201
|
Development of diet-induced fatty liver disease in the aging mouse is suppressed by brief daily exposure to low-magnitude mechanical signals. Int J Obes (Lond) 2009; 34:401-5. [PMID: 19935747 DOI: 10.1038/ijo.2009.240] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The age-induced decline in the body's ability to fight disease is exacerbated by obesity and metabolic disease. Using a mouse model of diet-induced obesity, the combined challenge of a high-fat diet and age on liver morphology and biochemistry was characterized, while evaluating the potential of 15 min per day of high frequency (90 Hz), extremely low-magnitude (0.2 G) mechanical signals (LMMS) to suppress lipid accumulation in the liver. Following a 36-week protocol (animals 43 weeks of age), suppression of hepatomegaly and steatosis was reflected by a 29% lower liver mass in LMMS animals as compared with controls. Average triglyceride content was 101.7+/-19.4 microg mg(-1) tissue in the livers of high-fat diet control (HFD) animals, whereas HFD+LMMS animals realized a 27% reduction to 73.8+/-22.8 microg mg(-1) tissue. In HFD+LMMS animals, liver free fatty acids were also reduced to 0.026+/-0.009 microEq mg(-1) tissue from 0.035+/-0.005 microEq mg(-1) tissue in HFD. Moderate to severe micro- and macrovesicular steatosis in HFD was contrasted to a 49% reduction in area covered by the vacuoles of at least 15 microm(2) in size in HFD+LMMS animals. These data provide preliminary evidence of the ability of LMMS to attenuate the progression of fatty liver disease, most likely achieved indirectly by suppressing adipogenesis and thus the total adipose burden through life, thereby reducing a downstream challenge to liver morphology and function.
Collapse
|
202
|
Kitay GS, Koren MJ, Helfet DL, Parides MK, Markenson JA. Efficacy of combined local mechanical vibrations, continuous passive motion and thermotherapy in the management of osteoarthritis of the knee. Osteoarthritis Cartilage 2009; 17:1269-74. [PMID: 19433134 DOI: 10.1016/j.joca.2009.04.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2008] [Revised: 04/17/2009] [Accepted: 04/19/2009] [Indexed: 02/02/2023]
Abstract
OBJECTIVES We evaluated the efficacy of combined mechanical vibrations, continuous passive motion (CPM) and heat on the severity of pain in management of osteoarthritis of the knee (OA-K). METHODS In this controlled, double crossover study, 71 OA-K patients were randomized in Phase 1 to receive 4 weeks active treatment consisting of two 20-min sessions per day (34 patients, Group AB) or treatment with a sham device (37 patients, Group BA). This was followed by a 2-week washout period (Phase 2). In Phase 3, patients crossed over so that Group AB was treated with the sham device and Group BA received active treatment for an additional 4 weeks. Patient assessments of pain (visual analog scale, VAS) and Western Ontario and McMaster Universities (WOMAC) OA index were performed at baseline and at study weeks 2, 4, 6, and 10. Net treatment effects were estimated by comparing outcomes between active and sham treatment study phases. RESULTS Treatment benefits were noted for both of the trial's two pre-specified primary endpoints, VAS and WOMAC. VAS was reduced at all follow-up time points for patients receiving active treatment compared to sham treatment with a net treatment effect of 14.4+/-4.1 mm (P=0.001). Similarly, the WOMAC score was reduced significantly with active treatment at all measured points with a net effect of 8.8+/-1.9 points (P<0.001). The secondary endpoints, range of motion (ROM) and treatment satisfaction, also improved with active vs sham treatment. CONCLUSION Four weeks treatment with combined CPM, vibration and local heating significantly decreases pain, improves ROM and the quality of life in patients with OA-K (ClinicalTrials.gov registration number: NCT00858416).
Collapse
Affiliation(s)
- G S Kitay
- Jacksonville Orthopedic Institute, Jacksonville, FL, USA
| | | | | | | | | |
Collapse
|
203
|
Fine JD, Mellerio JE. Extracutaneous manifestations and complications of inherited epidermolysis bullosa: part II. Other organs. J Am Acad Dermatol 2009; 61:387-402; quiz 403-4. [PMID: 19700011 DOI: 10.1016/j.jaad.2009.03.053] [Citation(s) in RCA: 152] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2009] [Revised: 02/22/2009] [Accepted: 03/02/2009] [Indexed: 10/20/2022]
Abstract
It is well known, primarily via case reports and limited case series, that nonepithelial tissues may become injured in patients with epidermolysis bullosa. Only recently, however, have there been data generated from large, well characterized cohorts. Our objective is to provide dermatologists with a comprehensive review of each of these major extracutaneous complications, with a summary of the pertinent literature and evidence-based recommendations for surveillance, evaluation, and management. Some epidermolysis bullosa subtypes are at risk for severe injury of the bone marrow, musculoskeletal system, heart, kidney, and teeth, and for the development of squamous cell carcinoma, basal cell carcinoma, or malignant melanoma. If untreated, significant morbidity or mortality may result.
Collapse
Affiliation(s)
- Jo-David Fine
- The National Epidermolysis Bullosa Registry, and Department of Medicine (Dermatology), Vanderbilt University School of Medicine, Nashville, Tennessee, USA.
| | | |
Collapse
|
204
|
Kim CH, Kim KH, Jacobs CR. Effects of high frequency loading on RANKL and OPG mRNA expression in ST-2 murine stromal cells. BMC Musculoskelet Disord 2009; 10:109. [PMID: 19728893 PMCID: PMC2742507 DOI: 10.1186/1471-2474-10-109] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2009] [Accepted: 09/04/2009] [Indexed: 02/24/2023] Open
Abstract
Background Oscillatory fluid flow (OFF)-induced shear stress leads to positive bone remodeling through pro-formative and anti-resorptive effects on bone cells. In this study, the effects of high frequency OFF on expression of receptor activator of NF-κB ligand (RANKL) and osteoprotegerin (OPG), two important regulators of osteoclast differentiation, were investigated. Methods Cells were exposed to 1 Pa peak shear stress using three loading frequencies (1, 10, and 20 Hz) widely employed in cell, animal, and clinical studies of bone remodeling. Two separate experiments were performed where either the total number of cycles (3600 cycles) or the total loading time (60 min) was kept constant. Real-time RT-PCR was used to quantify mRNA levels of RANKL, OPG. Results 3600 cycles of OFF at 1 Hz and 10 Hz loading decreased RANKL/OPG ratio. Interestingly, these results were due to different mechanisms where at 1 Hz the decrease was due to an increase in OPG mRNA, whereas at 10 Hz the decrease was due to a decrease in RANKL mRNA. Conclusion Although high frequency OFF does not appear to further enhance the decrease in the RANKL/OPG ratio, these results suggest a potential to differentially control the change in either RANKL or OPG mRNA expression by applying different loading frequencies.
Collapse
Affiliation(s)
- Chi Hyun Kim
- Department of Biomedical Engineering, Yonsei University, Gangwon Do, Korea.
| | | | | |
Collapse
|
205
|
Abstract
OBJECTIVES Response of the skeleton to application and removal of specific mechanical signals is discussed. Anabolic effects of high-frequency, low-magnitude vibrations, a mechanical intervention with a favorable safety profile, as well as the modulation of bone loss by genetic and epigenetic factors during disuse are highlighted. METHODS Review. RESULTS Bone responds to a great variety of mechanical signals and both high- and low-magnitude stimuli can be sensed by the skeleton. The ability of physical signals to influence bone morphology is strongly dependent on the signal's magnitude, frequency, and duration. Loading protocols at high signal frequencies (vibrations) allow a dramatic reduction in the magnitude of the signal. In the axial skeleton, these signals can be anabolic and anti-catabolic and increase the structural strength of the tissue. They further have shown potential in maxillofacial applications to accelerate the regeneration of bone within defects. Bone's sensitivity to the application and removal of mechanical signals is heavily under the control of the genome. Bone loss modulated by the removal of weight-bearing from the skeleton is profoundly influenced by factors such as genetics, gender, and baseline morphology. CONCLUSIONS Adaptation of bone to functional challenges is complex but it is clear that more is not necessarily better and that even very low-magnitude mechanical signals can be anabolic. The development of effective biomechanical interventions in areas such as orthodontics, craniofacial repair, or osteoporosis will require the identification of the specific components of bone's mechanical environment that are anabolic, catabolic, or anti-catabolic.
Collapse
Affiliation(s)
- S Judex
- Department of Biomedical Engineering, State University of New York at Stony Brook, Stony Brook, NY 11794-2580, USA
| | | | | |
Collapse
|
206
|
Bone, fat, and body composition: evolving concepts in the pathogenesis of osteoporosis. Am J Med 2009; 122:409-14. [PMID: 19375545 DOI: 10.1016/j.amjmed.2008.11.027] [Citation(s) in RCA: 157] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2008] [Revised: 11/25/2008] [Accepted: 11/26/2008] [Indexed: 01/27/2023]
Abstract
Disorders of body composition, including obesity and osteoporosis, have reached record proportions. Coincidentally, our understanding of the mechanisms controlling body mass also has greatly improved. Shared regulation at the hypothalamus and the bone marrow highlight major bone-fat interactions. The hypothalamus modulates fat and bone via the sympathetic nervous system by regulating appetite, insulin sensitivity, energy use, and skeletal remodeling. In the bone marrow, fat and bone cells arise from the same stem cells. Insights from disorders such as anorexia nervosa provide a new rationale for examining the mechanisms that link bone to fat. This article explores these relationships in the context of a new paradigm with implications for obesity and osteoporosis.
Collapse
|
207
|
Affiliation(s)
- Amelia Guadalupe-Grau
- Department of Physical Education, University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Canary Islands, Spain
| | | | | | | |
Collapse
|
208
|
Leung KS, Shi HF, Cheung WH, Qin L, Ng WK, Tam KF, Tang N. Low-magnitude high-frequency vibration accelerates callus formation, mineralization, and fracture healing in rats. J Orthop Res 2009; 27:458-65. [PMID: 18924140 DOI: 10.1002/jor.20753] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Fracture healing is a biological regenerative process that follows a well-orchestrated sequence. Most healing is uneventful and enhancement of normal fracture healing is not commonly done, although it is clinically important in the recovery and regain of functions after fracture. This study investigated the osteogenic effect of low-magnitude high-frequency vibration (LMHFV, 35 Hz, 0.3 g) on the enhancement of fracture healing in rats with closed femoral shaft fracture by comparing with sham-treated control. Assessments with plain radiography, micro-CT as well as histomorphometry showed that the amount of callus was significantly larger (p = 0.001 for callus area, 2 weeks posttreatment); the remodeling of the callus into mature bone was significantly faster (p = 0.039, 4 weeks posttreatment) in the treatment group. The mechanical strength of the healed fracture in the treatment group at 4 weeks was significantly greater (p < 0.001). The results showed the acceleration of callus formation, mineralization, and fracture healing in the treatment group. It is concluded that LMHFV enhances healing in the closed femoral shaft fracture in rats. The potential clinical advantages shall be confirmed in the subsequent clinical trials.
Collapse
Affiliation(s)
- Kwok Sui Leung
- Department of Orthopaedics and Traumatology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, People's Republic of China.
| | | | | | | | | | | | | |
Collapse
|
209
|
Hwang SJ, Lublinsky S, Seo YK, Kim IS, Judex S. Extremely small-magnitude accelerations enhance bone regeneration: a preliminary study. Clin Orthop Relat Res 2009; 467:1083-91. [PMID: 18855088 PMCID: PMC2650046 DOI: 10.1007/s11999-008-0552-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2008] [Accepted: 09/16/2008] [Indexed: 01/31/2023]
Abstract
High-frequency, low-magnitude accelerations can be anabolic and anticatabolic to bone. We tested the hypothesis that application of these mechanical signals can accelerate bone regeneration in scaffolded and nonscaffolded calvarial defects. The cranium of experimental rats (n = 8) in which the 5-mm bilateral defects either contained a collagen scaffold or were left empty received oscillatory accelerations (45 Hz, 0.4 g) for 20 minutes per day for 3 weeks. Compared with scaffolded defects in the untreated control group (n = 6), defects with a scaffold and subject to oscillatory accelerations had a 265% greater fractional bone defect area 4 weeks after the surgery. After 8 weeks of healing (1-week recovery, 3 weeks of stimulation, 4 weeks without stimulation), the area (181%), volume (137%), and thickness (53%) of the regenerating tissue in the scaffolded defect were greater in experimental than in control animals. In unscaffolded defects, mechanical stimulation induced an 84% greater bone volume and a 33% greater thickness in the defect. These data provide preliminary evidence that extremely low-level, high-frequency accelerations can enhance osseous regenerative processes, particularly in the presence of a supporting scaffold.
Collapse
Affiliation(s)
- Soon Jung Hwang
- Department of Oral and Maxillofacial Surgery, Seoul National University Dental Hospital, Seoul, South Korea ,School of Dentistry, Brain Korea 21 2nd Program for Craniomaxillofacial Life Science, Seoul National University, Seoul, South Korea
| | - Svetlana Lublinsky
- Department of Biomedical Engineering, State University of New York at Stony Brook, Psychology A Building (3rd Floor), Stony Brook, NY 11794-2580 USA
| | - Young-Kwon Seo
- Department of Chemical and Biochemical Engineering, Dongguk University, Seoul, South Korea
| | - In Sook Kim
- Department of Oral and Maxillofacial Surgery, Seoul National University Dental Hospital, Seoul, South Korea ,School of Dentistry, Brain Korea 21 2nd Program for Craniomaxillofacial Life Science, Seoul National University, Seoul, South Korea
| | - Stefan Judex
- Department of Biomedical Engineering, State University of New York at Stony Brook, Psychology A Building (3rd Floor), Stony Brook, NY 11794-2580 USA
| |
Collapse
|
210
|
Patel MJ, Chang KH, Sykes MC, Talish R, Rubin C, Jo H. Low magnitude and high frequency mechanical loading prevents decreased bone formation responses of 2T3 preosteoblasts. J Cell Biochem 2009; 106:306-16. [PMID: 19125415 DOI: 10.1002/jcb.22007] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Bone loss due to osteoporosis or disuse such as in paraplegia or microgravity is a significant health problem. As a treatment for osteoporosis, brief exposure of intact animals or humans to low magnitude and high frequency (LMHF) mechanical loading has been shown to normalize and prevent bone loss. However, the underlying molecular changes and the target cells by which LMHF mechanical loading alleviate bone loss are not known. Here, we hypothesized that direct application of LMHF mechanical loading to osteoblasts alters their cell responses, preventing decreased bone formation induced by disuse or microgravity conditions. To test our hypothesis, preosteoblast 2T3 cells were exposed to a disuse condition using the random positioning machine (RPM) and intervened with an LMHF mechanical load (0.1-0.4 g at 30 Hz for 10-60 min/day). Exposure of 2T3 cells to the RPM decreased bone formation responses as determined by alkaline phosphatase (ALP) activity and mineralization even in the presence of a submaximal dose of BMP4 (20 ng/ml). However, LMHF mechanical loading prevented the RPM-induced decrease in ALP activity and mineralization. Mineralization induced by LMHF mechanical loading was enhanced by treatment with bone morphogenic protein 4 (BMP4) and blocked by the BMP antagonist noggin, suggesting a role for BMPs in this response. In addition, LMHF mechanical loading rescued the RPM-induced decrease in gene expression of ALP, runx2, osteomodulin, parathyroid hormone receptor 1, and osteoglycin. These findings suggest that preosteoblasts may directly respond to LMHF mechanical loading to induce differentiation responses. The mechanosensitive genes identified here provide potential targets for pharmaceutical treatments that may be used in combination with low level mechanical loading to better treat osteoporosis or disuse-induced bone loss.
Collapse
Affiliation(s)
- Mamta J Patel
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30322, USA
| | | | | | | | | | | |
Collapse
|
211
|
Friedl KE, Evans RK, Moran DS. Stress fracture and military medical readiness: bridging basic and applied research. Med Sci Sports Exerc 2009; 40:S609-22. [PMID: 18849874 DOI: 10.1249/mss.0b013e3181892d53] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
PURPOSE Military recruits and distance runners share a special risk of stress fracture injury. Recent efforts by US and Israeli military-sponsored researchers have uncovered important mechanisms and practical low-cost interventions. This article summarizes key findings relevant to prevention of stress fracture, including simple strategies to identify and to mitigate risk. METHODS Published research supported through the Bone Health and Military Medical Readiness research program and related military bone research was analyzed for contributions to preventing stress fracture in military recruits and optimizing bone health. RESULTS Thousands of military recruits helped test hypotheses about predictors of risk, safer exercise regimens, and rest, nutrition, gait training, and technology interventions to reduce stress fracture risk. Concurrent cellular, animal, and human laboratory studies were used to systematically investigate mechanisms of mechanical forces acting on bone and interactions through muscle, hormonal and genetic influences, and metabolism. The iterative and sometimes simultaneous process of basic discovery and field testing produced new knowledge that will provide safer science-based physical training. DISCUSSION Human training studies evaluating effects on bone require special commitment from investigators and funders due to volunteer compliance and attrition challenges. The findings from multiple studies indicate that measures of bone elasticity, fragility, and geometry are as important as bone mineral density in predicting fracture risk, with applications for new measurement technologies. Risk may be reduced by high intakes of calcium, vitamin D, and possibly protein (e.g., milk products). Prostaglandin E2, insulin-like growth factor 1, and estrogens are important mediators of osteogenesis, indicating reasons to limit the use of certain drugs (e.g., ibuprofen), to avoid excessive food restriction, and to treat hypogonadism. Abnormal gait may be a correctable risk factor. Brief daily vibration may stimulate bone mineral accretion similar to weight-bearing exercise. Genetic factors contribute importantly to bone quality, affecting fracture susceptibility and providing new insights into fracture healing and tissue reengineering.
Collapse
Affiliation(s)
- Karl E Friedl
- Telemedicine and Advanced Technology Research Center, Fort Detrick, MD 21702-5012, USA.
| | | | | |
Collapse
|
212
|
Thongudomporn U, Chongsuvivatwong V, Geater AF. The effect of maximum bite force on alveolar bone morphology. Orthod Craniofac Res 2009; 12:1-8. [DOI: 10.1111/j.1601-6343.2008.01430.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
213
|
Mechanical stimulation of mesenchymal stem cell proliferation and differentiation promotes osteogenesis while preventing dietary-induced obesity. J Bone Miner Res 2009; 24:50-61. [PMID: 18715135 PMCID: PMC2689082 DOI: 10.1359/jbmr.080817] [Citation(s) in RCA: 196] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Mesenchymal stem cells (MSCs) are defined by their ability to self-renew and differentiate into the cells that form mesodermal tissues such as bone and fat. Low magnitude mechanical signals (LMMS) have been shown to be anabolic to bone and have been recently reported to suppress the development of fat in normal animals fed a regular diet. Using male C57BL/6J mice, the ability of LMMS (0.2g, 90-Hz signal applied for 15 min/d, 5 d/wk) to simultaneously promote bone formation and prevent diet-induced obesity was correlated to mechanical influences on the molecular environment of the bone marrow, as indicated by the population dynamics and lineage commitment of MSCs. Six weeks of LMMS increased the overall marrow-based stem cell population by 37% and the number of MSCs by 46%. Concomitant with the increase in stem cell number, the differentiation potential of MSCs in the bone marrow was biased toward osteoblastic and against adipogenic differentiation, as reflected by upregulation of the transcription factor Runx2 by 72% and downregulation of PPARgamma by 27%. The phenotypic impact of LMMS on MSC lineage determination was evident at 14 wk, where visceral adipose tissue formation was suppressed by 28%, whereas trabecular bone volume fraction in the tibia was increased by 11%. Translating this to the clinic, a 1-yr trial in young women (15-20 yr; n = 48) with osteopenia showed that LMMS increased trabecular bone in the spine and kept visceral fat at baseline levels, whereas control subjects showed no change in BMD, yet an increase in visceral fat. Mechanical modulation of stem cell proliferation and differentiation indicates a unique therapeutic target to aid in tissue regeneration and repair and may represent the basis of a nonpharmacologic strategy to simultaneously prevent obesity and osteoporosis.
Collapse
|
214
|
Bergqvist AGC, Schall JI, Stallings VA, Zemel BS. Progressive bone mineral content loss in children with intractable epilepsy treated with the ketogenic diet. Am J Clin Nutr 2008; 88:1678-84. [PMID: 19064531 DOI: 10.3945/ajcn.2008.26099] [Citation(s) in RCA: 115] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND The ketogenic diet (KD) is a high-fat, low-carbohydrate, and protein diet that effectively treats intractable epilepsy (IE). OBJECTIVE The purpose of this study was to measure the change in bone mineral content (BMC) in children with IE treated with the KD for 15 mo. DESIGN Prepubertal children >or=5 y of age with IE were eligible. A 4:1 ketogenic diet was maintained for 15 mo, and whole-body and spine BMCs were measured with dual-energy X-ray absorptiometry. Z scores were generated by comparing the children with IE with a cohort of 847 healthy children. Other measurements included demographics, anthropometry, serum 25-hydroxyvitamin D (25-OHD), intact parathyroid hormone, electrolytes, and dietary intake. All measurements were performed at baseline and at 3, 6, 12, and 15 mo. Longitudinal mixed effects models were used to analyze change in BMC over time. RESULTS Twenty-five children (9 girls, 16 boys) with IE [age (x +/- SD): 7.3 +/- 1.9 y] participated. Growth and bone health status were suboptimal as were serum 25-OHD concentrations and dietary intake of calcium and vitamin D. Whole-body and spine BMC-for-age both declined by 0.6 z score/y and whole-body and spine BMC-for-height declined 0.7 z score/y and 0.4 z score/y, respectively. Height declined 0.5 z score/y. Body mass index (BMI; in kg/m(2)) z score, age, and ambulation were positive predictors of BMC, which declined sharply over 15 mo of KD treatment. CONCLUSION Bone health in children with IE was poor, particularly for younger nonambulatory children with low BMI status. The KD resulted in progressive loss of BMC. The mechanism is unclear. Further studies are needed.
Collapse
Affiliation(s)
- A G Christina Bergqvist
- Division of Neurology, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA.
| | | | | | | |
Collapse
|
215
|
Prisby RD, Lafage-Proust MH, Malaval L, Belli A, Vico L. Effects of whole body vibration on the skeleton and other organ systems in man and animal models: what we know and what we need to know. Ageing Res Rev 2008; 7:319-29. [PMID: 18762281 DOI: 10.1016/j.arr.2008.07.004] [Citation(s) in RCA: 124] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2008] [Revised: 07/22/2008] [Accepted: 07/23/2008] [Indexed: 11/17/2022]
Abstract
Previous investigations reported enhanced osseous parameters subsequent to administration of whole body vibration (WBV). While the efficacy of WBV continues to be explored, scientific inquiries should consider several key factors. Bone remodeling patterns differ according to age and hormonal status. Therefore, WBV protocols should be designed specifically for the subject population investigated. Further, administration of WBV to individuals at greatest risk for osteoporosis may elicit secondary physiological benefits (e.g., improved balance and mobility). Secondly, there is a paucity of data in the literature regarding the physiological modulation of WBV on other organ systems and tissues. Vibration-induced modulation of systemic hormones may provide a mechanism by which skeletal tissue is enhanced. Lastly, the most appropriate frequencies, durations, and amplitudes of vibration necessary for a beneficial response are unknown, and the type of vibratory signal (e.g., sinusoidal) is often not reported. This review summarizes the physiological responses of several organ systems in an attempt to link the global influence of WBV. Further, we report findings focused on subject populations that may benefit most from such a therapy (i.e., the elderly, postmenopausal women, etc.) in hopes of eliciting multidisciplinary scientific inquiries into this potentially therapeutic aid which presumably has global ramifications.
Collapse
Affiliation(s)
- Rhonda D Prisby
- Université Jean-Monnet, INSERM U890, Saint-Etienne F42023, France.
| | | | | | | | | |
Collapse
|
216
|
Abstract
According to experimental studies, low-amplitude high-frequency vibration is anabolic to bone tissue, whereas in clinical trials, the bone effects have varied. Given the potential of whole body vibration in bone training, this study aimed at exploring the transmission of vertical sinusoidal vibration to the human body over a wide range of applicable amplitudes (from 0.05 to 3 mm) and frequencies (from 10 to 90 Hz). Vibration-induced accelerations were assessed with skin-mounted triaxial accelerometers at the ankle, knee, hip, and lumbar spine in four males standing on a high-performance vibration platform. Peak vertical accelerations of the platform covered a range from 0.04 to 19 in units of G (Earth's gravitational constant). Substantial amplification of peak acceleration could occur between 10 and 40 Hz for the ankle, 10 and 25 Hz for the knee, 10 and 20 Hz for the hip, and at 10 Hz for the spine. Beyond these frequencies, the transmitted vibration power declined to 1/10th-1/1000 th of the power delivered by the platform. Transmission of vibration to the body is a complicated phenomenon because of nonlinearities in the human musculoskeletal system. These results may assist in estimating how the transmission of vibration-induced accelerations to body segments is modified by amplitude and frequency and how well the sinusoidal waveform is maintained. Although the attenuation of vertical vibration at higher frequencies is fortunate from the aspect of safety, amplitudes >0.5 mm may result in greater peak accelerations than imposed at the platform and thus pose a potential hazard for the fragile musculoskeletal system.
Collapse
|
217
|
Abstract
OBJECTIVE To evaluate the effects of whole-body vibration on fat, bone, leptin and muscle mass. METHODS/DESIGN Thirty 7-month-old female 344 Fischer rats were randomized by weight into three groups (baseline, vibration or control; n=8-10 per group). Rats in the vibration group were placed inside individual compartments attached to a Pneu-Vibe vibration platform (Pneumex, Sandpoint, ID, USA) and vibrated at 30-50 Hz (6 mm peak to peak) for 30 min per day, 5 days per week, for 12 weeks. The vibration intervention consisted of six 5-min cycles with a 1-min break between cycles. RESULTS There were significant body composition differences between the whole-body vibration and the control group. The whole-body vibration group weighed approximately 10% less (mean+/-s.d.; 207+/-10 vs 222+/-15 g, P<0.03) and had less body fat (20.8+/-3.8 vs 26.8+/-5.9 g, P<0.05), a lower percentage of body fat (10.2+/-1.7 vs 12+/-2.0%, P<0.05), and lower serum leptin levels (1.06+/-0.45 vs 2.27+/-0.57 ng ml(-1), P<0.01) than the age-matched controls. No differences were observed for total lean mass, bone mineral content (BMC), bone mineral density (BMD), insulin-like growth factor-I (IGF-I) or soleus (SOL) and extensor digitorum longus (EDL) mass or function. Regional high-resolution dual-energy X-ray absoptiometry scans of the lumbar spine (L1-4) revealed that the whole-body vibration group had significantly greater BMC (0.33+/-0.05 vs 0.26+/-0.03 g, P<0.01) and BMD (0.21+/-0.01 vs 0.19+/-0.01 g cm(-2), P<0.01) than the control group. No differences between the groups were observed in the amount of food consumed. CONCLUSION These findings show that whole-body vibration reduced body fat accumulation and serum leptin without affecting whole body BMC, BMD or lean mass. However, the increase in vertebral BMC and BMD suggests that vibration may have resulted in local increases in bone mass and density. Also, whole-body vibration did not affect muscle function or food consumption.
Collapse
|
218
|
Ward MM, Reveille JD, Learch TJ, Davis JC, Weisman MH. Occupational physical activities and long-term functional and radiographic outcomes in patients with ankylosing spondylitis. ACTA ACUST UNITED AC 2008; 59:822-32. [PMID: 18512723 DOI: 10.1002/art.23704] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
OBJECTIVE We sought to identify specific occupational activities associated with functional limitations and radiographic damage in patients with longstanding ankylosing spondylitis (AS). METHODS We asked patients diagnosed with AS for >or=20 years to report all past occupations, which we mapped to specific physical activities using the Occupational Information Network, which is the US Department of Labor job classification database. For each occupation reported, we obtained ratings for 13 physical abilities of the worker and 13 aspects of the work environment or work tasks (work context) thought to be most relevant to patients with AS. Averages for each measure, weighted by the number of years in each job, were related to the degree of functional limitation as assessed by the Bath AS Functional Index (BASFI) and to the extent of spinal radiographic damage as assessed by the Bath AS Radiology Index for the spine (BASRI-s). RESULTS Among 397 patients, those with a history of jobs requiring dynamic flexibility (the ability to repeatedly bend, stretch, twist, or reach) had more functional limitations than those whose past jobs required little or no dynamic flexibility (adjusted mean BASFI score 48.3 in the top quartile versus 38.1 in all others). Those whose past jobs required more dynamic flexibility, extent flexibility, and exposure to whole body vibration also had significantly higher BASRI-s scores. CONCLUSION Bending, twisting, and stretching are the occupational activities associated with greater functional limitations and radiographic damage in patients with longstanding AS. Exposure to whole body vibration was also associated with more radiographic damage.
Collapse
Affiliation(s)
- Michael M Ward
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, NIH, Bethesda, Maryland 20892-1468, USA.
| | | | | | | | | |
Collapse
|
219
|
Abstract
The risk of osteoporotic fracture can be viewed as a function of loading conditions and the ability of the bone to withstand the load. Skeletal loads are dominated by muscle action. Recently, it has become clear that bone and muscle share genetic determinants. Involution of the musculoskeletal system manifests as bone loss (osteoporosis) and muscle wasting (sarcopenia). Therefore, the consideration of pleiotropy is an important aspect in the study of the genetics of osteoporosis and sarcopenia. This Perspective will provide the evidence for a shared genetic influence on bone and muscle. We will start with an overview of accumulating evidence that physical exercise produces effects on the adult skeleton, seeking to unravel some of the contradictory findings published thus far. We will provide indications that there are pleiotropic relationships between bone structure/mass and muscle mass/function. Finally, we will offer some insights and practical recommendations as to the value of studying shared genetic factors and will explore possible directions for future research. We consider several related questions that together comprise the general paradigm of bone responses to mechanical loading and the relationship between muscle strength and bone parameters, including the genetic factors that modulate these responses. We believe that further progress in understanding the common genetic etiology of osteoporosis and sarcopenia will provide valuable insight into important biological underpinnings for both conditions and may translate into new approaches to reduce the burdens of both conditions through improved diagnosis, prevention, and early targeted treatment.
Collapse
|
220
|
|
221
|
Rubinacci A, Marenzana M, Cavani F, Colasante F, Villa I, Willnecker J, Moro GL, Spreafico LP, Ferretti M, Guidobono F, Marotti G. Ovariectomy sensitizes rat cortical bone to whole-body vibration. Calcif Tissue Int 2008; 82:316-26. [PMID: 18379712 DOI: 10.1007/s00223-008-9115-8] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2007] [Accepted: 02/04/2008] [Indexed: 01/06/2023]
Abstract
This study was designed to determine the modulatory effect of estrogen on mechanical stimulation in bone. Trabecular and cortical bone compartments of ovariectomized rats exposed to whole-body vibration of different amplitudes were evaluated by peripheral quantitative computed tomographic (pQCT) analysis and histomorphometry and compared to controls not exposed to vibration. Rats underwent whole-body vibration (20 minutes/day, 5 days/week) on a vibration platform for 2 months. The control rats were placed on the platform without vibration for the same time. We divided rats into six groups: a sham control (SHAM); a sham vibrated (SHAM-V) at 30 Hz, 0.6 g; a SHAM-V at 30 Hz, 3g; an ovariectomized control (OVX); an ovariectomized vibrated (OVX-V) at 30 Hz, 0.6 g; and an OVX-V at 30 Hz, 3g. In vivo, pQCT analyses of the tibiae were performed at the start of the experiment and after 4 and 8 weeks. After 8 weeks the tibiae were excised for histomorphometric and for in vitro pQCT analyses. In the SHAM-V group, vibration had no effect upon the different bone parameters. In the OVX-V group, vibration induced a significant increase compared to the OVX group of the cortical and medullary areas (P < 0.01) and of the periosteal (P < 0.01) and endosteal (P < 0.05) perimeters at the 3 g vibration. The strain strength index increased in the OVX-V group significantly (P < 0.01) at the higher vibration. The results showed that low-amplitude, high-frequency whole-body vibration is anabolic to bone in OVX animals. The osteogenic potential is limited to the modeling of the bone cortex and depends on the amplitude of the vibration.
Collapse
Affiliation(s)
- Alessandro Rubinacci
- Bone Metabolic Unit, Scientific Institute San Raffaele, Via Olgettina 60, Milan 20132, Italy.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
222
|
Xie L, Rubin C, Judex S. Enhancement of the adolescent murine musculoskeletal system using low-level mechanical vibrations. J Appl Physiol (1985) 2008; 104:1056-62. [PMID: 18258802 DOI: 10.1152/japplphysiol.00764.2007] [Citation(s) in RCA: 112] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Mechanical signals are recognized as anabolic to both bone and muscle, but the specific parameters that are critical to this stimulus remain unknown. Here we examined the potential of extremely low-magnitude, high-frequency mechanical stimuli to enhance the quality of the adolescent musculoskeletal system. Eight-week-old female BALB/cByJ mice were divided into three groups: baseline controls (BC, n = 8), age-matched controls (AC, n = 12), and whole body vibration (WBV, n = 12) at 45 Hz (0.3 g) for 15 min/day. Following 6 wk of WBV, bone mineralizing surfaces of trabeculae in the proximal metaphysis of the tibia were 75% greater (P < 0.05) than AC, while osteoclast activity was not significantly different. The tibial metaphysis of WBV mice had 14% greater trabecular bone volume (P < 0.05) than AC, while periosteal bone area, bone marrow area, cortical bone area, and the moments of inertia of this region were all significantly greater (up to 29%, P < 0.05). The soleus muscle also realized gains by WBV, with total cross-sectional area as well as type I and type II fiber area as much as 29% greater (P < 0.05) in mice that received the vibratory mechanical stimulus. The small magnitude and brief application of the noninvasive intervention emphasize that the mechanosensitive elements of the musculoskeletal system are not necessarily dependent on strenuous, long-term activity to initiate a structurally relevant response in the adolescent musculoskeletal system. If maintained into adulthood, the beneficial structural changes in trabecular bone, cortical bone, and muscle may serve to decrease the incidence of osteoporotic fractures and sarcopenia later in life.
Collapse
Affiliation(s)
- Liqin Xie
- Dept. of Biomedical Engineering, Psychology A, 3rd Floor, State Univ. of New York at Stony Brook, Stony Brook, NY 11794-2580, USA
| | | | | |
Collapse
|
223
|
Bibliography. Current world literature. Parathyroids, bone and mineral metabolism. Curr Opin Endocrinol Diabetes Obes 2007; 14:494-501. [PMID: 17982358 DOI: 10.1097/med.0b013e3282f315ef] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
224
|
Rubin CT, Capilla E, Luu YK, Busa B, Crawford H, Nolan DJ, Mittal V, Rosen CJ, Pessin JE, Judex S. Adipogenesis is inhibited by brief, daily exposure to high-frequency, extremely low-magnitude mechanical signals. Proc Natl Acad Sci U S A 2007; 104:17879-84. [PMID: 17959771 PMCID: PMC2077057 DOI: 10.1073/pnas.0708467104] [Citation(s) in RCA: 206] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2007] [Indexed: 12/16/2022] Open
Abstract
Obesity, a global pandemic that debilitates millions of people and burdens society with tens of billions of dollars in health care costs, is deterred by exercise. Although it is presumed that the more strenuous a physical challenge the more effective it will be in the suppression of adiposity, here it is shown that 15 weeks of brief, daily exposure to high-frequency mechanical signals, induced at a magnitude well below that which would arise during walking, inhibited adipogenesis by 27% in C57BL/6J mice. The mechanical signal also reduced key risk factors in the onset of type II diabetes, nonesterified free fatty acid and triglyceride content in the liver, by 43% and 39%, respectively. Over 9 weeks, these same signals suppressed fat production by 22% in the C3H.B6-6T congenic mouse strain that exhibits accelerated age-related changes in body composition. In an effort to understand the means by which fat production was inhibited, irradiated mice receiving bone marrow transplants from heterozygous GFP+ mice revealed that 6 weeks of these low-magnitude mechanical signals reduced the commitment of mesenchymal stem cell differentiation into adipocytes by 19%, indicating that formation of adipose tissue in these models was deterred by a marked reduction in stem cell adipogenesis. Translated to the human, this may represent the basis for the nonpharmacologic prevention of obesity and its sequelae, achieved through developmental, rather than metabolic, pathways.
Collapse
Affiliation(s)
- C T Rubin
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
225
|
Abstract
As children grow, they accumulate bone mineral, which serves as a "bone bank" for the future. Any condition that interferes with normal bone mineral accrual during childhood has the potential to reduce peak bone mass and subsequently increase future risk for fracture. In contrast to adults, for whom dual-energy x-ray absorptiometry (DXA) has become the standard clinical instrument for assessing bone mineral density and criteria have been developed to define osteopenia and osteoporosis, information for children is still limited. Numerous issues confound the interpretation of DXA-derived bone mineral density measurements in children, and clinicians often find themselves caught between the limitations of these methods and the practical issue of taking care of their pediatric patient. The explosion of treatment options for postmenopausal osteoporosis has resulted in new options for the treatment of children and adolescents. However, most of these agents have not been sufficiently well studied in children to permit the development of standardized treatment guidelines.
Collapse
Affiliation(s)
- Emily von Scheven
- Pediatric Rheumatology, University of California, San Francisco, Box 0107, 505 Parnassus Avenue, San Francisco, CA 94143, USA.
| |
Collapse
|
226
|
Ozcivici E, Garman R, Judex S. High-frequency oscillatory motions enhance the simulated mechanical properties of non-weight bearing trabecular bone. J Biomech 2007; 40:3404-11. [PMID: 17655852 DOI: 10.1016/j.jbiomech.2007.05.015] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2007] [Revised: 04/17/2007] [Accepted: 05/15/2007] [Indexed: 11/17/2022]
Abstract
Extremely low-level oscillatory accelerations, applied without constraint, can increase bone formation. Here, we tested the hypothesis that high-frequency oscillations, applied in the absence of functional weight bearing, can be sensed by trabecular bone to produce a structure that is more efficient in sustaining applied loads. The left leg of anesthetized adult female mice (n=18) was subjected to high-frequency oscillations at 45 Hz, 0.6g for 20 min/day, 5 days/week for 3 weeks, while the contralateral leg served as an internal control. To remove the potential interference of the habitual strain environment with the imposed physical signal, the hindlimbs of these mice were chronically unloaded. In vivo microCT scans of the proximal metaphyseal region of the tibia were transformed into finite element meshes to evaluate trabecular and cortical mechanical properties. Simulated longitudinal compression tests showed that the short applications of high-frequency oscillations were sensed primarily by trabecular bone. At the end of the experimental period, apparent trabecular stiffness of the oscillated bones was 38% (p<0.001) greater than that of non-weight bearing controls. Simulated uniaxial loads applied to trabecular bone induced 21%, 52%, and 131% greater (p<0.05) median, peak compressive, and peak tensile longitudinal stresses in control than in stimulated bones. Non-weight bearing control bones were also characterized by greater transverse normal and shear stresses (77% and 54%, respectively, p<0.001) as well as 35% greater (p=0.03) longitudinal shear stresses. Compared to normal age-matched controls (n=18), oscillations were able to attenuate, but not fully prevent, the decline in trabecular mechanical properties associated with the removal of weight bearing. These data indicate not only that bone cells can sense low-level, high-frequency oscillatory accelerations, but also that they can orchestrate a structural response that produces a stiffer trabecular structure that may be less prone to fracture.
Collapse
Affiliation(s)
- Engin Ozcivici
- Department of Biomedical Engineering, Psychology A Building, 3rd Floor, State University of New York at Stony Brook, Stony Brook, NY 11794-2580, USA
| | | | | |
Collapse
|
227
|
Garman R, Rubin C, Judex S. Small oscillatory accelerations, independent of matrix deformations, increase osteoblast activity and enhance bone morphology. PLoS One 2007; 2:e653. [PMID: 17653280 PMCID: PMC1919432 DOI: 10.1371/journal.pone.0000653] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2007] [Accepted: 06/22/2007] [Indexed: 11/18/2022] Open
Abstract
A range of tissues have the capacity to adapt to mechanical challenges, an attribute presumed to be regulated through deformation of the cell and/or surrounding matrix. In contrast, it is shown here that extremely small oscillatory accelerations, applied as unconstrained motion and inducing negligible deformation, serve as an anabolic stimulus to osteoblasts in vivo. Habitual background loading was removed from the tibiae of 18 female adult mice by hindlimb-unloading. For 20 min/d, 5 d/wk, the left tibia of each mouse was subjected to oscillatory 0.6 g accelerations at 45 Hz while the right tibia served as control. Sham-loaded (n = 9) and normal age-matched control (n = 18) mice provided additional comparisons. Oscillatory accelerations, applied in the absence of weight bearing, resulted in 70% greater bone formation rates in the trabeculae of the metaphysis, but similar levels of bone resorption, when compared to contralateral controls. Quantity and quality of trabecular bone also improved as a result of the acceleration stimulus, as evidenced by a significantly greater bone volume fraction (17%) and connectivity density (33%), and significantly smaller trabecular spacing (-6%) and structural model index (-11%). These in vivo data indicate that mechanosensory elements of resident bone cell populations can perceive and respond to acceleratory signals, and point to an efficient means of introducing intense physical signals into a biologic system without putting the matrix at risk of overloading. In retrospect, acceleration, as opposed to direct mechanical distortion, represents a more generic and safe, and perhaps more fundamental means of transducing physical challenges to the cells and tissues of an organism.
Collapse
Affiliation(s)
- Russell Garman
- Department of Biomedical Engineering, State University of New York at Stony Brook, Stony Brook, New York, United States of America
| | - Clinton Rubin
- Department of Biomedical Engineering, State University of New York at Stony Brook, Stony Brook, New York, United States of America
| | - Stefan Judex
- Department of Biomedical Engineering, State University of New York at Stony Brook, Stony Brook, New York, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
228
|
Abstract
OBJECTIVE To review current consensus and controversy surrounding the diagnosis and treatment of osteoporosis in childhood and adolescence. METHODS The medical literature was reviewed with emphasis on the importance of early skeletal health, risk factors for bone fragility, and the diagnosis and management of children at risk for osteoporosis. RESULTS Childhood and adolescence are critical periods for optimizing bone growth and mineral accrual. Bone strength is determined by bone size, geometry, quality, and mass-variables that are influenced by genetic factors, activity, nutrition, and hormones. For children with genetic skeletal disorders or chronic disease, bone growth and mineral accrual may be compromised, increasing the lifetime risk of osteoporosis. The goal for the clinician is to identify children at greatest risk for future fragility fracture. Bone densitometry and turnover markers are challenging to interpret in children. Prevention and treatment of bone fragility in children are less well established than in adults. Optimizing nutrition and activity may not restore bone health, but the drug armamentarium is limited. Sex steroid replacement has not proven effective in restoring bone mass in patients with anorexia nervosa or exercise-associated amenorrhea. Bisphosphonates can increase bone mass and may reduce bone pain and fractures, most convincingly in patients with osteogenesis imperfecta. Further studies are needed to establish the safety, efficacy, and optimal drug, duration, and dosage in pediatric patients. CONCLUSION Bone health during the first 2 decades contributes to the lifetime risk of osteoporosis. Further research is needed to develop evidence-based recommendations for the diagnosis and treatment of osteoporosis in childhood.
Collapse
Affiliation(s)
- Laura Keyes Bachrach
- The Department of Pediatrics, Stanford University School of Medicine, Stanford, California 94035-5208, USA
| |
Collapse
|
229
|
Abstract
The "holy grail" of inquiry regarding exercise and osteoporosis has been identifying a type of exercise that builds bone. Investigation using animal models has provided many insights into how bone responds to mechanical loading, but translating these findings into an exercise prescription for patients with osteoporosis is difficult. Patients expect bone to respond to exercise in a linear fashion, such as they are accustomed to experiencing with muscles in response to progressive strength training or with the cardiopulmonary system in response to endurance training. If the skeleton accrued greater mass in response to increasing intensity and duration of mechanical strain, our bones would weigh so much that we could not move. A unique requirement of bone is that adaptations to loading produce the strongest and the lightest structure. More exercise is not always better, but we are not yet sure exactly what and how much is enough and what and how much is too much. This complexity stymies clear communication, both in the clinic and in public health initiatives.
Collapse
Affiliation(s)
- Kathy M Shipp
- Division of Physical Therapy, Department of Community and Family Medicine, Duke University Medical Center, Box 3907, Durham, NC 27710, USA.
| |
Collapse
|