201
|
Chen RT, Hu DJ, Dunne E, Shaw M, Mullins JI, Rerks-Ngarm S. Preparing for the availability of a partially effective HIV vaccine: some lessons from other licensed vaccines. Vaccine 2011; 29:6072-8. [PMID: 21745523 DOI: 10.1016/j.vaccine.2011.07.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- Robert T Chen
- Centers for Disease Control and Prevention, Atlanta, GA 30333, United States.
| | | | | | | | | | | |
Collapse
|
202
|
Rollier CS, Reyes-Sandoval A, Cottingham MG, Ewer K, Hill AVS. Viral vectors as vaccine platforms: deployment in sight. Curr Opin Immunol 2011; 23:377-82. [DOI: 10.1016/j.coi.2011.03.006] [Citation(s) in RCA: 144] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2011] [Accepted: 03/25/2011] [Indexed: 02/06/2023]
|
203
|
Im EJ, Hong JP, Roshorm Y, Bridgeman A, Létourneau S, Liljeström P, Potash MJ, Volsky DJ, McMichael AJ, Hanke T. Protective efficacy of serially up-ranked subdominant CD8+ T cell epitopes against virus challenges. PLoS Pathog 2011; 7:e1002041. [PMID: 21625575 PMCID: PMC3098219 DOI: 10.1371/journal.ppat.1002041] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2010] [Accepted: 03/08/2011] [Indexed: 12/20/2022] Open
Abstract
Immunodominance in T cell responses to complex antigens like viruses is still incompletely understood. Some data indicate that the dominant responses to viruses are not necessarily the most protective, while other data imply that dominant responses are the most important. The issue is of considerable importance to the rational design of vaccines, particularly against variable escaping viruses like human immunodeficiency virus type 1 and hepatitis C virus. Here, we showed that sequential inactivation of dominant epitopes up-ranks the remaining subdominant determinants. Importantly, we demonstrated that subdominant epitopes can induce robust responses and protect against whole viruses if they are allowed at least once in the vaccination regimen to locally or temporally dominate T cell induction. Therefore, refocusing T cell immune responses away from highly variable determinants recognized during natural virus infection towards subdominant, but conserved regions is possible and merits evaluation in humans.
Collapse
Affiliation(s)
- Eung-Jun Im
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, The John Radcliffe Hospital, Oxford, United Kingdom
| | - Jessie P. Hong
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, The John Radcliffe Hospital, Oxford, United Kingdom
| | - Yaowaluck Roshorm
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, The John Radcliffe Hospital, Oxford, United Kingdom
| | - Anne Bridgeman
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, The John Radcliffe Hospital, Oxford, United Kingdom
| | - Sven Létourneau
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, The John Radcliffe Hospital, Oxford, United Kingdom
| | - Peter Liljeström
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Mary Jane Potash
- Molecular Virology Division, St. Luke's Roosevelt Hospital Center, Columbia University Medical Center, New York, New York, United States of America
| | - David J. Volsky
- Molecular Virology Division, St. Luke's Roosevelt Hospital Center, Columbia University Medical Center, New York, New York, United States of America
| | - Andrew J. McMichael
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, The John Radcliffe Hospital, Oxford, United Kingdom
| | - Tomáš Hanke
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, The John Radcliffe Hospital, Oxford, United Kingdom
- The Jenner Institute, University of Oxford, Oxford, United Kingdom
- * E-mail:
| |
Collapse
|
204
|
Hopkins R, Bridgeman A, Joseph J, Gilbert SC, McShane H, Hanke T. Dual neonate vaccine platform against HIV-1 and M. tuberculosis. PLoS One 2011; 6:e20067. [PMID: 21603645 PMCID: PMC3094449 DOI: 10.1371/journal.pone.0020067] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2011] [Accepted: 04/20/2011] [Indexed: 01/05/2023] Open
Abstract
Acquired immunodeficiency syndrome and tuberculosis (TB) are two of the
world's most devastating diseases. The first vaccine the majority of
infants born in Africa receive is Mycobacterium bovis bacillus
Calmette-Guérin (BCG) as a prevention against TB. BCG protects against
disseminated disease in the first 10 years of life, but provides a variable
protection against pulmonary TB and enhancing boost delivered by recombinant
modified vaccinia virus Ankara (rMVA) expressing antigen 85A (Ag85A) of
M. tuberculosis is currently in phase IIb evaluation in
African neonates. If the newborn's mother is positive for human
immunodeficiency virus type 1 (HIV-1), the baby is at high risk of acquiring
HIV-1 through breastfeeding. We suggested that a vaccination consisting of
recombinant BCG expressing HIV-1 immunogen administered at birth followed by a
boost with rMVA sharing the same immunogen could serve as a strategy for
prevention of mother-to-child transmission of HIV-1 and rMVA expressing an
African HIV-1-derived immunogen HIVA is currently in phase I trials in African
neonates. Here, we aim to develop a dual neonate vaccine platform against HIV-1
and TB consisting of BCG.HIVA administered at birth followed by a boost with
MVA.HIVA.85A. Thus, mMVA.HIVA.85A and sMVA.HIVA.85A vaccines were constructed,
in which the transgene transcription is driven by either modified H5 or short
synthetic promoters, respectively, and tested for immunogenicity alone and in
combination with BCG.HIVA222. mMVA.HIVA.85A was produced markerless
and thus suitable for clinical manufacture. While sMVA.HIVA.85A expressed higher
levels of the immunogens, it was less immunogenic than mMVA.HIVA.85A in BALB/c
mice. A BCG.HIVA222–mMVA.HIVA.85A prime-boost regimen induced
robust T cell responses to both HIV-1 and M. tuberculosis.
Therefore, proof-of-principle for a dual anti-HIV-1/M.
tuberculosis infant vaccine platform is established. Induction of
immune responses against these pathogens soon after birth is highly desirable
and may provide a basis for lifetime protection maintained by boosts later in
life.
Collapse
Affiliation(s)
- Richard Hopkins
- MRC Human Immunology Unit, Weatherall
Institute of Molecular Medicine, University of Oxford, Oxford, United
Kingdom
| | - Anne Bridgeman
- MRC Human Immunology Unit, Weatherall
Institute of Molecular Medicine, University of Oxford, Oxford, United
Kingdom
| | - Joan Joseph
- AIDS Research Unit, Hospital
Clínic/IDIBAPS-HIVACAT, School of Medicine, University of Barcelona,
Barcelona, Spain
| | - Sarah C. Gilbert
- The Jenner Institute, University of Oxford,
Oxford, United Kingdom
| | - Helen McShane
- The Jenner Institute, University of Oxford,
Oxford, United Kingdom
| | - Tomáš Hanke
- MRC Human Immunology Unit, Weatherall
Institute of Molecular Medicine, University of Oxford, Oxford, United
Kingdom
- The Jenner Institute, University of Oxford,
Oxford, United Kingdom
- * E-mail:
| |
Collapse
|
205
|
The antiviral efficacy of HIV-specific CD8⁺ T-cells to a conserved epitope is heavily dependent on the infecting HIV-1 isolate. PLoS Pathog 2011; 7:e1001341. [PMID: 21589893 PMCID: PMC3093356 DOI: 10.1371/journal.ppat.1001341] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2010] [Accepted: 04/11/2011] [Indexed: 01/03/2023] Open
Abstract
A major challenge to developing a successful HIV vaccine is the vast diversity of viral sequences, yet it is generally assumed that an epitope conserved between different strains will be recognised by responding T-cells. We examined whether an invariant HLA-B8 restricted Nef90–97 epitope FL8 shared between five high titre viruses and eight recombinant vaccinia viruses expressing Nef from different viral isolates (clades A–H) could activate antiviral activity in FL8-specific cytotoxic T-lymphocytes (CTL). Surprisingly, despite epitope conservation, we found that CTL antiviral efficacy is dependent on the infecting viral isolate. Only 23% of Nef proteins, expressed by HIV-1 isolates or as recombinant vaccinia-Nef, were optimally recognised by CTL. Recognition of the HIV-1 isolates by CTL was independent of clade-grouping but correlated with virus-specific polymorphisms in the epitope flanking region, which altered immunoproteasomal cleavage resulting in enhanced or impaired epitope generation. The finding that the majority of virus isolates failed to present this conserved epitope highlights the importance of viral variance in CTL epitope flanking regions on the efficiency of antigen processing, which has been considerably underestimated previously. This has important implications for future vaccine design strategies since efficient presentation of conserved viral epitopes is necessary to promote enhanced anti-viral immune responses. One of the greatest challenges to developing an effective HIV vaccine is the ability of HIV to rapidly alter its viral sequence. Such variation in viral sequence enables the virus to frequently evade recognition by the host immune system. To counteract this problem, there has been increasing interest in developing HIV vaccines that target T-cell responses to the regions of the virus that are highly conserved between strains of HIV. However, previous studies have focused on identifying amino acid variation predominantly within a single viral isolate, or have focused on classical within-epitope escape mutation. Our study assessed T-cell recognition of a conserved epitope shared by a total of 13 HIV strains. Strikingly, we show that only a small proportion of the viral strains were effectively recognised and targeted by the T-cells. In contrast, differences in amino acid sequence in the region flanking the epitope impaired the intracellular processing and presentation of epitope in the majority of HIV strains tested. Thus, our findings highlight that a large proportion of HIV strains may evade epitope-specific T-cell recognition despite absolute epitope conservation. This has important implications for both vaccine design and evaluation of vaccine efficacy.
Collapse
|
206
|
Thomson MM, Fernández-García A. Phylogenetic structure in African HIV-1 subtype C revealed by selective sequential pruning. Virology 2011; 415:30-8. [PMID: 21507449 DOI: 10.1016/j.virol.2011.03.021] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2011] [Revised: 03/11/2011] [Accepted: 03/17/2011] [Indexed: 10/18/2022]
Abstract
Subtype C is the most prevalent clade in the HIV-1 pandemic. Previous studies suggested that African HIV-1 subtype C lacks a well-defined phylogenetic structure. Here we show that, by sequential pruning of ambiguously positioned taxa, a well-defined intrasubtype C phylogenetic structure becomes apparent, with 52% African HIV-1 subtype C isolates analyzed in envelope sequences branching within 11 clusters, also supported in a tree of full-length genomes, and all with geographical associations. Among 46 viruses recently transmitted in South Africa, 70% branched within 7 clusters (41% in the largest one) and 15% additional isolates were intercluster recombinants. Choice of the outgroup sequence and inclusion of intrasubtype recombinant viruses in the analyses could greatly affect support of clusters. The identification of clusters comprising a large proportion of African HIV-1 subtype C viruses may have implications for the design of vaccines intended for use in areas where subtype C is prevalent.
Collapse
Affiliation(s)
- Michael M Thomson
- Centro Nacional de Microbiología, Instituto de Salud Carlos III, Ctra. Majadahonda-Pozuelo Km. 2, Majadahonda, Madrid, Spain.
| | | |
Collapse
|
207
|
Abstract
PURPOSE OF REVIEW This review discusses select recent data that suggest that indeed it is possible to make a clinically useful preventive vaccine for HIV-1 and outlines some of the remaining obstacles that stand in the way of success. RECENT FINDINGS Passive protection studies, with broad neutralizing antibodies for mucosal simian-HIV challenges, in nonhuman primates have suggested that lower doses of neutralizing antibodies than previously thought may be effective in preventing HIV-1 infection. The use of recombinant antibody technology coupled with the ability to culture single memory B cells has yielded new broad neutralizing antibodies and new targets for vaccine design. The success of the RV144 Thai HIV-1 efficacy trials with a replication-defective recombinant canarypox vector (ALVAC)/gp120 prime, clade B/E recombinant gp120 protein boost showing 31% efficacy has given hope that indeed a protective HIV-1 vaccine can be made. SUMMARY Recent data in the last year have provided new hope that a clinically useful preventive HIV-1 vaccine can potentially be made. The path forward will require development of improved immunogens, understanding the correlates of protection to HIV-1, and development of immunogens to induce antibodies that can prevent the initial stages of HIV-1 infection at mucosal sites, in order to improve on the RV144 trial results.
Collapse
|
208
|
Abstract
PURPOSE OF REVIEW An effective HIV vaccine is a global health priority. We describe lessons learned from four HIV vaccine trials that failed to demonstrate efficacy and one that showed modest protection as a pathway forward. RECENT FINDINGS The Merck Ad5 phase IIb T-cell vaccine failed to show efficacy and might have increased the risk of HIV acquisition in men who have sex with men. Although VaxGen gp120 alone was not efficacious in groups at high risk for HIV-1 infection, the RV144 ALVAC prime and gp120 boost regimen showed 31% efficacy in low-incidence heterosexuals. All trials demonstrated the limitations of available laboratory and animal models to assess relevant vaccine-induced immune responses and predict clinical trial outcome. Analysis of innate and adaptive responses induced in RV144 will guide future trial design. SUMMARY Future HIV vaccine trials should define the RV144 immune responses relevant to protection, improve durability and level of protection, and assess efficacy in diverse risk groups. New strategies examining heterologous vector prime-boost, universal inserts, replicating vectors, and novel protein or adjuvant immunogens should be explored to induce T-cell and antibody responses. HIV vaccine development requires innovative ideas and a sustained long-term commitment of scientists, governments, and the community.
Collapse
|
209
|
McElrath MJ, Haynes BF. Induction of immunity to human immunodeficiency virus type-1 by vaccination. Immunity 2010; 33:542-54. [PMID: 21029964 PMCID: PMC3031162 DOI: 10.1016/j.immuni.2010.09.011] [Citation(s) in RCA: 213] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2010] [Indexed: 12/27/2022]
Abstract
Recent findings have brought optimism that development of a successful human immunodeficiency virus type-1 (HIV-1) vaccine lies within reach. Studies of early events in HIV-1 infection have revealed when and where HIV-1 is potentially vulnerable to vaccine-targeted immune responses. With technical advances in human antibody production, clues about how antibodies recognize HIV-1 envelope proteins have uncovered new targets for immunogen design. A recent vaccine regimen has shown modest efficacy against HIV-1 acquisition. However, inducing long-term T and B cell memory and coping with HIV-1 diversity remain high priorities. Mediators of innate immunity may play pivotal roles in blocking infection and shaping immunity; vaccine strategies to capture these activities are under investigation. Challenges remain in integrating basic, preclinical and clinical research to improve predictions of types of immunity associated with vaccine efficacy, to apply these insights to immunogen design, and to accelerate evaluation of vaccine efficacy in persons at-risk for infection.
Collapse
Affiliation(s)
- M. Juliana McElrath
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave. N., D3-100, Seattle, WA 98109, USA.
| | - Barton F. Haynes
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC 27710, USA.
| |
Collapse
|
210
|
Boutwell CL, Rolland MM, Herbeck JT, Mullins JI, Allen TM. Viral evolution and escape during acute HIV-1 infection. J Infect Dis 2010; 202 Suppl 2:S309-14. [PMID: 20846038 DOI: 10.1086/655653] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The extensive genetic diversity of human immunodeficiency virus type 1 (HIV-1) presents a significant barrier to the development of an effective and durable HIV vaccine. This variability not only makes it difficult to identify the targets against which immune responses should be directed, but it also confers on the virus the capacity for rapid escape from effective immune responses. Here, we describe recent investigations of the genetic diversity of HIV-1 at transmission and of the evolution of the virus as it adapts to the host immune environment during the acute phase of HIV-1 infection. These studies increase our understanding of the virology of the earliest stages of HIV-1 infection and provide critical insights into the mechanisms underlying viral replication and immune control of diverse HIV-1 strains. Such knowledge will inform the design of smarter, more effective vaccines capable of inducing immune control of HIV-1.
Collapse
|
211
|
Abstract
Since HIV-1 was identified, development of a preventive vaccine has been a major goal. Significant progress toward that goal has been made by 2010. In macaques, a vigorous T effector cell response has protected some animals from disease caused by simian immunodeficiency virus (SIV). Broadly, neutralizing human anti-HIV antibodies have been isolated and their structures, and targets are rapidly being elucidated. For the first time an AIDS vaccine has shown modest protective efficacy in a human clinical trial. To reach the final goal, there is a need for a coordinated global effort, including a range of approaches including novel high-throughput screening techniques, X-ray crystallography, and monoclonal antibody isolation, analysis of T cell responses and their impact on disease progression, human epidemiology, as well as targeted studies in nonhuman primates. African research teams as well as cohorts of healthy volunteers and HIV-infected individuals have contributed to HIV vaccine research and development in many important ways. It is essential that this work continue to speed the development and deployment of a vaccine suitable for African populations.
Collapse
|
212
|
Howles S, Guimarães-Walker A, Yang H, Hancock G, di Gleria K, Tarragona-Fiol T, Hayes P, Gilmour J, Bridgeman A, Hanke T, McMichael A, Dorrell L. Vaccination with a modified vaccinia virus Ankara (MVA)-vectored HIV-1 immunogen induces modest vector-specific T cell responses in human subjects. Vaccine 2010; 28:7306-12. [DOI: 10.1016/j.vaccine.2010.08.077] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2010] [Revised: 08/11/2010] [Accepted: 08/18/2010] [Indexed: 11/16/2022]
|
213
|
Rolland M, Carlson JM, Manocheewa S, Swain JV, Lanxon-Cookson E, Deng W, Rousseau CM, Raugi DN, Learn GH, Maust BS, Coovadia H, Ndung'u T, Goulder PJR, Walker BD, Brander C, Heckerman DE, Mullins JI. Amino-acid co-variation in HIV-1 Gag subtype C: HLA-mediated selection pressure and compensatory dynamics. PLoS One 2010; 5. [PMID: 20824187 PMCID: PMC2931691 DOI: 10.1371/journal.pone.0012463] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2010] [Accepted: 07/30/2010] [Indexed: 11/19/2022] Open
Abstract
Background Despite high potential for HIV-1 genetic variation, the emergence of some mutations is constrained by fitness costs, and may be associated with compensatory amino acid (AA) co-variation. To characterize the interplay between Cytotoxic T Lymphocyte (CTL)-mediated pressure and HIV-1 evolutionary pathways, we investigated AA co-variation in Gag sequences obtained from 449 South African individuals chronically infected with HIV-1 subtype C. Methodology/Principal Findings Individuals with CTL responses biased toward Gag presented lower viral loads than individuals with under-represented Gag-specific CTL responses. Using methods that account for founder effects and HLA linkage disequilibrium, we identified 35 AA sites under Human Leukocyte Antigen (HLA)-restricted CTL selection pressure and 534 AA-to-AA interactions. Analysis of two-dimensional distances between co-varying residues revealed local stabilization mechanisms since 40% of associations involved neighboring residues. Key features of our co-variation analysis included sites with a high number of co-varying partners, such as HLA-associated sites, which had on average 55% more connections than other co-varying sites. Conclusions/Significance Clusters of co-varying AA around HLA-associated sites (especially at typically conserved sites) suggested that cooperative interactions act to preserve the local structural stability and protein function when CTL escape mutations occur. These results expose HLA-imprinted HIV-1 polymorphisms and their interlinked mutational paths in Gag that are likely due to opposite selective pressures from host CTL-mediated responses and viral fitness constraints.
Collapse
Affiliation(s)
- Morgane Rolland
- Department of Microbiology, University of Washington, Seattle, Washington, United States of America.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
214
|
Abstract
PURPOSE OF REVIEW Major roadblocks persist in the development of vaccines that elicit potent neutralizing antibodies targeting diverse HIV-1 strains, similar to known broadly neutralizing HIV-1 human monoclonal antibodies. Alternatively, other types of anti-HIV-1 envelope antibodies that may not neutralize HIV-1 in traditional neutralization assays but have other anti-HIV-1 activities (hereafter termed HIV-1 inhibitory antibodies) can be elicited by current vaccine strategies, and numerous studies are exploring their roles in preventing HIV-1 acquisition. We review examples of strategies for eliciting potentially protective HIV-1 inhibitory antibodies. RECENT FINDINGS Heterologous prime-boost strategies can yield anti-HIV immune responses, although only one (canarypox prime, Env protein boost) has been tested and shown positive results in an efficacy trial (RV144). Although the immune correlates of protection are as yet undefined, the reduced rate of acquisition without a significant effect on initial viral loads or CD4 T-cell counts, have raised the hypothesis of an RV144 vaccine-elicited transient protective B-cell response. SUMMARY In light of the RV144 trial, there is a critical need to define the entire functional spectrum of anti-HIV-1 antibodies, how easily each can be elicited, and how effective different types of antibody effector mechanisms can be in prevention of HIV-1 transmission.
Collapse
Affiliation(s)
- Georgia D Tomaras
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, USA.
| | | |
Collapse
|
215
|
Schaubert KL, Price DA, Salkowitz JR, Sewell AK, Sidney J, Asher TE, Blondelle SE, Adams S, Marincola FM, Joseph A, Sette A, Douek DC, Ayyavoo V, Storkus W, Leung MY, Ng HL, Yang OO, Goldstein H, Wilson DB, Kan-Mitchell J. Generation of robust CD8+ T-cell responses against subdominant epitopes in conserved regions of HIV-1 by repertoire mining with mimotopes. Eur J Immunol 2010; 40:1950-62. [PMID: 20432235 PMCID: PMC3086652 DOI: 10.1002/eji.200940079] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
HLA-A 0201-restricted virus-specific CD8(+) CTL do not appear to control HIV effectively in vivo. To enhance the immunogenicity of a highly conserved subdominant epitope, TV9 (TLNAWVKVV, p24 Gag(19-27)), mimotopes were designed by screening a large combinatorial nonapeptide library with TV9-specific CTL primed in vitro from healthy donors. A mimic peptide with a low binding affinity to HLA-A 0201, TV9p6 (KINAWIKVV), was studied further. Parallel cultures of in vitro-primed CTL showed that TV9p6 consistently activated cross-reactive and equally functional CTL as measured by cytotoxicity, cytokine production and suppression of HIV replication in vitro. Comparison of TCRB gene usage between CTL primed from the same donors with TV9 or TV9p6 revealed a degree of clonal overlap in some cases and an example of a conserved TCRB sequence encoded distinctly at the nucleotide level between individuals (a "public" TCR); however, in the main, distinct clonotypes were recruited by each peptide antigen. These findings indicate that mimotopes can mobilize functional cross-reactive clonotypes that are less readily recruited from the naïve T-cell pool by the corresponding WT epitope. Mimotope-induced repertoire diversification could potentially override subdominance under certain circumstances and enhance vaccine-induced responses to conserved but poorly immunogenic determinants within the HIV proteome.
Collapse
Affiliation(s)
- Keri L. Schaubert
- Department of Biological Sciences and Border Biomedical Research Institute, University of Texas at El Paso, El Paso, TX 79968
- Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI 48201
| | - David A. Price
- Human Immunology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
- Department of Infection, Immunity and Biochemistry, Cardiff University School of Medicine, Cardiff, CF14 4XN, Wales, UK
| | - Janelle R. Salkowitz
- Department of Biological Sciences and Border Biomedical Research Institute, University of Texas at El Paso, El Paso, TX 79968
| | - Andrew K. Sewell
- Department of Infection, Immunity and Biochemistry, Cardiff University School of Medicine, Cardiff, CF14 4XN, Wales, UK
| | - John Sidney
- La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037
| | - Tedi E. Asher
- Human Immunology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Sylvie E. Blondelle
- Torrey Pines Institute for Molecular Studies, San Diego, CA 92121
- Mixture Sciences Incorporated, San Diego, CA 92121
| | - Sharon Adams
- Immunogenetics Section, Department of Transfusion Medicine, National Institutes of Health, Bethesda, MD 20892
| | - Francesco M. Marincola
- Immunogenetics Section, Department of Transfusion Medicine, National Institutes of Health, Bethesda, MD 20892
| | - Aviva Joseph
- Departments of Microbiology & Immunology and Pediatrics, Albert Einstein College of Medicine, Bronx, NY 10461
| | - Alessandro Sette
- La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037
| | - Daniel C. Douek
- Human Immunology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Velpandi Ayyavoo
- Department of Infectious Diseases and Microbiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261
| | - Walter Storkus
- Departments of Immunology and Dermatology, University of Pittsburgh Cancer Institute, Pittsburgh, PA 15261
| | - Ming-Ying Leung
- Department of Mathematical Sciences, University of Texas at El Paso, El Paso, TX 79968
| | - Hwee L. Ng
- Department of Medicine and AIDS Institute, Center for Health Sciences, University of California Los Angeles, CA 90095
| | - Otto O. Yang
- Department of Medicine and AIDS Institute, Center for Health Sciences, University of California Los Angeles, CA 90095
| | - Harris Goldstein
- Departments of Microbiology & Immunology and Pediatrics, Albert Einstein College of Medicine, Bronx, NY 10461
| | - Darcy B. Wilson
- Torrey Pines Institute for Molecular Studies, San Diego, CA 92121
- Mixture Sciences Incorporated, San Diego, CA 92121
| | - June Kan-Mitchell
- Department of Biological Sciences and Border Biomedical Research Institute, University of Texas at El Paso, El Paso, TX 79968
- Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI 48201
| |
Collapse
|
216
|
Rosario M, Bridgeman A, Quakkelaar ED, Quigley MF, Hill BJ, Knudsen ML, Ammendola V, Ljungberg K, Borthwick N, Im EJ, McMichael AJ, Drijfhout JW, Greenaway HY, Venturi V, Douek DC, Colloca S, Liljeström P, Nicosia A, Price DA, Melief CJM, Hanke T. Long peptides induce polyfunctional T cells against conserved regions of HIV-1 with superior breadth to single-gene vaccines in macaques. Eur J Immunol 2010; 40:1973-84. [PMID: 20468055 DOI: 10.1002/eji.201040344] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
A novel T-cell vaccine strategy designed to deal with the enormity of HIV-1 variation is described and tested for the first time in macaques to inform and complement approaching clinical trials. T-cell immunogen HIVconsv, which directs vaccine-induced responses to the most conserved regions of the HIV-1, proteome and thus both targets diverse clades in the population and reduces the chance of escape in infected individuals, was delivered using six different vaccine modalities: plasmid DNA (D), attenuated human (A) and chimpanzee (C) adenoviruses, modified vaccinia virus Ankara (M), synthetic long peptides, and Semliki Forest virus replicons. We confirmed that the initial DDDAM regimen, which mimics one of the clinical schedules (DDDCM), is highly immunogenic in macaques. Furthermore, adjuvanted synthetic long peptides divided into sub-pools and delivered into anatomically separate sites induced T-cell responses that were markedly broader than those elicited by traditional single-open-reading-frame genetic vaccines and increased by 30% the overall response magnitude compared with DDDAM. Thus, by improving both the HIV-1-derived immunogen and vector regimen/delivery, this approach could induce stronger, broader, and theoretically more protective T-cell responses than vaccines previously used in humans.
Collapse
Affiliation(s)
- Maximillian Rosario
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, The John Radcliffe, Oxford, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
217
|
High throughput T epitope mapping and vaccine development. J Biomed Biotechnol 2010; 2010:325720. [PMID: 20617148 PMCID: PMC2896667 DOI: 10.1155/2010/325720] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2009] [Revised: 02/18/2010] [Accepted: 04/20/2010] [Indexed: 11/22/2022] Open
Abstract
Mapping of antigenic peptide sequences from proteins of relevant pathogens recognized by T helper (Th) and by cytolytic T lymphocytes (CTL) is crucial for vaccine development. In fact, mapping of T-cell epitopes provides useful information for the design of peptide-based vaccines and of peptide libraries to monitor specific cellular immunity in protected individuals, patients and vaccinees. Nevertheless, epitope mapping is a challenging task. In fact, large panels of overlapping peptides need to be tested with lymphocytes to identify the sequences that induce a T-cell response. Since numerous peptide panels from antigenic proteins are to be screened, lymphocytes available from human subjects are a limiting factor. To overcome this limitation, high throughput (HTP) approaches based on miniaturization and automation of T-cell assays are needed. Here we consider the most recent applications of the HTP approach to T epitope mapping. The alternative or complementary use of in silico prediction and experimental epitope definition is discussed in the context of the recent literature. The currently used methods are described with special reference to the possibility of applying the HTP concept to make epitope mapping an easier procedure in terms of time, workload, reagents, cells and overall cost.
Collapse
|
218
|
Abstract
Human vaccines, with their exquisite antigenic specificity, have greatly helped to eliminate or dramatically abate the incidence of a number of historical and current plagues, from smallpox to bacterial meningitis. Nonetheless, as new infectious agents emerge and the number of vaccine-preventable diseases increases, the practice and benefits of single-pathogen- or disease-targeted vaccination may be put at risk by constraints of timely production, formulation complexity, and regulatory hurdles. During the last influenza pandemic, extraordinary efforts by vaccine producers and health authorities have had little or no influence on disease prevention or mitigation. Recent research demonstrating the possibility of protecting against all influenza A virus types or even phylogenetically distant pathogens with vaccines based on highly conserved peptide or saccharide sequences is changing our paradigm. “Universal vaccine” strategies could be particularly advantageous to address protection from antibiotic-resistant bacteria and fungi for which no vaccine is currently available.
Collapse
|
219
|
Ahlers JD, Belyakov IM. Lessons learned from natural infection: focusing on the design of protective T cell vaccines for HIV/AIDS. Trends Immunol 2010; 31:120-30. [PMID: 20089450 DOI: 10.1016/j.it.2009.12.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2009] [Revised: 12/08/2009] [Accepted: 12/11/2009] [Indexed: 01/26/2023]
Abstract
CD8(+) cytotoxic T lymphocyte (CTL) responses are crucial in establishing the control of persistent virus infections. Population studies of HIV-1-infected individuals suggest that CD8(+) CTL responses targeting epitopes that take the greatest toll on virus replication are instrumental in immune control. A major question for vaccine design is whether incorporating epitopes responsible for controlling a persistent virus will translate into protection from natural infection or serve solely as a fail-safe mechanism to prevent overt disease in infected individuals. Here, we discuss qualitative parameters of the CD8(+) CTL response and mechanisms operative in the control of persistent virus infections and suggest new strategies for design and delivery of HIV vaccines.
Collapse
|
220
|
Yusim K, Fischer W, Yoon H, Thurmond J, Fenimore PW, Lauer G, Korber B, Kuiken C. Genotype 1 and global hepatitis C T-cell vaccines designed to optimize coverage of genetic diversity. J Gen Virol 2010; 91:1194-206. [PMID: 20053820 DOI: 10.1099/vir.0.017491-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Immunological control of hepatitis C virus (HCV) is possible and is probably mediated by host T-cell responses, but the genetic diversity of the virus poses a major challenge to vaccine development. We considered monovalent and polyvalent candidates for an HCV vaccine, including natural, consensus and synthetic 'mosaic' sequence cocktails. Mosaic vaccine reagents were designed using a computational approach first applied to and demonstrated experimentally for human immunodeficiency virus type 1 (HIV-Delta). Mosaic proteins resemble natural proteins, but are assembled from fragments of natural sequences via a genetic algorithm and optimized to maximize the coverage of potential T-cell epitopes (all 9-mers) found in natural sequences and to minimize the inclusion of rare 9-mers to avoid vaccine-specific responses. Genotype 1-specific and global vaccine cocktails were evaluated. Among vaccine candidates considered, polyvalent mosaic sequences provided the best coverage of both known and potential epitopes and had the fewest rare epitopes. A global vaccine based on conserved proteins across genotypes may be feasible, as a five-antigen mosaic cocktail provided 90, 77 and 70% coverage of the Core, NS3 and NS4 proteins, respectively; protein coverage diminished with increased protein variability, dropping to 38% for NS2. For the genotype 1-specific vaccine, the H77 prototype vaccine sequence matched only 50% of the potential epitopes in the population, whilst a polyprotein three-antigen mosaic cocktail increased potential epitope coverage to 83%. More than 75% coverage of all HCV proteins was achieved with a three-antigen mosaic cocktail, suggesting that genotype-specific vaccines could also include the more variable proteins.
Collapse
Affiliation(s)
- Karina Yusim
- Los Alamos National Laboratory, Theory Division, Los Alamos, NM 87545, USA.
| | | | | | | | | | | | | | | |
Collapse
|
221
|
Abstract
Despite more than 25 years of concerted worldwide research, the development of a safe and effective HIV-1 vaccine remains elusive. Prototype antibody-based and T cell-based HIV-1 vaccines have failed to show efficacy in clinical trials to date. Next-generation HIV-1 vaccine candidates are in various stages of preclinical and clinical development, but key scientific obstacles pose major challenges for the field. Critical hurdles include the enormous global diversity of the virus and the challenges associated with generating broadly reactive neutralizing antibody and cellular immune responses. We review the current state of the HIV-1 vaccine field and outline strategies that are being explored to overcome these roadblocks.
Collapse
Affiliation(s)
- Dan H Barouch
- Division of Vaccine Research, Beth Israel Deaconess Medical Center, Boston, Massachusetts 02115, USA.
| | | |
Collapse
|
222
|
Pedroza-Roldan C, Charles-Niño C, Saavedra R, Govezensky T, Vaca L, Avaniss-Aghajani E, Gevorkian G, Manoutcharian K. Variable epitope library-based vaccines: shooting moving targets. Mol Immunol 2009; 47:270-82. [PMID: 19853920 DOI: 10.1016/j.molimm.2009.09.024] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2009] [Accepted: 09/09/2009] [Indexed: 11/19/2022]
Abstract
While the antigenic variability is the major obstacle for developing vaccines against antigenically variable pathogens (AVPs) and cancer, this issue is not addressed adequately in current vaccine efforts. We developed a novel variable epitope library (VEL)-based vaccine strategy using immunogens carrying a mixture of thousands of variants of a single epitope. In this proof-of-concept study, we used an immunodominant HIV-1-derived CD8+ cytotoxic T-lymphocyte (CTL) epitope as a model antigen to construct immunogens in the form of plasmid DNA and recombinant M13 bacteriophages. We generated combinatorial libraries expressing epitope variants with random amino acid substitutions at 2-5 amino acid positions within the epitope. Mice immunized with these immunogens developed epitope-specific CD8+ IFN-gamma+ T-cell responses that recognized more than 50% of heavily mutated variants of wild-type epitope, as demonstrated in T-cell proliferation assays and FACS analysis. Strikingly, these potent and broad epitope-specific immune responses were long lasting: after 12 months of priming, epitope variants were recognized by CD8+ cells and effector memory T cells were induced. In addition, we showed, for the first time, the inhibition of T-cell responses at the molecular level by immune interference: the mice primed with wild-type epitope and 8 or 12 months later immunized with VELs, were not able to recognize variant epitopes efficiently. These data may give a mechanistic explanation for the failure of recent HIV vaccine trials as well as highlight specific hurdles in current molecular vaccine efforts targeting other important antigenically variable pathogens and diseases. These findings suggest that the VEL-based strategy for immunogen construction can be used as a reliable technological platform for the generation of vaccines against AVPs and cancer, and contribute to better understanding complex host-pathogen interactions.
Collapse
Affiliation(s)
- Cesar Pedroza-Roldan
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, AP 70228, Cuidad Universitaria, México DF 04510, Mexico
| | | | | | | | | | | | | | | |
Collapse
|
223
|
Bridgeman A, Roshorm Y, Lockett LJ, Xu ZZ, Hopkins R, Shaw J, Both GW, Hanke T. Ovine atadenovirus, a novel and highly immunogenic vector in prime-boost studies of a candidate HIV-1 vaccine. Vaccine 2009; 28:474-83. [PMID: 19853074 DOI: 10.1016/j.vaccine.2009.09.136] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2009] [Revised: 09/28/2009] [Accepted: 09/30/2009] [Indexed: 02/08/2023]
Abstract
Ovine adenovirus type 7 (OAdV) is the prototype member of the genus Atadenovirus. No immunity to the virus has so far been detected in human sera. We describe the construction and evaluation of a candidate HIV-1 vaccine based on OAdV and its utilisation alone and in combination with plasmid-, human adenovirus type 5 (HAdV5; a Mastadenovirus)-, and modified vaccinia Ankara (MVA)-vectored vaccines. All vectors expressed HIVA, an immunogen consisting of HIV-1 clade A consensus Gag-derived protein coupled to a T cell polyepitope. OAdV.HIVA was genetically stable, grew well and expressed high levels of protein from the Rous sarcoma virus promoter. OAdV.HIVA was highly immunogenic in mice and efficiently primed and boosted HIV-1-specific T cell responses together with heterologous HIVA-expressing vectors. There were significant differences between OAdV and HAdV5 vectors in priming of naïve CD8(+) T cell responses to HIVA and in the persistence of MHC class I-restricted epitope presentation in the local draining lymph nodes. OAdV.HIVA primed T cells more rapidly but was less persistent than AdV5.HIVA and thus induced a qualitatively distinct T cell response. Nevertheless, both vectors primed a response in mice that reduced viral titres in a surrogate challenge model by three to four orders of magnitude. Thus, OAdV is a novel, underexplored vaccine vector with potential for further development for HIV-1 and other vaccines. The data are discussed in the context of the latest HIV-1 vaccine developments.
Collapse
Affiliation(s)
- Anne Bridgeman
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, The John Radcliffe, Oxford OX3 9DS, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
224
|
Candidate vaccine sequences to represent intra- and inter-clade HIV-1 variation. PLoS One 2009; 4:e7388. [PMID: 19812689 PMCID: PMC2753653 DOI: 10.1371/journal.pone.0007388] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2009] [Accepted: 09/04/2009] [Indexed: 11/24/2022] Open
Abstract
A likely key factor in the failure of a HIV-1 vaccine based on cytotoxic T lymphocytes (CTL) is the natural immunodominance of epitopes that fall in variable regions of the proteome, which both increases the chance of epitope sequence mismatch with the incoming challenge strain and replicates the pathogenesis of early CTL failure due to epitope escape mutation during natural infection. To identify potential vaccine sequences to focus the CTL response on highly conserved epitopes, the whole proteomes of HIV-1 clades A1, B, C, and D were assessed for Shannon entropy at each amino acid position. Highly conserved regions in Gag (cGag-1, Gag 148–214, and cGag-2, Gag 253–331), Env (cEnv, Env 521–606), and Nef (cNef, Nef 106–148) were identified across clades. Inter- and intra-clade variability of amino acids within the regions tended to overlap, suggesting that polyvalent representation of consensus sequences for the four clades would allow broad HIV-1 strain representation. These four conserved regions were rich in both known and predicted CTL epitopes presented by a breadth of HLA types, and screening of 54 persons with chronic HIV-1 infection revealed that these regions are commonly immunogenic in the context of natural infection. These data suggest that vaccine delivery of a 16-valent mixture of these regions could focus the CTL response against conserved epitopes that are broadly representative of circulating HIV-1 strains.
Collapse
|
225
|
Roshorm Y, Hong JP, Kobayashi N, McMichael AJ, Volsky DJ, Potash MJ, Takiguchi M, Hanke T. Novel HIV-1 clade B candidate vaccines designed for HLA-B*5101(+) patients protected mice against chimaeric ecotropic HIV-1 challenge. Eur J Immunol 2009; 39:1831-40. [PMID: 19585509 DOI: 10.1002/eji.200939309] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Novel candidate HIV-1 vaccines have been constructed, which are tailor-designed for HLA-B*5101(+) patients infected with HIV-1 clade B. These vaccines employ novel immunogen HIVB-B*5101 derived from consensus HIV-1 clade B Gag p17 and p24 regions coupled to two Pol-derived B*5101-restricted epitopes, which are together with a third B*5101 epitope in Gag dominant in HIV-1-infected long-term non-progressing patients. Both plasmid DNA and modified vaccinia virus Ankara (MVA) vectors supported high expression levels of the HIVB-B*5101 immunogen in cultured cells. Heterologous DNA prime-recombinant MVA boost regimen induced efficiently HIV-1-specific CD8(+) T-cell responses in BALB/c mice. These vaccine-elicited T cells were multifunctional, killed efficiently target cells in vivo, and protected mice against challenge with ecotropic HIV-1/NL4-3 and ecotropic HIV-1/NDK chimaeric viruses with HIV-1 clade B or D backbones, respectively, and ecotropic murine leukemia virus gp80 envelope, and therefore did so in the absence of anti-HIV-1 gp120 antibodies. These results support further development of HIVB-B*5101 vaccines in combined heterologous-modality regimens. The use of allele-specific vaccines in humans is discussed in the context of other developments in the HIV-1 field.
Collapse
Affiliation(s)
- Yaowaluck Roshorm
- Weatherall Institute of Molecular Medicine, University of Oxford, The John Radcliffe, UK
| | | | | | | | | | | | | | | |
Collapse
|
226
|
Characterization of DNA and MVA vectors expressing Nef from HIV-1 CRF12_BF revealed high immune specificity with low cross-reactivity against subtype B. Virus Res 2009; 146:1-12. [PMID: 19715734 DOI: 10.1016/j.virusres.2009.08.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2009] [Revised: 08/06/2009] [Accepted: 08/20/2009] [Indexed: 11/20/2022]
Abstract
The HIV epidemic in Argentina is characterized by the high prevalence of infections caused by subtype B and BF variants. In this study, the Nef protein was used as a tool to study the impact of HIV-1 BF variants in the design of future vaccines. DNA and MVA vectors expressing Nef of the CRF12_BF recombinant form of HIV-1 were generated and characterized. After the administration of single DNAprime/MVAboost immunization schedules in Balb/c mice we found that NefBF delivered from these vectors generated a response of high specificity with low cross-reactivity against subtype B. But, when a more potent response was induced after 3 priming DNA doses and a booster with MVA virus, cross-reactivity against NefB was detected, although of lower magnitude than the NefBF specific. These results will be pivotal for vaccines designs in our region, indicating that antigens from these viral variants must be considered for a future vaccine.
Collapse
|
227
|
|
228
|
Aagaard CS, Hoang TTKT, Vingsbo-Lundberg C, Dietrich J, Andersen P. Quality and vaccine efficacy of CD4+ T cell responses directed to dominant and subdominant epitopes in ESAT-6 from Mycobacterium tuberculosis. THE JOURNAL OF IMMUNOLOGY 2009; 183:2659-68. [PMID: 19620314 DOI: 10.4049/jimmunol.0900947] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The ESAT-6 (early secretory antigenic target) molecule is a very important target for T cell recognition during infection with Mycobacterium tuberculosis. Although ESAT-6 contains numerous potential T cell epitopes, the immune response during infection is often focused toward a few immunodominant epitopes. By immunization with individual overlapping synthetic peptides in cationic liposomes (cationic adjuvant formulation, CAF01) we demonstrate that the ESAT-6 molecule contains several subdominant epitopes that are not recognized in H-2(d/b) mice either during tuberculosis infection or after immunization with ESAT-6/CAF01. Immunization with a truncated ESAT-6 molecule (Delta15ESAT-6) that lacks the immunodominant ESAT-6(1-15) epitope refocuses the response to include T cells directed to these subdominant epitopes. After aerosol infection of immunized mice, T cells directed to both dominant (ESAT-6-immunized) and subdominant epitopes (Delta15ESAT-6-immunized) proliferate and are recruited to the lung. The vaccine-promoted response consists mainly of double- (TNF-alpha and IL-2) or triple-positive (IFN-gamma, TNF-alpha, and IL-2) polyfunctional T cells. This polyfunctional quality of the CD4(+) T cell response is maintained unchanged even during the later stages of infection, whereas the naturally occurring infection stimulates a response to the ESAT-6(1-15) epitope that consist almost exclusively of CD4(+) effector T cells. ESAT-6 and Delta15ESAT-6 both give significant protection against aerosol challenge with tuberculosis, but the most efficient protection against pulmonary infection is mediated by the subdominant T cell repertoire primed by Delta15ESAT-6.
Collapse
|
229
|
Pala P, Gomez-Roman VR, Gilmour J, Kaleebu P. An African perspective on mucosal immunity and HIV-1. Mucosal Immunol 2009; 2:300-14. [PMID: 19421180 DOI: 10.1038/mi.2009.23] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
HIV prevention mandates an understanding of the mechanisms of mucosal immunity with attention to some unique features of the epidemic and mucosal environment in the developing world. An effective vaccine will have to induce mucosal protection against a highly diverse virus, which is equipped with a number of immune evasion strategies. Its development will require assessment of mucosal immune responses, and it will have to protect a mucosal environment where inflammation and altered immune responses are common because of the presence of other mucosal infections, such as sexually transmitted infections and parasites, and where nutritional status may also be compromised. Ideally, not only prevention methods would protect adults but also provide cover against gastrointestinal transmission through maternal milk. Prevention might also be complemented by microbicides and circumcision, two alternative approaches to mucosal protection. It seems unlikely that a single solution will work in all instances and intervention might have to act at multiple levels and be tailored to local circumstances. We review here some of the mucosal events associated with HIV infection that are most relevant in an African setting.
Collapse
Affiliation(s)
- P Pala
- Medical Research Council-Uganda Virus Research Institute, Entebbe, Uganda
| | | | | | | |
Collapse
|
230
|
T-cell vaccine strategies for human immunodeficiency virus, the virus with a thousand faces. J Virol 2009; 83:8300-14. [PMID: 19439471 DOI: 10.1128/jvi.00114-09] [Citation(s) in RCA: 118] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
|
231
|
Winstone N, Guimarães-Walker A, Roberts J, Brown D, Loach V, Goonetilleke N, Hanke T, McMichael AJ. Increased detection of proliferating, polyfunctional, HIV-1-specific T cells in DNA-modified vaccinia virus Ankara-vaccinated human volunteers by cultured IFN-γ ELISPOT assay. Eur J Immunol 2009; 39:975-85. [DOI: 10.1002/eji.200839167] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
232
|
Major histocompatibility complex class II molecule-human immunodeficiency virus peptide analysis using a microarray chip. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2009; 16:567-73. [PMID: 19225081 DOI: 10.1128/cvi.00441-08] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Identification of major histocompatibility complex (MHC) class II binding peptides is a crucial step in rational vaccine design and immune monitoring. We designed a novel MHC class II molecule-peptide microarray binding assay and evaluated 346 peptides from already identified human immunodeficiency virus (HIV) epitopes and an additional set (n = 206) of 20-mer peptides, overlapping by 15 amino acid residues, from HIV type 1B (HIV-1B) gp160 and Nef as a paradigm. Peptides were attached via the N-terminal part to a linker that covalently binds to the epoxy glass slide. The 552 peptides were printed in triplicate on a single peptide microarray chip and tested for stable formation of MHC class II molecule-peptide complexes using recombinant soluble DRB1*0101(DR1), DRB1*1501(DR2), and DRB1*0401(DR4) molecules. Cluster analysis revealed unique patterns of peptide binding to all three, two, or a single MHC class II molecule. MHC class II binding peptides reside within previously described immunogenic regions of HIV gp160 and Nef, yet we could also identify new MHC class II binding peptides from gp160 and Nef. Peptide microarray chips allow the comprehensive and simultaneous screening of a high number of candidate peptide epitopes for MHC class II binding, guided by subsequent quality data extraction and binding pattern cluster analysis.
Collapse
|
233
|
Hill AVS, Shirley M, Greenwood BM. Jenner reborn: a new vaccine institute. Lancet 2009; 373:445-6. [PMID: 19200904 DOI: 10.1016/s0140-6736(09)60150-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Adrian V S Hill
- Jenner Institute Laboratories, Oxford University, Oxford OX3 7DQ, UK.
| | | | | |
Collapse
|
234
|
|
235
|
Scherer E, Douek D, McMichael A. 25 years of HIV research on virology, virus restriction, immunopathogenesis, genes and vaccines. Clin Exp Immunol 2008; 154:6-14. [PMID: 18761662 DOI: 10.1111/j.1365-2249.2008.03750.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
From 19 to 21 May 2008 an important meeting was held at the Pasteur Institute in Paris to mark the 25th Anniversary of the discovery of HIV as the aetiological agent of AIDS. This review summarizes the historical findings, recent work and future directions presented at this meeting.
Collapse
Affiliation(s)
- E Scherer
- Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK.
| | | | | |
Collapse
|
236
|
Affiliation(s)
- Barbara S Taylor
- Department of Medicine and the Division of Infectious Diseases, Columbia University Medical Center, New York 10032, USA.
| | | | | | | |
Collapse
|