201
|
Lei P, Ayton S, Appukuttan AT, Volitakis I, Adlard PA, Finkelstein DI, Bush AI. Clioquinol rescues Parkinsonism and dementia phenotypes of the tau knockout mouse. Neurobiol Dis 2015; 81:168-75. [PMID: 25796563 DOI: 10.1016/j.nbd.2015.03.015] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Revised: 02/14/2015] [Accepted: 03/12/2015] [Indexed: 10/23/2022] Open
Abstract
Iron accumulation and tau protein deposition are pathological features of Alzheimer's (AD) and Parkinson's diseases (PD). Soluble tau protein is lower in affected regions of these diseases, and we previously reported that tau knockout mice display motor and cognitive behavioral abnormities, brain atrophy, neuronal death in substantia nigra, and iron accumulation in the brain that all emerged between 6 and 12 months of age. This argues for a loss of tau function in AD and PD. We also showed that treatment with the moderate iron chelator, clioquinol (CQ) restored iron levels and prevented neuronal atrophy and attendant behavioral decline in 12-month old tau KO mice when commenced prior to the onset of deterioration (6 months). However, therapies for AD and PD will need to treat the disease once it is already manifest. So, in the current study, we tested whether CQ could also rescue the phenotype of mice with a developed phenotype. We found that 5-month treatment of symptomatic (13 months old) tau KO mice with CQ increased nigral tyrosine hydroxylase phosphorylation (which induces activity) and reversed the motor deficits. Treatment also reversed cognitive deficits and raised BDNF levels in the hippocampus, which was accompanied by attenuated brain atrophy, and reduced iron content in the brain. These data raise the possibility that lowering brain iron levels in symptomatic patients could reverse neuronal atrophy and improve brain function, possibly by elevating neurotrophins.
Collapse
Affiliation(s)
- Peng Lei
- Oxidation Biology Unit, Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Victoria, Australia.
| | - Scott Ayton
- Oxidation Biology Unit, Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Victoria, Australia
| | | | - Irene Volitakis
- Oxidation Biology Unit, Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Victoria, Australia
| | - Paul A Adlard
- Oxidation Biology Unit, Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Victoria, Australia
| | - David I Finkelstein
- Oxidation Biology Unit, Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Victoria, Australia
| | - Ashley I Bush
- Oxidation Biology Unit, Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Victoria, Australia.
| |
Collapse
|
202
|
Liu Y, Wang C, Destin G, Szaro BG. Microtubule-associated protein tau promotes neuronal class II β-tubulin microtubule formation and axon elongation in embryonic Xenopus laevis. Eur J Neurosci 2015; 41:1263-75. [PMID: 25656701 DOI: 10.1111/ejn.12848] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Revised: 12/13/2014] [Accepted: 01/07/2015] [Indexed: 01/06/2023]
Abstract
Compared with its roles in neurodegeneration, much less is known about microtubule-associated protein tau's normal functions in vivo, especially during development. The external development and ease of manipulating gene expression of Xenopus laevis embryos make them especially useful for studying gene function during early development. To study tau's functions in axon outgrowth, we characterized the most prominent tau isoforms of Xenopus embryos and manipulated their expression. None of these four isoforms were strictly analogous to those commonly studied in mammals, as all constitutively contained exon 10, which is preferentially removed from mammalian fetal tau isoforms, as well as exon 8, which in mammals is rare. Nonetheless, like mammalian tau, Xenopus tau exhibited alternative splicing of exon 4a, which in mammals distinguishes 'big' tau of peripheral neurons, and exon 6. Strongly suppressing tau expression with antisense morpholino oligonucleotides only modestly compromised peripheral nerve outgrowth of intact tadpoles, but severely disrupted neuronal microtubules containing class II β-tubulins while leaving other microtubules largely unperturbed. Thus, the relatively mild dependence of axon development on tau likely resulted from having only a single class of microtubules disrupted by its loss. Also, consistent with its greater expression in long peripheral axons, boosting expression of 'big' tau increased neurite outgrowth significantly and enhanced tubulin acetylation more so than did the smaller isoform. These data demonstrate the utility of Xenopus as a tool to gain new insights into tau's functions in vivo.
Collapse
Affiliation(s)
- Yuanyuan Liu
- Department of Biological Sciences and the Center for Neuroscience Research, University at Albany, State University of New York, 1400 Washington Avenue, Albany, NY, 12222, USA
| | - Chen Wang
- Department of Biological Sciences and the Center for Neuroscience Research, University at Albany, State University of New York, 1400 Washington Avenue, Albany, NY, 12222, USA
| | - Giovanny Destin
- Department of Biological Sciences and the Center for Neuroscience Research, University at Albany, State University of New York, 1400 Washington Avenue, Albany, NY, 12222, USA
| | - Ben G Szaro
- Department of Biological Sciences and the Center for Neuroscience Research, University at Albany, State University of New York, 1400 Washington Avenue, Albany, NY, 12222, USA
| |
Collapse
|
203
|
Medina M, Avila J. Further understanding of tau phosphorylation: implications for therapy. Expert Rev Neurother 2015; 15:115-22. [PMID: 25555397 DOI: 10.1586/14737175.2015.1000864] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Tau is a brain microtubule-associated protein that regulates microtubule structure and function. Prominent tau neurofibrillary pathology is a common feature in a number of neurodegenerative disorders collectively referred to as tauopathies, the most common of which is Alzheimer's disease. Beyond its classical role as a microtubule-associated protein, recent advances in our understanding of tau cellular functions have unveiled novel important tau cellular functions that may also play a pivotal role in pathogenesis and render novel targets for therapeutic intervention. Regulation of tau behavior and function under physiological and pathological conditions is mainly achieved through post-translational modifications, especially phosphorylation, which has significant implications for the development of novel therapeutic approaches in a number of neurodegenerative disorders.
Collapse
Affiliation(s)
- Miguel Medina
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Valderrebollo 5, 28041-Madrid, Spain
| | | |
Collapse
|
204
|
Cheng JS, Craft R, Yu GQ, Ho K, Wang X, Mohan G, Mangnitsky S, Ponnusamy R, Mucke L. Tau reduction diminishes spatial learning and memory deficits after mild repetitive traumatic brain injury in mice. PLoS One 2014; 9:e115765. [PMID: 25551452 PMCID: PMC4281043 DOI: 10.1371/journal.pone.0115765] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Accepted: 12/01/2014] [Indexed: 12/17/2022] Open
Abstract
OBJECTIVE Because reduction of the microtubule-associated protein Tau has beneficial effects in mouse models of Alzheimer's disease and epilepsy, we wanted to determine whether this strategy can also improve the outcome of mild traumatic brain injury (TBI). METHODS We adapted a mild frontal impact model of TBI for wildtype C57Bl/6J mice and characterized the behavioral deficits it causes in these animals. The Barnes maze, Y maze, contextual and cued fear conditioning, elevated plus maze, open field, balance beam, and forced swim test were used to assess different behavioral functions. Magnetic resonance imaging (MRI, 7 Tesla) and histological analysis of brain sections were used to look for neuropathological alterations. We also compared the functional effects of this TBI model and of controlled cortical impact in mice with two, one or no Tau alleles. RESULTS Repeated (2-hit), but not single (1-hit), mild frontal impact impaired spatial learning and memory in wildtype mice as determined by testing of mice in the Barnes maze one month after the injury. Locomotor activity, anxiety, depression and fear related behaviors did not differ between injured and sham-injured mice. MRI imaging did not reveal focal injury or mass lesions shortly after the injury. Complete ablation or partial reduction of tau prevented deficits in spatial learning and memory after repeated mild frontal impact. Complete tau ablation also showed a trend towards protection after a single controlled cortical impact. Complete or partial reduction of tau also reduced the level of axonopathy in the corpus callosum after repeated mild frontal impact. INTERPRETATION Tau promotes or enables the development of learning and memory deficits and of axonopathy after mild TBI, and tau reduction counteracts these adverse effects.
Collapse
Affiliation(s)
- Jason S. Cheng
- Gladstone Institute of Neurological Disease, San Francisco, California, United States of America
- Department of Neurological Surgery, University of California San Francisco, San Francisco, California, United States of America
| | - Ryan Craft
- Gladstone Institute of Neurological Disease, San Francisco, California, United States of America
| | - Gui-Qiu Yu
- Gladstone Institute of Neurological Disease, San Francisco, California, United States of America
| | - Kaitlyn Ho
- Gladstone Institute of Neurological Disease, San Francisco, California, United States of America
| | - Xin Wang
- Gladstone Institute of Neurological Disease, San Francisco, California, United States of America
| | - Geetha Mohan
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California, United States of America
| | - Sergey Mangnitsky
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California, United States of America
| | - Ravikumar Ponnusamy
- Gladstone Institute of Neurological Disease, San Francisco, California, United States of America
| | - Lennart Mucke
- Gladstone Institute of Neurological Disease, San Francisco, California, United States of America
- Department of Neurology, University of California San Francisco, California, United States of America
| |
Collapse
|
205
|
Rubenstein R, Chang B, Davies P, Wagner AK, Robertson CS, Wang KKW. A novel, ultrasensitive assay for tau: potential for assessing traumatic brain injury in tissues and biofluids. J Neurotrauma 2014; 32:342-52. [PMID: 25177776 DOI: 10.1089/neu.2014.3548] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Traumatic brain injury (TBI) is a cause of death and disability and can lead to tauopathy-related dementia at an early age. Pathologically, TBI results in axonal injury that is coupled to tau hyperphosphorylation, leading to microtubule instability and tau-mediated neurodegeneration. This suggests that the forms of this protein might serve as neuroinjury-related biomarkers for diagnosis of injury severity and prognosis of the neurological damage prior to clinical expression. We initially determined whether we could detect tau in body fluids using a highly sensitive assay. We used a novel immunoassay, enhanced immunoassay using multi-arrayed fiberoptics (EIMAF) either alone or in combination with rolling circle amplification (a-EIMAF) for the detection of total (T) and phosphorylated (P) tau proteins from brains and biofluids (blood, CSF) of rodents following controlled cortical impact (CCI) and human patients post severe TBI (sTBI). This assay technology for tau is the most sensitive to date with a detection limit of approximately 100 ag/mL for either T-tau and P-tau. In the rodent models, T-tau and P-tau levels in brain and blood increased following CCI during the acute phase and remained high during the chronic phase (30 d). In human CSF samples, T-tau and P-tau increased during the sampling period (5-6 d). T-tau and P-tau in human serum rose during the acute phase and decreased during the chronic stage but was still detectable beyond six months post sTBI. Thus, EIMAF has the potential for assessing both the severity of the proximal injury and the prognosis using easily accessible samples.
Collapse
Affiliation(s)
- Richard Rubenstein
- 1 Departments of Neurology and Physiology/Pharmacology, State University of New York Downstate Medical Center , Brooklyn, New York
| | | | | | | | | | | |
Collapse
|
206
|
Selective impact of Tau loss on nociceptive primary afferents and pain sensation. Exp Neurol 2014; 261:486-93. [DOI: 10.1016/j.expneurol.2014.07.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Revised: 07/08/2014] [Accepted: 07/20/2014] [Indexed: 01/06/2023]
|
207
|
Henriques AG, Oliveira JM, Carvalho LP, da Cruz E Silva OAB. Aβ Influences Cytoskeletal Signaling Cascades with Consequences to Alzheimer's Disease. Mol Neurobiol 2014; 52:1391-1407. [PMID: 25344315 DOI: 10.1007/s12035-014-8913-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Accepted: 09/28/2014] [Indexed: 01/16/2023]
Abstract
Abnormal signal transduction events can impact upon the cytoskeleton, affecting the actin and microtubule networks with direct relevance to Alzheimer's disease (AD). Cytoskeletal anomalies, in turn, promote atypical neuronal responses, with consequences for cellular organization and function. Neuronal cytoskeletal modifications in AD include neurofibrillary tangles, which result from aggregates of hyperphosphorylated tau protein. The latter is a microtubule (MT)-binding protein, whose abnormal phosphorylation leads to MT instability and consequently provokes irregularities in the neuronal trafficking pathways. Early stages of AD are also characterized by synaptic dysfunction and loss of dendritic spines, which correlate with cognitive deficit and impaired brain function. Actin dynamics has a prominent role in maintaining spine plasticity and integrity, thus providing the basis for memory and learning processes. Hence, factors that disrupt both actin and MT network dynamics will compromise neuronal function and survival. The peptide Aβ is the major component of senile plaques and has been described as a pivotal mediator of neuronal dystrophy and synaptic loss in AD. Here, we review Aβ-mediated effects on both MT and actin networks and focus on the relevance of the elicited cytoskeletal signaling events targeted in AD pathology.
Collapse
Affiliation(s)
- Ana Gabriela Henriques
- Laboratório de Neurociências e Sinalização, Centro de Biologia Celular, SACS, Universidade de Aveiro, 3810-193, Aveiro, Portugal
| | - Joana Machado Oliveira
- Laboratório de Neurociências e Sinalização, Centro de Biologia Celular, SACS, Universidade de Aveiro, 3810-193, Aveiro, Portugal
| | - Liliana Patrícia Carvalho
- Laboratório de Neurociências e Sinalização, Centro de Biologia Celular, SACS, Universidade de Aveiro, 3810-193, Aveiro, Portugal
| | - Odete A B da Cruz E Silva
- Laboratório de Neurociências e Sinalização, Centro de Biologia Celular, SACS, Universidade de Aveiro, 3810-193, Aveiro, Portugal.
| |
Collapse
|
208
|
Gerson JE, Castillo-Carranza DL, Kayed R. Advances in therapeutics for neurodegenerative tauopathies: moving toward the specific targeting of the most toxic tau species. ACS Chem Neurosci 2014; 5:752-69. [PMID: 25075869 DOI: 10.1021/cn500143n] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Neurodegenerative disease is one of the greatest health concerns today and with no effective treatment in sight, it is crucial that researchers find a safe and successful therapeutic. While neurofibrillary tangles are considered the primary tauopathy hallmark, more evidence continues to come to light to suggest that soluble, intermediate tau aggregates--tau oligomers--are the most toxic species in disease. These intermediate tau species may also be responsible for the spread of pathology, suggesting that oligomeric tau may be the best therapeutic target. Here, we summarize results for the modulation of tau by molecular chaperones, small molecules and aggregation inhibitors, post-translational modifications, immunotherapy, other techniques, and future directions.
Collapse
Affiliation(s)
- Julia E. Gerson
- Department
of Neurology, George and Cynthia Mitchell
Center for Alzheimer’s Disease Research, University of Texas Medical Branch, Galveston, Texas 77555, United States
| | - Diana L. Castillo-Carranza
- Department
of Neurology, George and Cynthia Mitchell
Center for Alzheimer’s Disease Research, University of Texas Medical Branch, Galveston, Texas 77555, United States
| | - Rakez Kayed
- Department
of Neurology, George and Cynthia Mitchell
Center for Alzheimer’s Disease Research, University of Texas Medical Branch, Galveston, Texas 77555, United States
| |
Collapse
|
209
|
Lost after translation: missorting of Tau protein and consequences for Alzheimer disease. Trends Neurosci 2014; 37:721-32. [PMID: 25223701 DOI: 10.1016/j.tins.2014.08.004] [Citation(s) in RCA: 205] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Revised: 08/08/2014] [Accepted: 08/12/2014] [Indexed: 12/19/2022]
Abstract
Tau is a microtubule-associated-protein that is sorted into neuronal axons in physiological conditions. In Alzheimer disease (AD) and other tauopathies, Tau sorting mechanisms fail and Tau becomes missorted into the somatodendritic compartment. In AD, aberrant amyloid-β (Aβ) production might trigger Tau missorting. The physiological axonal sorting of Tau depends on the developmental stage of the neuron, the phosphorylation state of Tau and the microtubule cytoskeleton. Disease-associated missorting of Tau is connected to increased phosphorylation and aggregation of Tau, and impaired microtubule interactions. Disease-causing mechanisms involve impaired transport, aberrant kinase activation, non-physiological interactions of Tau, and prion-like spreading. In this review we focus on the physiological and pathological (mis)sorting of Tau, the underlying mechanisms, and effects in disease.
Collapse
|
210
|
Castro-Alvarez JF, Uribe-Arias SA, Mejía-Raigosa D, Cardona-Gómez GP. Cyclin-dependent kinase 5, a node protein in diminished tauopathy: a systems biology approach. Front Aging Neurosci 2014; 6:232. [PMID: 25225483 PMCID: PMC4150361 DOI: 10.3389/fnagi.2014.00232] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Accepted: 08/11/2014] [Indexed: 11/23/2022] Open
Abstract
Alzheimer's disease (AD) is the most common cause of dementia worldwide. One of the main pathological changes that occurs in AD is the intracellular accumulation of hyperphosphorylated Tau protein in neurons. Cyclin-dependent kinase 5 (CDK5) is one of the major kinases involved in Tau phosphorylation, directly phosphorylating various residues and simultaneously regulating various substrates such as kinases and phosphatases that influence Tau phosphorylation in a synergistic and antagonistic way. It remains unknown how the interaction between CDK5 and its substrates promotes Tau phosphorylation, and systemic approaches are needed that allow an analysis of all the proteins involved. In this review, the role of the CDK5 signaling pathway in Tau hyperphosphorylation is described, an in silico model of the CDK5 signaling pathway is presented. The relationship among these theoretical and computational models shows that the regulation of Tau phosphorylation by PP2A and glycogen synthase kinase 3β (GSK3β) is essential under basal conditions and also describes the leading role of CDK5 under excitotoxic conditions, where silencing of CDK5 can generate changes in these enzymes to reverse a pathological condition that simulates AD.
Collapse
Affiliation(s)
- John F Castro-Alvarez
- Neuroscience Group of Antioquia, Cellular and Molecular Neurobiology Area, Faculty of Medicine, University of Antioquia, Sede de Investigación Universitaria Medellin, Colombia
| | - S Alejandro Uribe-Arias
- Neuroscience Group of Antioquia, Cellular and Molecular Neurobiology Area, Faculty of Medicine, University of Antioquia, Sede de Investigación Universitaria Medellin, Colombia
| | - Daniel Mejía-Raigosa
- Group of Biophysics, Faculty of Exact and Natural Sciences, Institute of Physics, University of Antioquia Medellin, Colombia
| | - Gloria P Cardona-Gómez
- Neuroscience Group of Antioquia, Cellular and Molecular Neurobiology Area, Faculty of Medicine, University of Antioquia, Sede de Investigación Universitaria Medellin, Colombia
| |
Collapse
|
211
|
Janning D, Igaev M, Sündermann F, Brühmann J, Beutel O, Heinisch JJ, Bakota L, Piehler J, Junge W, Brandt R. Single-molecule tracking of tau reveals fast kiss-and-hop interaction with microtubules in living neurons. Mol Biol Cell 2014; 25:3541-51. [PMID: 25165145 PMCID: PMC4230615 DOI: 10.1091/mbc.e14-06-1099] [Citation(s) in RCA: 129] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The microtubule-associated phosphoprotein tau regulates microtubule dynamics and is involved in neurodegenerative diseases collectively called tauopathies. It is generally believed that the vast majority of tau molecules decorate axonal microtubules, thereby stabilizing them. However, it is an open question how tau can regulate microtubule dynamics without impeding microtubule-dependent transport and how tau is also available for interactions other than those with microtubules. Here we address this apparent paradox by fast single-molecule tracking of tau in living neurons and Monte Carlo simulations of tau dynamics. We find that tau dwells on a single microtubule for an unexpectedly short time of ∼40 ms before it hops to the next. This dwell time is 100-fold shorter than previously reported by ensemble measurements. Furthermore, we observed by quantitative imaging using fluorescence decay after photoactivation recordings of photoactivatable GFP-tagged tubulin that, despite this rapid dynamics, tau is capable of regulating the tubulin-microtubule balance. This indicates that tau's dwell time on microtubules is sufficiently long to influence the lifetime of a tubulin subunit in a GTP cap. Our data imply a novel kiss-and-hop mechanism by which tau promotes neuronal microtubule assembly. The rapid kiss-and-hop interaction explains why tau, although binding to microtubules, does not interfere with axonal transport.
Collapse
Affiliation(s)
- Dennis Janning
- Department of Neurobiology, University of Osnabrück, D-49076 Osnabrück, Germany
| | - Maxim Igaev
- Department of Neurobiology, University of Osnabrück, D-49076 Osnabrück, Germany
| | - Frederik Sündermann
- Department of Neurobiology, University of Osnabrück, D-49076 Osnabrück, Germany
| | - Jörg Brühmann
- Department of Neurobiology, University of Osnabrück, D-49076 Osnabrück, Germany
| | - Oliver Beutel
- Department of Biophysics, University of Osnabrück, D-49076 Osnabrück, Germany
| | - Jürgen J Heinisch
- Department of Genetics, University of Osnabrück, D-49076 Osnabrück, Germany
| | - Lidia Bakota
- Department of Neurobiology, University of Osnabrück, D-49076 Osnabrück, Germany
| | - Jacob Piehler
- Department of Biophysics, University of Osnabrück, D-49076 Osnabrück, Germany
| | - Wolfgang Junge
- Department of Biophysics, University of Osnabrück, D-49076 Osnabrück, Germany
| | - Roland Brandt
- Department of Neurobiology, University of Osnabrück, D-49076 Osnabrück, Germany
| |
Collapse
|
212
|
Lei P, Ayton S, Moon S, Zhang Q, Volitakis I, Finkelstein DI, Bush AI. Motor and cognitive deficits in aged tau knockout mice in two background strains. Mol Neurodegener 2014; 9:29. [PMID: 25124182 PMCID: PMC4141346 DOI: 10.1186/1750-1326-9-29] [Citation(s) in RCA: 107] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Accepted: 08/10/2014] [Indexed: 11/13/2022] Open
Abstract
Background We recently reported that Parkinsonian and dementia phenotypes emerge between 7-12 months of age in tau-/- mice on a Bl6/129sv mixed background. These observations were partially replicated by another group using pure Bl6 background tau-/- mice, but notably they did not observe a cognitive phenotype. A third group using Bl6 background tau-/- mice found cognitive impairment at 20-months of age. Results To reconcile the observations, here we considered the genetic, dietary and environmental variables in both studies, and performed an extended set of behavioral studies on 12-month old tau+/+, tau+/-, and tau-/- mice comparing Bl6/129sv to Bl6 backgrounds. We found that tau-/- in both backgrounds exhibited reduced tyrosine hydroxylase-positive nigral neuron and impaired motor function in all assays used, which was ameliorated by oral treatment with L-DOPA, and not confounded by changes in body weight. Tau-/- in the C57BL6/SV129 background exhibited deficits in the Y-maze cognition task, but the mice on the Bl6 background did not. Conclusions These results validate our previous report on the neurodegenerative phenotypes of aged tau-/- mice, and show that genetic background may impact the extent of cognitive impairment in these mice. Therefore excessive lowering of tau should be avoided in therapeutic strategies for AD.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Ashley I Bush
- Oxidation Biology Unit, Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Melbourne, Victoria, Australia.
| |
Collapse
|
213
|
Gheyara AL, Ponnusamy R, Djukic B, Craft RJ, Ho K, Guo W, Finucane MM, Sanchez PE, Mucke L. Tau reduction prevents disease in a mouse model of Dravet syndrome. Ann Neurol 2014; 76:443-56. [PMID: 25042160 PMCID: PMC4338764 DOI: 10.1002/ana.24230] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Revised: 07/08/2014] [Accepted: 07/09/2014] [Indexed: 12/12/2022]
Abstract
Objective Reducing levels of the microtubule-associated protein tau has shown promise as a potential treatment strategy for diseases with secondary epileptic features such as Alzheimer disease. We wanted to determine whether tau reduction may also be of benefit in intractable genetic epilepsies. Methods We studied a mouse model of Dravet syndrome, a severe childhood epilepsy caused by mutations in the human SCN1A gene encoding the voltage-gated sodium channel subunit Nav1.1. We genetically deleted 1 or 2 Tau alleles in mice carrying an Nav1.1 truncation mutation (R1407X) that causes Dravet syndrome in humans, and examined their survival, epileptic activity, related hippocampal alterations, and behavioral abnormalities using observation, electroencephalographic recordings, acute slice electrophysiology, immunohistochemistry, and behavioral assays. Results Tau ablation prevented the high mortality of Dravet mice and reduced the frequency of spontaneous and febrile seizures. It reduced interictal epileptic spikes in vivo and drug-induced epileptic activity in brain slices ex vivo. Tau ablation also prevented biochemical changes in the hippocampus indicative of epileptic activity and ameliorated abnormalities in learning and memory, nest building, and open field behaviors in Dravet mice. Deletion of only 1 Tau allele was sufficient to suppress epileptic activity and improve survival and nesting performance. Interpretation Tau reduction may be of therapeutic benefit in Dravet syndrome and other intractable genetic epilepsies. Ann Neurol 2014;76:443–456
Collapse
Affiliation(s)
- Ania L Gheyara
- Gladstone Institute of Neurological Disease, University of California, San Francisco, San Francisco, CA; Departments of Pathology, University of California, San Francisco, San Francisco, CA
| | | | | | | | | | | | | | | | | |
Collapse
|
214
|
Huntington's disease is a four-repeat tauopathy with tau nuclear rods. Nat Med 2014; 20:881-5. [PMID: 25038828 DOI: 10.1038/nm.3617] [Citation(s) in RCA: 170] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Accepted: 06/03/2014] [Indexed: 11/09/2022]
Abstract
An imbalance of tau isoforms containing either three or four microtubule-binding repeats causes frontotemporal dementia with parkinsonism linked to chromosome 17 (FTDP-17) in families with intronic mutations in the MAPT gene. Here we report equivalent imbalances at the mRNA and protein levels and increased total tau levels in the brains of subjects with Huntington's disease (HD) together with rod-like tau deposits along neuronal nuclei. These tau nuclear rods show an ordered filamentous ultrastructure and can be found filling the neuronal nuclear indentations previously reported in HD brains. Finally, alterations in serine/arginine-rich splicing factor-6 coincide with tau missplicing, and a role of tau in HD pathogenesis is evidenced by the attenuation of motor abnormalities of mutant HTT transgenic mice in tau knockout backgrounds.
Collapse
|
215
|
Liu G, Dwyer T. Microtubule dynamics in axon guidance. Neurosci Bull 2014; 30:569-83. [PMID: 24968808 DOI: 10.1007/s12264-014-1444-6] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Accepted: 04/10/2014] [Indexed: 12/18/2022] Open
Abstract
Precise modulation of the cytoskeleton is involved in a variety of cellular processes including cell division, migration, polarity, and adhesion. In developing post-mitotic neurons, extracellular guidance cues not only trigger signaling cascades that act at a distance to indirectly regulate microtubule distribution, and assembly and disassembly in the growth cone, but also directly modulate microtubule stability and dynamics through coupling of guidance receptors with microtubules to control growth-cone turning. Microtubule-associated proteins including classical microtubule-associated proteins and microtubule plus-end tracking proteins are required for modulating microtubule dynamics to influence growth-cone steering. Multiple key signaling components, such as calcium, small GTPases, glycogen synthase kinase-3β, and c-Jun N-terminal kinase, link upstream signal cascades to microtubule stability and dynamics in the growth cone to control axon outgrowth and projection. Understanding the functions and regulation of microtubule dynamics in the growth cone provides new insights into the molecular mechanisms of axon guidance.
Collapse
Affiliation(s)
- Guofa Liu
- Department of Biological Sciences, University of Toledo, Toledo, OH, 43606, USA,
| | | |
Collapse
|
216
|
Lang AE, Riherd Methner DN, Ferreira A. Neuronal degeneration, synaptic defects, and behavioral abnormalities in tau₄₅₋₂₃₀ transgenic mice. Neuroscience 2014; 275:322-39. [PMID: 24952329 DOI: 10.1016/j.neuroscience.2014.06.017] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Revised: 06/09/2014] [Accepted: 06/10/2014] [Indexed: 01/08/2023]
Abstract
The complement of mechanisms underlying tau pathology in neurodegenerative disorders has yet to be elucidated. Among these mechanisms, abnormal tau phosphorylation has received the most attention because neurofibrillary tangles present in Alzheimer's disease (AD) and related disorders known as tauopathies are composed of hyperphosphorylated forms of this microtubule-associated protein. More recently, we showed that calpain-mediated cleavage leading to the generation of the 17kDa tau₄₅₋₂₃₀ fragment is a conserved mechanism in these diseases. To obtain insights into the role of this fragment in neurodegeneration, we generated transgenic mice that express tau₄₅₋₂₃₀ and characterized their phenotype. Our results showed a significant increase in cell death in the hippocampal pyramidal cell layer of transgenic tau₄₅₋₂₃₀ mice when compared to wild-type controls. In addition, significant synapse loss was detected as early as six months after birth in transgenic hippocampal neurons. These synaptic changes were accompanied by alterations in the expression of the N-methyl-d-aspartate glutamate (NMDA) receptor subunits. Furthermore, functional abnormalities were detected in the transgenic mice using Morris Water Maze and fear conditioning tests. These results suggest that the accumulation of tau₄₅₋₂₃₀ is responsible, at least in part, for neuronal degeneration and some behavioral changes in AD and other tauopathies. Collectively, these data provide the first direct evidence of the toxic effects of a tau fragment biologically produced in the context of these diseases in vertebrate neurons that develop in situ.
Collapse
Affiliation(s)
- A E Lang
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, United States
| | - D N Riherd Methner
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, United States
| | - A Ferreira
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, United States.
| |
Collapse
|
217
|
Bolkan BJ, Kretzschmar D. Loss of Tau results in defects in photoreceptor development and progressive neuronal degeneration in Drosophila. Dev Neurobiol 2014; 74:1210-25. [PMID: 24909306 DOI: 10.1002/dneu.22199] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Revised: 05/28/2014] [Accepted: 06/04/2014] [Indexed: 12/20/2022]
Abstract
Accumulations of Tau, a microtubule-associated protein (MAP), into neurofibrillary tangles is a hallmark of Alzheimer's disease and other tauopathies. However, the mechanisms leading to this pathology are still unclear: the aggregates themselves could be toxic or the sequestration of Tau into tangles might prevent Tau from fulfilling its normal functions, thereby inducing a loss of function defect. Surprisingly, the consequences of losing normal Tau expression in vivo are still not well understood, in part due to the fact that Tau knockout mice show only subtle phenotypes, presumably due to the fact that mammals express several MAPs with partially overlapping functions. In contrast, flies express fewer MAP, with Tau being the only member of the Tau/MAP2/MAP4 family. Therefore, we used Drosophila to address the physiological consequences caused by the loss of Tau. Reducing the levels of fly Tau (dTau) ubiquitously resulted in developmental lethality, whereas deleting Tau specifically in neurons or the eye caused progressive neurodegeneration. Similarly, chromosomal mutations affecting dTau also caused progressive degeneration in both the eye and brain. Although photoreceptor cells initially developed normally in dTau knockdown animals, they subsequently degenerated during late pupal stages whereas weaker dTau alleles caused an age-dependent defect in rhabdomere structure. Expression of wild type human Tau partially rescued the neurodegenerative phenotype caused by the loss of endogenous dTau, suggesting that the functions of Tau proteins are functionally conserved from flies to humans.
Collapse
Affiliation(s)
- Bonnie J Bolkan
- Oregon Institute of Occupational Health Sciences, Oregon Health & Science University, Portland, Oregon, 97239
| | | |
Collapse
|
218
|
Holmes BB, Diamond MI. Prion-like properties of Tau protein: the importance of extracellular Tau as a therapeutic target. J Biol Chem 2014; 289:19855-61. [PMID: 24860099 DOI: 10.1074/jbc.r114.549295] [Citation(s) in RCA: 155] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Work over the past 4 years indicates that multiple proteins associated with neurodegenerative diseases, especially Tau and α-synuclein, can propagate aggregates between cells in a prion-like manner. This means that once an aggregate is formed it can escape the cell of origin, contact a connected cell, enter the cell, and induce further aggregation via templated conformational change. The prion model predicts a key role for extracellular protein aggregates in mediating progression of disease. This suggests new therapeutic approaches based on blocking neuronal uptake of protein aggregates and promoting their clearance. This will likely include therapeutic antibodies or small molecules, both of which can be developed and optimized in vitro prior to preclinical studies.
Collapse
Affiliation(s)
- Brandon B Holmes
- From the Department of Neurology, Washington University in St. Louis, St. Louis, Missouri 63110
| | - Marc I Diamond
- From the Department of Neurology, Washington University in St. Louis, St. Louis, Missouri 63110
| |
Collapse
|
219
|
Cognition and hippocampal synaptic plasticity in mice with a homozygous tau deletion. Neurobiol Aging 2014; 35:2474-2478. [PMID: 24913895 DOI: 10.1016/j.neurobiolaging.2014.05.005] [Citation(s) in RCA: 107] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2013] [Revised: 03/24/2014] [Accepted: 05/02/2014] [Indexed: 02/05/2023]
Abstract
Tau has been implicated in the organization, stabilization, and dynamics of microtubules. In Alzheimer's disease and more than 20 neurologic disorders tau missorting, hyperphosphorylation, and aggregation is a hallmark. They are collectively referred to as tauopathies. Although the impact of human tauopathies on cognitive processes has been explored in transgenic mouse models, the functional consequences of tau deletion on cognition are far less investigated. Here, we subjected tau knock-out (KO) mice to a battery of neurocognitive, behavioral, and electrophysiological tests. Although KO and wild-type mice were indistinguishable in motor abilities, exploratory and anxiety behavior, KO mice showed impaired contextual and cued fear conditioning. In contrast, extensive spatial learning in the water maze resulted in better performance of KO mice during acquisition. In electrophysiological experiments, basal synaptic transmission and paired-pulse facilitation in the hippocampal CA1-region were unchanged. Interestingly, deletion of tau resulted in severe deficits in long-term potentiation but not long-term depression. Our results suggest a role of tau in certain cognitive functions and implicate long-term potentiation as the relevant physiological substrate.
Collapse
|
220
|
Seizure resistance without parkinsonism in aged mice after tau reduction. Neurobiol Aging 2014; 35:2617-2624. [PMID: 24908165 DOI: 10.1016/j.neurobiolaging.2014.05.001] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Revised: 04/07/2014] [Accepted: 05/02/2014] [Indexed: 01/22/2023]
Abstract
Tau is an emerging target for Alzheimer's disease (AD) and other conditions with epileptiform activity. Genetic tau reduction (in Tau(+/-) and Tau(-/-) mice) prevents deficits in AD models and has an excitoprotective effect, increasing resistance to seizures, without causing apparent neuronal dysfunction. However, most studies of tau reduction have been conducted in <1-year-old mice, and the effects of tau reduction in aged mice are less clear. Specifically, whether the excitoprotective effects of tau reduction persist with aging is unknown and whether tau reduction causes neuronal dysfunction, including parkinsonism, with aging is controversial. Here, we performed a comprehensive analysis of 2-year-old Tau(+/+), Tau(+/-), and Tau(-/-) mice. In aged mice, tau reduction still conferred resistance to pentylenetetrazole-induced seizures. Moreover, tau reduction did not cause parkinsonian abnormalities in dopamine levels or motor function and did not cause iron accumulation or impaired cognition, although Tau(-/-) mice had mild hyperactivity and decreased brain weight. Importantly, the excitoprotective effect in aged Tau(+/-) mice was not accompanied by detectable abnormalities, indicating that partially reducing tau or blocking its function may be a safe and effective therapeutic approach for AD and other conditions with increased excitability.
Collapse
|
221
|
Petry FR, Pelletier J, Bretteville A, Morin F, Calon F, Hébert SS, Whittington RA, Planel E. Specificity of anti-tau antibodies when analyzing mice models of Alzheimer's disease: problems and solutions. PLoS One 2014; 9:e94251. [PMID: 24788298 PMCID: PMC4008431 DOI: 10.1371/journal.pone.0094251] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2013] [Accepted: 03/13/2014] [Indexed: 12/29/2022] Open
Abstract
Aggregates of hyperphosphorylated tau protein are found in a group of diseases called tauopathies, which includes Alzheimer's disease. The causes and consequences of tau hyperphosphorylation are routinely investigated in laboratory animals. Mice are the models of choice as they are easily amenable to transgenic technology; consequently, their tau phosphorylation levels are frequently monitored by Western blotting using a panel of monoclonal/polyclonal anti-tau antibodies. Given that mouse secondary antibodies can recognize endogenous mouse immunoglobulins (Igs) and the possible lack of specificity with some polyclonal antibodies, non-specific signals are commonly observed. Here, we characterized the profiles of commonly used anti-tau antibodies in four different mouse models: non-transgenic mice, tau knock-out (TKO) mice, 3xTg-AD mice, and hypothermic mice, the latter a positive control for tau hyperphosphorylation. We identified 3 tau monoclonal antibody categories: type 1, characterized by high non-specificity (AT8, AT180, MC1, MC6, TG-3), type 2, demonstrating low non-specificity (AT270, CP13, CP27, Tau12, TG5), and type 3, with no non-specific signal (DA9, PHF-1, Tau1, Tau46). For polyclonal anti-tau antibodies, some displayed non-specificity (pS262, pS409) while others did not (pS199, pT205, pS396, pS404, pS422, A0024). With monoclonal antibodies, most of the interfering signal was due to endogenous Igs and could be eliminated by different techniques: i) using secondary antibodies designed to bind only non-denatured Igs, ii) preparation of a heat-stable fraction, iii) clearing Igs from the homogenates, and iv) using secondary antibodies that only bind the light chain of Igs. All of these techniques removed the non-specific signal; however, the first and the last methods were easier and more reliable. Overall, our study demonstrates a high risk of artefactual signal when performing Western blotting with routinely used anti-tau antibodies, and proposes several solutions to avoid non-specific results. We strongly recommend the use of negative (i.e., TKO) and positive (i.e., hypothermic) controls in all experiments.
Collapse
Affiliation(s)
- Franck R. Petry
- Université Laval, Faculté de Médecine, Départment de Psychiatrie et Neurosciences, Québec, Canada
- Centre de Recherche du CHU de Québec, CHUL, Axe Neurosciences, Québec, Canada
| | - Jérôme Pelletier
- Université Laval, Faculté de Médecine, Départment de Psychiatrie et Neurosciences, Québec, Canada
- Centre de Recherche du CHU de Québec, CHUL, Axe Neurosciences, Québec, Canada
| | - Alexis Bretteville
- Université Laval, Faculté de Médecine, Départment de Psychiatrie et Neurosciences, Québec, Canada
- Centre de Recherche du CHU de Québec, CHUL, Axe Neurosciences, Québec, Canada
| | - Françoise Morin
- Centre de Recherche du CHU de Québec, CHUL, Axe Neurosciences, Québec, Canada
| | - Frédéric Calon
- Université Laval, Faculté de Pharmacie, Québec, Canada
- Centre de Recherche du CHU de Québec, CHUL, Axe Neurosciences, Québec, Canada
| | - Sébastien S. Hébert
- Université Laval, Faculté de Médecine, Départment de Psychiatrie et Neurosciences, Québec, Canada
- Centre de Recherche du CHU de Québec, CHUL, Axe Neurosciences, Québec, Canada
| | - Robert A. Whittington
- Department of Anesthesiology, College of Physicians and Surgeons, Columbia University, New York, New York, United States of America
| | - Emmanuel Planel
- Université Laval, Faculté de Médecine, Départment de Psychiatrie et Neurosciences, Québec, Canada
- Centre de Recherche du CHU de Québec, CHUL, Axe Neurosciences, Québec, Canada
- * E-mail:
| |
Collapse
|
222
|
Yuzwa SA, Vocadlo DJ. O-GlcNAc and neurodegeneration: biochemical mechanisms and potential roles in Alzheimer's disease and beyond. Chem Soc Rev 2014; 43:6839-58. [PMID: 24759912 DOI: 10.1039/c4cs00038b] [Citation(s) in RCA: 187] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Alzheimer disease (AD) is a growing problem for aging populations worldwide. Despite significant efforts, no therapeutics are available that stop or slow progression of AD, which has driven interest in the basic causes of AD and the search for new therapeutic strategies. Longitudinal studies have clarified that defects in glucose metabolism occur in patients exhibiting Mild Cognitive Impairment (MCI) and glucose hypometabolism is an early pathological change within AD brain. Further, type 2 diabetes mellitus (T2DM) is a strong risk factor for the development of AD. These findings have stimulated interest in the possibility that disrupted glucose regulated signaling within the brain could contribute to the progression of AD. One such process of interest is the addition of O-linked N-acetylglucosamine (O-GlcNAc) residues onto nuclear and cytoplasmic proteins within mammals. O-GlcNAc is notably abundant within brain and is present on hundreds of proteins including several, such as tau and the amyloid precursor protein, which are involved in the pathophysiology AD. The cellular levels of O-GlcNAc are coupled to nutrient availability through the action of just two enzymes. O-GlcNAc transferase (OGT) is the glycosyltransferase that acts to install O-GlcNAc onto proteins and O-GlcNAcase (OGA) is the glycoside hydrolase that acts to remove O-GlcNAc from proteins. Uridine 5'-diphosphate-N-acetylglucosamine (UDP-GlcNAc) is the donor sugar substrate for OGT and its levels vary with cellular glucose availability because it is generated from glucose through the hexosamine biosynthetic pathway (HBSP). Within the brains of AD patients O-GlcNAc levels have been found to be decreased and aggregates of tau appear to lack O-GlcNAc entirely. Accordingly, glucose hypometabolism within the brain may result in disruption of the normal functions of O-GlcNAc within the brain and thereby contribute to downstream neurodegeneration. While this hypothesis remains largely speculative, recent studies using different mouse models of AD have demonstrated the protective benefit of pharmacologically increased brain O-GlcNAc levels. In this review we summarize the state of knowledge in the area of O-GlcNAc as it pertains to AD while also addressing some of the basic biochemical roles of O-GlcNAc and how these might contribute to protecting against AD and other neurodegenerative diseases.
Collapse
Affiliation(s)
- Scott A Yuzwa
- Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Dr, Burnaby, BC V5A 1S6, Canada
| | | |
Collapse
|
223
|
New perspectives on the role of tau in Alzheimer's disease. Implications for therapy. Biochem Pharmacol 2014; 88:540-7. [PMID: 24462919 DOI: 10.1016/j.bcp.2014.01.013] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Revised: 01/10/2014] [Accepted: 01/14/2014] [Indexed: 02/08/2023]
Abstract
Alzheimer's disease (AD) and related dementias constitute a major public health issue due to an increasingly aged population as a consequence of generally improved medical care and demographic changes. Current drug treatment of AD, the most prevalent dementia, with cholinesterase inhibitors or NMDA antagonists have demonstrated very modest, symptomatic efficacy, leaving an unmet medical need for new, more effective therapies. While drug development efforts in the last two decades have primarily focused on the amyloid cascade hypothesis, so far with disappointing results, tau-based strategies have received little attention until recently despite that the presence of extensive tau pathology is central to the disease. The discovery of mutations within the tau gene that cause fronto-temporal dementia demonstrated that tau dysfunction, in the absence of amyloid pathology, was sufficient to cause neuronal loss and clinical dementia. Abnormal levels and hyperphosphorylation of tau protein have been reported to be the underlying cause of a group of neurodegenerative disorders collectively known as 'tauopathies'. The detrimental consequence is the loss of affinity between this protein and the microtubules, increased production of fibrillary aggregates and the accumulation of insoluble intracellular neurofibrillary tangles. However, it has become clear in recent years that tau is not only a microtubule interacting protein, but rather has additional roles in cellular processes. This review focuses on emerging therapeutic strategies aimed at treating the underlying causes of the tau pathology in tauopathies and AD, including some novel approaches on the verge of providing new treatment paradigms within the coming years.
Collapse
|
224
|
Sayas CL, Avila J. Regulation of EB1/3 proteins by classical MAPs in neurons. BIOARCHITECTURE 2014; 4:1-5. [PMID: 24452057 DOI: 10.4161/bioa.27774] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Microtubules (MTs) are key cytoskeletal elements in developing and mature neurons. MT reorganization underlies the morphological changes that occur during neuronal development. Furthermore, MTs contribute to the maintenance of neuronal architecture, enable intracellular transport and act as scaffolds for signaling molecules. Thus, a fine-tuned regulation of MT dynamics and stability is crucial for the correct differentiation and functioning of neurons. Different types of proteins contribute to the regulation of the MT state, such as plus-end tracking proteins (+TIPs), which interact with the plus-ends of growing microtubules, and classical microtubule-associated proteins (MAPs), which bind along the microtubule lattice. Recent evidence indicates that MAPs interplay with End Binding Proteins (EBs), the core +TIPs, in neuronal cells. This might contribute to the orchestrated regulation of MT dynamics in neurons. In this mini-review article, we address recent research on the neuronal crosstalk between EBs and classical MAPs and speculate on its possible functional relevance.
Collapse
Affiliation(s)
- C L Sayas
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM); Universidad Autónoma de Madrid; Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED); Madrid, Spain
| | - Jesús Avila
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM); Universidad Autónoma de Madrid; Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED); Madrid, Spain
| |
Collapse
|
225
|
Pooler AM, Noble W, Hanger DP. A role for tau at the synapse in Alzheimer's disease pathogenesis. Neuropharmacology 2014; 76 Pt A:1-8. [PMID: 24076336 DOI: 10.1016/j.neuropharm.2013.09.018] [Citation(s) in RCA: 140] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Revised: 09/06/2013] [Accepted: 09/07/2013] [Indexed: 01/05/2023]
Abstract
Alzheimer's disease (AD) is characterized by brain deposition of amyloid plaques and tau neurofibrillary tangles along with steady cognitive decline. Although the mechanism by which AD pathogenesis occurs is unclear, accumulating evidence suggests that dysfunction and loss of synaptic connections may be an early event underlying disease progression. Profound synapse degeneration is observed in AD, and the density of these connections strongly correlates with cognitive ability. Initial investigations into AD-related synaptic changes focused on the toxic effects of amyloid. However, recent research suggests an emerging role for tau at the synapse. Even in the absence of tangles, mice overexpressing human tau display significant synaptic degeneration, suggesting that soluble, oligomeric tau is the synaptotoxic species. However, the localization of tau within synapses in both healthy and AD brains indicates that tau might play a role in normal synaptic function, which may be disrupted in disease. Tau is able to impact synaptic activity in several ways: studies show tau interacting directly with post-synaptic signaling complexes, regulating glutamatergic receptor content in dendritic spines, and influencing targeting and function of synaptic mitochondria. Early trials of tau-targeted immunotherapy reduce tau pathology and synapse loss, indicating that the toxic effects of tau may be reversible within a certain time frame. Understanding the role of tau in both normal and degenerating synapses is crucial for the development of therapeutic strategies designed to ameliorate synapse loss and prevent AD pathogenesis. This article is part of the Special Issue entitled 'The Synaptic Basis of Neurodegenerative Disorders'.
Collapse
Affiliation(s)
- Amy M Pooler
- King's College London, Institute of Psychiatry, Department of Neuroscience (PO37), De Crespigny Park, London SE5 8AF, United Kingdom
| | | | | |
Collapse
|
226
|
Gumucio A, Lannfelt L, Nilsson LNG. Lack of exon 10 in the murine tau gene results in mild sensorimotor defects with aging. BMC Neurosci 2013; 14:148. [PMID: 24261309 PMCID: PMC4222861 DOI: 10.1186/1471-2202-14-148] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Accepted: 11/19/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Complex species-specific, developmental- and tissue-dependent mechanisms regulate alternative splicing of tau, thereby diversifying tau protein synthesis. The functional role of alternative splicing of tau e.g. exon 10 has never been examined in vivo, although genetic studies suggest that it is important to neurodegenerative disease. RESULTS Gene-targeting was used to delete exon 10 in murine tau on both alleles (E10-/-) to study its functional role. Moreover, mice devoid of exon 10 (E10+/-) on one allele were generated to investigate the effects of 1:1 balanced expression of 4R-/3R-tau protein, since equal amounts of 4R-/3R-tau protein are synthesized in human brain. Middle-aged E10-/- mice displayed sensorimotor disturbances in the rotarod when compared to age-matched E10+/- and wild-type mice, and their muscular grip strength was less than that of E10+/- mice. The performance of E10+/- mice and wild-type mice (E10+/+) was similar in sensorimotor tests. Cognitive abilities or anxiety-like behaviours did not depend on exon 10 in tau, and neither pathological inclusions nor gene-dependent morphological abnormalities were found. CONCLUSION Ablation of exon 10 in the murine tau gene alters alternative splicing and tau protein synthesis which results in mild sensorimotor phenotypes with aging. Presumably related microtubule-stabilizing genes rescue other functions.
Collapse
Affiliation(s)
- Astrid Gumucio
- Department of Public Health and Caring Sciences, Rudbeck Laboratory, Uppsala University, SE-75185 Uppsala, Sweden
| | - Lars Lannfelt
- Department of Public Health and Caring Sciences, Rudbeck Laboratory, Uppsala University, SE-75185 Uppsala, Sweden
| | - Lars NG Nilsson
- Department of Public Health and Caring Sciences, Rudbeck Laboratory, Uppsala University, SE-75185 Uppsala, Sweden
- Department of Pharmacology, Oslo University and Oslo University Hospital, Postboks 1057 Blindern, NO-0316 Oslo, Norway
| |
Collapse
|
227
|
Lewis TL, Courchet J, Polleux F. Cell biology in neuroscience: Cellular and molecular mechanisms underlying axon formation, growth, and branching. ACTA ACUST UNITED AC 2013; 202:837-48. [PMID: 24043699 PMCID: PMC3776347 DOI: 10.1083/jcb.201305098] [Citation(s) in RCA: 122] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Proper brain wiring during development is pivotal for adult brain function. Neurons display a high degree of polarization both morphologically and functionally, and this polarization requires the segregation of mRNA, proteins, and lipids into the axonal or somatodendritic domains. Recent discoveries have provided insight into many aspects of the cell biology of axonal development including axon specification during neuronal polarization, axon growth, and terminal axon branching during synaptogenesis.
Collapse
Affiliation(s)
- Tommy L Lewis
- The Scripps Research Institute, Dorris Neuroscience Center, Department of Molecular and Cellular Neuroscience, La Jolla, CA 92037
| | | | | |
Collapse
|
228
|
Baglietto-Vargas D, Kitazawa M, Le EJ, Estrada-Hernandez T, Rodriguez-Ortiz CJ, Medeiros R, Green KN, LaFerla FM. Endogenous murine tau promotes neurofibrillary tangles in 3xTg-AD mice without affecting cognition. Neurobiol Dis 2013; 62:407-15. [PMID: 24176788 DOI: 10.1016/j.nbd.2013.10.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Revised: 10/01/2013] [Accepted: 10/22/2013] [Indexed: 11/19/2022] Open
Abstract
Recent studies on tauopathy animal models suggest that the concomitant expression of the endogenous murine tau delays the pathological accumulation of human tau, and interferes with the disease progression. To elucidate the role of endogenous murine tau in a model with both plaques and tangles, we developed a novel transgenic mouse model by crossing 3xTg-AD with mtauKO mice (referred to as 3xTg-AD/mtauKO mice). Therefore, this new model allows us to determine the pathological consequences of the murine tau. Here, we show that 3xTg-AD/mtauKO mice have lower tau loads in both soluble and insoluble fractions, and lower tau hyperphosphorylation level in the soluble fraction relative to 3xTg-AD mice. In the 3xTg-AD model endogenous mouse tau is hyperphosphorylated and significantly co-aggregates with human tau. Despite the deletion of the endogenous tau gene in 3xTg-AD/mtauKO mice, cognitive dysfunction was equivalent to 3xTg-AD mice, as there was no additional impairment on a spatial memory task, and thus despite increased tau phosphorylation, accumulation and NFTs in 3xTg-AD mice no further effects on cognition are seen. These findings provide better understanding about the role of endogenous tau to Alzheimer's disease (AD) pathology and for developing new AD models.
Collapse
Affiliation(s)
- David Baglietto-Vargas
- Department of Neurobiology and Behavior, Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA 92697-4545, USA
| | - Masashi Kitazawa
- Department of Neurobiology and Behavior, Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA 92697-4545, USA; Department of Molecular and Cell Biology, University of California, Merced, CA 95343, USA
| | - Elaine J Le
- Department of Neurobiology and Behavior, Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA 92697-4545, USA
| | - Tatiana Estrada-Hernandez
- Department of Neurobiology and Behavior, Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA 92697-4545, USA
| | - Carlos J Rodriguez-Ortiz
- Department of Neurobiology and Behavior, Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA 92697-4545, USA; Department of Molecular and Cell Biology, University of California, Merced, CA 95343, USA
| | - Rodrigo Medeiros
- Department of Neurobiology and Behavior, Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA 92697-4545, USA
| | - Kim N Green
- Department of Neurobiology and Behavior, Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA 92697-4545, USA
| | - Frank M LaFerla
- Department of Neurobiology and Behavior, Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA 92697-4545, USA.
| |
Collapse
|
229
|
Zempel H, Luedtke J, Kumar Y, Biernat J, Dawson H, Mandelkow E, Mandelkow EM. Amyloid-β oligomers induce synaptic damage via Tau-dependent microtubule severing by TTLL6 and spastin. EMBO J 2013; 32:2920-37. [PMID: 24065130 PMCID: PMC3831312 DOI: 10.1038/emboj.2013.207] [Citation(s) in RCA: 219] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Accepted: 08/22/2013] [Indexed: 01/23/2023] Open
Abstract
Mislocalization and aggregation of Aβ and Tau combined with loss of synapses and microtubules (MTs) are hallmarks of Alzheimer disease. We exposed mature primary neurons to Aβ oligomers and analysed changes in the Tau/MT system. MT breakdown occurs in dendrites invaded by Tau (Tau missorting) and is mediated by spastin, an MT-severing enzyme. Spastin is recruited by MT polyglutamylation, induced by Tau missorting triggered translocalization of TTLL6 (Tubulin-Tyrosine-Ligase-Like-6) into dendrites. Consequences are spine loss and mitochondria and neurofilament mislocalization. Missorted Tau is not axonally derived, as shown by axonal retention of photoconvertible Dendra2-Tau, but newly synthesized. Recovery from Aβ insult occurs after Aβ oligomers lose their toxicity and requires the kinase MARK (Microtubule-Affinity-Regulating-Kinase). In neurons derived from Tau-knockout mice, MTs and synapses are resistant to Aβ toxicity because TTLL6 mislocalization and MT polyglutamylation are prevented; hence no spastin recruitment and no MT breakdown occur, enabling faster recovery. Reintroduction of Tau re-establishes Aβ-induced toxicity in TauKO neurons, which requires phosphorylation of Tau's KXGS motifs. Transgenic mice overexpressing Tau show TTLL6 translocalization into dendrites and decreased MT stability. The results provide a rationale for MT stabilization as a therapeutic approach.
Collapse
Affiliation(s)
- Hans Zempel
- DZNE, German Center for Neurodegenerative Diseases, Bonn, Germany
| | | | | | | | | | | | | |
Collapse
|
230
|
Abstract
The pathway leading from soluble and monomeric to hyperphosphorylated, insoluble and filamentous tau protein is at the centre of many human neurodegenerative diseases, collectively referred to as tauopathies. Dominantly inherited mutations in MAPT, the gene that encodes tau, cause forms of frontotemporal dementia and parkinsonism, proving that dysfunction of tau is sufficient to cause neurodegeneration and dementia. However, most cases of tauopathy are not inherited in a dominant manner. The first tau aggregates form in a few nerve cells in discrete brain areas. These become self propagating and spread to distant brain regions in a prion-like manner. The prevention of tau aggregation and propagation is the focus of attempts to develop mechanism-based treatments for tauopathies.
Collapse
Affiliation(s)
- Maria Grazia Spillantini
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | | |
Collapse
|
231
|
Maia LF, Kaeser SA, Reichwald J, Hruscha M, Martus P, Staufenbiel M, Jucker M. Changes in Amyloid- and Tau in the Cerebrospinal Fluid of Transgenic Mice Overexpressing Amyloid Precursor Protein. Sci Transl Med 2013; 5:194re2. [DOI: 10.1126/scitranslmed.3006446] [Citation(s) in RCA: 131] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
232
|
Abstract
Adequate therapies are lacking for Alzheimer's disease, Parkinson's disease, Huntington's disease, amyotrophic lateral sclerosis, and other neurodegenerative diseases. The ability to use antisense oligonucleotides (ASOs) to target disease-associated genes by means of RNA may offer a potent approach for the treatment of these, and other, neurodegenerative disorders. In modifying the basic backbone chemistry, chemical groups, and target sequence, ASOs can act through numerous mechanisms to decrease or increase total protein levels, preferentially shift splicing patterns, and inhibit microRNAs, all at the level of the RNA molecule. Here, we discuss many of the more commonly used ASO chemistries, as well as the different mechanisms of action that can result from these specific chemical modifications. When applied to multiple neurodegenerative mouse models, ASOs that specifically target the detrimental transgenes have been shown to rescue disease associated phenotypes in vivo. These supporting mouse model data have moved the ASOs from the bench to the clinic, with two neuro-focused human clinical trials now underway and several more being proposed. Although still early in development, translating ASOs into human patients for neurodegeneration appears promising.
Collapse
Affiliation(s)
- Sarah L. DeVos
- Department of Neurology, Washington University in St. Louis School of Medicine, St. Louis, MO 63110 USA
| | - Timothy M. Miller
- Department of Neurology, Washington University in St. Louis School of Medicine, St. Louis, MO 63110 USA
| |
Collapse
|
233
|
Ramachandran G, Udgaonkar JB. Mechanistic studies unravel the complexity inherent in tau aggregation leading to Alzheimer's disease and the tauopathies. Biochemistry 2013; 52:4107-26. [PMID: 23721410 DOI: 10.1021/bi400209z] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The aggregation of the protein tau into amyloid fibrils is known to be involved in the causation of the neurodegenerative tauopathies and the progression of cognitive decline in Alzheimer's disease. This review surveys the mechanism of tau aggregation with special emphasis on the information obtained from biochemical and biophysical studies. First, tau is described from a structure-function perspective. Subsequently, the connection of tau to neurodegeneration is explained, and a description of the tau amyloid fibril is provided. Lastly, studies of the mechanism of tau fibril formation are reviewed, and the physiological significance of these studies with reference to how they can clarify many aspects of disease progression is described. The aim of this review is to underscore how mechanistic studies reveal the complexity of the tau fibril formation pathway and the plethora of species populated on or off the pathway of aggregation, and how this information can be beneficial in the design of inhibitors or drugs that ameliorate neurodegeneration.
Collapse
Affiliation(s)
- Gayathri Ramachandran
- National Centre for Biological Sciences, Tata Institute of Fundamental Research , Bangalore 560065, India
| | | |
Collapse
|
234
|
NMDA receptor subunit composition determines beta-amyloid-induced neurodegeneration and synaptic loss. Cell Death Dis 2013; 4:e608. [PMID: 23618906 PMCID: PMC3641351 DOI: 10.1038/cddis.2013.129] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Aggregates of amyloid-beta (Aβ) and tau are hallmarks of Alzheimer's disease (AD) leading to neurodegeneration and synaptic loss. While increasing evidence suggests that inhibition of N-methyl-𝒟-aspartate receptors (NMDARs) may mitigate certain aspects of AD neuropathology, the precise role of different NMDAR subtypes for Aβ- and tau-mediated toxicity remains to be elucidated. Using mouse organotypic hippocampal slice cultures from arcAβ transgenic mice combined with Sindbis virus-mediated expression of human wild-type tau protein (hTau), we show that Aβ caused dendritic spine loss independently of tau. However, the presence of hTau was required for Aβ-induced cell death accompanied by increased hTau phosphorylation. Inhibition of NR2B-containing NMDARs abolished Aβ-induced hTau phosphorylation and toxicity by preventing GSK-3β activation but did not affect dendritic spine loss. Inversely, NR2A-containing NMDAR inhibition as well as NR2A-subunit knockout diminished dendritic spine loss but not the Aβ effect on hTau. Activation of extrasynaptic NMDARs in primary neurons caused degeneration of hTau-expressing neurons, which could be prevented by NR2B–NMDAR inhibition but not by NR2A knockout. Furthermore, caspase-3 activity was increased in arcAβ transgenic cultures. Activity was reduced by NR2A knockout but not by NR2B inhibition. Accordingly, caspase-3 inhibition abolished spine loss but not hTau-dependent toxicity in arcAβ transgenic slice cultures. Our data show that Aβ induces dendritic spine loss via a pathway involving NR2A-containing NMDARs and active caspase-3 whereas activation of eSyn NR2B-containing NMDARs is required for hTau-dependent neurodegeneration, independent of caspase-3.
Collapse
|
235
|
Bobba A, Amadoro G, Petragallo VA, Calissano P, Atlante A. Dissecting the molecular mechanism by which NH2htau and Aβ1-42 peptides impair mitochondrial ANT-1 in Alzheimer disease. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2013; 1827:848-60. [PMID: 23583906 DOI: 10.1016/j.bbabio.2013.04.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Revised: 03/13/2013] [Accepted: 04/05/2013] [Indexed: 01/04/2023]
Abstract
To find out whether and how the adenine nucleotide translocator-1 (ANT-1) inhibition due to NH2htau and Aβ1-42 is due to an interplay between these two Alzheimer's peptides, ROS and ANT-1 thiols, use was made of mersalyl, a reversible alkylating agent of thiol groups that are oriented toward the external hydrophilic phase, to selectively block and protect, in a reversible manner, the -SH groups of ANT-1. The rate of ATP appearance outside mitochondria was measured as the increase in NADPH absorbance which occurs, following external addition of ADP, when ATP is produced by oxidative phosphorylation and exported from mitochondria in the presence of glucose, hexokinase and glucose-6-phosphate dehydrogenase. We found that the mitochondrial superoxide anions, whose production is induced at the level of Complex I by externally added Aβ1-42 and whose release from mitochondria is significantly reduced by the addition of the VDAC inhibitor DIDS, modify the thiol group/s present at the active site of mitochondrial ANT-1, impair ANT-1 in a mersalyl-prevented manner and abrogate the toxic effect of NH2htau on ANT-1 when Aβ1-42 is already present. A molecular mechanism is proposed in which the pathological Aβ-NH2htau interplay on ANT-1 in Alzheimer's neurons involves the thiol redox state of ANT-1 and the Aβ1-42-induced ROS increase. This result represents an important innovation because it suggests the possibility of using various strategies to protect cells at the mitochondrial level, by stabilizing or restoring mitochondrial function or by interfering with the energy metabolism providing a promising tool for treating or preventing AD.
Collapse
Affiliation(s)
- A Bobba
- Institute of Biomembranes and Bioenergetics, CNR, Bari, Italy
| | | | | | | | | |
Collapse
|
236
|
Chew YL, Fan X, Götz J, Nicholas HR. PTL-1 regulates neuronal integrity and lifespan in C. elegans. J Cell Sci 2013; 126:2079-91. [PMID: 23525010 DOI: 10.1242/jcs.jcs124404] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Protein with tau-like repeats (PTL-1) is the sole Caenorhabditis elegans homolog of tau and MAP2, which are members of the mammalian family of microtubule-associated proteins (MAPs). In mammalian neurons, tau and MAP2 are segregated, with tau being mainly localised to the axon and MAP2 mainly to the dendrite. In particular, tau plays a crucial role in pathology, as elevated levels lead to the formation of tau aggregates in many neurodegenerative conditions including Alzheimer's disease. We used PTL-1 in C. elegans to model the biological functions of a tau-like protein without the complication of functional redundancy that is observed among the mammalian MAPs. Our findings indicate that PTL-1 is important for the maintenance of neuronal health as animals age, as well as in the regulation of whole organism lifespan. In addition, gene dosage of PTL-1 is crucial because variations from wild-type levels are detrimental. We also observed that human tau is unable to robustly compensate for loss of PTL-1, although phenotypes observed in tau transgenic worms are dependent on the presence of endogenous PTL-1. Our data suggest that some of the effects of tau pathology result from the loss of physiological tau function and not solely from a toxic gain-of-function due to accumulation of tau.
Collapse
Affiliation(s)
- Yee Lian Chew
- School of Molecular Bioscience, University of Sydney, New South Wales, 2006, Australia
| | | | | | | |
Collapse
|
237
|
Nouar R, Devred F, Breuzard G, Peyrot V. FRET and FRAP imaging: approaches to characterise tau and stathmin interactions with microtubules in cells. Biol Cell 2013; 105:149-61. [PMID: 23312015 DOI: 10.1111/boc.201200060] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Accepted: 01/09/2013] [Indexed: 12/13/2022]
Abstract
Microtubules (MTs) are involved in many crucial processes such as cell morphogenesis, mitosis and motility. These dynamic structures resulting from the complex assembly of tubulin are tightly regulated by stabilising MT-associated proteins (MAPs) such as tau and destabilising proteins, notably stathmin. Because of their key role, these MAPs and their interactions have been extensively studied using biochemical and biophysical approaches, particularly in vitro. Nevertheless, numerous questions remain unanswered and the mechanisms of interaction between MT and these proteins are still unclear in cells. Techniques coupling cell imaging and fluorescence methods, such as Förster resonance energy transfer and fluorescence recovery after photobleaching, are excellent tools to study these interactions in situ. After describing these methods, we will present emblematic data from the literature and unpublished experimental results from our laboratory concerning the interactions between MTs, tau and stathmin in cells.
Collapse
Affiliation(s)
- Roqiya Nouar
- INSERM UMR 911, Aix-Marseille Université, CRO2, 13385, Marseille, France
| | | | | | | |
Collapse
|
238
|
Guo JL, Lee VMY. Neurofibrillary tangle-like tau pathology induced by synthetic tau fibrils in primary neurons over-expressing mutant tau. FEBS Lett 2013; 587:717-23. [PMID: 23395797 DOI: 10.1016/j.febslet.2013.01.051] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Revised: 01/23/2013] [Accepted: 01/25/2013] [Indexed: 11/28/2022]
Abstract
Increasing evidence demonstrates the transmissibility of fibrillar species of tau protein, but this has never been directly tested in neurons, the cell type most affected by formation of tau inclusions in neurodegenerative tauopathies. Here we show that synthetic tau fibrils made from recombinant protein not only time-dependently recruit normal tau into neurofibrillary tangle-like insoluble aggregates in primary hippocampal neurons over-expressing human tau, but also induce neuritic tau pathology in non-transgenic neurons. This study provides highly compelling support for the protein-only hypothesis of pathological tau transmission in primary neurons and describes a useful neuronal model for studying the pathogenesis of tauopathies.
Collapse
Affiliation(s)
- Jing L Guo
- Department of Pathology and Laboratory Medicine, Institute on Aging and Center for Neurodegenerative Disease Research, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | | |
Collapse
|
239
|
Seward ME, Swanson E, Norambuena A, Reimann A, Cochran JN, Li R, Roberson ED, Bloom GS. Amyloid-β signals through tau to drive ectopic neuronal cell cycle re-entry in Alzheimer's disease. J Cell Sci 2013; 126:1278-86. [PMID: 23345405 DOI: 10.1242/jcs.1125880] [Citation(s) in RCA: 139] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Normally post-mitotic neurons that aberrantly re-enter the cell cycle without dividing account for a substantial fraction of the neurons that die in Alzheimer's disease (AD). We now report that this ectopic cell cycle re-entry (CCR) requires soluble amyloid-β (Aβ) and tau, the respective building blocks of the insoluble plaques and tangles that accumulate in AD brain. Exposure of cultured wild type (WT) neurons to Aβ oligomers caused CCR and activation of the non-receptor tyrosine kinase, fyn, the cAMP-regulated protein kinase A and calcium-calmodulin kinase II, which respectively phosphorylated tau on Y18, S409 and S416. In tau knockout (KO) neurons, Aβ oligomers activated all three kinases, but failed to induce CCR. Expression of WT, but not Y18F, S409A or S416A tau restored CCR in tau KO neurons. Tau-dependent CCR was also observed in vivo in an AD mouse model. CCR, a seminal step in AD pathogenesis, therefore requires signaling from Aβ through tau independently of their incorporation into plaques and tangles.
Collapse
Affiliation(s)
- Matthew E Seward
- Department of Biology, University of Virginia, Charlottesville, VA 22904-4328, USA
| | | | | | | | | | | | | | | |
Collapse
|
240
|
Hebron ML, Algarzae NK, Lonskaya I, Moussa C. Fractalkine signaling and Tau hyper-phosphorylation are associated with autophagic alterations in lentiviral Tau and Aβ1-42 gene transfer models. Exp Neurol 2013; 251:127-38. [PMID: 23333589 DOI: 10.1016/j.expneurol.2013.01.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Revised: 01/03/2013] [Accepted: 01/09/2013] [Indexed: 12/17/2022]
Abstract
Tau hyper-phosphorylation (p-Tau) and neuro-inflammation are hallmarks of neurodegeneration. Previous findings suggest that microglial activation via CX3CL1 promotes p-Tau. We examined inflammation and autophagic p-Tau clearance in lentiviral Tau and mutant P301L expressing rats and used lentiviral Aβ1-42 to induce p-Tau. Lentiviral Tau or P301L expression significantly increased caspase-3 activity and TNF-α, but CX3CL1 was significantly higher in animals expressing Tau compared to P301L. Lentiviral Aβ1-42 induced p-Tau 4 weeks post-injection, and increased caspase-3 activation (8-fold) and TNF-α levels. Increased levels of ADAM-10/17 were also detected with p-Tau. IL-6 levels were increased but CX3CL1 did not change in the absence of p-Tau (2 weeks); however, p-Tau reversed these effects, which were associated with increased microglial activity. We observed changes in autophagic markers, including accumulation of autophagic vacuoles (AVs) and p-Tau accumulation in autophagosomes but not lysosomes, suggesting alteration of autophagy. Taken together, microglial activation may promote p-Tau independent of total Tau levels via CX3CL1 signaling, which seems to depend on interaction with inflammatory markers, mainly IL-6. The simultaneous change in autophagy and CX3CL1 signaling suggests communication between microglia and neurons, raising the possibility that accumulation of intraneuronal amyloid, due to lack of autophagic clearance, may lead microglia activation to promote p-Tau as a tag for phagocytic degradation.
Collapse
Affiliation(s)
- Michaeline L Hebron
- Department of Neuroscience, Georgetown University Medical Center, Washington D.C. 20007, USA; Department of Biochemistry and Cell Biology, Georgetown University Medical Center, Washington D.C. 20007, USA
| | - Norah K Algarzae
- Department of Neuroscience, Georgetown University Medical Center, Washington D.C. 20007, USA; Department of Biochemistry and Cell Biology, Georgetown University Medical Center, Washington D.C. 20007, USA
| | - Irina Lonskaya
- Department of Neuroscience, Georgetown University Medical Center, Washington D.C. 20007, USA
| | - Charbel Moussa
- Department of Neuroscience, Georgetown University Medical Center, Washington D.C. 20007, USA.
| |
Collapse
|
241
|
Morris M, Hamto P, Adame A, Devidze N, Masliah E, Mucke L. Age-appropriate cognition and subtle dopamine-independent motor deficits in aged tau knockout mice. Neurobiol Aging 2013; 34:1523-9. [PMID: 23332171 DOI: 10.1016/j.neurobiolaging.2012.12.003] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Accepted: 12/07/2012] [Indexed: 01/22/2023]
Abstract
The microtubule-associated protein tau is expressed throughout the nervous system, most highly in neurons but also in glial cells. Its functions in adult and aging mammals remain to be defined. Previous studies in mouse models found either protective or detrimental effects of genetic tau ablation. Though tau ablation prevented synaptic, network, and cognitive dysfunctions in several models of Alzheimer's disease and made mice more resistant to epileptic seizures, a recent study described a parkinsonian phenotype in aging Tau knockout mice. Here we tested cognition and motor functions in Tau(+/+), Tau(+/-), and Tau(-/-) mice at approximately 1 and 2 years of age. Tau ablation did not impair cognition and caused only minor motor deficits that were much more subtle than those associated with the aging process. Tau ablation caused a mild increase in body weight, which correlated with and might have contributed to some of the motor deficits. However, tau ablation did not cause significant dopaminergic impairments, and dopamine treatment did not improve the motor deficits, suggesting that they do not reflect extrapyramidal dysfunction.
Collapse
Affiliation(s)
- Meaghan Morris
- Gladstone Institute of Neurological Disease, San Francisco, CA 94158, USA
| | | | | | | | | | | |
Collapse
|
242
|
Needleman DJ, Ojeda-Lopez MA, Raviv U, Miller HP, Li Y, Song C, Feinstein SC, Wilson L, Choi MC, Safinya CR. Ion specific effects in bundling and depolymerization of taxol-stabilized microtubules. Faraday Discuss 2013; 166:31-45. [PMID: 24611267 PMCID: PMC3955895 DOI: 10.1039/c3fd00063j] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Microtubules (MTs) are nanometer scale hollow cylindrical biological polyelectrolytes. They are assembled from alpha/beta-tubulin dimers, which stack to form protofilaments (PFs) with lateral interactions between PFs resulting in the curved MT. In cells, MTs and their assemblies are critical components in a range of functions from providing tracks for the transport of cargo to forming the spindle structure during mitosis. Previous studies have, shown that while cations with valence equal to or larger than 3+ tend to assemble tight 3D bundles of taxol-stabilized MTs, certain divalent cations induce relatively loose 2D bundles of different symmetry (D. J. Needleman et al., Proc. Natl. Acad. Sci. U. S. A., 2004, 101, 16099). Similarly, divalent cations form 2D bundles of DNA adsorbed on cationic membranes (I. Koltover et al., Proc. Natl. Acad. Sci. U. S. A., 2000, 97, 14046). The bundling behavior for these biological polyelectrolyte systems is qualitatively in agreement with current theory. Here, we present results which show that, unlike the case for DNA adsorbed on cationic membranes, bundling of taxol-stabilized MTs occurs only for certain divalent cations above a critical ion concentration (e.g. Ca2+, Sr2+, Ba2+). Instead, many divalent cations pre-empt the bundling transition and depolymerize taxol-stabilized MTs at a lower counterion concentration. Although previous cryogenic TEM has shown that, in the absence of taxol, Ca2+ depolymerizes MTs assembling in buffers containing GTP (guanosine triphosphate), our finding is surprising given the know stabilizing effects of taxol on GDP (guanosine diphosphate)-MTs. The ion concentration required for MT depolymerization decreases with increasing atomic number for the divalents Mg2+, Mn2+, Co2+, and Zn2+. GdCl3 (3+) is found to be extremely efficient at MT depolymerization requiring ion concentrations of about 1 mM, while oligolysine(2+), is observed not to depolymerize MTs at concentrations as high as 144 mM. The surprising MT depolymerization results are discussed in the context of divalents either disrupting lateral interactions between PFs (which are strengthened for taxol containing beta-tubulin) or interfering with taxol's ability to induce flexibility at the interface between two tubulin dimers in the same PF (which has been recently suggested as a mechanism by which taxol stabilizes MTs post-hydrolysis with the induced flexibility counteracting the kink between GDP-tublin dimers in a PF).
Collapse
Affiliation(s)
- Daniel J. Needleman
- Materials, Physics, and Molecular, Cellular, and Developmental Biology Departments, University of California, Santa Barbara, CA 93106, USA. ; Fax +1 805 893 8797; Tel +1 805 893 8635
| | - Miguel A. Ojeda-Lopez
- Materials, Physics, and Molecular, Cellular, and Developmental Biology Departments, University of California, Santa Barbara, CA 93106, USA. ; Fax +1 805 893 8797; Tel +1 805 893 8635
| | - Uri Raviv
- Materials, Physics, and Molecular, Cellular, and Developmental Biology Departments, University of California, Santa Barbara, CA 93106, USA. ; Fax +1 805 893 8797; Tel +1 805 893 8635
| | - Herbert P. Miller
- Molecular, Cellular, & Developmental Biology Department & Neuroscience Research Institute, University of California, Santa Barbara, CA 93106, USA
| | - Youli Li
- Materials Research Laboratory, University of California, Santa Barbara, CA 93106, USA
| | - Chaeyeon Song
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Stuart C. Feinstein
- Molecular, Cellular, & Developmental Biology Department & Neuroscience Research Institute, University of California, Santa Barbara, CA 93106, USA
| | - Leslie Wilson
- Molecular, Cellular, & Developmental Biology Department & Neuroscience Research Institute, University of California, Santa Barbara, CA 93106, USA
| | - Myung Chul Choi
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Cyrus R. Safinya
- Materials, Physics, and Molecular, Cellular, and Developmental Biology Departments, University of California, Santa Barbara, CA 93106, USA. ; Fax +1 805 893 8797; Tel +1 805 893 8635
| |
Collapse
|
243
|
Wolfe MS. The role of tau in neurodegenerative diseases and its potential as a therapeutic target. SCIENTIFICA 2012; 2012:796024. [PMID: 24278740 PMCID: PMC3820460 DOI: 10.6064/2012/796024] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Accepted: 11/05/2012] [Indexed: 06/01/2023]
Abstract
The abnormal deposition of proteins in and around neurons is a common pathological feature of many neurodegenerative diseases. Among these pathological proteins, the microtubule-associated protein tau forms intraneuronal filaments in a spectrum of neurological disorders. The discovery that dominant mutations in the MAPT gene encoding tau are associated with familial frontotemporal dementia strongly supports abnormal tau protein as directly involved in disease pathogenesis. This and other evidence suggest that tau is a worthwhile target for the prevention or treatment of tau-associated neurodegenerative diseases, collectively called tauopathies. However, it is critical to understand the normal biological roles of tau, the specific molecular events that induce tau to become neurotoxic, the biochemical nature of pathogenic tau, the means by which pathogenic tau exerts neurotoxicity, and how tau pathology propagates. Based on known differences between normal and abnormal tau, a number of approaches have been taken toward the discovery of potential therapeutics. Key questions still remain open, such as the nature of the connection between the amyloid- β protein of Alzheimer's disease and tau pathology. Answers to these questions should help better understand the nature of tauopathies and may also reveal new therapeutic targets and strategies.
Collapse
Affiliation(s)
- Michael S. Wolfe
- Brigham and Women's Hospital, Harvard Medical School, 77 Avenue Louis Pasteur, H.I.M. 754, Boston, MA 02115, USA
| |
Collapse
|
244
|
Abstract
The lack or excess of the protein tau can be deleterious for neurons. The absence of tau can result in retarded neurogenesis and neuronal differentiation, although adult mice deficient in tau are viable, probably because of the compensation of the loss of tau by other MAPs (microtubule-associated proteins). On the contrary, the overexpression of tau can be toxic for the cell. One way to reduce intracellular tau levels can be achieved by its secretion through microvesicles to the extracellular space. Furthermore, tau can be found in the extracellular space because of the neuronal cell death occurring in neurodegenerative disorders such as Alzheimer's disease. The presence of toxic extracellular tau could be the mechanism for the spreading of tau pathology in these neurodegenerative disorders.
Collapse
|
245
|
Copy number variations involving the microtubule-associated protein tau in human diseases. Biochem Soc Trans 2012; 40:672-6. [PMID: 22817714 DOI: 10.1042/bst20120045] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Mutations of the MAPT (microtubule-associated protein tau) gene are associated with FTLD (frontotemporal lobar degeneration) with tau pathology. These mutations result in a decreased ability of tau to bind MTs (microtubules), an increased production of tau with four MT-binding repeats or enhanced tau aggregation. In two FTLD patients, we recently described CNVs (copy number variations) affecting the MAPT gene, consisting of a partial deletion and a complete duplication of the gene. The partial deletion resulted in a truncated protein lacking the first MT-binding domain, which had a dramatic decrease in the binding to MTs but acquired the ability to bind MAP (microtubule-associated protein) 1-B. In this case, tauopathy probably resulted from both a loss of normal function and a gain of function by which truncated tau would sequester another MAP. In the other FTLD patient, the complete duplication might result in the overexpression of tau, which in the mouse model induces axonopathy and tau aggregates reminiscent of FTLD-tau pathology. Interestingly, the same rearrangement was also described in several children with mental retardation, autism spectrum disorders and dysmorphic features, as well as in a schizophrenic patient. Finally, complete deletions of the MAPT gene have been associated with mental retardation, hypotonia and facial dysmorphism.
Collapse
|
246
|
Martinez de Lagran M, Benavides-Piccione R, Ballesteros-Yañez I, Calvo M, Morales M, Fillat C, Defelipe J, Ramakers GJA, Dierssen M. Dyrk1A influences neuronal morphogenesis through regulation of cytoskeletal dynamics in mammalian cortical neurons. Cereb Cortex 2012; 22:2867-77. [PMID: 22215728 DOI: 10.1093/cercor/bhr362] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Down syndrome (DS) is the most frequent genetic cause of mental retardation. Cognitive dysfunction in these patients is correlated with reduced dendritic branching and complexity, along with fewer spines of abnormal shape that characterize the cortical neuronal profile of DS. DS phenotypes are caused by the disruptive effect of specific trisomic genes. Here, we report that overexpression of dual-specificity tyrosine phosphorylation-regulated kinase 1A, DYRK1A, is sufficient to produce the dendritic alterations observed in DS patients. Engineered changes in Dyrk1A gene dosage in vivo strongly alter the postnatal dendritic arborization processes with a similar progression than in humans. In cultured mammalian cortical neurons, we determined a reduction of neurite outgrowth and synaptogenesis. The mechanism underlying neurite dysgenesia involves changes in the dynamic reorganization of the cytoskeleton.
Collapse
Affiliation(s)
- M Martinez de Lagran
- Genes and Disease Program, Center for Genomic Regulation (CRG) and UPF, Barcelona Biomedical Research Park, E-08003, Barcelona, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
247
|
Abstract
Although Aβ peptides are causative agents in Alzheimer's disease (AD), the underlying mechanisms are still elusive. We report that Aβ42 induces a translational block by activating AMPK, thereby inhibiting the mTOR pathway. This translational block leads to widespread ER stress, which activates JNK3. JNK3 in turn phosphorylates APP at T668, thereby facilitating its endocytosis and subsequent processing. In support, pharmacologically blocking translation results in a significant increase in Aβ42 in a JNK3-dependent manner. Thus, JNK3 activation, which is increased in human AD cases and a familial AD (FAD) mouse model, is integral to perpetuating Aβ42 production. Concomitantly, deletion of JNK3 from FAD mice results in a dramatic reduction in Aβ42 levels and overall plaque loads and increased neuronal number and improved cognition. This reveals AD as a metabolic disease that is under tight control by JNK3.
Collapse
|
248
|
Membrane trafficking in neuronal maintenance and degeneration. Cell Mol Life Sci 2012; 70:2919-34. [PMID: 23132096 PMCID: PMC3722462 DOI: 10.1007/s00018-012-1201-4] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Revised: 10/13/2012] [Accepted: 10/15/2012] [Indexed: 10/28/2022]
Abstract
Defects in membrane trafficking and degradation are hallmarks of most, and maybe all, neurodegenerative disorders. Such defects typically result in the accumulation of undegraded proteins due to aberrant endosomal sorting, lysosomal degradation, or autophagy. The genetic or environmental cause of a specific disease may directly affect these membrane trafficking processes. Alternatively, changes in intracellular sorting and degradation can occur as cellular responses of degenerating neurons to unrelated primary defects such as insoluble protein aggregates or other neurotoxic insults. Importantly, altered membrane trafficking may contribute to the pathogenesis or indeed protect the neuron. The observation of dramatic changes to membrane trafficking thus comes with the challenging need to distinguish pathological from protective alterations. Here, we will review our current knowledge about the protective and destructive roles of membrane trafficking in neuronal maintenance and degeneration. In particular, we will first focus on the question of what type of membrane trafficking keeps healthy neurons alive in the first place. Next, we will discuss what alterations of membrane trafficking are known to occur in Alzheimer's disease and other tauopathies, Parkinson's disease, polyQ diseases, peripheral neuropathies, and lysosomal storage disorders. Combining the maintenance and degeneration viewpoints may yield insight into how to distinguish when membrane trafficking functions protectively or contributes to degeneration.
Collapse
|
249
|
Jin YN, Chen PC, Watson JA, Walters BJ, Phillips SE, Green K, Schmidt R, Wilson JA, Johnson GV, Roberson ED, Dobrunz LE, Wilson SM. Usp14 deficiency increases tau phosphorylation without altering tau degradation or causing tau-dependent deficits. PLoS One 2012; 7:e47884. [PMID: 23144711 PMCID: PMC3483306 DOI: 10.1371/journal.pone.0047884] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Accepted: 09/24/2012] [Indexed: 01/08/2023] Open
Abstract
Regulated protein degradation by the proteasome plays an essential role in the enhancement and suppression of signaling pathways in the nervous system. Proteasome-associated factors are pivotal in ensuring appropriate protein degradation, and we have previously demonstrated that alterations in one of these factors, the proteasomal deubiquitinating enzyme ubiquitin-specific protease 14 (Usp14), can lead to proteasome dysfunction and neurological disease. Recent studies in cell culture have shown that Usp14 can also stabilize the expression of over-expressed, disease-associated proteins such as tau and ataxin-3. Using Usp14-deficient axJ mice, we investigated if loss of Usp14 results in decreased levels of endogenous tau and ataxin-3 in the nervous system of mice. Although loss of Usp14 did not alter the overall neuronal levels of tau and ataxin-3, we found increased levels of phosphorylated tau that correlated with the onset of axonal varicosities in the Usp14-deficient mice. These changes in tau phosphorylation were accompanied by increased levels of activated phospho-Akt, phosphorylated MAPKs, and inactivated phospho-GSK3β. However, genetic ablation of tau did not alter any of the neurological deficits in the Usp14-deficient mice, demonstrating that increased levels of phosphorylated tau do not necessarily lead to neurological disease. Due to the widespread activation of intracellular signaling pathways induced by the loss of Usp14, a better understanding of the cellular pathways regulated by the proteasome is required before effective proteasomal-based therapies can be used to treat chronic neurological diseases.
Collapse
Affiliation(s)
- Youngnam N. Jin
- Department of Neurobiology, Civitan International Research Center, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Ping-Chung Chen
- Department of Neurobiology, Civitan International Research Center, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Jennifer A. Watson
- Department of Neurobiology, Civitan International Research Center, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Brandon J. Walters
- Department of Neurobiology, Civitan International Research Center, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Scott E. Phillips
- Department of Neurobiology, Civitan International Research Center, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Karen Green
- Division of Neuropathology, Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, Missouri, United States of America
| | - Robert Schmidt
- Division of Neuropathology, Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, Missouri, United States of America
| | - Julie A. Wilson
- Department of Neurobiology, Civitan International Research Center, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Gail V. Johnson
- Department of Anesthesiology, University of Rochester, Rochester, New York, United States of America
| | - Erik D. Roberson
- Department of Neurology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Lynn E. Dobrunz
- Department of Neurobiology, Civitan International Research Center, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Scott M. Wilson
- Department of Neurobiology, Civitan International Research Center, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- * E-mail:
| |
Collapse
|
250
|
Leroy K, Ando K, Laporte V, Dedecker R, Suain V, Authelet M, Héraud C, Pierrot N, Yilmaz Z, Octave JN, Brion JP. Lack of tau proteins rescues neuronal cell death and decreases amyloidogenic processing of APP in APP/PS1 mice. THE AMERICAN JOURNAL OF PATHOLOGY 2012; 181:1928-40. [PMID: 23026200 DOI: 10.1016/j.ajpath.2012.08.012] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Revised: 07/04/2012] [Accepted: 08/09/2012] [Indexed: 12/12/2022]
Abstract
Lack of tau expression has been reported to protect against excitotoxicity and to prevent memory deficits in mice expressing mutant amyloid precursor protein (APP) identified in familial Alzheimer disease. In APP mice, mutant presenilin 1 (PS1) enhances generation of Aβ42 and inhibits cell survival pathways. It is unknown whether the deficient phenotype induced by concomitant expression of mutant PS1 is rescued by absence of tau. In this study, we have analyzed the effect of tau deletion in mice expressing mutant APP and PS1. Although APP/PS1/tau(+/+) mice had a reduced survival, developed spatial memory deficits at 6 months and motor impairments at 12 months, these deficits were rescued in APP/PS1/tau(-/-) mice. Neuronal loss and synaptic loss in APP/PS1/tau(+/+) mice were rescued in the APP/PS1/tau(-/-) mice. The amyloid plaque burden was decreased by roughly 50% in the cortex and the spinal cord of the APP/PS1/tau(-/-) mice. The levels of soluble and insoluble Aβ40 and Aβ42, and the Aβ42/Aβ40 ratio were reduced in APP/PS1/tau(-/-) mice. Levels of phosphorylated APP, of β-C-terminal fragments (CTFs), and of β-secretase 1 (BACE1) were also reduced, suggesting that β-secretase cleavage of APP was reduced in APP/PS1/tau(-/-) mice. Our results indicate that tau deletion had a protective effect against amyloid induced toxicity even in the presence of mutant PS1 and reduced the production of Aβ.
Collapse
Affiliation(s)
- Karelle Leroy
- Laboratory of Histology, Neuroanatomy, and Neuropathology, Université Libre de Bruxelles, 808 Route de Lennik, Brussels, Belgium
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|