201
|
Abstract
The logistics of tuberculosis therapy are difficult, requiring multiple drugs for many months. Mycobacterium tuberculosis survives in part by entering nongrowing states in which it is metabolically less active and thus less susceptible to antibiotics. Basic knowledge on how M. tuberculosis survives during these low-metabolism states is incomplete, and we hypothesize that optimized energy resource management is important. Here, we report that slowed mRNA turnover is a common feature of mycobacteria under energy stress but is not dependent on the mechanisms that have generally been postulated in the literature. Finally, we found that mRNA stability and growth status can be decoupled by a drug that causes growth arrest but increases metabolic activity, indicating that mRNA stability responds to metabolic status rather than to growth rate per se. Our findings suggest a need to reorient studies of global mRNA stabilization to identify novel mechanisms that are presumably responsible. The success of Mycobacterium tuberculosis as a human pathogen is due in part to its ability to survive stress conditions, such as hypoxia or nutrient deprivation, by entering nongrowing states. In these low-metabolism states, M. tuberculosis can tolerate antibiotics and develop genetically encoded antibiotic resistance, making its metabolic adaptation to stress crucial for survival. Numerous bacteria, including M. tuberculosis, have been shown to reduce their rates of mRNA degradation under growth limitation and stress. While the existence of this response appears to be conserved across species, the underlying bacterial mRNA stabilization mechanisms remain unknown. To better understand the biology of nongrowing mycobacteria, we sought to identify the mechanistic basis of mRNA stabilization in the nonpathogenic model Mycobacterium smegmatis. We found that mRNA half-life was responsive to energy stress, with carbon starvation and hypoxia causing global mRNA stabilization. This global stabilization was rapidly reversed when hypoxia-adapted cultures were reexposed to oxygen, even in the absence of new transcription. The stringent response and RNase levels did not explain mRNA stabilization, nor did transcript abundance. This led us to hypothesize that metabolic changes during growth cessation impact the activities of degradation proteins, increasing mRNA stability. Indeed, bedaquiline and isoniazid, two drugs with opposing effects on cellular energy status, had opposite effects on mRNA half-lives in growth-arrested cells. Taken together, our results indicate that mRNA stability in mycobacteria is not directly regulated by growth status but rather is dependent on the status of energy metabolism.
Collapse
|
202
|
Prusińska JM, Boniecka J, Dąbrowska GB, Goc A. Identification and characterization of the Ipomoea nil RelA/SpoT Homologs (InRSHs) and potential directions of their transcriptional regulation. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 284:161-176. [PMID: 31084869 DOI: 10.1016/j.plantsci.2019.01.026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 01/13/2019] [Accepted: 01/30/2019] [Indexed: 06/09/2023]
Abstract
Although the stringent response has been known for more than half a century and has been well studied in bacteria, only the research of the past 19 years revealed that the homologous mechanism is conserved in plants. The plant RelA/SpoT Homolog (RSH) genes have been identified and characterized in a limited number of plant species, whereas products of their catalytic activities, (p)ppGpp (alarmones), have been shown to accumulate mainly in chloroplasts. Here, we identified full-length sequences of the Ipomoea nil RSH genes (InRSH1, InRSH2 and InCRSH), determined their copy number in the I. nil genome as well as the structural conservancy between InRSHs and their Arabidopsis and rice orthologs. We showed that InRSHs are differentially expressed in I. nil organ tissues and that only InRSH2 is upregulated in response to salt, osmotic and drought stress. Our results of the E. coli relA/spoT mutant complementation test suggest that InRSH1 is likely a (p)ppGpp hydrolase, InCRSH - synthetase and InRSH2 shows both activities. Finally, we referred our results to the recently published I. nil genomic and proteomic data and uncovered the complexity of the I. nil RSH family as well as potential ways of the InRSH transcriptional regulation.
Collapse
Affiliation(s)
- Justyna M Prusińska
- Nicolaus Copernicus University in Toruń, Department of Genetics, Lwowska 1, 87-100, Toruń, Poland.
| | - Justyna Boniecka
- Nicolaus Copernicus University in Toruń, Department of Genetics, Lwowska 1, 87-100, Toruń, Poland
| | - Grażyna B Dąbrowska
- Nicolaus Copernicus University in Toruń, Department of Genetics, Lwowska 1, 87-100, Toruń, Poland
| | - Anna Goc
- Nicolaus Copernicus University in Toruń, Department of Genetics, Lwowska 1, 87-100, Toruń, Poland
| |
Collapse
|
203
|
|
204
|
Dasgupta S, Das S, Biswas A, Bhadra RK, Das S. Small alarmones (p)ppGpp regulate virulence associated traits and pathogenesis of Salmonella enterica serovar Typhi. Cell Microbiol 2019; 21:e13034. [PMID: 31013389 DOI: 10.1111/cmi.13034] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 03/29/2019] [Accepted: 04/17/2019] [Indexed: 12/13/2022]
Abstract
How Salmonella enterica serovar Typhi (S. Typhi), an important human pathogen, survives the stressful microenvironments inside the gastrointestinal tract and within macrophages remains poorly understood. We report here that S. Typhi has a bonafide stringent response (SR) system, which is mediated by (p)ppGpp and regulates multiple virulence-associated traits and the pathogenicity of the S. Typhi Ty2 strain. In an iron overload mouse model of S. Typhi infection, the (p)ppGpp0 (Ty2ΔRelAΔSpoT) strain showed minimal systemic spread and no mortality, as opposed to 100% death of the mice challenged with the isogenic wild-type strain. Ty2ΔRelAΔSpoT had markedly elongated morphology with incomplete septa formation and demonstrated severely attenuated motility and chemotaxis due to the loss of flagella. Absence of the Vi-polysaccharide capsule rendered the mutant strain highly susceptible to complement-mediated lysis. The phenotypes of Ty2ΔRelAΔSpoT was contributed by transcriptional repression of several genes, including fliC, tviA, and ftsZ, as found by reverse transcriptase quantitative polymerase chain reaction and gene complementation studies. Finally, Ty2ΔRelAΔSpoT had markedly reduced invasion into intestinal epithelial cells and significantly attenuated survival within macrophages. To the best of our knowledge, this was the first study that addressed SR in S. Typhi and showed that (p)ppGpp was essential for optimal pathogenic fitness of the organism.
Collapse
Affiliation(s)
- Shreya Dasgupta
- Division of Clinical Medicine, ICMR-National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Sayan Das
- Division of Clinical Medicine, ICMR-National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Asim Biswas
- Division of Clinical Medicine, ICMR-National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Rupak K Bhadra
- Infectious Diseases and Immunology Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Santasabuj Das
- Division of Clinical Medicine, ICMR-National Institute of Cholera and Enteric Diseases, Kolkata, India
| |
Collapse
|
205
|
Sobala M, Bruhn-Olszewska B, Cashel M, Potrykus K. Methylobacterium extorquens RSH Enzyme Synthesizes (p)ppGpp and pppApp in vitro and in vivo, and Leads to Discovery of pppApp Synthesis in Escherichia coli. Front Microbiol 2019; 10:859. [PMID: 31068922 PMCID: PMC6491832 DOI: 10.3389/fmicb.2019.00859] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 04/03/2019] [Indexed: 01/12/2023] Open
Abstract
In bacteria, the so-called stringent response is responsible for adaptation to changing environmental conditions. This response is mediated by guanosine derivatives [(p)ppGpp], synthesized by either large mono-functional RelA or bi-functional SpoT (synthesis and hydrolysis) enzymes in β- and γ-proteobacteria, such as Escherichia coli. In Firmicutes and α-, δ-, and 𝜀-proteobacteria, large bifunctional Rel-SpoT-homologs (RSH), often accompanied by small (p)ppGpp synthetases and/or hydrolases devoid of regulatory domains, are responsible for (p)ppGpp turnover. Here, we report on surprising in vitro and in vivo properties of an RSH enzyme from Methylobacterium extorquens (RSHMex). We find that this enzyme possesses some unique features, e.g., it requires cobalt cations for the most efficient (p)ppGpp synthesis, in contrast to all other known specific (p)ppGpp synthetases that require Mg2+. In addition, it can synthesize pppApp, which has not been demonstrated in vitro for any Rel/SpoT/RSH enzyme so far. In vivo, our studies also show that RSHMex is active in Escherichia coli cells, as it can complement E. coli ppGpp0 growth defects and affects rrnB P1-lacZ fusion activity in a way expected for an RSH enzyme. These studies also led us to discover pppApp synthesis in wild type E. coli cells (not carrying the RSHMex enzyme), which to our knowledge has not been demonstrated ever before. In the light of our recent discovery that pppApp directly regulates E. coli RNAP transcription in vitro in a manner opposite to (p)ppGpp, this leads to a possibility that pppApp is a new member of the nucleotide second-messenger family that is widely present in bacterial species.
Collapse
Affiliation(s)
- Michał Sobala
- Department of Bacterial Molecular Genetics, Faculty of Biology, University of Gdańsk, Gdańsk, Poland
| | - Bożena Bruhn-Olszewska
- Department of Bacterial Molecular Genetics, Faculty of Biology, University of Gdańsk, Gdańsk, Poland
| | - Michael Cashel
- Intramural Program, Eunice Kennedy Shriver Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
| | - Katarzyna Potrykus
- Department of Bacterial Molecular Genetics, Faculty of Biology, University of Gdańsk, Gdańsk, Poland
| |
Collapse
|
206
|
Abstract
ABSTRACT
Of the eight phylogenetic groups comprising the genus
Streptococcus
, Lancefield group C and G streptococci (GCS and GGS, resp.) occupy four of them, including the Pyogenic, Anginosus, and Mitis groups, and one Unnamed group so far. These organisms thrive as opportunistic commensals in both humans and animals but may also be associated with clinically serious infections, often resembling those due to their closest genetic relatives, the group A streptoccci (GAS). Advances in molecular genetics, taxonomic approaches and phylogenomic studies have led to the establishment of at least 12 species, several of which being subdivided into subspecies. This review summarizes these advances, citing 264 early and recent references. It focuses on the molecular structure and genetic regulation of clinically important proteins associated with the cell wall, cytoplasmic membrane and extracellular environment. The article also addresses the question of how, based on the current knowledge, basic research and translational medicine might proceed to further advance our understanding of these multifaceted organisms. Particular emphasis in this respect is placed on streptokinase as the protein determining the host specificity of infection and the Rsh-mediated stringent response with its potential for supporting bacterial survival under nutritional stress conditions.
Collapse
|
207
|
Inorganic Polyphosphate Accumulation in Escherichia coli Is Regulated by DksA but Not by (p)ppGpp. J Bacteriol 2019; 201:JB.00664-18. [PMID: 30745375 DOI: 10.1128/jb.00664-18] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 02/07/2019] [Indexed: 12/25/2022] Open
Abstract
Production of inorganic polyphosphate (polyP) by bacteria is triggered by a variety of different stress conditions. polyP is required for stress survival and virulence in diverse pathogenic microbes. Previous studies have hypothesized a model for regulation of polyP synthesis in which production of the stringent-response second messenger (p)ppGpp directly stimulates polyP accumulation. In this work, I have now shown that this model is incorrect, and (p)ppGpp is not required for polyP synthesis in Escherichia coli However, stringent mutations of RNA polymerase that frequently arise spontaneously in strains defective in (p)ppGpp synthesis and null mutations of the stringent-response-associated transcription factor DksA both strongly inhibit polyP accumulation. The loss of polyP synthesis in a mutant lacking DksA was reversed by deletion of the transcription elongation factor GreA, suggesting that competition between these proteins for binding to the secondary channel of RNA polymerase plays an important role in controlling polyP activation. These results provide new insights into the poorly understood regulation of polyP synthesis in bacteria and indicate that the relationship between polyP and the stringent response is more complex than previously suspected.IMPORTANCE Production of polyP in bacteria is required for virulence and stress response, but little is known about how bacteria regulate polyP levels in response to changes in their environments. Understanding this regulation is important for understanding how pathogenic microbes resist killing by disinfectants, antibiotics, and the immune system. In this work, I have clarified the connections between polyP regulation and the stringent response to starvation stress in Escherichia coli and demonstrated an important and previously unknown role for the transcription factor DksA in controlling polyP levels.
Collapse
|
208
|
Interaction studies on bacterial stringent response protein RelA with uncharged tRNA provide evidence for its prerequisite complex for ribosome binding. Curr Genet 2019; 65:1173-1184. [PMID: 30968189 DOI: 10.1007/s00294-019-00966-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 04/01/2019] [Accepted: 04/02/2019] [Indexed: 12/11/2022]
Abstract
The bacterial stringent response is regulated by the synthesis of (p)ppGpp which is mediated by RelA in a complex with uncharged tRNA and ribosome. We intended to probe RelA-uncharged tRNA interactions off the ribosome to understand the sequential activation mechanism of RelA. Stringent response is a key regulatory pleiotropic mechanism which allows bacteria to survive in unfavorable conditions. Since the discovery of RelA, it has been believed that it is activated upon binding to ribosomes which already have uncharged tRNA on acceptor site (A-site). However, uncharged tRNA occupied in the A-site of the ribosome prior to RelA binding could not be observed; therefore, recently an alternate model for RelA activation has been proposed in which RelA first binds to uncharged tRNA and then RelA-uncharged tRNA complex is loaded on to the ribosome to synthesize (p)ppGpp. To explore the alternate hypothesis, we report here the in vitro binding of uncharged tRNA to RelA in the absence of ribosome using formaldehyde cross-linking, fluorescence spectroscopy, surface plasmon resonance, size-exclusion chromatography, and hydrogen-deuterium exchange mass spectrometry. Altogether, our results clearly indicate binding between RelA and uncharged tRNA without the involvement of ribosome. Moreover, we have analyzed their binding kinetics and mapping of tRNA-interacting regions of RelA structure. We have also co-purified TGS domain in complex with tRNA to further establish in vivo RelA-tRNA binding. We have observed that TGS domain recognizes all types of uncharged tRNA similar to EF-Tu and tRNA interactions. Altogether, our results demonstrate the complex formation between RelA and uncharged tRNA that may be loaded to the ribosome for (p)ppGpp synthesis.
Collapse
|
209
|
Phosphate deficiency induced biofilm formation of Burkholderia on insoluble phosphate granules plays a pivotal role for maximum release of soluble phosphate. Sci Rep 2019; 9:5477. [PMID: 30940828 PMCID: PMC6445130 DOI: 10.1038/s41598-019-41726-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 03/13/2019] [Indexed: 12/23/2022] Open
Abstract
Involvement of biofilm formation process during phosphate (P) solubilization by rhizobacterial strains is not clearly understood. Scanning electron microscopic observations revealed prominent biofilm development on tricalcium phosphate as well as on four different rock phosphate granules by two P solubilizing rhizobacteria viz. Burkholderia tropica P4 and B. unamae P9. Variation in the biofilm developments were also observed depending on the total P content of insoluble P used. Biofilm quantification suggested a strong correlation between the amounts of available P and degrees of biofilm formation. Lower concentrations of soluble P directed both the organisms towards compact biofilm development with maximum substratum coverage. Variation in the production of extracellular polymeric substances (EPS) in the similar pattern also suggested its close relationship with biofilm formation by the isolates. Presence of BraI/R quorum sensing (QS) system in both the organisms were detected by PCR amplification and sequencing of two QS associated genes viz. braR and rsaL, which are probably responsible for biofilm formation during P solubilization process. Overall observations help to hypothesize for the first time that, biofilm on insoluble P granules creates a close environment for better functioning of organic acids secreted by Burkholderia strains for maximum P solubilization during P deficient conditions.
Collapse
|
210
|
Moya-Beltrán A, Rojas-Villalobos C, Díaz M, Guiliani N, Quatrini R, Castro M. Nucleotide Second Messenger-Based Signaling in Extreme Acidophiles of the Acidithiobacillus Species Complex: Partition Between the Core and Variable Gene Complements. Front Microbiol 2019; 10:381. [PMID: 30899248 PMCID: PMC6416229 DOI: 10.3389/fmicb.2019.00381] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 02/13/2019] [Indexed: 12/24/2022] Open
Abstract
Cyclic and linear nucleotides are key elements of the signal transduction networks linking perception of the environment to specific cellular behavior of prokaryotes. These molecular mechanisms are particularly important in bacteria exposed to different, and frequently simultaneous, types of extreme conditions. This is the case in acidithiobacilli, a group of extremophilic bacteria thriving in highly acidic biotopes, that must also cope with significant variations in temperature, osmotic potentials and concentrations of various transition metals and metalloids. Environmental cues sensed by bacteria are transduced into differential levels of nucleotides acting as intracellular second messengers, promoting the activation or inhibition of target components and eliciting different output phenotypes. Cyclic (c) di-GMP, one of the most common bacterial second messengers, plays a key role in lifestyle changes in many bacteria, including acidithiobacilli. The presence of functional c-di-GMP-dependent signal transduction pathways in representative strains of the best-known linages of this species complex has been reported. However, a comprehensive panorama of the c-di-GMP modulated networks, the cognate input signals and output responses, are still missing for this group of extremophiles. Moreover, little fundamental understanding has been gathered for other nucleotides acting as second messengers. Taking advantage of the increasing number of sequenced genomes of the taxon, here we address the challenge of disentangling the nucleotide-driven signal transduction pathways in this group of polyextremophiles using comparative genomic tools and strategies. Results indicate that the acidithiobacilli possess all the genetic elements required to establish functional transduction pathways based in three different nucleotide-second messengers: (p)ppGpp, cyclic AMP (cAMP), and c-di-GMP. The elements related with the metabolism and transduction of (p)ppGpp and cAMP appear highly conserved, integrating signals related with nutrient starvation and polyphosphate metabolism, respectively. In contrast, c-di-GMP networks appear diverse and complex, differing both at the species and strain levels. Molecular elements of c-di-GMP metabolism and transduction were mostly found scattered along the flexible genome of the acidithiobacilli, allowing the identification of probable control modules that could be critical for substrate colonization, biofilm development and intercellular interactions. These may ultimately convey increased endurance to environmental stress and increased potential for gene sharing and adaptation to changing conditions.
Collapse
Affiliation(s)
- Ana Moya-Beltrán
- Microbial Ecophysiology Laboratory, Fundación Ciencia & Vida, Santiago, Chile.,Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile.,Millennium Nucleus in the Biology of Intestinal Microbiota, Santiago, Chile
| | - Camila Rojas-Villalobos
- Microbial Ecophysiology Laboratory, Fundación Ciencia & Vida, Santiago, Chile.,Millennium Nucleus in the Biology of Intestinal Microbiota, Santiago, Chile
| | - Mauricio Díaz
- Laboratorio de Comunicación Bacteriana, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Nicolás Guiliani
- Laboratorio de Comunicación Bacteriana, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Raquel Quatrini
- Microbial Ecophysiology Laboratory, Fundación Ciencia & Vida, Santiago, Chile.,Millennium Nucleus in the Biology of Intestinal Microbiota, Santiago, Chile
| | - Matías Castro
- Microbial Ecophysiology Laboratory, Fundación Ciencia & Vida, Santiago, Chile.,Millennium Nucleus in the Biology of Intestinal Microbiota, Santiago, Chile
| |
Collapse
|
211
|
Jerry R, Sullivan-Brown J, Yoder MD. GTP binding protein 10 is a member of the OBG family of proteins and is differentially expressed in the early Xenopus embryo. Gene Expr Patterns 2019; 32:12-17. [PMID: 30831265 DOI: 10.1016/j.gep.2019.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 02/15/2019] [Accepted: 02/21/2019] [Indexed: 10/27/2022]
Affiliation(s)
- Razhan Jerry
- Sciences Division, Brandywine Campus, The Pennsylvania State University, Media, PA, 19063, USA
| | | | - Michael D Yoder
- Sciences Division, Brandywine Campus, The Pennsylvania State University, Media, PA, 19063, USA.
| |
Collapse
|
212
|
Dutta NK, Klinkenberg LG, Vazquez MJ, Segura-Carro D, Colmenarejo G, Ramon F, Rodriguez-Miquel B, Mata-Cantero L, Porras-De Francisco E, Chuang YM, Rubin H, Lee JJ, Eoh H, Bader JS, Perez-Herran E, Mendoza-Losana A, Karakousis PC. Inhibiting the stringent response blocks Mycobacterium tuberculosis entry into quiescence and reduces persistence. SCIENCE ADVANCES 2019; 5:eaav2104. [PMID: 30906866 PMCID: PMC6426458 DOI: 10.1126/sciadv.aav2104] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 02/04/2019] [Indexed: 06/01/2023]
Abstract
The stringent response enables Mycobacterium tuberculosis (Mtb) to shut down its replication and metabolism under various stresses. Here we show that Mtb lacking the stringent response enzyme RelMtb was unable to slow its replication rate during nutrient starvation. Metabolomics analysis revealed that the nutrient-starved relMtb -deficient strain had increased metabolism similar to that of exponentially growing wild-type bacteria in nutrient-rich broth, consistent with an inability to enter quiescence. Deficiency of relMtb increased the susceptibility of mutant bacteria to killing by isoniazid during nutrient starvation and in the lungs of chronically infected mice. We screened a pharmaceutical library of over 2 million compounds for inhibitors of RelMtb and showed that the lead compound X9 was able to directly kill nutrient-starved M. tuberculosis and enhanced the killing activity of isoniazid. Inhibition of RelMtb is a promising approach to target M. tuberculosis persisters, with the potential to shorten the duration of TB treatment.
Collapse
Affiliation(s)
- Noton K. Dutta
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Lee G. Klinkenberg
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | | | - Gonzalo Colmenarejo
- Molecular Discovery Research, GlaxoSmithKline, Tres Cantos, Madrid, Spain
- Biostatistics and Bioinformatics Unit, IMDEA Food Institute, Madrid, Spain
| | - Fernando Ramon
- Molecular Discovery Research, GlaxoSmithKline, Tres Cantos, Madrid, Spain
| | | | - Lydia Mata-Cantero
- Diseases of the Developing World, GlaxoSmithKline, Tres Cantos, Madrid, Spain
| | | | - Yu-Min Chuang
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Harvey Rubin
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jae Jin Lee
- Department of Molecular Microbiology and Immunology, Keck School of Medicine of USC, Los Angeles, CA, USA
| | - Hyungjin Eoh
- Department of Molecular Microbiology and Immunology, Keck School of Medicine of USC, Los Angeles, CA, USA
| | - Joel S. Bader
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Esther Perez-Herran
- Diseases of the Developing World, GlaxoSmithKline, Tres Cantos, Madrid, Spain
| | | | - Petros C. Karakousis
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| |
Collapse
|
213
|
Yi H, Lee H, Cho KH, Kim HS. Mutations in MetG (methionyl-tRNA synthetase) and TrmD [tRNA (guanine-N1)-methyltransferase] conferring meropenem tolerance in Burkholderia thailandensis. J Antimicrob Chemother 2019; 73:332-338. [PMID: 29136176 DOI: 10.1093/jac/dkx378] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 09/19/2017] [Indexed: 01/08/2023] Open
Abstract
Objectives Although meropenem is widely used to treat Burkholderia infections, the response of Burkholderia pathogens to this antibiotic is largely unexplored. Methods Burkholderia thailandensis, a model for Burkholderia spp., particularly Burkholderia mallei and Burkholderia pseudomallei, was challenged with a lethal level of meropenem and survivors were isolated. The genomes of two of the isolates were analysed to identify mutated genes and these genes were then specifically examined in more isolates to profile mutation diversity. Mutants were characterized to investigate the biological basis underlying survival against meropenem. Results One of two genes associated with tRNA metabolism [metG or trmD, encoding methionyl-tRNA synthetase or tRNA (guanine-N1)-methyltransferase, respectively] was found to be mutated in the two survivors. A single nucleotide substitution and a frameshift mutation were found in metG and trmD, respectively. Five different substitution mutations affecting methionine- or tRNA-binding sites were found in metG during further screening. The mutants exhibited slowed growth and increased tolerance not only to meropenem but also various other antibiotics. This tolerance required intact RelA, a key stringent response. Conclusions Specific mutations affecting the tRNA pool, particularly those in metG, play a pivotal role in the B. thailandensis response to meropenem challenge. This mechanism of antibiotic tolerance is important because it can reduce the effectiveness of meropenem and thereby facilitate chronic infection by Burkholderia pathogens. In addition, specific mutations found in MetG will prove useful in the effort to develop new drugs to completely inhibit this essential enzyme, while preventing stringent-response-mediated antibiotic tolerance in pathogens.
Collapse
Affiliation(s)
- Hyojeong Yi
- Department of Biomedical Sciences, College of Medicine, Korea University, Anam-Dong, Seongbuk-Gu, Seoul 136-705, Korea
| | - Hyeri Lee
- Department of Biomedical Sciences, College of Medicine, Korea University, Anam-Dong, Seongbuk-Gu, Seoul 136-705, Korea
| | - Kwang-Hwi Cho
- School of Systems Biomedical Science and Research Center for Integrative Basic Science, Soongsil University, Seoul 156-743, Korea
| | - Heenam Stanley Kim
- Department of Biomedical Sciences, College of Medicine, Korea University, Anam-Dong, Seongbuk-Gu, Seoul 136-705, Korea
| |
Collapse
|
214
|
Cruvinel GT, Neves HI, Spira B. Glyphosate induces the synthesis of ppGpp. Mol Genet Genomics 2019; 294:191-198. [PMID: 30284619 DOI: 10.1007/s00438-018-1499-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 09/28/2018] [Indexed: 10/28/2022]
Abstract
Glyphosate, the most widely used herbicide in both agricultural and urban areas is toxic for plants and for many bacterial species. The mechanism of action of glyphosate is through the inhibition of the EPSP synthase, a key enzyme in the biosynthetic pathway of aromatic amino acids. Here we show that glyphosate induces the stringent response in Escherichia coli. Bacteria treated with glyphosate stop growing and accumulate ppGpp. Both growth arrest and ppGpp accumulation are restored to normal levels upon addition of aromatic amino acids. Glyphosate-induced ppGpp accumulation is dependent on the presence of the (p)ppGpp synthetase RelA. However, unlike other cases of amino acid starvation, pppGpp could not be discerned. In a gppA background both ppGpp and pppGpp accumulated when exposed to glyphosate. Conversely, the wild-type strain and gppA mutant treated with serine hydroxamate accumulated high levels of both ppGpp and pppGpp. Altogether, the data indicate that glyphosate induces amino acid starvation resulting in a moderate accumulation of ppGpp and a reversible stringent response.
Collapse
Affiliation(s)
- Gabriela Torres Cruvinel
- Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Henrique Iglesias Neves
- Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Beny Spira
- Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP, Brazil.
| |
Collapse
|
215
|
Hernández-Morales R, Becerra A, Lazcano A. Alarmones as Vestiges of a Bygone RNA World. J Mol Evol 2019; 87:37-51. [PMID: 30604017 DOI: 10.1007/s00239-018-9883-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 12/15/2018] [Indexed: 12/11/2022]
Abstract
All known alarmones are ribonucleotides or ribonucleotide derivatives that are synthesized when cells are under stress conditions, triggering a stringent response that affects major processes such as replication, gene expression, and metabolism. The ample phylogenetic distribution of alarmones (e.g., cAMP, Ap(n)A, cGMP, AICAR, and ZTP) suggests that they are very ancient molecules that may have already been present in cellular systems prior to the evolutionary divergence of the Archaea, Bacteria, and Eukarya domains. Their chemical structure, wide biological distribution, and functional role in highly conserved cellular processes support the possibility that these modified nucleotides are molecular fossils of an epoch in the evolution of chemical signaling and metabolite sensing during which RNA molecules played a much more conspicuous role in biological catalysis and genetic information.
Collapse
Affiliation(s)
- Ricardo Hernández-Morales
- Facultad de Ciencias, Universidad Nacional Autónoma de México, Cd. Universitaria, 04510, Mexico City, Mexico
| | - Arturo Becerra
- Facultad de Ciencias, Universidad Nacional Autónoma de México, Cd. Universitaria, 04510, Mexico City, Mexico
| | - Antonio Lazcano
- Facultad de Ciencias, Universidad Nacional Autónoma de México, Cd. Universitaria, 04510, Mexico City, Mexico. .,Miembro de El Colegio Nacional, Donceles 104, Centro Histórico, 06000, Mexico City, Mexico.
| |
Collapse
|
216
|
Wang B, Dai P, Ding D, Del Rosario A, Grant RA, Pentelute BL, Laub MT. Affinity-based capture and identification of protein effectors of the growth regulator ppGpp. Nat Chem Biol 2018; 15:141-150. [PMID: 30559427 PMCID: PMC6366861 DOI: 10.1038/s41589-018-0183-4] [Citation(s) in RCA: 124] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2018] [Accepted: 10/29/2018] [Indexed: 01/29/2023]
Abstract
The nucleotide ppGpp is a highly conserved regulatory molecule in prokaryotes that helps tune growth rate to nutrient availability. Despite decades of study, how ppGpp regulates growth remains poorly understood. Here, we develop and validate a capture-compound mass spectrometry approach that identifies >50 putative ppGpp targets in Escherichia coli. These targets control many key cellular processes and include 13 enzymes required for nucleotide synthesis. We demonstrate that ppGpp inhibits the de novo synthesis of all purine nucleotides by directly targeting the enzyme PurF. By solving a structure of PurF bound to ppGpp, we design a mutation that ablates ppGpp-based regulation, leading to a dysregulation of purine nucleotide synthesis following ppGpp accumulation. Collectively, our results provide new insights into ppGpp-based growth control and a nearly comprehensive set of targets for future exploration. The capture compounds developed will also now enable the rapid identification of ppGpp targets in any species, including pathogens.
Collapse
Affiliation(s)
- Boyuan Wang
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Peng Dai
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - David Ding
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Amanda Del Rosario
- Koch Institute for Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Robert A Grant
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Bradley L Pentelute
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA.,Koch Institute for Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA.,Center for Environmental Health Sciences MIT, Massachusetts Institute of Technology, Cambridge, MA, USA.,Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Michael T Laub
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA. .,Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
217
|
Lu Y, Yao J. Chloroplasts at the Crossroad of Photosynthesis, Pathogen Infection and Plant Defense. Int J Mol Sci 2018; 19:E3900. [PMID: 30563149 PMCID: PMC6321325 DOI: 10.3390/ijms19123900] [Citation(s) in RCA: 103] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 11/30/2018] [Accepted: 12/03/2018] [Indexed: 12/31/2022] Open
Abstract
Photosynthesis, pathogen infection, and plant defense are three important biological processes that have been investigated separately for decades. Photosynthesis generates ATP, NADPH, and carbohydrates. These resources are utilized for the synthesis of many important compounds, such as primary metabolites, defense-related hormones abscisic acid, ethylene, jasmonic acid, and salicylic acid, and antimicrobial compounds. In plants and algae, photosynthesis and key steps in the synthesis of defense-related hormones occur in chloroplasts. In addition, chloroplasts are major generators of reactive oxygen species and nitric oxide, and a site for calcium signaling. These signaling molecules are essential to plant defense as well. All plants grown naturally are attacked by pathogens. Bacterial pathogens enter host tissues through natural openings or wounds. Upon invasion, bacterial pathogens utilize a combination of different virulence factors to suppress host defense and promote pathogenicity. On the other hand, plants have developed elaborate defense mechanisms to protect themselves from pathogen infections. This review summarizes recent discoveries on defensive roles of signaling molecules made by plants (primarily in their chloroplasts), counteracting roles of chloroplast-targeted effectors and phytotoxins elicited by bacterial pathogens, and how all these molecules crosstalk and regulate photosynthesis, pathogen infection, and plant defense, using chloroplasts as a major battlefield.
Collapse
Affiliation(s)
- Yan Lu
- Department of Biological Sciences, Western Michigan University, Kalamazoo, MI 49008, USA.
| | - Jian Yao
- Department of Biological Sciences, Western Michigan University, Kalamazoo, MI 49008, USA.
| |
Collapse
|
218
|
Basu P, Bhadra RK. Post-transcriptional regulation of cholera toxin production in Vibrio cholerae by the stringent response regulator DksA. MICROBIOLOGY-SGM 2018; 165:102-112. [PMID: 30444469 DOI: 10.1099/mic.0.000743] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Expression of cholera toxin (CT), the principal virulence factor of the cholera pathogen Vibrio cholerae, is positively modulated by the RNA polymerase binding unusual transcription factor DksA (DksAVc) of the stringent response pathway. Here we report that even though CT (encoded by the genes ctxAB) production is downregulated in the V. cholerae ΔdksA (ΔdksAVc) mutant, the expression of the ctxA gene as well as the genes encoding different virulence regulators, namely, AphA, TcpP and ToxT, were also upregulated. Since DksAVc positively regulates HapR, a known negative regulator of CT production, the increased expression of different virulence genes in ΔdksAVc was due most probably to downregulation of HapR. There was no secretion/transport-related defect in ΔdksAVc cells because whole cell lysates of the mutant showed a negligible amount of CT accumulation similar to WT cells. To understand further, the hapR gene was deleted in ΔdksAVc background, however, the double mutant failed to rescue the CT production defect suggesting strongly towards post-transcriptional/translational regulation by DksAVc. This hypothesis was further confirmed when the site-directed mutagenesis of each or both of the conserved aspartic acid residues at positions 68 and 71 of DksAVc, which are essential for transcription initiation during the stringent response, had no effect in the regulation of CT expression. Interestingly, progressive deletion analysis indicated that the C4-type Zn finger motif present in the C-terminus of DksAVc is essential for optimal CT production. Since this motif plays important roles in DNA/RNA binding, the present study indicates a novel complex post-transcriptional regulation of CT expression by DksAVc.
Collapse
Affiliation(s)
- Pallabi Basu
- Infectious Diseases and Immunology Division, CSIR-Indian Institute of Chemical Biology, Kolkata-700 032, India
| | - Rupak K Bhadra
- Infectious Diseases and Immunology Division, CSIR-Indian Institute of Chemical Biology, Kolkata-700 032, India
| |
Collapse
|
219
|
Bifunctional Enzyme SpoT Is Involved in Biofilm Formation of Helicobacter pylori with Multidrug Resistance by Upregulating Efflux Pump Hp1174 ( gluP). Antimicrob Agents Chemother 2018; 62:AAC.00957-18. [PMID: 30181372 PMCID: PMC6201075 DOI: 10.1128/aac.00957-18] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 08/22/2018] [Indexed: 02/06/2023] Open
Abstract
The drug resistance of Helicobacter pylori is gradually becoming a serious problem. Biofilm formation is an important factor that leads to multidrug resistance (MDR) in bacteria. The drug resistance of Helicobacter pylori is gradually becoming a serious problem. Biofilm formation is an important factor that leads to multidrug resistance (MDR) in bacteria. The ability of H. pylori to form biofilms on the gastric mucosa is known. However, there are few studies on the regulatory mechanisms of H. pylori biofilm formation and multidrug resistance. Guanosine 3′-diphosphate 5′-triphosphate and guanosine 3′,5′-bispyrophosphate [(p)ppGpp] are global regulatory factors and are synthesized in H. pylori by the bifunctional enzyme SpoT. It has been reported that (p)ppGpp is involved in the biofilm formation and multidrug resistance of various bacteria. In this study, we found that SpoT also plays an important role in H. pylori biofilm formation and multidrug resistance. Therefore, it was necessary to carry out some further studies regarding its regulatory mechanism. Considering that efflux pumps are of great importance in the biofilm formation and multidrug resistance of bacteria, we tried to determine whether efflux pumps controlled by SpoT participate in these activities. We found that Hp1174 (glucose/galactose transporter [gluP]), an efflux pump of the major facilitator superfamily (MFS), is highly expressed in biofilm-forming and multidrug-resistant (MDR) H. pylori strains and is upregulated by SpoT. Through further research, we determined that gluP is involved in H. pylori biofilm formation and multidrug resistance. Furthermore, the average expression level of gluP in the clinical MDR strains (C-MDR) was considerably higher than that in the clinical drug-sensitive strains (C-DSS). Taken together, our results revealed a novel molecular mechanism of H. pylori resistance to multidrug exposure.
Collapse
|
220
|
Gourse RL, Chen AY, Gopalkrishnan S, Sanchez-Vazquez P, Myers A, Ross W. Transcriptional Responses to ppGpp and DksA. Annu Rev Microbiol 2018; 72:163-184. [PMID: 30200857 PMCID: PMC6586590 DOI: 10.1146/annurev-micro-090817-062444] [Citation(s) in RCA: 142] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The stringent response to nutrient deprivation is a stress response found throughout the bacterial domain of life. Although first described in proteobacteria for matching ribosome synthesis to the cell's translation status and for preventing formation of defective ribosomal particles, the response is actually much broader, regulating many hundreds of genes-some positively, some negatively. Utilization of the signaling molecules ppGpp and pppGpp for this purpose is ubiquitous in bacterial evolution, although the mechanisms employed vary. In proteobacteria, the signaling molecules typically bind to two sites on RNA polymerase, one at the interface of the β' and ω subunits and one at the interface of the β' secondary channel and the transcription factor DksA. The β' secondary channel is targeted by other transcription regulators as well. Although studies on the transcriptional outputs of the stringent response date back at least 50 years, the mechanisms responsible are only now coming into focus.
Collapse
Affiliation(s)
- Richard L Gourse
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA; , , , , ,
| | - Albert Y Chen
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA; , , , , ,
| | - Saumya Gopalkrishnan
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA; , , , , ,
| | - Patricia Sanchez-Vazquez
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA; , , , , ,
| | | | - Wilma Ross
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA; , , , , ,
| |
Collapse
|
221
|
Zhao Q, Wang W, Gao S, Sun Y. Analysis of DNA methylation alterations in rice seeds induced by different doses of carbon-ion radiation. JOURNAL OF RADIATION RESEARCH 2018; 59:565-576. [PMID: 30020485 PMCID: PMC6151634 DOI: 10.1093/jrr/rry053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 05/08/2018] [Indexed: 06/08/2023]
Abstract
To investigate the mechanism underlying differences in biological effects induced by low- versus high-dose heavy-ion radiation (HIR) in rice plants, two-dimensional gel electrophoresis (2-DE) coupled with methylation-sensitive amplification polymorphism (MSAP) analysis were used to check the expression changes in rice leaf proteome profiles and the changes in DNA methylation after exposure of seeds to ground-based carbon-ion radiation at various cumulative doses (0, 0.01, 0.02, 0.1, 0.2, 1, 2, 5 or 20 Gy; 12C6+; energy, 165 MeV/u; mean linear energy transfer, 30 KeV/μm). In this study, principal component analysis (PCA) and gene ontology (GO) functional analysis of differentially expressed proteins of rice at tillering stage showed that proteins expressed in rice samples exposed to 0.01, 0.02, 0.1, 0.2 or 1 Gy differed from those exposed to 2, 5 or 20 Gy. Correspondingly, the proportion of hypermethylation was higher than that of hypomethylation at CG sites following low-dose HIR (LDR; 0.01, 0.2 or 1 Gy), whereas this was reversed at high-dose HIR (HDR; 2, 5 or 20 Gy). The hypomethylation changes tended to occur at CHG sites with both low- and high-dose HIR. Furthermore, sequencing of MSAP variant bands indicated that the plants might activate more metabolic processes and biosynthetic pathways on exposure to LDR, but activate stress resistance on exposure to HDR. This study showed that radiation induced different biological effects with low- and high-dose HIR, and that this may have been caused by different patterns of hyper- and hypomethylation at the CG sites.
Collapse
Affiliation(s)
- Qian Zhao
- Institute of Environmental System Biology, College of Environmental Science and Engineering, Dalian Maritime University, Dalian, PR China
| | - Wei Wang
- Institute of Environmental System Biology, College of Environmental Science and Engineering, Dalian Maritime University, Dalian, PR China
| | - Shuai Gao
- Institute of Environmental System Biology, College of Environmental Science and Engineering, Dalian Maritime University, Dalian, PR China
| | - Yeqing Sun
- Institute of Environmental System Biology, College of Environmental Science and Engineering, Dalian Maritime University, Dalian, PR China
| |
Collapse
|
222
|
ppGpp Controls Global Gene Expression in Light and in Darkness in S. elongatus. Cell Rep 2018; 21:3155-3165. [PMID: 29241543 DOI: 10.1016/j.celrep.2017.11.067] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 11/10/2017] [Accepted: 11/17/2017] [Indexed: 01/06/2023] Open
Abstract
The bacterial and plant stringent response involves production of the signaling molecules guanosine tetraphosphate and guanosine pentaphosphate ((p)ppGpp), leading to global reorganization of gene expression. The function of the stringent response has been well characterized in stress conditions, but its regulatory role during unstressed growth is less studied. Here, we demonstrate that (p)ppGpp-deficient strains of S. elongatus have globally deregulated biosynthetic capacity, with increased transcription rate, translation rate, and cell size in unstressed conditions in light and impaired viability in darkness. Synthetic restoration of basal guanosine tetraphosphate (ppGpp) levels is sufficient to recover transcriptional balance and appropriate cell size in light and to rescue viability in light/dark conditions, but it is insufficient to enable efficient dark-induced transcriptional shutdown. Our work underscores the importance of basal ppGpp signaling for regulation of cyanobacterial physiology in the absence of stress and for viability in energy-limiting conditions, highlighting that basal (p)ppGpp level is essential in cyanobacteria in the environmental light/dark cycle.
Collapse
|
223
|
Lee JW, Park YH, Seok YJ. Rsd balances (p)ppGpp level by stimulating the hydrolase activity of SpoT during carbon source downshift in Escherichia coli. Proc Natl Acad Sci U S A 2018; 115:E6845-E6854. [PMID: 29915072 PMCID: PMC6055147 DOI: 10.1073/pnas.1722514115] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Bacteria respond to nutritional stresses by changing the cellular concentration of the alarmone (p)ppGpp. This control mechanism, called the stringent response, depends on two enzymes, the (p)ppGpp synthetase RelA and the bifunctional (p)ppGpp synthetase/hydrolase SpoT in Escherichia coli and related bacteria. Because SpoT is the only enzyme responsible for (p)ppGpp hydrolysis in these bacteria, SpoT activity needs to be tightly regulated to prevent the uncontrolled accumulation of (p)ppGpp, which is lethal. To date, however, no such regulation of SpoT (p)ppGpp hydrolase activity has been documented in E. coli In this study, we show that Rsd directly interacts with SpoT and stimulates its (p)ppGpp hydrolase activity. Dephosphorylated HPr, but not phosphorylated HPr, of the phosphoenolpyruvate-dependent sugar phosphotransferase system could antagonize the stimulatory effect of Rsd on SpoT (p)ppGpp hydrolase activity. Thus, we suggest that Rsd is a carbon source-dependent regulator of the stringent response in E. coli.
Collapse
Affiliation(s)
- Jae-Woo Lee
- Department of Biophysics and Chemical Biology, Seoul National University, Seoul 08826, Republic of Korea
| | - Young-Ha Park
- School of Biological Sciences and Institute of Microbiology, Seoul National University, Seoul 08826, Republic of Korea
| | - Yeong-Jae Seok
- Department of Biophysics and Chemical Biology, Seoul National University, Seoul 08826, Republic of Korea;
- School of Biological Sciences and Institute of Microbiology, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
224
|
Antibiotic Scars Left on the Gut Microbiota from the Stringent Response. Trends Microbiol 2018; 26:735-737. [PMID: 30025977 DOI: 10.1016/j.tim.2018.06.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 06/05/2018] [Accepted: 06/20/2018] [Indexed: 02/08/2023]
Abstract
Current research is primarily focused on compositional shifts and alterations in the metabolic status of the gut microbiota to elucidate the damage caused by antibiotics. However, the impact of the stringent response, which is governed by a global gene regulatory system conserved in most gut bacteria, should not be overlooked.
Collapse
|
225
|
Schofield WB, Zimmermann-Kogadeeva M, Zimmermann M, Barry NA, Goodman AL. The Stringent Response Determines the Ability of a Commensal Bacterium to Survive Starvation and to Persist in the Gut. Cell Host Microbe 2018; 24:120-132.e6. [PMID: 30008292 PMCID: PMC6086485 DOI: 10.1016/j.chom.2018.06.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 05/21/2018] [Accepted: 06/05/2018] [Indexed: 01/16/2023]
Abstract
In the mammalian gut, bacteria compete for resources to maintain their populations, but the factors determining their success are poorly understood. We report that the human gut bacterium Bacteroides thetaiotaomicron relies on the stringent response, an intracellular signaling pathway that allocates resources away from growth, to survive carbon starvation and persist in the gut. Genome-scale transcriptomics, 13C-labeling, and metabolomics analyses reveal that B. thetaiotaomicron uses the alarmone (p)ppGpp to repress multiple biosynthetic pathways and upregulate tricarboxylic acid (TCA) cycle genes in these conditions. During carbon starvation, (p)ppGpp triggers accumulation of the metabolite alpha-ketoglutarate, which itself acts as a metabolic regulator; alpha-ketoglutarate supplementation restores viability to a (p)ppGpp-deficient strain. These studies uncover how commensal bacteria adapt to the gut by modulating central metabolism and reveal that halting rather than accelerating growth can be a determining factor for membership in the gut microbiome.
Collapse
Affiliation(s)
- Whitman B Schofield
- Department of Microbial Pathogenesis and Microbial Sciences Institute, Yale University School of Medicine, New Haven, CT 06536, USA
| | - Maria Zimmermann-Kogadeeva
- Department of Microbial Pathogenesis and Microbial Sciences Institute, Yale University School of Medicine, New Haven, CT 06536, USA
| | - Michael Zimmermann
- Department of Microbial Pathogenesis and Microbial Sciences Institute, Yale University School of Medicine, New Haven, CT 06536, USA
| | - Natasha A Barry
- Department of Microbial Pathogenesis and Microbial Sciences Institute, Yale University School of Medicine, New Haven, CT 06536, USA
| | - Andrew L Goodman
- Department of Microbial Pathogenesis and Microbial Sciences Institute, Yale University School of Medicine, New Haven, CT 06536, USA.
| |
Collapse
|
226
|
Drecktrah D, Hall LS, Rescheneder P, Lybecker M, Samuels DS. The Stringent Response-Regulated sRNA Transcriptome of Borrelia burgdorferi. Front Cell Infect Microbiol 2018; 8:231. [PMID: 30027068 PMCID: PMC6041397 DOI: 10.3389/fcimb.2018.00231] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 06/19/2018] [Indexed: 12/12/2022] Open
Abstract
The Lyme disease spirochete Borrelia (Borreliella) burgdorferi must tolerate nutrient stress to persist in the tick phase of its enzootic life cycle. We previously found that the stringent response mediated by RelBbu globally regulates gene expression to facilitate persistence in the tick vector. Here, we show that RelBbu regulates the expression of a swath of small RNAs (sRNA), affecting 36% of previously identified sRNAs in B. burgdorferi. This is the first sRNA regulatory mechanism identified in any spirochete. Threefold more sRNAs were RelBbu-upregulated than downregulated during nutrient stress and included antisense, intergenic and 5′ untranslated region sRNAs. RelBbu-regulated sRNAs associated with genes known to be important for host infection (bosR and dhhp) as well as persistence in the tick (glpF and hk1) were identified, suggesting potential mechanisms for post-transcriptional regulation of gene expression.
Collapse
Affiliation(s)
- Dan Drecktrah
- Division of Biological Sciences, University of Montana, Missoula, MT, United States
| | - Laura S Hall
- Division of Biological Sciences, University of Montana, Missoula, MT, United States
| | - Philipp Rescheneder
- Center for Integrative Bioinformatics Vienna, Max F. Perutz Laboratories, Medical University of Vienna, Vienna, Austria
| | - Meghan Lybecker
- Department of Biology, University of Colorado, Colorado Springs, CO, United States
| | - D Scott Samuels
- Division of Biological Sciences, University of Montana, Missoula, MT, United States.,Center for Biomolecular Structure and Dynamics, University of Montana, Missoula, MT, United States
| |
Collapse
|
227
|
Gratani FL, Horvatek P, Geiger T, Borisova M, Mayer C, Grin I, Wagner S, Steinchen W, Bange G, Velic A, Maček B, Wolz C. Regulation of the opposing (p)ppGpp synthetase and hydrolase activities in a bifunctional RelA/SpoT homologue from Staphylococcus aureus. PLoS Genet 2018; 14:e1007514. [PMID: 29985927 PMCID: PMC6053245 DOI: 10.1371/journal.pgen.1007514] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 07/19/2018] [Accepted: 06/25/2018] [Indexed: 01/15/2023] Open
Abstract
The stringent response is characterized by (p)ppGpp synthesis resulting in repression of translation and reprogramming of the transcriptome. In Staphylococcus aureus, (p)ppGpp is synthesized by the long RSH (RelA/SpoT homolog) enzyme, RelSau or by one of the two short synthetases (RelP, RelQ). RSH enzymes are characterized by an N-terminal enzymatic domain bearing distinct motifs for (p)ppGpp synthetase or hydrolase activity and a C-terminal regulatory domain (CTD) containing conserved motifs (TGS, DC and ACT). The intramolecular switch between synthetase and hydrolase activity of RelSau is crucial for the adaption of S. aureus to stress (stringent) or non-stress (relaxed) conditions. We elucidated the role of the CTD in the enzymatic activities of RelSau. Growth pattern, transcriptional analyses and in vitro assays yielded the following results: i) in vivo, under relaxed conditions, as well as in vitro, the CTD inhibits synthetase activity but is not required for hydrolase activity; ii) under stringent conditions, the CTD is essential for (p)ppGpp synthesis; iii) RelSau lacking the CTD exhibits net hydrolase activity when expressed in S. aureus but net (p)ppGpp synthetase activity when expressed in E. coli; iv) the TGS and DC motifs within the CTD are required for correct stringent response, whereas the ACT motif is dispensable, v) Co-immunoprecipitation indicated that the CTD interacts with the ribosome, which is largely dependent on the TGS motif. In conclusion, RelSau primarily exists in a synthetase-OFF/hydrolase-ON state, the TGS motif within the CTD is required to activate (p)ppGpp synthesis under stringent conditions.
Collapse
Affiliation(s)
- Fabio Lino Gratani
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tuebingen, Tuebingen, Germany
| | - Petra Horvatek
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tuebingen, Tuebingen, Germany
| | - Tobias Geiger
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tuebingen, Tuebingen, Germany
| | - Marina Borisova
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tuebingen, Tuebingen, Germany
| | - Christoph Mayer
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tuebingen, Tuebingen, Germany
| | - Iwan Grin
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tuebingen, Tuebingen, Germany
- German Centre for Infection Research, Partner Site Tuebingen, Tuebingen, Germany
| | - Samuel Wagner
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tuebingen, Tuebingen, Germany
- German Centre for Infection Research, Partner Site Tuebingen, Tuebingen, Germany
| | - Wieland Steinchen
- Center for Synthetic Microbiology (SYNMIKRO) & Dept. of Chemistry, Philipps-University, Marburg, Germany
| | - Gert Bange
- Center for Synthetic Microbiology (SYNMIKRO) & Dept. of Chemistry, Philipps-University, Marburg, Germany
| | - Ana Velic
- Quantitative Proteomics and Proteome Center Tuebingen, Tuebingen, Interfaculty Institute for Cell Biology, University of Tuebingen, Tuebingen, Germany
| | - Boris Maček
- Quantitative Proteomics and Proteome Center Tuebingen, Tuebingen, Interfaculty Institute for Cell Biology, University of Tuebingen, Tuebingen, Germany
| | - Christiane Wolz
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tuebingen, Tuebingen, Germany
| |
Collapse
|
228
|
Prusa J, Zhu DX, Stallings CL. The stringent response and Mycobacterium tuberculosis pathogenesis. Pathog Dis 2018; 76:5035815. [PMID: 29947752 PMCID: PMC7191866 DOI: 10.1093/femspd/fty054] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 06/08/2018] [Indexed: 12/23/2022] Open
Abstract
During infection, the host restrains Mycobacterium tuberculosis (Mtb) from proliferating by imposing an arsenal of stresses. Despite this onslaught of attacks, Mtb is able to persist for the lifetime of the host, indicating that this pathogen has substantial molecular mechanisms to resist host-inflicted damage. The stringent response is a conserved global stress response in bacteria that involves the production of the hyperphosphorylated guanine nucleotides ppGpp and pppGpp (collectively called (p)ppGpp). (p)ppGpp then regulates a number of cellular processes to adjust the physiology of the bacteria to promote survival in different environments. Survival in the presence of host-generated stresses is an essential quality of successful pathogens, and the stringent response is critical for the intracellular survival of a number of pathogenic bacteria. In addition, the stringent response has been linked to virulence gene expression, persistence, latency and drug tolerance. In Mtb, (p)ppGpp synthesis is required for survival in low nutrient conditions, long term culture and during chronic infection in animal models, all indicative of a strict requirement for (p)ppGpp during exposure to stresses associated with infection. In this review we discuss (p)ppGpp metabolism and how this functions as a critical regulator of Mtb virulence.
Collapse
Affiliation(s)
- Jerome Prusa
- Department of Molecular Microbiology, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Dennis X Zhu
- Department of Molecular Microbiology, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Christina L Stallings
- Department of Molecular Microbiology, Washington University School of Medicine, St Louis, MO 63110, USA
| |
Collapse
|
229
|
Abstract
When faced with amino acid starvation, prokaryotic cells induce a stringent response that modulates their physiology. The stringent response is manifested by production of signaling molecules guanosine 5'-diphosphate,3'-diphosphate (ppGpp) and guanosine 5'-triphosphate,3'-diphosphate (pppGpp) that are also called alarmones. In many species, alarmone levels are regulated by a multidomain bifunctional alarmone synthetase/hydrolase called Rel. In this enzyme, there is an ACT domain at the carboxyl region that has an unknown function; however, similar ACT domains are present in other enzymes that have roles in controlling amino acid metabolism. In many cases, these other ACT domains have been shown to allosterically regulate enzyme activity through the binding of amino acids. Here, we show that the ACT domain present in the Rhodobacter capsulatus Rel alarmone synthetase/hydrolase binds branched-chain amino acids valine and isoleucine. We further show that the binding of these amino acids stimulates alarmone hydrolase activity both in vitro and in vivo. Furthermore, we found that the ACT domain present in Rel proteins from many diverse species also binds branched-chain amino acids. These results indicate that the cellular concentration of amino acids can directly affect Rel alarmone synthetase/hydrolase activity, thus adding another layer of control to current models of cellular control of the stringent response.
Collapse
Affiliation(s)
- Mingxu Fang
- Molecular and Cellular Biochemistry Department, Indiana University, Bloomington, IN 47405
| | - Carl E Bauer
- Molecular and Cellular Biochemistry Department, Indiana University, Bloomington, IN 47405
| |
Collapse
|
230
|
Yanling C, Hongyan L, Xi W, Wim C, Dongmei D. Efficacy of relacin combined with sodium hypochlorite against Enterococcus faecalis biofilms. J Appl Oral Sci 2018; 26:e20160608. [PMID: 29898172 PMCID: PMC6010329 DOI: 10.1590/1678-7757-2016-0608] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2016] [Accepted: 05/21/2017] [Indexed: 01/21/2023] Open
Abstract
Objective Relacin is a synthetic molecule that targets RelA, an essential protein in a conserved bacterial stress response system. It was shown to inhibit bacterial growth. The aims of this study were to evaluate the antimicrobial effect of relacin combined with sodium hypochlorite (NaOCl) on Enterococcus faecalis biofilms and to evaluate the cytotoxicity of relacin. Material and Methods 48-h E. faecalis OG1RF biofilms were treated by various concentrations of relacin in order to determine its inhibitory concentration. Then, the 48-h biofilms were treated either with 1-min NaOCl (0.01%, 0.05%) alone, or in combination of relacin. As a means of comparison, the biofilms of ΔrelA were also treated by 1-min NaOCl (0.01%, 0.05%, 0.25%). The treatment efficacy was determined by agar plate count assays. The cytotoxicity of relacin was examined on human gingival epithelial cells Ca9-22 and murine fibroblasts NIH-3T3 by a methyl thiazolyltetrazolium (MTT) assay and a lactate dehydrogenase assay. Statistical analysis was performed by one-way or two-way analysis of variance (ANOVA) with Bonferroni’s post-hoc test and an independent Student’s t-test. A significance level of p<0.05 was used. Results Relacin inhibited the growth of OG1RF biofilms partially at 8 mM and fully at 14 mM. The relacin (14 mM) and NaOCl combined treatment resulted in significantly higher treatment efficacy than NaOCl treatment alone. At 0.05% NaOCl, the combined treatment resulted in 5.65 (±0.19) log reduction in biofilm viability. The ΔrelA biofilms were more susceptible to NaOCl treatment than the wild type biofilms at 0.25% NaOCl. Relacin at 14 mM was not toxic to host epithelial cells and fibroblasts. Conclusions The combination of relacin with a low concentration of NaOCl was effective and not cytotoxic.
Collapse
Affiliation(s)
- Cai Yanling
- Sun Yat-sen University, Hospital of Stomatology, Guanghua School of Stomatology, Department of Operative Dentistry and Endodontics, Guangzhou, Guangdong, China.,Guangdong Province Key Laboratory of Stomatology, Guangzhou, Guangdong, China
| | - Liu Hongyan
- Sun Yat-sen University, Hospital of Stomatology, Guanghua School of Stomatology, Department of Operative Dentistry and Endodontics, Guangzhou, Guangdong, China.,Guangdong Province Key Laboratory of Stomatology, Guangzhou, Guangdong, China
| | - Wei Xi
- Sun Yat-sen University, Hospital of Stomatology, Guanghua School of Stomatology, Department of Operative Dentistry and Endodontics, Guangzhou, Guangdong, China.,Guangdong Province Key Laboratory of Stomatology, Guangzhou, Guangdong, China
| | | | - Deng Dongmei
- Guangdong Province Key Laboratory of Stomatology, Guangzhou, Guangdong, China.,University of Amsterdam andNetherlands.,VU University, Academic Centre for Dentistry Amsterdam (ACTA), Department of Preventive Dentistry, Amsterdam, The Netherlands
| |
Collapse
|
231
|
Field B. Green magic: regulation of the chloroplast stress response by (p)ppGpp in plants and algae. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:2797-2807. [PMID: 29281108 DOI: 10.1093/jxb/erx485] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 12/14/2017] [Indexed: 06/07/2023]
Abstract
The hyperphosphorylated nucleotides guanosine pentaphosphate and tetraphosphate [together referred to as (p)ppGpp, or 'magic spot'] orchestrate a signalling cascade in bacteria that controls growth under optimal conditions and in response to environmental stress. (p)ppGpp is also found in the chloroplasts of plants and algae where it has also been shown to accumulate in response to abiotic stress. Recent studies suggest that (p)ppGpp is a potent inhibitor of chloroplast gene expression in vivo, and is a significant regulator of chloroplast function that can influence both the growth and the development of plants. However, little is currently known about how (p)ppGpp is wired into eukaryotic signalling pathways, or how it may act to enhance fitness when plants or algae are exposed to environmental stress. This review discusses our current understanding of (p)ppGpp metabolism and its extent in plants and algae, and how (p)ppGpp signalling may be an important factor that is capable of influencing growth and stress acclimation in this major group of organisms.
Collapse
Affiliation(s)
- Ben Field
- Aix Marseille Univ, CEA, CNRS, France
| |
Collapse
|
232
|
Ruwe M, Rückert C, Kalinowski J, Persicke M. Functional Characterization of a Small Alarmone Hydrolase in Corynebacterium glutamicum. Front Microbiol 2018; 9:916. [PMID: 29867827 PMCID: PMC5954133 DOI: 10.3389/fmicb.2018.00916] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 04/20/2018] [Indexed: 11/13/2022] Open
Abstract
The (pp)pGpp metabolism is an important component of bacterial physiology as it is involved in various stress responses and mechanisms of cell homeostasis, e.g., the regulation of growth. However, in order to better understand the (pp)pGpp associated regulation, it is crucial to study the molecular mechanisms of (pp)pGpp metabolism. In recent years, bioinformatic analyses of the RelA/SpoT homolog (RSH) superfamily have led to the discovery of small monofunctional RSH derivatives in addition to the well-known bifunctional Rel proteins. These are also referred to as small alarmone synthetases (SASs) or small alarmone hydrolases (SAHs). In this study, the ORF cg1485 from C. glutamicum was identified as a putative SAH encoding gene, based on a high similarity of the corresponding amino acid sequence with the (pp)pGpp hydrolysis domain. The characterization of its gene product, designated as RelHCg, represents the first functional investigation of a bacterial representative of the SAH subfamily. The predicted pyrophosphohydrolase activity was demonstrated in vivo by expression in two E. coli strains, characterized by different alarmone basal levels, as well as by in vitro analysis of the purified protein. During the assay-based analysis of hydrolysis activity in relation to the three known alarmone species, both RelHCg and the bifunctional RSH enzyme RelCg were found to exhibit a pronounced substrate inhibition for alarmone concentrations of more than 0.75 mM. This characteristic of (pp)pGpp hydrolases could be an important mechanism for realizing the bistable character of the (pp)pGpp metabolism between a (pp)pGpp basal level and stress-associated alarmone production. The deletion of relHCg caused only a minor effect on growth behavior in both wild-type background and deletion mutants with deletion of (pp)pGpp synthetases. Based on this observation, the protein is probably only present or active under specific environmental conditions. The independent loss of the corresponding gene in numerous representatives of the genus Corynebacterium, which was found by bioinformatic analyses, also supports this hypothesis. Furthermore, growth analysis of all possible deletion combinations of the three active C. glutamicum RSH genes revealed interesting functional relationships which will have to be investigated in more detail in the future.
Collapse
Affiliation(s)
- Matthias Ruwe
- Microbial Genomics and Biotechnology, Center for Biotechnology, Bielefeld University, Bielefeld, Germany
| | - Christian Rückert
- Microbial Genomics and Biotechnology, Center for Biotechnology, Bielefeld University, Bielefeld, Germany
| | - Jörn Kalinowski
- Microbial Genomics and Biotechnology, Center for Biotechnology, Bielefeld University, Bielefeld, Germany
| | - Marcus Persicke
- Microbial Genomics and Biotechnology, Center for Biotechnology, Bielefeld University, Bielefeld, Germany
| |
Collapse
|
233
|
Abstract
AbstractRibosome assembly is critical for translation and regulating the response to cellular events and requires a complex interplay of ribosomal RNA and proteins with assembly factors. We investigated putative participants in the biogenesis of the reduced organellar ribosomes of Plasmodium falciparum and identified homologues of two assembly GTPases – EngA and Obg that were found in mitochondria. Both are indispensable in bacteria and P. berghei EngA is among the ‘essential’ parasite blood stage proteins identified recently. PfEngA and PfObg1 interacted with parasite mitoribosomes in vivo. GTP stimulated PfEngA interaction with the 50S subunit of Escherichia coli surrogate ribosomes. Although PfObg1–ribosome interaction was independent of nucleotide binding, GTP hydrolysis by PfObg1 was enhanced upon ribosomal association. An additional function for PfObg1 in mitochondrial DNA transactions was suggested by its specific interaction with the parasite mitochondrial genome in vivo. Deletion analysis revealed that the positively-charged OBG (spoOB-associated GTP-binding protein) domain mediates DNA-binding. A role for PfEngA in mitochondrial genotoxic stress response was indicated by its over-expression upon methyl methanesulfonate-induced DNA damage. PfEngA had lower sensitivity to an E. coli EngA inhibitor suggesting differences with bacterial counterparts. Our results show the involvement of two important GTPases in P. falciparum mitochondrial function, with the first confirmed localization of an EngA homologue in eukaryotic mitochondria.
Collapse
|
234
|
Saito R, Talukdar PK, Alanazi SS, Sarker MR. RelA/DTD-mediated regulation of spore formation and toxin production by Clostridium perfringens type A strain SM101. MICROBIOLOGY-SGM 2018; 164:835-847. [PMID: 29624163 DOI: 10.1099/mic.0.000655] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
RelA is a global regulator for stationary phase development in the model bacterium Bacillus subtilis. The relA gene forms a bicistronic operon with the downstream dtd gene. In this study, we evaluated the significance of RelA and DTD proteins in spore formation and toxin production by an important gastrointestinal pathogen Clostridium perfringens. Our β-glucuronidase assay showed that in C. perfringens strain SM101, relA forms a bicistronic operon with its downstream dtd gene, and the relA promoter is expressed during both vegetative and sporulation conditions. By constructing double relA dtd and single dtd mutants in C. perfringens SM101, we found that: (1) RelA is required for maintaining the efficient growth capacity of SM101 cells during vegetative conditions; (2) both RelA and DTD are required for spore formation and enterotoxin (CPE) production by SM101; (3) RelA/DTD activate CodY, which is known to activate spore formation and CPE production in SM101 by activating a key sporulation-specific σ factor F; (4) as expected, RelA/DTD activate sporulation-specific σ factors (σE, σF, σG and σK) by positively regulating Spo0A production; and finally (5) RelA, but not DTD, negatively regulates phospholipase C (PLC) production by repressing plc gene expression. Collectively, our results demonstrate that RelA modulates cellular physiology such as growth, spore formation and toxin production by C. perfringens type A strain SM101, although DTD also plays a role in these pleiotropic functions in coordination with RelA during sporulation. These findings have implications for the understanding of the mechanisms involved in the infectious cycle of C. perfringens.
Collapse
Affiliation(s)
- Ryoichi Saito
- Department of Biomedical Sciences, College of Veterinary Medicine, Oregon State University, Corvallis, OR, USA.,Department of Microbiology and Immunology, Field of Applied Laboratory Science, Graduate School of Health Care Sciences, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, Japan
| | - Prabhat K Talukdar
- Department of Biomedical Sciences, College of Veterinary Medicine, Oregon State University, Corvallis, OR, USA.,Department of Microbiology, College of Science, Oregon State University, Corvallis, OR, USA.,Present address: School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA 99164, USA
| | - Saud S Alanazi
- Department of Biomedical Sciences, College of Veterinary Medicine, Oregon State University, Corvallis, OR, USA.,Department of Microbiology, College of Science, Oregon State University, Corvallis, OR, USA
| | - Mahfuzur R Sarker
- Department of Biomedical Sciences, College of Veterinary Medicine, Oregon State University, Corvallis, OR, USA.,Department of Microbiology, College of Science, Oregon State University, Corvallis, OR, USA
| |
Collapse
|
235
|
Imamura S, Nomura Y, Takemura T, Pancha I, Taki K, Toguchi K, Tozawa Y, Tanaka K. The checkpoint kinase TOR (target of rapamycin) regulates expression of a nuclear-encoded chloroplast RelA-SpoT homolog (RSH) and modulates chloroplast ribosomal RNA synthesis in a unicellular red alga. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 94:327-339. [PMID: 29441718 DOI: 10.1111/tpj.13859] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 12/11/2017] [Accepted: 01/23/2018] [Indexed: 05/14/2023]
Abstract
Chloroplasts are plant organelles that carry out oxygenic photosynthesis. Chloroplast biogenesis depends upon chloroplast ribosomes and their translational activity. However, regulation of chloroplast ribosome biogenesis remains an important unanswered question. In this study, we found that inhibition of target of rapamycin (TOR), a general eukaryotic checkpoint kinase, results in a decline in chloroplast ribosomal RNA (rRNA) transcription in the unicellular red alga, Cyanidioschyzon merolae. Upon TOR inhibition, transcriptomics and other analyses revealed increased expression of a nuclear-encoded chloroplast RelA-SpoT homolog (RSH) gene (CmRSH4b), which encodes a homolog of the guanosine 3'-diphosphate 5'-diphosphate (ppGpp) synthetases that modulate rRNA synthesis in bacteria. Using an Escherichia coli mutant lacking ppGpp, CmRSH4b was demonstrated to have ppGpp synthetase activity. Expression analysis of a green fluorescent protein-fused protein indicated that CmRSH4b localizes to the chloroplast, and overexpression of the CmRSH4b gene resulted in a decrease of chloroplast rRNA synthesis concomitant with growth inhibition and reduction of chloroplast size. Biochemical analyses using C. merolae cell lysates or purified recombinant proteins revealed that ppGpp inhibits bacteria-type RNA polymerase-dependent chloroplast rRNA synthesis as well as a chloroplast guanylate kinase. These results suggest that CmRSH4b-dependent ppGpp synthesis in chloroplasts is an important regulator of chloroplast rRNA transcription. Nuclear and mitochondrial rRNA transcription were both reduced by TOR inhibition, suggesting that the biogeneses of the three independent ribosome systems are interconnected by TOR in plant cells.
Collapse
Affiliation(s)
- Sousuke Imamura
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259-R1 Nagatsuta, Midori-ku, Yokohama, 226-8503, Japan
| | - Yuhta Nomura
- Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama, 338-8570, Japan
| | - Tokiaki Takemura
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259-R1 Nagatsuta, Midori-ku, Yokohama, 226-8503, Japan
| | - Imran Pancha
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259-R1 Nagatsuta, Midori-ku, Yokohama, 226-8503, Japan
| | - Keiko Taki
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259-R1 Nagatsuta, Midori-ku, Yokohama, 226-8503, Japan
| | - Kazuki Toguchi
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259-R1 Nagatsuta, Midori-ku, Yokohama, 226-8503, Japan
| | - Yuzuru Tozawa
- Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama, 338-8570, Japan
| | - Kan Tanaka
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259-R1 Nagatsuta, Midori-ku, Yokohama, 226-8503, Japan
| |
Collapse
|
236
|
Tkachenko AG. Stress Responses of Bacterial Cells as Mechanism of Development of Antibiotic Tolerance (Review). APPL BIOCHEM MICRO+ 2018. [DOI: 10.1134/s0003683818020114] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
237
|
Abstract
The alarmone (p)ppGpp plays pivotal roles in basic bacterial stress responses by increasing tolerance of various nutritional limitations and chemical insults, including antibiotics. Despite intensive studies since (p)ppGpp was discovered over 4 decades ago, (p)ppGpp binding proteins have not been systematically identified in Escherichia coli. We applied DRaCALA (differential radial capillary action of ligand assay) to identify (p)ppGpp-protein interactions. We discovered 12 new (p)ppGpp targets in E. coli that, based on their physiological functions, could be classified into four major groups, involved in (i) purine nucleotide homeostasis (YgdH), (ii) ribosome biogenesis and translation (RsgA, Era, HflX, and LepA), (iii) maturation of dehydrogenases (HypB), and (iv) metabolism of (p)ppGpp (MutT, NudG, TrmE, NadR, PhoA, and UshA). We present a comprehensive and comparative biochemical and physiological characterization of these novel (p)ppGpp targets together with a comparative analysis of relevant, known (p)ppGpp binding proteins. Via this, primary targets of (p)ppGpp in E. coli are identified. The GTP salvage biosynthesis pathway and ribosome biogenesis and translation are confirmed as targets of (p)ppGpp that are highly conserved between E. coli and Firmicutes. In addition, an alternative (p)ppGpp degradative pathway, involving NudG and MutT, was uncovered. This report thus significantly expands the known cohort of (p)ppGpp targets in E. coli. Antibiotic resistance and tolerance exhibited by pathogenic bacteria have resulted in a global public health crisis. Remarkably, almost all bacterial pathogens require the alarmone (p)ppGpp to be virulent. Thus, (p)ppGpp not only induces tolerance of nutritional limitations and chemical insults, including antibiotics, but is also often required for induction of virulence genes. However, understanding of the molecular targets of (p)ppGpp and the mechanisms by which (p)ppGpp influences bacterial physiology is incomplete. In this study, a systematic approach was used to uncover novel targets of (p)ppGpp in E. coli, the best-studied model bacterium. Comprehensive comparative studies of the targets revealed conserved target pathways of (p)ppGpp in both Gram-positive and -negative bacteria and novel targets of (p)ppGpp, including an alternative degradative pathway of (p)ppGpp. Thus, our discoveries may help in understanding of how (p)ppGpp increases the stress resilience and multidrug tolerance not only of the model organism E. coli but also of the pathogenic organisms in which these targets are conserved.
Collapse
|
238
|
Honoki R, Ono S, Oikawa A, Saito K, Masuda S. Significance of accumulation of the alarmone (p)ppGpp in chloroplasts for controlling photosynthesis and metabolite balance during nitrogen starvation in Arabidopsis. PHOTOSYNTHESIS RESEARCH 2018; 135:299-308. [PMID: 28536785 DOI: 10.1007/s11120-017-0402-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 05/16/2017] [Indexed: 06/07/2023]
Abstract
The regulatory nucleotides, guanosine 5'-triphosphate 3'-diphosphate (pppGpp) and guanosine 5'-diphosphate 3'-diphosphate (ppGpp), were originally identified in Escherichia coli, and control a large set of gene expression and enzyme activities. The (p)ppGpp-dependent control of cell activities is referred to as the stringent response. A growing number of (p)ppGpp synthase/hydrolase homologs have been identified in plants, which are localized in plastids in Arabidopsis thaliana. We recently reported that the Arabidopsis mutant overproducing ppGpp in plastids showed dwarf chloroplasts, and transcript levels in the mutant plastids were significantly suppressed. Furthermore, the mutant showed more robust growth than the wild type (WT), especially under nutrient-deficient conditions, although the mechanisms are unclear. To better understand the impact of the ppGpp accumulation on plant responses to nutrient deficiency, photosynthetic activities and metabolic changes in the ppGpp-overproducing mutant were characterized here. Upon transition to the nitrogen-deficient conditions, the mutant showed reduction of ribulose 1,5-bisphosphate carboxylase/oxygenase (RubisCO) contents, and effective and maximum quantum yield of photosystem II compared with WT. The mutant also showed more obvious changes in key metabolite levels including some amino acid contents than WT; similar metabolic change is known to be critical for plants to maintain carbon-nitrogen balance in their cells. These results suggest that artificially overproducing ppGpp modulates the organelle functions that play an important role in controlling photosynthetic performance and metabolite balance during nitrogen starvation.
Collapse
Affiliation(s)
- Rina Honoki
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, 226-8501, Japan
| | - Sumire Ono
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, 226-8501, Japan
| | - Akira Oikawa
- Faculty of Agriculture, Yamagata University, Tsuruoka, 997-8555, Japan
- RIKEN Center for Sustainable Resource Science, Yokohama, 230-0045, Japan
| | - Kazuki Saito
- RIKEN Center for Sustainable Resource Science, Yokohama, 230-0045, Japan
- Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, 260-8675, Japan
| | - Shinji Masuda
- Center for Biological Resources & Informatics, Tokyo Institute of Technology, Yokohama, 226-8501, Japan.
- Earth-life Science Institute, Tokyo Institute of Technology, Tokyo, 152-8551, Japan.
| |
Collapse
|
239
|
Abdelkefi H, Sugliani M, Ke H, Harchouni S, Soubigou‐Taconnat L, Citerne S, Mouille G, Fakhfakh H, Robaglia C, Field B. Guanosine tetraphosphate modulates salicylic acid signalling and the resistance of Arabidopsis thaliana to Turnip mosaic virus. MOLECULAR PLANT PATHOLOGY 2018; 19:634-646. [PMID: 28220595 PMCID: PMC6638062 DOI: 10.1111/mpp.12548] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 02/16/2017] [Accepted: 02/17/2017] [Indexed: 05/21/2023]
Abstract
Chloroplasts can act as key players in the perception and acclimatization of plants to incoming environmental signals. A growing body of evidence indicates that chloroplasts play a critical role in plant immunity. Chloroplast function can be regulated by the nucleotides guanosine tetraphosphate and pentaphosphate [(p)ppGpp]. In plants, (p)ppGpp levels increase in response to abiotic stress and to plant hormones which are involved in abiotic and biotic stress signalling. In this study, we analysed the transcriptome of Arabidopsis plants that over-accumulate (p)ppGpp, and unexpectedly found a decrease in the levels of a broad range of transcripts for plant defence and immunity. To determine whether (p)ppGpp is involved in the modulation of plant immunity, we analysed the susceptibility of plants with different levels of (p)ppGpp to Turnip mosaic virus (TuMV) carrying a green fluorescent protein (GFP) reporter. We found that (p)ppGpp accumulation was associated with increased susceptibility to TuMV and reduced levels of the defence hormone salicylic acid (SA). In contrast, plants with lower (p)ppGpp levels showed reduced susceptibility to TuMV, and this was associated with the precocious up-regulation of defence-related genes and increased SA content. We have therefore demonstrated a new link between (p)ppGpp metabolism and plant immunity in Arabidopsis.
Collapse
Affiliation(s)
- Hela Abdelkefi
- Faculty of Sciences of Tunis, Laboratory of Molecular Genetics, Immunology and BiotechnologyUniversity of Tunis El Manar, 2092 Elmanar TunisTunisia
- CEA, CNRS, Laboratoire de Génétique et Biophysique des Plantes, UMR 7265, Biologie Végétal et Microbiologie Environnemental, Bioscience and Biotechnology Institute of Aix‐MarseilleAix Marseille UniversitéMarseille13009France
| | - Matteo Sugliani
- CEA, CNRS, Laboratoire de Génétique et Biophysique des Plantes, UMR 7265, Biologie Végétal et Microbiologie Environnemental, Bioscience and Biotechnology Institute of Aix‐MarseilleAix Marseille UniversitéMarseille13009France
| | - Hang Ke
- CEA, CNRS, Laboratoire de Génétique et Biophysique des Plantes, UMR 7265, Biologie Végétal et Microbiologie Environnemental, Bioscience and Biotechnology Institute of Aix‐MarseilleAix Marseille UniversitéMarseille13009France
| | - Seddik Harchouni
- CEA, CNRS, Laboratoire de Génétique et Biophysique des Plantes, UMR 7265, Biologie Végétal et Microbiologie Environnemental, Bioscience and Biotechnology Institute of Aix‐MarseilleAix Marseille UniversitéMarseille13009France
| | - Ludivine Soubigou‐Taconnat
- Institute of Plant Sciences Paris Saclay IPS2, CNRS, INRAUniversité Paris‐Sud, Université Evry, Université Paris‐Saclay, Bâtiment 630Orsay91405France
- Paris Diderot, Sorbonne Paris‐CitéInstitute of Plant Sciences Paris‐Saclay IPS2, Bâtiment 630Orsay91405France
| | - Sylvie Citerne
- Institut Jean‐Pierre Bourgin, INRA, AgroParisTech, CNRSUniversité Paris‐SaclayVersailles78000France
| | - Gregory Mouille
- Institut Jean‐Pierre Bourgin, INRA, AgroParisTech, CNRSUniversité Paris‐SaclayVersailles78000France
| | - Hatem Fakhfakh
- Faculty of Sciences of Tunis, Laboratory of Molecular Genetics, Immunology and BiotechnologyUniversity of Tunis El Manar, 2092 Elmanar TunisTunisia
| | - Christophe Robaglia
- CEA, CNRS, Laboratoire de Génétique et Biophysique des Plantes, UMR 7265, Biologie Végétal et Microbiologie Environnemental, Bioscience and Biotechnology Institute of Aix‐MarseilleAix Marseille UniversitéMarseille13009France
| | - Ben Field
- CEA, CNRS, Laboratoire de Génétique et Biophysique des Plantes, UMR 7265, Biologie Végétal et Microbiologie Environnemental, Bioscience and Biotechnology Institute of Aix‐MarseilleAix Marseille UniversitéMarseille13009France
| |
Collapse
|
240
|
Abstract
The adaptations that protect pathogenic microorganisms against the cytotoxicity of nitric oxide (NO) engendered in the immune response are incompletely understood. We show here that salmonellae experiencing nitrosative stress suffer dramatic losses of the nucleoside triphosphates ATP, GTP, CTP, and UTP while simultaneously generating a massive burst of the alarmone nucleotide guanosine tetraphosphate. RelA proteins associated with ribosomes overwhelmingly synthesize guanosine tetraphosphate in response to NO as a feedback mechanism to transient branched-chain amino acid auxotrophies. Guanosine tetraphosphate activates the transcription of valine biosynthetic genes, thereby reestablishing branched-chain amino acid biosynthesis that enables the translation of the NO-consuming flavohemoglobin Hmp. Guanosine tetraphosphate synthesized by RelA protects salmonellae from the metabolic stress inflicted by reactive nitrogen species generated in the mammalian host response. This research illustrates the importance of nucleotide metabolism in the adaptation of salmonellae to the nutritional stress imposed by NO released in the innate host response. Nitric oxide triggers dramatic drops in nucleoside triphosphates, the building blocks that power DNA replication; RNA transcription; translation; cell division; and the biosynthesis of fatty acids, lipopolysaccharide, and peptidoglycan. Concomitantly, this diatomic gas stimulates a burst of guanosine tetraphosphate. Global changes in nucleotide metabolism may contribute to the potent bacteriostatic activity of nitric oxide. In addition to inhibiting numerous growth-dependent processes, guanosine tetraphosphate positively regulates the transcription of branched-chain amino acid biosynthesis genes, thereby facilitating the translation of antinitrosative defenses that mediate recovery from nitrosative stress.
Collapse
|
241
|
Species-Specific Interactions of Arr with RplK Mediate Stringent Response in Bacteria. J Bacteriol 2018; 200:JB.00722-17. [PMID: 29311276 DOI: 10.1128/jb.00722-17] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 12/21/2017] [Indexed: 11/20/2022] Open
Abstract
Bacteria respond to stressful growth conditions through a conserved phenomenon of stringent response mediated by synthesis of stress alarmones ppGpp and pppGpp [referred to as (p)ppGpp]. (p)ppGpp synthesis is known to occur by ribosome-associated RelA. In addition, a dual-function protein, SpoT (with both synthetase and hydrolase activities), maintains (p)ppGpp homeostasis. The presence of (p)ppGpp is also known to contribute to antibiotic resistance in bacteria. Mycobacterium smegmatis possesses Arr, which inactivates rifampin by its ADP ribosylation. Arr has been shown to be upregulated in response to stress. However, the roles Arr might play during growth have remained unclear. We show that Arr confers growth fitness advantage to M. smegmatis even in the absence of rifampin. Arr deficiency in M. smegmatis resulted in deficiency of biofilm formation. Further, we show that while Arr does not interact with the wild-type Escherichia coli ribosomes, it interacts with them when the E. coli ribosomal protein L11 (a stringent response regulator) is replaced with its homolog from M. smegmatis The Arr interaction with E. coli ribosomes occurs even when the N-terminal 33 amino acids of its L11 protein were replaced with the corresponding sequence of M. smegmatis L11 (Msm-EcoL11 chimeric protein). Interestingly, Arr interaction with the E. coli ribosomes harboring M. smegmatis L11 or Msm-EcoL11 results in the synthesis of ppGpp in vivo Our study shows a novel role of antibiotic resistance gene arr in stress response.IMPORTANCEMycobacterium smegmatis, like many other bacteria, possesses an ADP-ribosyltransferase, Arr, which confers resistance to the first-line antituberculosis drug, rifampin, by its ADP ribosylation. In this report, we show that in addition to its known property of conferring resistance to rifampin, Arr confers growth fitness advantage to M. smegmatis even when there is no rifampin in the growth medium. We then show that Arr establishes species-specific interactions with ribosomes through the N-terminal sequence of ribosomal protein L11 (a stringent response regulator) and results in ppGpp (stress alarmone) synthesis. Deficiency of Arr in M. smegmatis results in deficiency of biofilm formation. Arr protein is physiologically important both in conferring antibiotic resistance as well as in mediating stringent response.
Collapse
|
242
|
Steinchen W, Vogt MS, Altegoer F, Giammarinaro PI, Horvatek P, Wolz C, Bange G. Structural and mechanistic divergence of the small (p)ppGpp synthetases RelP and RelQ. Sci Rep 2018; 8:2195. [PMID: 29391580 PMCID: PMC5794853 DOI: 10.1038/s41598-018-20634-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 01/22/2018] [Indexed: 12/20/2022] Open
Abstract
The nutritional alarmones ppGpp and pppGpp (collectively: (p)ppGpp) are nucleotide-based second messengers enabling bacteria to respond to environmental and stress conditions. Several bacterial species contain two highly homologous (p)ppGpp synthetases named RelP (SAS2, YwaC) and RelQ (SAS1, YjbM). It is established that RelQ forms homotetramers that are subject to positive allosteric regulation by pppGpp, but structural and mechanistic insights into RelP lack behind. Here we present a structural and mechanistic characterization of RelP. In stark contrast to RelQ, RelP is not allosterically regulated by pppGpp and displays a different enzyme kinetic behavior. This discrepancy is evoked by different conformational properties of the guanosine-substrate binding site (G-Loop) of both proteins. Our study shows how minor structural divergences between close homologues result in new functional features during the course of molecular evolution.
Collapse
Affiliation(s)
- Wieland Steinchen
- Philipps-University Marburg, LOEWE Center for Synthetic Microbiology & Department of Chemistry, Hans-Meerwein-Straße, 35043 Marburg, Germany.
| | - Marian S Vogt
- Philipps-University Marburg, LOEWE Center for Synthetic Microbiology & Department of Chemistry, Hans-Meerwein-Straße, 35043 Marburg, Germany
| | - Florian Altegoer
- Philipps-University Marburg, LOEWE Center for Synthetic Microbiology & Department of Chemistry, Hans-Meerwein-Straße, 35043 Marburg, Germany
| | - Pietro I Giammarinaro
- Philipps-University Marburg, LOEWE Center for Synthetic Microbiology & Department of Chemistry, Hans-Meerwein-Straße, 35043 Marburg, Germany
| | - Petra Horvatek
- University of Tübingen, Interfaculty Institute of Microbiology and Infection Medicine, Elfriede-Aulhorn-Straße 6, 72076 Tübingen, Germany
| | - Christiane Wolz
- University of Tübingen, Interfaculty Institute of Microbiology and Infection Medicine, Elfriede-Aulhorn-Straße 6, 72076 Tübingen, Germany
| | - Gert Bange
- Philipps-University Marburg, LOEWE Center for Synthetic Microbiology & Department of Chemistry, Hans-Meerwein-Straße, 35043 Marburg, Germany.
| |
Collapse
|
243
|
Antibiotic Persistence as a Metabolic Adaptation: Stress, Metabolism, the Host, and New Directions. Pharmaceuticals (Basel) 2018; 11:ph11010014. [PMID: 29389876 PMCID: PMC5874710 DOI: 10.3390/ph11010014] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Revised: 01/25/2018] [Accepted: 01/27/2018] [Indexed: 12/16/2022] Open
Abstract
Persistence is a phenomenon during which a small fraction of a total bacterial population survives treatment with high concentrations of antibiotics for an extended period of time. In conjunction with biofilms, antibiotic persisters represent a major cause of recalcitrant and recurring infections, resulting in significant morbidity and mortality. In this review, we discuss the clinical significance of persister cells and the central role of bacterial metabolism in their formation, specifically with respect to carbon catabolite repression, sugar metabolism, and growth regulation. Additionally, we will examine persister formation as an evolutionary strategy used to tolerate extended periods of stress and discuss some of the response mechanisms implicated in their formation. To date, the vast majority of the mechanistic research examining persistence has been conducted in artificial in vitro environments that are unlikely to be representative of host conditions. Throughout this review, we contextualize the existing body of literature by discussing how in vivo conditions may create ecological niches that facilitate the development of persistence. Lastly, we identify how the development of next-generation sequencing and other “big data” tools may enable researchers to examine persistence mechanisms within the host to expand our understanding of their clinical importance.
Collapse
|
244
|
Manav MC, Beljantseva J, Bojer MS, Tenson T, Ingmer H, Hauryliuk V, Brodersen DE. Structural basis for (p)ppGpp synthesis by the Staphylococcus aureus small alarmone synthetase RelP. J Biol Chem 2018; 293:3254-3264. [PMID: 29326162 DOI: 10.1074/jbc.ra117.001374] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 01/09/2018] [Indexed: 12/31/2022] Open
Abstract
The stringent response is a global reprogramming of bacterial physiology that renders cells more tolerant to antibiotics and induces virulence gene expression in pathogens in response to stress. This process is driven by accumulation of the intracellular alarmone guanosine-5'-di(tri)phosphate-3'-diphosphate ((p)ppGpp), which is produced by enzymes of the RelA SpoT homologue (RSH) family. The Gram-positive Firmicute pathogen, Staphylococcus aureus, encodes three RSH enzymes: a multidomain RSH (Rel) that senses amino acid starvation on the ribosome and two small alarmone synthetase (SAS) enzymes, RelQ (SAS1) and RelP (SAS2). In Bacillus subtilis, RelQ (SAS1) was shown to form a tetramer that is activated by pppGpp and inhibited by single-stranded RNA, but the structural and functional regulation of RelP (SAS2) is unexplored. Here, we present crystal structures of S. aureus RelP in two major functional states, pre-catalytic (bound to GTP and the non-hydrolyzable ATP analogue, adenosine 5'-(α,β-methylene)triphosphate (AMP-CPP)), and post-catalytic (bound to pppGpp). We observed that RelP also forms a tetramer, but unlike RelQ (SAS1), it is strongly inhibited by both pppGpp and ppGpp and is insensitive to inhibition by RNA. We also identified putative metal ion-binding sites at the subunit interfaces that were consistent with the observed activation of the enzyme by Zn2+ ions. The structures reported here reveal the details of the catalytic mechanism of SAS enzymes and provide a molecular basis for understanding differential regulation of SAS enzymes in Firmicute bacteria.
Collapse
Affiliation(s)
- Melek Cemre Manav
- From the Department of Molecular Biology and Genetics, Centre for Bacterial Stress Response and Persistence, Gustav Wieds Vej 10c, DK-8000 Aarhus C, Denmark
| | - Jelena Beljantseva
- the University of Tartu, Institute of Technology, Nooruse 1, 50411 Tartu, Estonia
| | - Martin S Bojer
- the Department of Veterinary and Animal Sciences, University of Copenhagen, DK-1870 Frederiksberg C, Denmark, and
| | - Tanel Tenson
- the University of Tartu, Institute of Technology, Nooruse 1, 50411 Tartu, Estonia
| | - Hanne Ingmer
- the Department of Veterinary and Animal Sciences, University of Copenhagen, DK-1870 Frederiksberg C, Denmark, and
| | - Vasili Hauryliuk
- the University of Tartu, Institute of Technology, Nooruse 1, 50411 Tartu, Estonia.,the Department of Molecular Biology and.,Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, SE-901 87 Umeå, Sweden
| | - Ditlev E Brodersen
- From the Department of Molecular Biology and Genetics, Centre for Bacterial Stress Response and Persistence, Gustav Wieds Vej 10c, DK-8000 Aarhus C, Denmark,
| |
Collapse
|
245
|
The Streptococcus agalactiae Stringent Response Enhances Virulence and Persistence in Human Blood. Infect Immun 2017; 86:IAI.00612-17. [PMID: 29109175 PMCID: PMC5736797 DOI: 10.1128/iai.00612-17] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Accepted: 10/30/2017] [Indexed: 12/13/2022] Open
Abstract
Streptococcus agalactiae (group B Streptococcus [GBS]) causes serious infections in neonates. We previously reported a transposon sequencing (Tn-seq) system for performing genomewide assessment of gene fitness in GBS. In order to identify molecular mechanisms required for GBS to transition from a mucosal commensal lifestyle to bloodstream invasion, we performed Tn-seq on GBS strain A909 with human whole blood. Our analysis identified 16 genes conditionally essential for GBS survival in blood, of which 75% were members of the capsular polysaccharide (cps) operon. Among the non-cps genes identified as conditionally essential was relA, which encodes an enzyme whose activity is central to the bacterial stringent response—a conserved adaptation to environmental stress. We used blood coincubation studies of targeted knockout strains to confirm the expected growth defects of GBS deficient in capsule or stringent response activation. Unexpectedly, we found that the relA knockout strains demonstrated decreased expression of β-hemolysin/cytolysin, an important cytotoxin implicated in facilitating GBS invasion. Furthermore, chemical activation of the stringent response with serine hydroxamate increased β-hemolysin/cytolysin expression. To establish a mechanism by which the stringent response leads to increased cytotoxicity, we performed transcriptome sequencing (RNA-seq) on two GBS strains grown under stringent response or control conditions. This revealed a conserved decrease in the expression of genes in the arginine deiminase pathway during stringent response activation. Through coincubation with supplemental arginine and the arginine antagonist canavanine, we show that arginine availability is a determinant of GBS cytotoxicity and that the pathway between stringent response activation and increased virulence is arginine dependent.
Collapse
|
246
|
Mozejko-Ciesielska J, Dabrowska D, Szalewska-Palasz A, Ciesielski S. Medium-chain-length polyhydroxyalkanoates synthesis by Pseudomonas putida KT2440 relA/spoT mutant: bioprocess characterization and transcriptome analysis. AMB Express 2017; 7:92. [PMID: 28497290 PMCID: PMC5427061 DOI: 10.1186/s13568-017-0396-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2017] [Accepted: 04/26/2017] [Indexed: 12/12/2022] Open
Abstract
Pseudomonas putida KT2440 is a model bacteria used commonly for medium-chain-length polyhydroxyalkanoates (mcl-PHAs) production using various substrates. However, despite many studies conducted on P. putida KT2440 strain, the molecular mechanisms of leading to mcl-PHAs synthesis in reaction to environmental stimuli are still not clear. The rearrangement of the metabolism in response to environmental stress could be controlled by stringent response that modulates the transcription of many genes in order to promote survival under nutritional deprivation conditions. Therefore, in this work we investigated the relation between mcl-PHAs synthesis and stringent response. For this study, a relA/spoT mutant of P. putida KT2440, unable to induce the stringent response, was used. Additionally, the transcriptome of this mutant was analyzed using RNA-seq in order to examine rearrangements of the metabolism during cultivation. The results show that the relA/spoT mutant of P. putida KT2440 is able to accumulate mcl-PHAs in both optimal and nitrogen limiting conditions. Nitrogen starvation did not change the efficiency of mcl-PHAs synthesis in this mutant. The transition from exponential growth to stationary phase caused significant upregulation of genes involved in transport system and nitrogen metabolism. Transcriptional regulators, including rpoS, rpoN and rpoD, did not show changes in transcript abundance when entering the stationary phase, suggesting their limited role in mcl-PHAs accumulation during stationary phase.
Collapse
|
247
|
Boniecka J, Prusińska J, Dąbrowska GB, Goc A. Within and beyond the stringent response-RSH and (p)ppGpp in plants. PLANTA 2017; 246:817-842. [PMID: 28948393 PMCID: PMC5633626 DOI: 10.1007/s00425-017-2780-y] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 09/17/2017] [Indexed: 05/06/2023]
Abstract
Plant RSH proteins are able to synthetize and/or hydrolyze unusual nucleotides called (p)ppGpp or alarmones. These molecules regulate nuclear and chloroplast transcription, chloroplast translation and plant development and stress response. Homologs of bacterial RelA/SpoT proteins, designated RSH, and products of their activity, (p)ppGpp-guanosine tetra-and pentaphosphates, have been found in algae and higher plants. (p)ppGpp were first identified in bacteria as the effectors of the stringent response, a mechanism that orchestrates pleiotropic adaptations to nutritional deprivation and various stress conditions. (p)ppGpp accumulation in bacteria decreases transcription-with exception to genes that help to withstand or overcome current stressful situations, which are upregulated-and translation as well as DNA replication and eventually reduces metabolism and growth but promotes adaptive responses. In plants, RSH are nuclei-encoded and function in chloroplasts, where alarmones are produced and decrease transcription, translation, hormone, lipid and metabolites accumulation and affect photosynthetic efficiency and eventually plant growth and development. During senescence, alarmones coordinate nutrient remobilization and relocation from vegetative tissues into seeds. Despite the high conservancy of RSH protein domains among bacteria and plants as well as the bacterial origin of plant chloroplasts, in plants, unlike in bacteria, (p)ppGpp promote chloroplast DNA replication and division. Next, (p)ppGpp may also perform their functions in cytoplasm, where they would promote plant growth inhibition. Furthermore, (p)ppGpp accumulation also affects nuclear gene expression, i.a., decreases the level of Arabidopsis defense gene transcripts, and promotes plants susceptibility towards Turnip mosaic virus. In this review, we summarize recent findings that show the importance of RSH and (p)ppGpp in plant growth and development, and open an area of research aiming to understand the function of plant RSH in response to stress.
Collapse
Affiliation(s)
- Justyna Boniecka
- Department of Genetics, Nicolaus Copernicus University in Toruń, Lwowska 1, 87-100, Toruń, Poland
| | - Justyna Prusińska
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
| | - Grażyna B Dąbrowska
- Department of Genetics, Nicolaus Copernicus University in Toruń, Lwowska 1, 87-100, Toruń, Poland.
| | - Anna Goc
- Department of Genetics, Nicolaus Copernicus University in Toruń, Lwowska 1, 87-100, Toruń, Poland
| |
Collapse
|
248
|
Hauryliuk V, Atkinson GC. Small Alarmone Synthetases as novel bacterial RNA-binding proteins. RNA Biol 2017; 14:1695-1699. [PMID: 28820325 DOI: 10.1080/15476286.2017.1367889] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
The alarmone nucleotides guanosine pentaphosphate (pppGpp) and tetraphosphate (ppGpp), collectively referred to as (p)ppGpp, are key regulators of bacterial growth, stress adaptation, antibiotic tolerance and pathogenicity. We have recently shown that the Small Alarmone Synthetase (SAS) RelQ from the Gram-positive pathogen Enterococcus faecalis has an RNA-binding activity (Beljantseva et al. 2017). RelQ's activities as an enzyme and as an RNA-binding protein are mutually incompatible: binding of single-stranded RNA potently inhibits (p)ppGpp synthesis in a sequence-specific manner, and RelQ's enzymatic activity destabilizes the RNA:RelQ complex. RelQ's allosteric regulator, pppGpp, destabilizes RNA binding and activates RelQ's enzymatic activity. Since SAS enzymes are widely distributed in bacteria, and, as has been discovered recently, are also mobilized by phages (Dedrick et al. 2017), RNA binding to SASs could be a widespread mechanism. The initial discovery raises numerous questions regarding RNA-binding function of the SAS enzymes: What is the molecular mechanism underlying the incompatibility of RNA:SAS complex formation with pppGpp binding and (p)ppGpp synthesis? What are the RNA targets in living cells? What is the regulatory output of the system - (p)ppGpp synthesis, modulation of RNA structure and function, or both?
Collapse
Affiliation(s)
- Vasili Hauryliuk
- a Department of Molecular Biology , Umeå University , 6L University Hospital Area, Umeå , Sweden.,b Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, University Hospital Area , Umeå , Sweden.,c University of Tartu, Institute of Technology , Tartu , Estonia
| | - Gemma C Atkinson
- a Department of Molecular Biology , Umeå University , 6L University Hospital Area, Umeå , Sweden
| |
Collapse
|
249
|
Westbye AB, O'Neill Z, Schellenberg-Beaver T, Beatty JT. The Rhodobacter capsulatus gene transfer agent is induced by nutrient depletion and the RNAP omega subunit. Microbiology (Reading) 2017; 163:1355-1363. [DOI: 10.1099/mic.0.000519] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Alexander B. Westbye
- Department of Microbiology and Immunology, The University of British Columbia, Vancouver, BC, Canada
- Present address: Marine Microbiology and Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research, 't Horntje (Texel), Netherlands
| | - Zoe O'Neill
- Department of Microbiology and Immunology, The University of British Columbia, Vancouver, BC, Canada
| | - Tegan Schellenberg-Beaver
- Department of Microbiology and Immunology, The University of British Columbia, Vancouver, BC, Canada
| | - J. Thomas Beatty
- Department of Microbiology and Immunology, The University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
250
|
Cuthbert BJ, Ross W, Rohlfing AE, Dove SL, Gourse RL, Brennan RG, Schumacher MA. Dissection of the molecular circuitry controlling virulence in Francisella tularensis. Genes Dev 2017; 31:1549-1560. [PMID: 28864445 PMCID: PMC5630020 DOI: 10.1101/gad.303701.117] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 08/09/2017] [Indexed: 11/24/2022]
Abstract
Francisella tularensis, the etiological agent of tularemia, is one of the most infectious bacteria known. Because of its extreme pathogenicity, F. tularensis is classified as a category A bioweapon by the US government. F. tularensis virulence stems from genes encoded on the Francisella pathogenicity island (FPI). An unusual set of Francisella regulators-the heteromeric macrophage growth locus protein A (MglA)-stringent starvation protein A (SspA) complex and the DNA-binding protein pathogenicity island gene regulator (PigR)-activates FPI transcription and thus is essential for virulence. Intriguingly, the second messenger, guanosine-tetraphosphate (ppGpp), which is produced during infection, is also involved in coordinating Francisella virulence; however, its role has been unclear. Here we identify MglA-SspA as a novel ppGpp-binding complex and describe structures of apo- and ppGpp-bound MglA-SspA. We demonstrate that MglA-SspA, which binds RNA polymerase (RNAP), also interacts with the C-terminal domain of PigR, thus anchoring the (MglA-SspA)-RNAP complex to the FPI promoter. Furthermore, we show that MglA-SspA must be bound to ppGpp to mediate high-affinity interactions with PigR. Thus, these studies unveil a novel pathway different from those described previously for regulation of transcription by ppGpp. The data also indicate that F. tularensis pathogenesis is controlled by a highly interconnected molecular circuitry in which the virulence machinery directly senses infection via a small molecule stress signal.
Collapse
Affiliation(s)
- Bonnie J Cuthbert
- Department of Biochemistry, Duke University School of Medicine, Durham, North Carolina 27710, USA
| | - Wilma Ross
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Amy E Rohlfing
- Division of Infectious Diseases, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Simon L Dove
- Division of Infectious Diseases, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Richard L Gourse
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Richard G Brennan
- Department of Biochemistry, Duke University School of Medicine, Durham, North Carolina 27710, USA
| | - Maria A Schumacher
- Department of Biochemistry, Duke University School of Medicine, Durham, North Carolina 27710, USA
| |
Collapse
|