5 that modulates chemokine expression in response to high-fat diet and suggest that targeting this pathway has the potential to be therapeutically exploited for prevention of chronic inflammatory diseases and type 2 diabetes mellitus.
Collapse
|
247
|
Veldhuis NA, Poole DP, Grace M, McIntyre P, Bunnett NW. The G Protein–Coupled Receptor–Transient Receptor Potential Channel Axis: Molecular Insights for Targeting Disorders of Sensation and Inflammation. Pharmacol Rev 2014; 67:36-73. [DOI: 10.1124/pr.114.009555] [Citation(s) in RCA: 114] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
248
|
Lieu T, Jayaweera G, Bunnett NW. GPBA: a GPCR for bile acids and an emerging therapeutic target for disorders of digestion and sensation. Br J Pharmacol 2014; 171:1156-66. [PMID: 24111923 DOI: 10.1111/bph.12426] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Revised: 09/03/2013] [Accepted: 09/16/2013] [Indexed: 01/04/2023] Open
Abstract
Bile acids (BAs) are digestive secretions that are necessary for the emulsification and absorption of dietary fats. Given the episodic nature of BA secretion and intestinal re-absorption, the circulating and tissue levels of BAs, like those of the gut hormones, fluctuate in fasting and fed states, and BA levels and forms are markedly affected by disease. BAs exert widespread hormonal-like effects by activating receptors in the nucleus and at the plasma membrane. The nuclear steroid receptors mediate the genomic actions of BAs on BA, glucose and lipid homeostasis. GPBA (TGR5) is a G-protein coupled plasma membrane receptor for BAs that mediates many of the rapid, non-genomic actions of BAs. GPBA has been implicated in the control of glucose homeostasis, inflammation and liver functions. Recent observations have revealed an unexpected role for GPBA in the nervous system. GPBA is expressed by enteric neurons and enterochromaffin cells that control peristalsis, and GPBA mediates the prokinetic actions of BAs in the colon that have been known for millennia. GPBA is also present on primary spinal afferent and spinal neurons that are necessary for sensory transduction. BA-induced activation of GPBA in the sensory nervous system promotes scratching behaviours and analgesia, which may contribute to the pruritus and painless jaundice that are observed in some patients with chronic cholestatic disease, where circulating BA concentrations are markedly increased. Thus, GPBA has emerged as an intriguing target for diverse metabolic, inflammatory, digestive and sensory disorders, where agonists and antagonists may be of value.
Collapse
Affiliation(s)
- T Lieu
- Monash Institute of Pharmaceutical Sciences, Parkville, Vic., Australia
| | | | | |
Collapse
|
249
|
Festa C, Renga B, D’Amore C, Sepe V, Finamore C, De Marino S, Carino A, Cipriani S, Monti MC, Zampella A, Fiorucci S. Exploitation of Cholane Scaffold for the Discovery of Potent and Selective Farnesoid X Receptor (FXR) and G-Protein Coupled Bile Acid Receptor 1 (GP-BAR1) Ligands. J Med Chem 2014; 57:8477-95. [DOI: 10.1021/jm501273r] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Carmen Festa
- Department
of Pharmacy, University of Naples “Federico II”, Via D. Montesano
49, I-80131 Naples, Italy
| | - Barbara Renga
- Department
of Surgery and Biomedical Sciences, Nuova Facoltà di Medicina, P.zza L. Severi, I-06132 Perugia, Italy
| | - Claudio D’Amore
- Department
of Surgery and Biomedical Sciences, Nuova Facoltà di Medicina, P.zza L. Severi, I-06132 Perugia, Italy
| | - Valentina Sepe
- Department
of Pharmacy, University of Naples “Federico II”, Via D. Montesano
49, I-80131 Naples, Italy
| | - Claudia Finamore
- Department
of Pharmacy, University of Naples “Federico II”, Via D. Montesano
49, I-80131 Naples, Italy
| | - Simona De Marino
- Department
of Pharmacy, University of Naples “Federico II”, Via D. Montesano
49, I-80131 Naples, Italy
| | - Adriana Carino
- Department
of Surgery and Biomedical Sciences, Nuova Facoltà di Medicina, P.zza L. Severi, I-06132 Perugia, Italy
| | - Sabrina Cipriani
- Department
of Surgery and Biomedical Sciences, Nuova Facoltà di Medicina, P.zza L. Severi, I-06132 Perugia, Italy
| | - Maria Chiara Monti
- Department
of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, I-84084, Fisciano, Salerno, Italy
| | - Angela Zampella
- Department
of Pharmacy, University of Naples “Federico II”, Via D. Montesano
49, I-80131 Naples, Italy
| | - Stefano Fiorucci
- Department
of Surgery and Biomedical Sciences, Nuova Facoltà di Medicina, P.zza L. Severi, I-06132 Perugia, Italy
| |
Collapse
|
250
|
Lysophosphatidic acid and signaling in sensory neurons. Biochim Biophys Acta Mol Cell Biol Lipids 2014; 1851:61-5. [PMID: 25218302 DOI: 10.1016/j.bbalip.2014.09.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Revised: 08/22/2014] [Accepted: 09/05/2014] [Indexed: 12/23/2022]
Abstract
Lysophosphatidic acid is a potent signaling lipid molecule that has initially been characterized as a growth factor. However, later studies have revealed many more functions such as modulation of cell shape, cell migration, prevention of apoptosis, platelet aggregation, wound healing, osteoclast differentiation, vasopressor activity, embryo implantation, angiogenesis, lung fibrosis, hair growth and more. The molecule mainly acts through the activation of a set of at least 6 G-protein-coupled receptors (LPA1-6), but intracellular LPA was also shown to signal through the activation of the nuclear receptor PPARγ. In this short review we discuss the recent observations which suggest that in pathological conditions LPA also modulates signaling in sensory neurons. Thus, LPA has been shown to play a role in the initiation of neuropathic pain and, more recently, a relation was observed between increased LPA levels in the circulation and cholestatic itch. The mechanism by which this occurs remains to be elucidated. This article is part of a Special Issue entitled Linking transcription to physiology in lipodomics.
Collapse
|