201
|
Thakur N, Upadhyay SK, Verma PC, Chandrashekar K, Tuli R, Singh PK. Enhanced whitefly resistance in transgenic tobacco plants expressing double stranded RNA of v-ATPase A gene. PLoS One 2014; 9:e87235. [PMID: 24595215 PMCID: PMC3940430 DOI: 10.1371/journal.pone.0087235] [Citation(s) in RCA: 131] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Accepted: 12/25/2013] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Expression of double strand RNA (dsRNA) designed against important insect genes in transgenic plants have been shown to give protection against pests through RNA interference (RNAi), thus opening the way for a new generation of insect-resistant crops. We have earlier compared the efficacy of dsRNAs/siRNAs, against a number of target genes, for interference in growth of whitefly (Bemisia tabaci) upon oral feeding. The v-ATPase subunit A (v-ATPaseA) coding gene was identified as a crucial target. We now report the effectiveness of transgenic tobacco plants expressing siRNA to silence v-ATPaseA gene expression for the control of whitefly infestation. METHODOLOGY/PRINCIPAL FINDINGS Transgenic tobacco lines were developed for the expression of long dsRNA precursor to make siRNA and knock down the v-ATPaseA mRNA in whitefly. Molecular analysis and insecticidal properties of the transgenic plants established the formation of siRNA targeting the whitefly v-ATPaseA, in the leaves. The transcript level of v-ATPaseA in whiteflies was reduced up to 62% after feeding on the transgenic plants. Heavy infestation of whiteflies on the control plants caused significant loss of sugar content which led to the drooping of leaves. The transgenic plants did not show drooping effect. CONCLUSIONS/SIGNIFICANCE Host plant derived pest resistance was achieved against whiteflies by genetic transformation of tobacco which generated siRNA against the whitefly v-ATPaseA gene. Transgenic tobacco lines expressing dsRNA of v-ATPaseA, delivered sufficient siRNA to whiteflies feeding on them, mounting a significant silencing response, leading to their mortality. The transcript level of the target gene was reduced in whiteflies feeding on transgenic plants. The strategy can be taken up for genetic engineering of plants to control whiteflies in field crops.
Collapse
Affiliation(s)
- Nidhi Thakur
- Plant Molecular Biology Lab, National Botanical Research Institute, Lucknow, Uttar Pradesh, India
- Academy of Scientific and Innovative Research, Anusandhan Bhawan, NewDelhi, India
| | - Santosh Kumar Upadhyay
- Plant Molecular Biology Lab, National Botanical Research Institute, Lucknow, Uttar Pradesh, India
- Department of Biotechnology, National Agri-Food Biotechnology Institute, Mohali, Punjab, India
| | - Praveen C. Verma
- Plant Molecular Biology Lab, National Botanical Research Institute, Lucknow, Uttar Pradesh, India
- Academy of Scientific and Innovative Research, Anusandhan Bhawan, NewDelhi, India
| | - Krishnappa Chandrashekar
- Plant Molecular Biology Lab, National Botanical Research Institute, Lucknow, Uttar Pradesh, India
- Indian Agricultural Research Institute-Regional Station, Agricultural College Estate, Pune, Maharashtra, India
| | - Rakesh Tuli
- Department of Biotechnology, National Agri-Food Biotechnology Institute, Mohali, Punjab, India
| | - Pradhyumna K. Singh
- Plant Molecular Biology Lab, National Botanical Research Institute, Lucknow, Uttar Pradesh, India
- Academy of Scientific and Innovative Research, Anusandhan Bhawan, NewDelhi, India
| |
Collapse
|
202
|
Wynant N, Santos D, Verdonck R, Spit J, Van Wielendaele P, Vanden Broeck J. Identification, functional characterization and phylogenetic analysis of double stranded RNA degrading enzymes present in the gut of the desert locust, Schistocerca gregaria. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2014; 46:1-8. [PMID: 24418314 DOI: 10.1016/j.ibmb.2013.12.008] [Citation(s) in RCA: 112] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Revised: 12/18/2013] [Accepted: 12/27/2013] [Indexed: 05/28/2023]
Abstract
RNA interference (RNAi) has become a widely used reverse genetics tool in eukaryotes and holds great potential to contribute to the development of novel strategies for insect pest control. While previous studies clearly demonstrated that injection of dsRNA into the body cavity of the desert locust, Schistocerca gregaria, is highly effective to induce gene silencing effects, we observed that the RNAi response is much less sensitive to orally delivered dsRNA. In line with this, we report on the presence of a potent dsRNA degrading activity in the midgut juice. Four different dsRNase sequences that belong to the DNA/RNA Non-specific Nuclease superfamily were retrieved from a transcriptome database of the desert locust. Surprisingly, we have found that, in the publicly available eukaryote nucleotide sequence databases, the presence of this group of enzymes is restricted to insects and crustaceans. Nonetheless, phylogenetic analyses predict a common origin of these enzymes with the Endonuclease G (EndoG) Non-specific Nucleases that display a widespread taxonomic distribution. Moreover, in contrast to the Sg-endoG transcript, the four Sg-dsRNase transcripts appear to be specifically expressed in the gut. Finally, by means of RNAi, we provide evidence for an important contribution of dsRNase2 to the dsRNA degrading activity that is present in the gut lumen of S. gregaria.
Collapse
Affiliation(s)
- Niels Wynant
- Molecular Developmental Physiology and Signal Transduction, KU Leuven, Naamsestraat 59, P.O. Box 02465, B-3000 Leuven, Belgium.
| | - Dulce Santos
- Molecular Developmental Physiology and Signal Transduction, KU Leuven, Naamsestraat 59, P.O. Box 02465, B-3000 Leuven, Belgium
| | - Rik Verdonck
- Molecular Developmental Physiology and Signal Transduction, KU Leuven, Naamsestraat 59, P.O. Box 02465, B-3000 Leuven, Belgium
| | - Jornt Spit
- Molecular Developmental Physiology and Signal Transduction, KU Leuven, Naamsestraat 59, P.O. Box 02465, B-3000 Leuven, Belgium
| | - Pieter Van Wielendaele
- Molecular Developmental Physiology and Signal Transduction, KU Leuven, Naamsestraat 59, P.O. Box 02465, B-3000 Leuven, Belgium
| | - Jozef Vanden Broeck
- Molecular Developmental Physiology and Signal Transduction, KU Leuven, Naamsestraat 59, P.O. Box 02465, B-3000 Leuven, Belgium
| |
Collapse
|
203
|
Yang X, Liu X, Xu X, Li Z, Li Y, Song D, Yu T, Zhu F, Zhang Q, Zhou X. Gene expression profiling in winged and wingless cotton aphids, Aphis gossypii (Hemiptera: Aphididae). Int J Biol Sci 2014; 10:257-67. [PMID: 24644424 PMCID: PMC3957081 DOI: 10.7150/ijbs.7629] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Accepted: 01/22/2014] [Indexed: 11/05/2022] Open
Abstract
While trade-offs between flight capability and reproduction is a common phenomenon in wing dimorphic insects, the molecular basis is largely unknown. In this study, we examined the transcriptomic differences between winged and wingless morphs of cotton aphids, Aphis gossypii, using a tag-based digital gene expression (DGE) approach. Ultra high-throughput Illumina sequencing generated 5.30 and 5.39 million raw tags, respectively, from winged and wingless A. gossypii DGE libraries. We identified 1,663 differentially expressed transcripts, among which 58 were highly expressed in the winged A. gossypii, whereas 1,605 expressed significantly higher in the wingless morphs. Bioinformatics tools, including Gene Ontology, Cluster of Orthologous Groups, euKaryotic Orthologous Groups and Kyoto Encyclopedia of Genes and Genomes pathways, were used to functionally annotate these transcripts. In addition, 20 differentially expressed transcripts detected by DGE were validated by the quantitative real-time PCR. Comparative transcriptomic analysis of sedentary (wingless) and migratory (winged) A. gossyii not only advances our understanding of the trade-offs in wing dimorphic insects, but also provides a candidate molecular target for the genetic control of this agricultural insect pest.
Collapse
Affiliation(s)
- Xiaowei Yang
- 1. Department of Entomology, China Agricultural University, Beijing 100193, China
| | - Xiaoxia Liu
- 1. Department of Entomology, China Agricultural University, Beijing 100193, China
| | - Xiangli Xu
- 1. Department of Entomology, China Agricultural University, Beijing 100193, China
| | - Zhen Li
- 1. Department of Entomology, China Agricultural University, Beijing 100193, China
| | - Yisong Li
- 1. Department of Entomology, China Agricultural University, Beijing 100193, China
| | - Dongyan Song
- 2. Department of Entomology, University of Kentucky, Lexington, KY 40546-0091, USA
| | - Tian Yu
- 2. Department of Entomology, University of Kentucky, Lexington, KY 40546-0091, USA
| | - Fang Zhu
- 2. Department of Entomology, University of Kentucky, Lexington, KY 40546-0091, USA
| | - Qingwen Zhang
- 1. Department of Entomology, China Agricultural University, Beijing 100193, China
| | - Xuguo Zhou
- 2. Department of Entomology, University of Kentucky, Lexington, KY 40546-0091, USA
| |
Collapse
|
204
|
Mao J, Zeng F. Plant-mediated RNAi of a gap gene-enhanced tobacco tolerance against the Myzus persicae. Transgenic Res 2014; 23:145-52. [PMID: 23949691 DOI: 10.1007/s11248-013-9739-y] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Accepted: 07/30/2013] [Indexed: 12/21/2022]
Abstract
Plant-mediated RNAi has been developed as a powerful weapon in the fight against agricultural insect pests. The gap gene hunchback (hb) is of crucial importance in insect axial patterning and knockdown of hb is deforming and lethal to the next generation. The peach potato aphid, Myzus persicae (Sulzer), has many host plants and can be found throughout the world. To investigate the effect of plant-mediated RNAi on control of this insect, the hb gene in M. persicae was cloned, plant RNAi vector was constructed, and transgenic tobacco expressing Mphb dsRNA was developed. Transgenic tobacco had a different integration pattern of the transgene. Bioassays were performed by applying neonate aphids to homozygous transgenic plants in the T2 generation. Results revealed that continuous feeding of transgenic diet reduced Mphb mRNA level in the fed aphids and inhibited insect reproduction, indicating successful knockdown of the target gene in M. persicae by plant-mediated RNAi.
Collapse
Affiliation(s)
- Jianjun Mao
- The Key Laboratory of Pest Management in Crops, Ministry of Agriculture, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China
| | | |
Collapse
|
205
|
RNA interference depletion of the Halloween gene disembodied implies its potential application for management of planthopper Sogatella furcifera and Laodelphax striatellus. PLoS One 2014; 9:e86675. [PMID: 24489765 PMCID: PMC3904942 DOI: 10.1371/journal.pone.0086675] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2013] [Accepted: 12/11/2013] [Indexed: 11/20/2022] Open
Abstract
Sogatella furcifera and Laodelphax striatellus are economically important rice pests in China by acting as vectors of several rice viruses, sucking the phloem sap and blocking the phloem vessels. Ecdysteroid hormone 20-hydroxyecdysone regulates insect development and reproduction. A cytochrome P450 monooxygenase CYP302A1 (22-hydroxylase), encoded by the Halloween gene disembodied (dib), plays a critical role in ecdysteroidogenesis. The objective of this study is to test whether dib genes are potential targets for RNA interference-based management of S. furcifera and L. striatellus. We cloned and characterized Sfdib and Lsdib. The open reading frame regions of dib genes were generated and used for designing and constructing dsRNA fragments. Experiments were conducted using oral delivery of dsdib to investigate the effectiveness of RNAi in S. furcifera and L. striatellus nymphs. Real-time quantitative reverse transcriptase-PCR analysis demonstrated that continuous ingestion of dsdib at the concentration of 0.01, 0.05 and 0.50 mg/ml diminished Sfdib expression levels by 35.9%, 45.1% and 66.2%, and ecdysone receptor (SfEcR) gene mRNA levels by 34.0%, 36.2% and 58.5% respectively in S. furcifera, and decreased Lsdib expression level by 18.8%, 35.8% and 56.7%, and LsEcR mRNA levels by 25.2%, 46.8% and 68.8% respectively in L. striatellus. The reduction in dib and EcR transcript abundance resulted in observable phenotypes. The development of nymphs was impaired and the survival was negatively affected. Our data will enable the development of new insect control strategies and functional analysis of vital genes in S. furcifera and L. striatellus nymphs.
Collapse
|
206
|
Ogawa K, Miura T. Aphid polyphenisms: trans-generational developmental regulation through viviparity. Front Physiol 2014; 5:1. [PMID: 24478714 PMCID: PMC3900772 DOI: 10.3389/fphys.2014.00001] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Accepted: 01/01/2014] [Indexed: 12/15/2022] Open
Abstract
Polyphenism, in which multiple discrete phenotypes develop from a single genotype, is considered to have contributed to the evolutionary success of aphids. Of the various polyphenisms observed in the complex life cycle of aphids, the reproductive and wing polyphenisms seen in most aphid species are conspicuous. In reproductive polyphenism, the reproductive modes can change between viviparous parthenogenesis and sexual reproduction in response to the photoperiod. Under short-day conditions in autumn, sexual morphs (males and oviparous females) are produced parthenogenetically. Winged polyphenism is observed in viviparous generations during summer, when winged or wingless (flightless) aphids are produced depending on a variety of environmental conditions (e.g., density, predators). Here, we review the physiological mechanisms underlying reproductive and wing polyphenism in aphids. In reproductive polyphenism, morph determination (male, oviparous or viviparous female) within mother aphids is regulated by juvenile hormone (JH) titers in the mothers. In wing polyphenism, although JH is considered to play an important role in phenotype determination (winged or wingless), the role is still controversial. In both cases, the acquisition of viviparity in Aphididae is considered to be the basis for maternal regulation of these polyphenisms, and through which environmental cues can be transferred to developing embryos through the physiological state of the mother. Although the mechanisms by which mothers alter the developmental programs of their progeny have not yet been clarified, continued developments in molecular biology will likely unravel these questions.
Collapse
Affiliation(s)
- Kota Ogawa
- Laboratory of Ecological Genetics, Graduate School of Environmental Science, Hokkaido University Sapporo, Japan
| | - Toru Miura
- Laboratory of Ecological Genetics, Graduate School of Environmental Science, Hokkaido University Sapporo, Japan
| |
Collapse
|
207
|
Pitino M, Hoffman MT, Zhou L, Hall DG, Stocks IC, Duan Y. The phloem-sap feeding mealybug (Ferrisia virgata) carries 'Candidatus Liberibacter asiaticus' populations that do not cause disease in host plants. PLoS One 2014; 9:e85503. [PMID: 24465578 PMCID: PMC3896372 DOI: 10.1371/journal.pone.0085503] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Accepted: 11/27/2013] [Indexed: 11/25/2022] Open
Abstract
'Candidatus Liberibacter asiaticus' (Las) is the primary causal agent of huanglongbing (HLB), the most devastating disease of citrus worldwide. There are three known insect vectors of the HLB-associated bacteria, and all are members of the Hemiptera: Diaphorina citri (Psyllidae), Trioza erytreae (Triozidae), and Cacopsylla (Psylla) citrisuga (Psyllidae). In this study, we found that another hemipteran, the striped mealybug Ferrisia virgata (Cockerell) (Hemiptera: Pseudococcidae), was able to acquire and retain Las bacteria. The bacterial titers were positively correlated with the feeding acquisition time on Las-infected leaf discs, with a two-weeks feeding period resulting in Ct values ranging from 23.1 to 36.1 (8.24 × 10(7) to 1.07 × 10(4) Las cells per mealybug). We further discovered that the prophage/phage populations of Las in the mealybugs were different from those of Las in psyllids based on Las prophage-specific molecular markers: infected psyllids harbored the Las populations with prophage/phage FP1 and FP2, while infected mealybugs carried the Las populations with the iFP3 being the dominant prophage/phage. As in the psyllids, Las bacteria were shown to move through the insect gut wall to the salivary glands after being ingested by the mealybug based on a time-course quantitative polymerase chain reaction (qPCR) assay of the dissected digestive systems. However, Las populations transmitted by the mealybugs did not cause disease in host plants. This is the first evidence of genetic difference among Las populations harbored by different insect vectors and difference among Las populations with respect to whether or not they cause disease in host plants.
Collapse
Affiliation(s)
- Marco Pitino
- United States Horticultural Research Laboratory, United States Department of Agriculture-Agriculture Research Service, Fort Pierce, Florida, United States of America
| | - Michele T. Hoffman
- United States Horticultural Research Laboratory, United States Department of Agriculture-Agriculture Research Service, Fort Pierce, Florida, United States of America
| | - Lijuan Zhou
- United States Horticultural Research Laboratory, United States Department of Agriculture-Agriculture Research Service, Fort Pierce, Florida, United States of America
- University of Florida, Institute of Food and Agricultural Sciences-Indian River Research and Education Center, Fort Pierce, Florida, United States of America
| | - David G. Hall
- United States Horticultural Research Laboratory, United States Department of Agriculture-Agriculture Research Service, Fort Pierce, Florida, United States of America
| | - Ian C. Stocks
- Florida Department of Agriculture and Consumer Services-Drug Policy Institute, Gainesville, Florida, United States of America
| | - Yongping Duan
- United States Horticultural Research Laboratory, United States Department of Agriculture-Agriculture Research Service, Fort Pierce, Florida, United States of America
| |
Collapse
|
208
|
Salvador R, Príncipi D, Berretta M, Fernández P, Paniego N, Sciocco-Cap A, Hopp E. Transcriptomic survey of the midgut of Anthonomus grandis (Coleoptera: Curculionidae). JOURNAL OF INSECT SCIENCE (ONLINE) 2014; 14:219. [PMID: 25473064 PMCID: PMC5634044 DOI: 10.1093/jisesa/ieu081] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Accepted: 10/15/2013] [Indexed: 06/04/2023]
Abstract
Anthonomus grandis Boheman is a key pest in cotton crops in the New World. Its larval stage develops within the flower bud using it as food and as protection against its predators. This behavior limits the effectiveness of its control using conventional insecticide applications and biocontrol techniques. In spite of its importance, little is known about its genome sequence and, more important, its specific expression in key organs like the midgut. Total mRNA isolated from larval midguts was used for pyrosequencing. Sequence reads were assembled and annotated to generate a unigene data set. In total, 400,000 reads from A. grandis midgut with an average length of 237 bp were assembled and combined into 20,915 contigs. The assembled reads fell into 6,621 genes models. BlastX search using the NCBI-NR database showed that 3,006 unigenes had significant matches to known sequences. Gene Ontology (GO) mapping analysis evidenced that A. grandis is able to transcripts coding for proteins involved in catalytic processing of macromolecules that allows its adaptation to very different feeding source scenarios. Furthermore, transcripts encoding for proteins involved in detoxification mechanisms such as p450 genes, glutathione-S-transferase, and carboxylesterases are also expressed. This is the first report of a transcriptomic study in A. grandis and the largest set of sequence data reported for this species. These data are valuable resources to expand the knowledge of this insect group and could be used in the design of new control strategies based in molecular information.
Collapse
Affiliation(s)
- Ricardo Salvador
- Instituto de Microbiología y Zoología Agrícola, Instituto Nacional de Tecnología Agropecuaria (INTA, Castelar), N. Repetto y Los Reseros, 1686 Hurlingham, Argentina
| | - Darío Príncipi
- Instituto de Biotecnología, Instituto Nacional de Tecnología Agropecuaria (INTA, Castelar), N. Repetto y Los Reseros, 1686. Hurlingham, Argentina
| | - Marcelo Berretta
- Instituto de Microbiología y Zoología Agrícola, Instituto Nacional de Tecnología Agropecuaria (INTA, Castelar), N. Repetto y Los Reseros, 1686 Hurlingham, Argentina
| | - Paula Fernández
- Instituto de Biotecnología, Instituto Nacional de Tecnología Agropecuaria (INTA, Castelar), N. Repetto y Los Reseros, 1686. Hurlingham, Argentina
| | - Norma Paniego
- Instituto de Biotecnología, Instituto Nacional de Tecnología Agropecuaria (INTA, Castelar), N. Repetto y Los Reseros, 1686. Hurlingham, Argentina
| | - Alicia Sciocco-Cap
- Instituto de Microbiología y Zoología Agrícola, Instituto Nacional de Tecnología Agropecuaria (INTA, Castelar), N. Repetto y Los Reseros, 1686 Hurlingham, Argentina
| | - Esteban Hopp
- Instituto de Biotecnología, Instituto Nacional de Tecnología Agropecuaria (INTA, Castelar), N. Repetto y Los Reseros, 1686. Hurlingham, Argentina
| |
Collapse
|
209
|
Jaouannet M, Rodriguez PA, Thorpe P, Lenoir CJG, MacLeod R, Escudero-Martinez C, Bos JI. Plant immunity in plant-aphid interactions. FRONTIERS IN PLANT SCIENCE 2014; 5:663. [PMID: 25520727 PMCID: PMC4249712 DOI: 10.3389/fpls.2014.00663] [Citation(s) in RCA: 103] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Accepted: 09/07/2014] [Indexed: 05/06/2023]
Abstract
Aphids are economically important pests that cause extensive feeding damage and transmit viruses. While some species have a broad host range and cause damage to a variety of crops, others are restricted to only closely related plant species. While probing and feeding aphids secrete saliva, containing effectors, into their hosts to manipulate host cell processes and promote infestation. Aphid effector discovery studies pointed out parallels between infection and infestation strategies of plant pathogens and aphids. Interestingly, resistance to some aphid species is known to involve plant resistance proteins with a typical NB-LRR domain structure. Whether these resistance proteins indeed recognize aphid effectors to trigger ETI remains to be elucidated. In addition, it was recently shown that unknown aphid derived elicitors can initiate reactive oxygen species (ROS) production and callose deposition and that these responses were dependent on BAK1 (BRASSINOSTERIOD INSENSITIVE 1-ASSOCIATED RECEPTOR KINASE 1) which is a key component of the plant immune system. In addition, BAK-1 contributes to non-host resistance to aphids pointing to another parallel between plant-pathogen and - aphid interactions. Understanding the role of plant immunity and non-host resistance to aphids is essential to generate durable and sustainable aphid control strategies. Although insect behavior plays a role in host selection and non-host resistance, an important observation is that aphids interact with non-host plants by probing the leaf surface, but are unable to feed or establish colonization. Therefore, we hypothesize that aphids interact with non-host plants at the molecular level, but are potentially not successful in suppressing plant defenses and/or releasing nutrients.
Collapse
Affiliation(s)
- Maëlle Jaouannet
- Cell and Molecular Sciences, The James Hutton InstituteDundee, UK
| | | | - Peter Thorpe
- Cell and Molecular Sciences, The James Hutton InstituteDundee, UK
| | - Camille J. G. Lenoir
- Cell and Molecular Sciences, The James Hutton InstituteDundee, UK
- Division of Plant Sciences, University of DundeeDundee, UK
| | - Ruari MacLeod
- Cell and Molecular Sciences, The James Hutton InstituteDundee, UK
- Division of Plant Sciences, University of DundeeDundee, UK
| | - Carmen Escudero-Martinez
- Cell and Molecular Sciences, The James Hutton InstituteDundee, UK
- Division of Plant Sciences, University of DundeeDundee, UK
| | - Jorunn I.B. Bos
- Cell and Molecular Sciences, The James Hutton InstituteDundee, UK
- Division of Plant Sciences, University of DundeeDundee, UK
- *Correspondence: Jorunn I. B. Bos, Division of Plant Sciences, College of Life Sciences, University of Dundee, Cell and Molecular Sciences, The James Hutton Institute, Dundee DD2 5DA, UK e-mail:
| |
Collapse
|
210
|
Wynant N, Santos D, Vanden Broeck J. Biological mechanisms determining the success of RNA interference in insects. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2014; 312:139-67. [PMID: 25262241 DOI: 10.1016/b978-0-12-800178-3.00005-1] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Insects constitute the largest group of animals on this planet, having a huge impact on our environment, as well as on our quality of life. RNA interference (RNAi) is a posttranscriptional gene silencing mechanism triggered by double-stranded (ds)RNA fragments. This process not only forms the basis of a widely used reverse genetics research method in many different eukaryotes but also holds great promise to contribute to the species-specific control of agricultural pests and to combat viral infections in beneficial and disease vectoring insects. However, in many economically important insect species, such as flies, mosquitoes, and caterpillars, systemic delivery of naked dsRNA does not trigger effective gene silencing. Although many components of the RNAi pathway have initially been deciphered in the fruit fly, Drosophila melanogaster, it will be of major importance to investigate this process in a wider variety of species, including dsRNA-sensitive insects such as locusts and beetles, to elucidate the factors responsible for the remarkable variability in RNAi efficiency, as observed in different insects. In this chapter, we review the current knowledge on the RNAi pathway, as well as the most recent insights into the mechanisms that might determine successful RNAi in insects.
Collapse
Affiliation(s)
- Niels Wynant
- Department of Animal Physiology and Neurobiology, KU Leuven, Naamsestraat, Leuven, Belgium.
| | - Dulce Santos
- Department of Animal Physiology and Neurobiology, KU Leuven, Naamsestraat, Leuven, Belgium
| | - Jozef Vanden Broeck
- Department of Animal Physiology and Neurobiology, KU Leuven, Naamsestraat, Leuven, Belgium
| |
Collapse
|
211
|
Rodriguez PA, Hogenhout SA, Bos JIB. Leaf-disc assay based on transient over-expression in Nicotiana benthamiana to allow functional screening of candidate effectors from aphids. Methods Mol Biol 2014; 1127:137-43. [PMID: 24643558 DOI: 10.1007/978-1-62703-986-4_11] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Aphids, like plant pathogens, are known to form close associations with their host. While probing and feeding, these insects deliver effectors inside the host, which are thought to be involved in suppression of host defenses and/or the release of nutrients. With increasing availability of aphid genome and transcriptome sequencing data, effectors can now be identified using bioinformatics- and proteomics-based approaches. The next step is then to apply functional assays relevant to plant-aphid interactions to identify effector activities. This chapter describes an effective and medium-throughput screen for the identification of effectors that affect aphid fecundity upon in planta over-expression. This assay will allow the identification of aphid effectors with a role in aphid virulence and can be adapted to other plant species amenable to agroinfiltration as well as to other assays based on transient expression, such as RNAi.
Collapse
Affiliation(s)
- Patricia A Rodriguez
- Cell and Molecular Sciences Group, The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK
| | | | | |
Collapse
|
212
|
Abstract
Aphids are economically important pests that predominantly feed from the plant phloem. Genome, transcriptome, and proteome data are being generated for these insects, and predicted secreted proteins in aphid saliva have been identified. These secreted proteins are candidate effectors that may modulate plant processes and aid aphid colonization of plants. The next step is to develop post-genomics strategies to study the functions of identified aphid genes. One such strategy is to express aphid effector genes in planta to assess whether aphid effectors alter plant development and aphid survival and fecundity. A second strategy is to knock down the expression of aphid target genes by RNA interference (RNAi). In this chapter, we describe how to knock down aphid gene expression using plant-mediated RNAi. This strategy is useful for assessing the contribution of aphid effectors to aphid colonization of plants.
Collapse
|
213
|
Abstract
The mechanisms and impacts of the transmission of plant viruses by insect vectors have been studied for more than a century. The virus route within the insect vector is amply documented in many cases, but the identity, the biochemical properties, and the structure of the actual molecules (or molecule domains) ensuring compatibility between them remain obscure. Increased efforts are required both to identify receptors of plant viruses at various sites in the vector body and to design competing compounds capable of hindering transmission. Recent trends in the field are opening questions on the diversity and sophistication of viral adaptations that optimize transmission, from the manipulation of plants and vectors ultimately increasing the chances of acquisition and inoculation, to specific "sensing" of the vector by the virus while still in the host plant and the subsequent transition to a transmission-enhanced state.
Collapse
Affiliation(s)
- Stéphane Blanc
- INRA, UMR BGPI, CIRAD-INRA-SupAgro, CIRAD TA-A54K, Campus International de Baillarguet, 34398 Montpellier Cedex 05, France; , ,
| | | | | |
Collapse
|
214
|
Upadhyay SK, Dixit S, Sharma S, Singh H, Kumar J, Verma PC, Chandrashekar K. siRNA machinery in whitefly (Bemisia tabaci). PLoS One 2013; 8:e83692. [PMID: 24391810 PMCID: PMC3877088 DOI: 10.1371/journal.pone.0083692] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Accepted: 11/06/2013] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND RNA interference has been emerged as an utmost tool for the control of sap sucking insect pests. Systemic response is necessary to control them in field condition. Whitefly is observed to be more prone to siRNA in recent studies, however the siRNA machinery and mechanism is not well established. METHODOLOGY/PRINCIPAL FINDINGS To identify the core siRNA machinery, we curated transcriptome data of whitefly from NCBI database. Partial mRNA sequences encoding Dicer2, R2D2, Argonaute2 and Sid1 were identified by tblastn search of homologous sequences from Aphis glycines and Tribolium castaneum. Complete encoding sequences were obtained by RACE, protein sequences derived by Expasy translate tool and confirmed by blastp analysis. Conserved domain search and Prosite-Scan showed similar domain architecture as reported in homologs from related insects. We found helicase, PAZ, RNaseIIIa, RNaseIIIb and double-stranded RNA-binding fold (DSRBF) in Dicer2; DsRBD in R2D2; and PAZ and PIWI domains in Argonaute2. Eleven transmembrane domains were detected in Sid1. Sequence homology and phylogenetic analysis revealed that RNAi machinery of whitefly is close to Aphids. Real-time PCR analysis showed similar expression of these genes in different developmental stages as reported in A. glycines and T. castaneum. Further, the expression level of above genes was quite similar to the housekeeping gene actin. CONCLUSIONS/SIGNIFICANCE Availability of core siRNA machinery including the Sid1 and their universal expression in reasonable quantity indicated significant response of whitefly towards siRNA. Present report opens the way for controlling whitefly, one of the most destructive crop insect pest.
Collapse
Affiliation(s)
- Santosh Kumar Upadhyay
- National Agri-Food Biotechnology Institute, (Department of Biotechnology, Government of India), Mohali, Punjab, India
- * E-mail: (SKU); (PCV); (KC)
| | - Sameer Dixit
- CSIR-National Botanical Research Institute, Council of Scientific and Industrial Research, RanaPratapMarg, Lucknow, India
| | - Shailesh Sharma
- National Agri-Food Biotechnology Institute, (Department of Biotechnology, Government of India), Mohali, Punjab, India
| | - Harpal Singh
- CSIR-National Botanical Research Institute, Council of Scientific and Industrial Research, RanaPratapMarg, Lucknow, India
| | - Jitesh Kumar
- National Agri-Food Biotechnology Institute, (Department of Biotechnology, Government of India), Mohali, Punjab, India
| | - Praveen C. Verma
- CSIR-National Botanical Research Institute, Council of Scientific and Industrial Research, RanaPratapMarg, Lucknow, India
- * E-mail: (SKU); (PCV); (KC)
| | - K. Chandrashekar
- CSIR-National Botanical Research Institute, Council of Scientific and Industrial Research, RanaPratapMarg, Lucknow, India
- Indian Agricultural Research Institute-Regional Station, Agricultural College Estate, Shivaji Nagar, Pune, Maharashtra, India
- * E-mail: (SKU); (PCV); (KC)
| |
Collapse
|
215
|
Scott JG, Michel K, Bartholomay L, Siegfried BD, Hunter WB, Smagghe G, Zhu KY, Douglas AE. Towards the elements of successful insect RNAi. JOURNAL OF INSECT PHYSIOLOGY 2013; 59:1212-21. [PMID: 24041495 PMCID: PMC3870143 DOI: 10.1016/j.jinsphys.2013.08.014] [Citation(s) in RCA: 312] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2013] [Revised: 08/30/2013] [Accepted: 08/30/2013] [Indexed: 05/09/2023]
Abstract
RNA interference (RNAi), the sequence-specific suppression of gene expression, offers great opportunities for insect science, especially to analyze gene function, manage pest populations, and reduce disease pathogens. The accumulating body of literature on insect RNAi has revealed that the efficiency of RNAi varies between different species, the mode of RNAi delivery, and the genes being targeted. There is also variation in the duration of transcript suppression. At present, we have a limited capacity to predict the ideal experimental strategy for RNAi of a particular gene/insect because of our incomplete understanding of whether and how the RNAi signal is amplified and spread among insect cells. Consequently, development of the optimal RNAi protocols is a highly empirical process. This limitation can be relieved by systematic analysis of the molecular physiological basis of RNAi mechanisms in insects. An enhanced conceptual understanding of RNAi function in insects will facilitate the application of RNAi for dissection of gene function, and to fast-track the application of RNAi to both control pests and develop effective methods to protect beneficial insects and non-insect arthropods, particularly the honey bee (Apis mellifera) and cultured Pacific white shrimp (Litopenaeus vannamei) from viral and parasitic diseases.
Collapse
Affiliation(s)
- Jeffrey G. Scott
- Department of Entomology, Cornell University, Ithaca, NY 14853, USA
| | - Kristin Michel
- Department of Biology, Kansas State University, Manhattan, KS 66506, USA
| | | | - Blair D. Siegfried
- Department of Entomology, University of Nebraska, Lincoln, NE 68583, USA
| | | | - Guy Smagghe
- Department of Crop Protection, Ghent University, B-9000 Ghent, Belgium
| | - Kun Yan Zhu
- Department of Entomology, Kansas State University, Manhattan, KS 66506, USA
| | - Angela E. Douglas
- Department of Entomology, Cornell University, Ithaca, NY 14853, USA
- Author for correspondence: , Tel. 1-607-255-8539
| |
Collapse
|
216
|
Shelby KS. Functional Immunomics of the Squash Bug, Anasa tristis (De Geer) (Heteroptera: Coreidae). INSECTS 2013; 4:712-30. [PMID: 26462532 PMCID: PMC4553512 DOI: 10.3390/insects4040712] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2013] [Revised: 11/07/2013] [Accepted: 11/13/2013] [Indexed: 02/06/2023]
Abstract
The Squash bug, Anasa tristis (De Geer), is a major piercing/sucking pest of cucurbits, causing extensive damage to plants and fruits, and transmitting phytopathogens. No genomic resources to facilitate field and laboratory studies of this pest were available; therefore the first de novo exome for this destructive pest was assembled. RNA was extracted from insects challenged with bacterial and fungal immunoelicitors, insects fed on different cucurbit species, and insects from all life stages from egg to adult. All treatments and replicates were separately barcoded for subsequent analyses, then pooled for sequencing in a single lane using the Illumina HiSeq2000 platform. Over 211 million 100-base tags generated in this manner were trimmed, filtered, and cleaned, then assembled into a de novo reference transcriptome using the Broad Institute Trinity assembly algorithm. The assembly was annotated using NCBIx NR, BLAST2GO, KEGG and other databases. Of the >130,000 total assemblies 37,327 were annotated identifying the sequences of candidate gene silencing targets from immune, endocrine, reproductive, cuticle, and other physiological systems. Expression profiling of the adult immune response was accomplished by aligning the 100-base tags from each biological replicate from each treatment and controls to the annotated reference assembly of the A. tristis transcriptome.
Collapse
Affiliation(s)
- Kent S Shelby
- Biological Control of Insects Research Laboratory, United States Department of Agriculture, Agricultural Research Service, 1503 S. Providence Road, Columbia, MO 65203, USA.
| |
Collapse
|
217
|
Xu L, Duan X, Lv Y, Zhang X, Nie Z, Xie C, Ni Z, Liang R. Silencing of an aphid carboxylesterase gene by use of plant-mediated RNAi impairs Sitobion avenae tolerance of Phoxim insecticides. Transgenic Res 2013; 23:389-96. [PMID: 24242160 DOI: 10.1007/s11248-013-9765-9] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Accepted: 10/24/2013] [Indexed: 01/15/2023]
Abstract
RNA interference (RNAi) describes the ability of double-stranded RNA (dsRNA) to inhibit homologous gene expression at the RNA level. Its specificity is sequence-based and depends on the sequence of one strand of the dsRNA corresponding to part or all of a specific gene transcript. In this study we adopted plant-mediated RNAi technology that targets Sitobion avenae (S. avenae) to enable gene silencing in the aphid and to minimize handling of the insects during experiments. S. avenae was selected for this study because it causes serious economic losses to wheat throughout the world. The carboxylesterase (CbE E4) gene in S. avenae was homologously cloned, which increased synthesis of a protein known to be critical to the resistance (tolerance) this species has developed to a wide range of pesticides. A plant RNAi vector was constructed, and transgenic Triticum aestivum (dsCbE1-5 and dsCbE2-2 lines) expressing CbE E4 dsRNA were developed. S. avenae were fed on dsCbE1-5 and dsCbE2-2 lines stably producing the CbE E4 dsRNA. CbE E4 gene expression in S. avenae was reduced by up to 30-60%. The number of aphids raised on dsCbE1-5 and dsCbE2-2 was lower than the number raised on non-transgenic plants. A solution of CbE E4 enzyme from S. avenae fed on dsCbE1-5 and dsCbE2-2 plants hydrolyzed only up to 20-30% Phoxim solution within 40 min whereas a solution of the enzyme from CbE E4 fed on control plants hydrolyzed 60% of Phoxim solution within 40 min. CbE E4 gene silencing was achieved by our wheat-mediated RNAi approach. This plant-mediated RNAi approach for addressing degradation-based pesticide resistance mechanisms in aphids and may prove useful in pest management for diverse agro-ecosystems.
Collapse
Affiliation(s)
- Lanjie Xu
- State Key Laboratory Agro-Biotechnology, China Agricultural University, Beijing, 100193, China,
| | | | | | | | | | | | | | | |
Collapse
|
218
|
Mumbanza FM, Kiggundu A, Tusiime G, Tushemereirwe WK, Niblett C, Bailey A. In vitro antifungal activity of synthetic dsRNA molecules against two pathogens of banana, Fusarium oxysporum f. sp. cubense and Mycosphaerella fijiensis. PEST MANAGEMENT SCIENCE 2013; 69:1155-62. [PMID: 23471899 DOI: 10.1002/ps.3480] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Revised: 11/14/2012] [Accepted: 01/03/2013] [Indexed: 05/25/2023]
Abstract
BACKGROUND A key challenge for designing RNAi-based crop protection strategies is the identification of effective target genes in the pathogenic organism. In this study, in vitro antifungal activities of a set of synthetic double-stranded RNA molecules on spore germination of two major pathogenic fungi of banana, Fusarium oxysporum Schlecht f. sp. cubense WC Snyder & HN Hans (Foc) and Mycosphaerella fijiensis Morelet (Mf) were evaluated. RESULTS All the tested synthetic dsRNAs successfully triggered the silencing of target genes and displayed varying degrees of potential to inhibit spore germination of both tested banana pathogens. When Foc dsRNAs were applied to Foc spores, inhibition ranged from 79.8 to 93.0%, and from 19.9 to 57.8% when Foc dsRNAs were applied to Mf spores. However, when Mf dsRNAs were applied on Mf spores, inhibition ranged from 34.4 to 72.3%, and from 89.7 to 95.9% when Mf dsRNAs were applied to Foc spores. CONCLUSION The dsRNAs for adenylate cyclase, DNA polymerase alpha subunit and DNA polymerase delta subunit showed high levels of spore germination inhibition during both self- and cross-species tests, making them the most promising targets for RNA-mediated resistance in banana against these fungal pathogens. © 2013 Society of Chemical Industry.
Collapse
Affiliation(s)
- Francis M Mumbanza
- National Banana Research Programme, National Agriculture Research Organisation, Kampala, Uganda.
| | | | | | | | | | | |
Collapse
|
219
|
Khan AM, Ashfaq M, Kiss Z, Khan AA, Mansoor S, Falk BW. Use of recombinant tobacco mosaic virus to achieve RNA interference in plants against the citrus mealybug, Planococcus citri (Hemiptera: Pseudococcidae). PLoS One 2013; 8:e73657. [PMID: 24040013 PMCID: PMC3767618 DOI: 10.1371/journal.pone.0073657] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Accepted: 07/18/2013] [Indexed: 12/20/2022] Open
Abstract
The citrus mealybug, Planococcus citri, is an important plant pest with a very broad plant host range. P. citri is a phloem feeder and loss of plant vigor and stunting are characteristic symptoms induced on a range of host plants, but P. citri also reduces fruit quality and causes fruit drop leading to significant yield reductions. Better strategies for managing this pest are greatly needed. RNA interference (RNAi) is an emerging tool for functional genomics studies and is being investigated as a practical tool for highly targeted insect control. Here we investigated whether RNAi effects can be induced in P. citri and whether candidate mRNAs could be identified as possible targets for RNAi-based P. citri control. RNAi effects were induced in P. citri, as demonstrated by specific target reductions of P. citri actin, chitin synthase 1 and V-ATPase mRNAs after injection of the corresponding specific double-stranded RNA inducers. We also used recombinant Tobacco mosaic virus (TMV) to express these RNAi effectors in Nicotiana benthamiana plants. We found that P. citri showed lower fecundity and pronounced death of crawlers after feeding on recombinant TMV-infected plants. Taken together, our data show that actin, chitin synthase 1 and V-ATPase mRNAs are potential targets for RNAi against P. citri, and that recombinant TMV is an effective tool for evaluating candidate RNAi effectors in plants.
Collapse
Affiliation(s)
- Arif Muhammad Khan
- National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan
- Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad, Pakistan
- Department of Plant Pathology, University of California Davis, Davis, California, United States of America
| | - Muhammad Ashfaq
- National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan
- Biodiversity Institute of Ontario, University of Guelph, Guelph, Ontario, Canada
| | - Zsofia Kiss
- Department of Plant Pathology, University of California Davis, Davis, California, United States of America
| | - Azhar Abbas Khan
- Department of Entomology, University of Sargodha, Sargodha, Pakistan
| | - Shahid Mansoor
- National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan
| | - Bryce W. Falk
- Department of Plant Pathology, University of California Davis, Davis, California, United States of America
| |
Collapse
|
220
|
Will T, Furch ACU, Zimmermann MR. How phloem-feeding insects face the challenge of phloem-located defenses. FRONTIERS IN PLANT SCIENCE 2013; 4:336. [PMID: 24009620 PMCID: PMC3756233 DOI: 10.3389/fpls.2013.00336] [Citation(s) in RCA: 125] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Accepted: 08/09/2013] [Indexed: 05/20/2023]
Abstract
Due to the high content of nutrient, sieve tubes are a primary target for pests, e.g., most phytophagous hemipteran. To protect the integrity of the sieve tubes as well as their content, plants possess diverse chemical and physical defense mechanisms. The latter mechanisms are important because they can potentially interfere with the food source accession of phloem-feeding insects. Physical defense mechanisms are based on callose as well as on proteins and often plug the sieve tube. Insects that feed from sieve tubes are potentially able to overwhelm these defense mechanisms using their saliva. Gel saliva forms a sheath in the apoplast around the stylet and is suggested to seal the stylet penetration site in the cell plasma membrane. In addition, watery saliva is secreted into penetrated cells including sieve elements; the presence of specific enzymes/effectors in this saliva is thought to interfere with plant defense responses. Here we detail several aspects of plant defense and discuss the interaction of plants and phloem-feeding insects. Recent agro-biotechnological phloem-located aphid control strategies are presented.
Collapse
Affiliation(s)
- Torsten Will
- Institute of Phytopathology and Applied Zoology, Centre for BioSystems, Land Use and Nutrition, Justus-Liebig-UniversityGiessen, Germany
| | - Alexandra C. U. Furch
- Institute of Phytopathology and Applied Zoology, Centre for BioSystems, Land Use and Nutrition, Justus-Liebig-UniversityGiessen, Germany
| | | |
Collapse
|
221
|
Zhang M, Zhou Y, Wang H, Jones H, Gao Q, Wang D, Ma Y, Xia L. Identifying potential RNAi targets in grain aphid (Sitobion avenae F.) based on transcriptome profiling of its alimentary canal after feeding on wheat plants. BMC Genomics 2013; 14:560. [PMID: 23957588 PMCID: PMC3751716 DOI: 10.1186/1471-2164-14-560] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Accepted: 08/09/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The grain aphid (Sitobion avenae F.) is a major agricultural pest which causes significant yield losses of wheat in China, Europe and North America annually. Transcriptome profiling of the grain aphid alimentary canal after feeding on wheat plants could provide comprehensive gene expression information involved in feeding, ingestion and digestion. Furthermore, selection of aphid-specific RNAi target genes would be essential for utilizing a plant-mediated RNAi strategy to control aphids via a non-toxic mode of action. However, due to the tiny size of the alimentary canal and lack of genomic information on grain aphid as a whole, selection of the RNAi targets is a challenging task that as far as we are aware, has never been documented previously. RESULTS In this study, we performed de novo transcriptome assembly and gene expression analyses of the alimentary canals of grain aphids before and after feeding on wheat plants using Illumina RNA sequencing. The transcriptome profiling generated 30,427 unigenes with an average length of 664 bp. Furthermore, comparison of the transcriptomes of alimentary canals of pre- and post feeding grain aphids indicated that 5490 unigenes were differentially expressed, among which, diverse genes and/or pathways were identified and annotated. Based on the RPKM values of these unigenes, 16 of them that were significantly up or down-regulated upon feeding were selected for dsRNA artificial feeding assay. Of these, 5 unigenes led to higher mortality and developmental stunting in an artificial feeding assay due to the down-regulation of the target gene expression. Finally, by adding fluorescently labelled dsRNA into the artificial diet, the spread of fluorescence signal in the whole body tissues of grain aphid was observed. CONCLUSIONS Comparison of the transcriptome profiles of the alimentary canals of pre- and post-feeding grain aphids on wheat plants provided comprehensive gene expression information that could facilitate our understanding of the molecular mechanisms underlying feeding, ingestion and digestion. Furthermore, five novel and effective potential RNAi target genes were identified in grain aphid for the first time. This finding would provide a fundamental basis for aphid control in wheat through plant mediated RNAi strategy.
Collapse
|
222
|
Tamborindeguy C, Bereman MS, DeBlasio S, Igwe D, Smith DM, White F, MacCoss MJ, Gray SM, Cilia M. Genomic and proteomic analysis of Schizaphis graminum reveals cyclophilin proteins are involved in the transmission of cereal yellow dwarf virus. PLoS One 2013; 8:e71620. [PMID: 23951206 PMCID: PMC3739738 DOI: 10.1371/journal.pone.0071620] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Accepted: 06/30/2013] [Indexed: 01/21/2023] Open
Abstract
Yellow dwarf viruses cause the most economically important virus diseases of cereal crops worldwide and are transmitted by aphid vectors. The identification of aphid genes and proteins mediating virus transmission is critical to develop agriculturally sustainable virus management practices and to understand viral strategies for circulative movement in all insect vectors. Two cyclophilin B proteins, S28 and S29, were identified previously in populations of Schizaphisgraminum that differed in their ability to transmit the RPV strain of Cereal yellow dwarf virus (CYDV-RPV). The presence of S29 was correlated with F2 genotypes that were efficient virus transmitters. The present study revealed the two proteins were isoforms, and a single amino acid change distinguished S28 and S29. The distribution of the two alleles was determined in 12 F2 genotypes segregating for CYDV-RPV transmission capacity and in 11 genetically independent, field-collected S. graminum biotypes. Transmission efficiency for CYDV-RPV was determined in all genotypes and biotypes. The S29 isoform was present in all genotypes or biotypes that efficiently transmit CYDV-RPV and more specifically in genotypes that efficiently transport virus across the hindgut. We confirmed a direct interaction between CYDV-RPV and both S28 and S29 using purified virus and bacterially expressed, his-tagged S28 and S29 proteins. Importantly, S29 failed to interact with a closely related virus that is transported across the aphid midgut. We tested for in vivo interactions using an aphid-virus co-immunoprecipitation strategy coupled with a bottom-up LC-MS/MS analysis using a Q Exactive mass spectrometer. This analysis enabled us to identify a third cyclophilin protein, cyclophilin A, interacting directly or in complex with purified CYDV-RPV. Taken together, these data provide evidence that both cyclophilin A and B interact with CYDV-RPV, and these interactions may be important but not sufficient to mediate virus transport from the hindgut lumen into the hemocoel.
Collapse
Affiliation(s)
- Cecilia Tamborindeguy
- USDA-ARS, Robert W. Holley Center for Agriculture and Health, Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, New York, United States of America
- * E-mail: (MC); (CT)
| | - Michael S. Bereman
- Department of Genome Sciences, University of Washington, Seattle, Washington, United States of America
| | - Stacy DeBlasio
- USDA-ARS, Robert W. Holley Center for Agriculture and Health, Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, New York, United States of America
| | - David Igwe
- Virology and Molecular Diagnostics Unit, International Institute of Tropical Agriculture, Ibadan, Nigeria
| | - Dawn M. Smith
- USDA-ARS, Robert W. Holley Center for Agriculture and Health, Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, New York, United States of America
| | - Frank White
- Department of Plant Pathology, Kansas State University, Manhattan, Kansas, United States of America
| | - Michael J. MacCoss
- Department of Genome Sciences, University of Washington, Seattle, Washington, United States of America
| | - Stewart M. Gray
- USDA-ARS, Robert W. Holley Center for Agriculture and Health, Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, New York, United States of America
| | - Michelle Cilia
- USDA-ARS, Robert W. Holley Center for Agriculture and Health, Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, New York, United States of America
- * E-mail: (MC); (CT)
| |
Collapse
|
223
|
Luan JB, Ghanim M, Liu SS, Czosnek H. Silencing the ecdysone synthesis and signaling pathway genes disrupts nymphal development in the whitefly. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2013; 43:740-6. [PMID: 23748027 DOI: 10.1016/j.ibmb.2013.05.012] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Revised: 05/28/2013] [Accepted: 05/28/2013] [Indexed: 05/13/2023]
Abstract
Sap-sucking insects are important pests in agriculture and good models to study insect biology. The role of ecdysone pathway genes in the life history of this group of insects is largely unknown likely due to a lack of efficient gene silencing methods allowing functional genetic analyses. Here, we developed a new and high throughput method to silence whitefly genes using a leaf-mediated dsRNA feeding method. We have applied this method to explore the roles of genes within the molting hormone-ecdysone synthesis and signaling pathway for the survival, reproduction and development of whiteflies. Silencing of genes in the ecdysone pathway had a limited effect on the survival and fecundity of adult whiteflies. However, gene silencing reduced survival and delayed development of the whitefly during nymphal stages. These data suggest that the silencing method developed here provides a useful tool for functional gene discovery studies of sap-sucking insects, and further indicate the potential of regulating the ecdysone pathway in whitefly control.
Collapse
Affiliation(s)
- Jun-Bo Luan
- Ministry of Agriculture, Key Laboratory of Agricultural Entomology, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China.
| | | | | | | |
Collapse
|
224
|
RNAi for Insect Control: Current Perspective and Future Challenges. Appl Biochem Biotechnol 2013; 171:847-73. [DOI: 10.1007/s12010-013-0399-4] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Accepted: 07/15/2013] [Indexed: 12/15/2022]
|
225
|
Santamaria ME, Martínez M, Cambra I, Grbic V, Diaz I. Understanding plant defence responses against herbivore attacks: an essential first step towards the development of sustainable resistance against pests. Transgenic Res 2013; 22:697-708. [PMID: 23793555 DOI: 10.1007/s11248-013-9725-4] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Accepted: 06/10/2013] [Indexed: 11/25/2022]
Abstract
Plant-herbivore relationships are complex interactions encompassing elaborate networks of molecules, signals and strategies used to overcome defences developed by each other. Herbivores use multiple feeding strategies to obtain nutrients from host plants. In turn, plants respond by triggering defence mechanisms to inhibit, block or modify the metabolism of the pest. As part of these defences, herbivore-challenged plants emit volatiles to attract natural enemies and warn neighbouring plants of the imminent threat. In response, herbivores develop a variety of strategies to suppress plant-induced protection. Our understanding of the plant-herbivore interphase is limited, although recent molecular approaches have revealed the participation of a battery of genes, proteins and volatile metabolites in attack-defence processes. This review describes the intricate and dynamic defence systems governing plant-herbivore interactions by examining the diverse strategies plants employ to deny phytophagous arthropods the ability to breach newly developed mechanisms of plant resistance. A cornerstone of this understanding is the use of transgenic tools to unravel the complex networks that control these interactions.
Collapse
Affiliation(s)
- M Estrella Santamaria
- Centro de Biotecnología y Genómica de Plantas UPM-INIA, Universidad Politécnica de Madrid, Campus Montegancedo, 28223, Pozuelo de Alarcón, Madrid, Spain
| | | | | | | | | |
Collapse
|
226
|
Wuriyanghan H, Falk BW. RNA Interference towards the Potato Psyllid, Bactericera cockerelli, Is Induced in Plants Infected with Recombinant Tobacco mosaic virus (TMV). PLoS One 2013; 8:e66050. [PMID: 23824081 PMCID: PMC3688868 DOI: 10.1371/journal.pone.0066050] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2012] [Accepted: 05/06/2013] [Indexed: 12/22/2022] Open
Abstract
The potato/tomato psyllid, Bactericera cockerelli (B. cockerelli), is an important plant pest and the vector of the phloem-limited bacterium Candidatus Liberibacter psyllaurous (solanacearum), which is associated with the zebra chip disease of potatoes. Previously, we reported induction of RNA interference effects in B. cockerelli via in vitro-prepared dsRNA/siRNAs after intrathoracic injection, and after feeding of artificial diets containing these effector RNAs. In order to deliver RNAi effectors via plant hosts and to rapidly identify effective target sequences in plant-feeding B. cockerelli, here we developed a plant virus vector-based in planta system for evaluating candidate sequences. We show that recombinant Tobacco mosaic virus (TMV) containing B. cockerelli sequences can efficiently infect and generate small interfering RNAs in tomato (Solanum lycopersicum), tomatillo (Physalis philadelphica) and tobacco (Nicotiana tabacum) plants, and more importantly delivery of interfering sequences via TMV induces RNAi effects, as measured by actin and V-ATPase mRNA reductions, in B. cockerelli feeding on these plants. RNAi effects were primarily detected in the B. cockerelli guts. In contrast to our results with TMV, recombinant Potato virus X (PVX) and Tobacco rattle virus (TRV) did not give robust infections in all plants and did not induce detectable RNAi effects in B. cockerelli. The greatest RNA interference effects were observed when B. cockerelli nymphs were allowed to feed on leaf discs collected from inoculated or lower expanded leaves from corresponding TMV-infected plants. Tomatillo plants infected with recombinant TMV containing B. cockerelli actin or V-ATPase sequences also showed phenotypic effects resulting in decreased B. cockerelli progeny production as compared to plants infected by recombinant TMV containing GFP. These results showed that RNAi effects can be achieved in plants against the phloem feeder, B. cockerelli, and the TMV-plant system will provide a faster and more convenient method for screening of suitable RNAi target sequences in planta.
Collapse
Affiliation(s)
- Hada Wuriyanghan
- Department of Plant Pathology, University of California Davis, Davis, California, United States of America
- Life Science College, Inner Mongolia University, Hohhot, Inner Mongolia, People’s Republic of China
| | - Bryce W. Falk
- Department of Plant Pathology, University of California Davis, Davis, California, United States of America
| |
Collapse
|
227
|
Acharjee S, Sarmah BK. Biotechnologically generating 'super chickpea' for food and nutritional security. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2013; 207:108-116. [PMID: 23602105 DOI: 10.1016/j.plantsci.2013.02.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Revised: 02/05/2013] [Accepted: 02/08/2013] [Indexed: 05/27/2023]
Abstract
Chickpea productivity is affected by various constraints that are biotic (Helicoverpa, Aphids, Callosobruchus, Bromus and Orobanche) and abiotic (drought and salinity). In addition, the grains of this legume are deficient in sulfur amino acids, methionine and cysteine. The possibilities for genetic improvement by marker-assisted breeding and selection approaches are limited in chickpeas due to their sexually incompatible gene pool. Transgenic chickpeas expressing either the cry1Ac/b or the cry2Aa gene and the bean α-amylase inhibitor gene are resistant to Helicoverpa and bruchids, respectively, but these chickpeas have yet to be commercialized. Unfortunately, attempts to generate transgenic chickpeas with increased tolerance to drought and salinity or with increased methionine content have been less successful. The commercialization of transgenic chickpeas containing a single transgene may not give adequate yield advantage, as chickpeas are affected by many production constraints in the field and in storage. Gene pyramiding by incorporating two or more genes may be useful because improving one trait at a time will be time-consuming, labor-intensive and costly. Use of modern multi-gene vectors that contain recognition sites for zinc finger nucleases (ZFNs) and homing endonucleases may simplify the incorporation of multiple genes into chickpeas. This approach necessitates a collaborative effort between individuals, public and private organizations to generate 'super chickpeas' that harbor multiple transgenic traits.
Collapse
Affiliation(s)
- Sumita Acharjee
- Department of Agricultural Biotechnology, Jorhat 785013, Assam, India
| | | |
Collapse
|
228
|
El-Shesheny I, Hajeri S, El-Hawary I, Gowda S, Killiny N. Silencing abnormal wing disc gene of the Asian citrus psyllid, Diaphorina citri disrupts adult wing development and increases nymph mortality. PLoS One 2013; 8:e65392. [PMID: 23734251 PMCID: PMC3667074 DOI: 10.1371/journal.pone.0065392] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Accepted: 04/29/2013] [Indexed: 12/16/2022] Open
Abstract
Huanglongbing (HLB) causes considerable economic losses to citrus industries worldwide. Its management depends on controlling of the Asian citrus Psyllid (ACP), the vector of the bacterium, Candidatus Liberibacter asiaticus (CLas), the causal agent of HLB. Silencing genes by RNA interference (RNAi) is a promising tool to explore gene functions as well as control pests. In the current study, abnormal wing disc (awd) gene associated with wing development in insects is used to interfere with the flight of psyllids. Our study showed that transcription of awd is development-dependent and the highest level was found in the last instar (5(th)) of the nymphal stage. Micro-application (topical application) of dsRNA to 5(th) instar of nymphs caused significant nymphal mortality and adult wing-malformation. These adverse effects in ACP were positively correlated with the amounts of dsRNA used. A qRT-PCR analysis confirmed the dsRNA-mediated transcriptional down-regulation of the awd gene. Significant down-regulation was required to induce a wing-malformed phenotype. No effect was found when dsRNA-gfp was used, indicating the specific effect of dsRNA-awd. Our findings suggest a role for awd in ACP wing development and metamorphosis. awd could serve as a potential target for insect management either via direct application of dsRNA or by producing transgenic plants expressing dsRNA-awd. These strategies will help to mitigate HLB by controlling ACP.
Collapse
Affiliation(s)
- Ibrahim El-Shesheny
- Department of Entomology and Nematology, Citrus Research and Education Center, IFAS, University of Florida, Lake Alfred, Florida, United States of America
- Department of Plant Protection, Faculty of Agriculture, Tanta University, Tanta, Egypt
| | - Subhas Hajeri
- Department of Plant Pathology, Citrus Research and Education Center, IFAS, University of Florida, Lake Alfred, Florida, United States of America
| | - Ibrahim El-Hawary
- Department of Plant Protection, Faculty of Agriculture, Tanta University, Tanta, Egypt
| | - Siddarame Gowda
- Department of Plant Pathology, Citrus Research and Education Center, IFAS, University of Florida, Lake Alfred, Florida, United States of America
| | - Nabil Killiny
- Department of Entomology and Nematology, Citrus Research and Education Center, IFAS, University of Florida, Lake Alfred, Florida, United States of America
- * E-mail:
| |
Collapse
|
229
|
Sun XQ, Zhang MX, Yu JY, Jin Y, Ling B, Du JP, Li GH, Qin QM, Cai QN. Glutathione S-transferase of brown planthoppers (Nilaparvata lugens) is essential for their adaptation to gramine-containing host plants. PLoS One 2013; 8:e64026. [PMID: 23700450 PMCID: PMC3659104 DOI: 10.1371/journal.pone.0064026] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2012] [Accepted: 04/10/2013] [Indexed: 11/18/2022] Open
Abstract
Plants have evolved complex processes to ward off attacks by insects. In parallel, insects have evolved mechanisms to thwart these plant defenses. To gain insight into mechanisms that mediate this arms race between plants and herbivorous insects, we investigated the interactions between gramine, a toxin synthesized by plants of the family Gramineae, and glutathione S transferase (GST), an enzyme found in insects that is known to detoxify xenobiotics. Here, we demonstrate that rice (Oryza sativa), a hydrophytic plant, also produces gramine and that rice resistance to brown planthoppers (Nilaparvata lugens, BPHs) is highly associated with in planta gramine content. We also show that gramine is a toxicant that causes BPH mortality in vivo and that knockdown of BPH GST gene nlgst1-1 results in increased sensitivity to diets containing gramine. These results suggest that the knockdown of key detoxification genes in sap-sucking insects may provide an avenue for increasing their sensitivity to natural plant-associated defense mechanisms.
Collapse
Affiliation(s)
- Xiao-Qin Sun
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Mao-Xin Zhang
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, China
| | - Jing-Ya Yu
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Yu Jin
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Bing Ling
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, China
| | - Jin-Ping Du
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Gui-Hua Li
- College of Plant Sciences, Jilin University, Changchun, China
| | - Qing-Ming Qin
- College of Plant Sciences, Jilin University, Changchun, China
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, Jilin University, Changchun, China
| | - Qing-Nian Cai
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| |
Collapse
|
230
|
Xiong Y, Zeng H, Zhang Y, Xu D, Qiu D. Silencing the HaHR3 gene by transgenic plant-mediated RNAi to disrupt Helicoverpa armigera development. Int J Biol Sci 2013; 9:370-81. [PMID: 23630449 PMCID: PMC3638292 DOI: 10.7150/ijbs.5929] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Accepted: 04/12/2013] [Indexed: 12/20/2022] Open
Abstract
RNA interference (RNAi) caused by exogenous double-stranded RNA (dsRNA) has developed into a powerful technique in functional genomics, and to date it is widely used to down-regulate crucial physiology-related genes to control pest insects. A molt-regulating transcription factor gene, HaHR3, of cotton bollworm (Helicoverpa armigera) was selected as the target gene. Four different fragments covering the coding sequence (CDS) of HaHR3 were cloned into vector L4440 to express dsRNAs in Escherichia coli. The most effective silencing fragment was then cloned into a plant over-expression vector to express a hairpin RNA (hpRNA) in transgenic tobacco (Nicotiana tabacum). When H. armigera larvae were fed the E. coli or transgenic plants, the HaHR3 mRNA and protein levels dramatically decreased, resulting developmental deformity and larval lethality. The results demonstrate that both recombinant bacteria and transgenic plants could induce HaHR3 silence to disrupt H. armigera development, transgenic plant-mediated RNAi is emerging as a powerful approach for controlling insect pests.
Collapse
Affiliation(s)
| | - Hongmei Zeng
- Key Laboratory of Integrated Pest Management in Crops, Ministry of Agriculture. Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100081, P. R. China
| | | | | | - Dewen Qiu
- Key Laboratory of Integrated Pest Management in Crops, Ministry of Agriculture. Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100081, P. R. China
| |
Collapse
|
231
|
Jensen PD, Zhang Y, Wiggins BE, Petrick JS, Zhu J, Kerstetter RA, Heck GR, Ivashuta SI. Computational sequence analysis of predicted long dsRNA transcriptomes of major crops reveals sequence complementarity with human genes. GM CROPS & FOOD 2013; 4:90-7. [PMID: 23787988 DOI: 10.4161/gmcr.25285] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Long double-stranded RNAs (long dsRNAs) are precursors for the effector molecules of sequence-specific RNA-based gene silencing in eukaryotes. Plant cells can contain numerous endogenous long dsRNAs. This study demonstrates that such endogenous long dsRNAs in plants have sequence complementarity to human genes. Many of these complementary long dsRNAs have perfect sequence complementarity of at least 21 nucleotides to human genes; enough complementarity to potentially trigger gene silencing in targeted human cells if delivered in functional form. However, the number and diversity of long dsRNA molecules in plant tissue from crops such as lettuce, tomato, corn, soy and rice with complementarity to human genes that have a long history of safe consumption supports a conclusion that long dsRNAs do not present a significant dietary risk.
Collapse
|
232
|
Rao SAK, Carolan JC, Wilkinson TL. Proteomic profiling of cereal aphid saliva reveals both ubiquitous and adaptive secreted proteins. PLoS One 2013; 8:e57413. [PMID: 23460852 PMCID: PMC3584018 DOI: 10.1371/journal.pone.0057413] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2012] [Accepted: 01/22/2013] [Indexed: 12/29/2022] Open
Abstract
The secreted salivary proteins from two cereal aphid species, Sitobion avenae and Metopolophium dirhodum, were collected from artificial diets and analysed by tandem mass spectrometry. Protein identification was performed by searching MS data against the official protein set from the current pea aphid (Acyrthosiphon pisum) genome assembly and revealed 12 and 7 proteins in the saliva of S. avenae and M. dirhodum, respectively. When combined with a comparable dataset from A. pisum, only three individual proteins were common to all the aphid species; two paralogues of the GMC oxidoreductase family (glucose dehydrogenase; GLD) and ACYPI009881, an aphid specific protein previously identified as a putative component of the salivary sheath. Antibodies were designed from translated protein sequences obtained from partial cDNA sequences for ACYPI009881 and both saliva associated GLDs. The antibodies detected all parent proteins in secreted saliva from the three aphid species, but could only detect ACYPI009881, and not saliva associated GLDs, in protein extractions from the salivary glands. This result was confirmed by immunohistochemistry using whole and sectioned salivary glands, and in addition, localised ACYPI009881 to specific cell types within the principal salivary gland. The implications of these findings for the origin of salivary components and the putative role of the proteins identified are discussed in the context of our limited understanding of the functional relationship between aphid saliva and the plants they feed on. The mass spectrometry data have been deposited to the ProteomeXchange and can be accessed under the identifier PXD000113.
Collapse
Affiliation(s)
- Sohail A. K. Rao
- School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
| | - James C. Carolan
- School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
| | - Tom L. Wilkinson
- School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
| |
Collapse
|
233
|
Bansal R, Michel AP. Core RNAi Machinery and Sid1, a Component for Systemic RNAi, in the Hemipteran Insect, Aphis glycines. Int J Mol Sci 2013; 14:3786-801. [PMID: 23396108 PMCID: PMC3588070 DOI: 10.3390/ijms14023786] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Revised: 02/01/2013] [Accepted: 02/07/2013] [Indexed: 12/20/2022] Open
Abstract
RNA interference (RNAi) offers a novel tool to manage hemipteran pests. For the success of RNAi based pest control in the field, a robust and systemic RNAi response is a prerequisite. We identified and characterized major genes of the RNAi machinery, Dicer2 (Dcr2), Argonaute2 (Ago2), and R2d2 in Aphis glycines, a serious pest of soybean. The A. glycines genome encodes for at least one copy of Dcr2, R2d2 and Ago2. Comparative and molecular evolution analyses (dN/dS) showed that domain regions of encoded proteins are highly conserved, whereas linker (non-domain) regions are diversified. Sequence homology and phylogenetic analyses suggested that the RNAi machinery of A. glycines is more similar to that of Tribolium casteneum as compared to that of Drosophila melanogaster. We also characterized Sid1, a major gene implicated in the systemic response for RNAi-mediated gene knockdown. Through qPCR, Dcr2, R2d2, Ago2, and Sid1 were found to be expressed at similar levels in various tissues, but higher expression of Dcr2, R2d2, and Ago2 was seen in first and second instars. Characterization of RNAi pathway and Sid1 in A. glycines will provide the foundation of future work for controlling one of the most important insect pests of soybean in North America.
Collapse
Affiliation(s)
- Raman Bansal
- Department of Entomology, Ohio Agricultural Research and Development Center, The Ohio State University, 1680 Madison Ave., Wooster, OH 44691, USA; E-Mail:
| | - Andy P. Michel
- Department of Entomology, Ohio Agricultural Research and Development Center, The Ohio State University, 1680 Madison Ave., Wooster, OH 44691, USA; E-Mail:
| |
Collapse
|
234
|
Zhang H, Li HC, Miao XX. Feasibility, limitation and possible solutions of RNAi-based technology for insect pest control. INSECT SCIENCE 2013; 20:15-30. [PMID: 23955822 DOI: 10.1111/j.1744-7917.2012.01513.x] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Numerous studies indicate that target gene silencing by RNA interference (RNAi) could lead to insect death. This phenomenon has been considered as a potential strategy for insect pest control, and it is termed RNAi-mediated crop protection. However, there are many limitations using RNAi-based technology for pest control, with the effectiveness target gene selection and reliable double-strand RNA (dsRNA) delivery being two of the major challenges. With respect to target gene selection, at present, the use of homologous genes and genome-scale high-throughput screening are the main strategies adopted by researchers. Once the target gene is identified, dsRNA can be delivered by micro-injection or by feeding as a dietary component. However, micro-injection, which is the most common method, can only be used in laboratory experiments. Expression of dsRNAs directed against insect genes in transgenic plants and spraying dsRNA reagents have been shown to induce RNAi effects on target insects. Hence, RNAi-mediated crop protection has been considered as a potential new-generation technology for pest control, or as a complementary method of existing pest control strategies; however, further development to improve the efficacy of protection and range of species affected is necessary. In this review, we have summarized current research on RNAi-based technology for pest insect management. Current progress has proven that RNAi technology has the potential to be a tool for designing a new generation of insect control measures. To accelerate its practical application in crop protection, further study on dsRNA uptake mechanisms based on the knowledge of insect physiology and biochemistry is needed.
Collapse
Affiliation(s)
- Hao Zhang
- Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | | | | |
Collapse
|
235
|
Van Leeuwen T, Dermauw W, Grbic M, Tirry L, Feyereisen R. Spider mite control and resistance management: does a genome help? PEST MANAGEMENT SCIENCE 2013; 69:156-159. [PMID: 22696491 DOI: 10.1002/ps.3335] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2012] [Revised: 03/16/2012] [Accepted: 04/04/2012] [Indexed: 06/01/2023]
Abstract
The complete genome of the two-spotted spider mite, Tetranychus urticae, has been reported. This is the first sequenced genome of a highly polyphagous and resistant agricultural pest. The question as to what the genome offers the community working on spider mite control is addressed.
Collapse
Affiliation(s)
- Thomas Van Leeuwen
- Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium.
| | | | | | | | | |
Collapse
|
236
|
Yu N, Christiaens O, Liu J, Niu J, Cappelle K, Caccia S, Huvenne H, Smagghe G. Delivery of dsRNA for RNAi in insects: an overview and future directions. INSECT SCIENCE 2013; 20:4-14. [PMID: 23955821 DOI: 10.1111/j.1744-7917.2012.01534.x] [Citation(s) in RCA: 103] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
RNA interference (RNAi) refers to the process of exogenous double-stranded RNA (dsRNA) silencing the complementary endogenous messenger RNA. RNAi has been widely used in entomological research for functional genomics in a variety of insects and its potential for RNAi-based pest control has been increasingly emphasized mainly because of its high specificity. This review focuses on the approaches of introducing dsRNA into insect cells or insect bodies to induce effective RNAi. The three most common delivery methods, namely, microinjection, ingestion, and soaking, are illustrated in details and their advantages and limitations are summarized for purpose of feasible RNAi research. In this review, we also briefly introduce the two possible dsRNA uptake machineries, other dsRNA delivery methods and the history of RNAi in entomology. Factors that influence the specificity and efficiency of RNAi such as transfection reagents, selection of dsRNA region, length, and stability of dsRNA in RNAi research are discussed for further studies.
Collapse
Affiliation(s)
- Na Yu
- Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, B-9000 Ghent, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
237
|
Louis J, Shah J. Arabidopsis thaliana-Myzus persicae interaction: shaping the understanding of plant defense against phloem-feeding aphids. FRONTIERS IN PLANT SCIENCE 2013; 4:213. [PMID: 23847627 PMCID: PMC3696735 DOI: 10.3389/fpls.2013.00213] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Accepted: 06/04/2013] [Indexed: 05/19/2023]
Abstract
The phloem provides a unique niche for several organisms. Aphids are a large group of Hemipteran insects that utilize stylets present in their mouthparts to pierce sieve elements and drink large volumes of phloem sap. In addition, many aphids also vector viral diseases. Myzus persicae, commonly known as the green peach aphid (GPA), is an important pest of a large variety of plants that includes Arabidopsis thaliana. This review summarizes recent studies that have exploited the compatible interaction between Arabidopsis and GPA to understand the molecular and physiological mechanisms utilized by plants to control aphid infestation, as well as genes and mechanisms that contribute to susceptibility. In addition, recent efforts to identify aphid-delivered elicitors of plant defenses and novel aphid salivary components that facilitate infestation are also discussed.
Collapse
Affiliation(s)
- Joe Louis
- Department of Entomology and Center for Chemical Ecology, The Pennsylvania State UniversityUniversity Park, PA, USA
| | - Jyoti Shah
- Department of Biological Sciences, University of North TexasDenton, TX, USA
- *Correspondence: Jyoti Shah, Department of Biological Sciences, University of North Texas, Life Sciences Building B, West Sycamore Street, Denton, TX 76201, USA e-mail:
| |
Collapse
|
238
|
Aphid-proof plants: biotechnology-based approaches for aphid control. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2013; 136:179-203. [PMID: 23728163 DOI: 10.1007/10_2013_211] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Aphids are economically significant agricultural pests that are responsible for large yield losses in many different crops. Because the use of insecticides is restricted in the context of integrated pest management and aphids develop resistance against them rapidly, new biotechnology-based approaches are required for aphid control. These approaches focus on the development of genetically modified aphid-resistant plants that express protease inhibitors, dsRNA, antimicrobial peptides, or repellents, thus addressing different levels of aphid-plant interactions. However, a common goal is to disturb host plant acceptance by aphids and to disrupt their ability to take nutrition from plants. The defense agents negatively affect different fitness-associated parameters such as growth, reproduction, and survival, which therefore reduce the impact of infestations. The results from several different studies suggest that biotechnology-based approaches offer a promising strategy for aphid control.
Collapse
|
239
|
Kwon DH, Park JH, Lee SH. Screening of lethal genes for feeding RNAi by leaf disc-mediated systematic delivery of dsRNA in Tetranychus urticae. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2013; 105:69-75. [PMID: 24238293 DOI: 10.1016/j.pestbp.2012.12.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Revised: 11/22/2012] [Accepted: 12/07/2012] [Indexed: 05/09/2023]
Abstract
To identify genes that kill Tetranychus urticae when knocked down via RNA interference (RNAi), several lethal genes were screened by the systemic delivery of dsRNA via leaf disc feeding. Four candidate genes (β subunit of coatomer protein complex, T-COPB2; M1 metalloprotease, T-M1MP; Ribosomal protein S4, T-RPS4; A subunit of V-ATPase, T-VATPase) and a control gene (EGFP) were tested for RNAi. All dsRNAs that permeated the leaf disc (ca. 15-mm diameter) were detected at 12h post-treatment, indicating that dsRNA could move through vascular tissues. To evaluate RNAi toxicity, mortalities were assessed for 120h following treatment with dsRNA. Treatment with T-COPB2, T-M1MP, T-RPS4 and T-VATPase dsRNAs caused 65.4%, 15.9%, 36.1% and 21.1% mortalities at 120h post-treatment, respectively. Reduction of all target gene transcripts following dsRNA treatment was confirmed by quantitative PCR, demonstrating that dsRNA feeding-based RNAi could indeed kill T. urticae. In summary, dsRNA delivery via leaf disc is an effective system to screen for lethal genes. Furthermore, some genes, such as T-COPB2, T-M1MP, T-RPS4 and T-VATPase, can be used to establish an RNAi-based control system against T. urticae.
Collapse
Affiliation(s)
- Deok Ho Kwon
- Department of Agricultural Biotechnology, Seoul National University, Seoul 151-742, Republic of Korea
| | | | | |
Collapse
|
240
|
Pitino M, Hogenhout SA. Aphid protein effectors promote aphid colonization in a plant species-specific manner. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2013; 26:130-9. [PMID: 23035913 DOI: 10.1094/mpmi-07-12-0172-fi] [Citation(s) in RCA: 125] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Microbial pathogens and pests produce effectors to modulate host processes. Aphids are phloem-feeding insects, which introduce effectors via saliva into plant cells. However, it is not known if aphid effectors have adapted to modulate processes in specific plant species. Myzus persicae is a polyphagous insect that colonizes Arabidopsis thaliana and Nicotiana benthamiana, while the pea aphid Acyrthosiphon pisum specializes on colonizing plant species of the family Fabaceae. We found that M. persicae reproduction increased on transgenic Arabidopsis, producing the M. persicae effectors C002, PIntO1 (Mp1), and PIntO2 (Mp2), whereas reproduction of M. persicae did not increase on Arabidopsis producing the A. pisum orthologs of these three proteins. Plant-mediated RNA interference experiments showed that c002- and PIntO2-silenced M. persicae produce less progeny on Arabidopsis and N. benthamiana than nonsilenced aphids. Orthologs of c002, PIntO1, and PIntO2 were identified in multiple aphid species with dissimilar plant host ranges. We revealed high nonsynonymous versus synonymous nucleotide substitution rates within the effector orthologs, indicating that the effectors are fast evolving. Application of maximum likelihood methods identified specific sites with high probabilities of being under positive selection in PIntO1, whereas those of C002 and PIntO2 may be located in alignment gaps. In support of the latter, a M. persicae c002 mutant without the NDNQGEE repeat region, which overlaps with an alignment gap in C002, does not promote M. persicae colonization on Arabidopsis. Taken together, these results provide evidence that aphid effectors are under positive selection to promote aphid colonization on specific plant species.
Collapse
Affiliation(s)
- Marco Pitino
- The John Innes Centre, Norwich Research Park, Norwich, UK
| | | |
Collapse
|
241
|
Rodriguez PA, Bos JIB. Toward understanding the role of aphid effectors in plant infestation. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2013; 26:25-30. [PMID: 23035915 DOI: 10.1094/mpmi-05-12-0119-fi] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
In recent years, immense progress has been made toward understanding the functions of effectors from a range of plant pathogens, such as oomycetes, fungi, bacteria, and nematodes. Like plant pathogens, aphids form close associations with host plants, featuring signal exchange between the two organisms. While feeding and probing, aphids deliver effector proteins mixed with saliva directly into the host-stylet interface. With the increasing availability of aphid genome and transcriptome sequence data, aphid effector biology is emerging as a new and exciting area of research. In this review, we provide an overview of recent advances in the aphid effector biology field and highlight some of the current questions.
Collapse
|
242
|
Bragard C, Caciagli P, Lemaire O, Lopez-Moya JJ, MacFarlane S, Peters D, Susi P, Torrance L. Status and prospects of plant virus control through interference with vector transmission. ANNUAL REVIEW OF PHYTOPATHOLOGY 2013; 51:177-201. [PMID: 23663003 DOI: 10.1146/annurev-phyto-082712-102346] [Citation(s) in RCA: 102] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Most plant viruses rely on vector organisms for their plant-to-plant spread. Although there are many different natural vectors, few plant virus-vector systems have been well studied. This review describes our current understanding of virus transmission by aphids, thrips, whiteflies, leafhoppers, planthoppers, treehoppers, mites, nematodes, and zoosporic endoparasites. Strategies for control of vectors by host resistance, chemicals, and integrated pest management are reviewed. Many gaps in the knowledge of the transmission mechanisms and a lack of available host resistance to vectors are evident. Advances in genome sequencing and molecular technologies will help to address these problems and will allow innovative control methods through interference with vector transmission. Improved knowledge of factors affecting pest and disease spread in different ecosystems for predictive modeling is also needed. Innovative control measures are urgently required because of the increased risks from vector-borne infections that arise from environmental change.
Collapse
Affiliation(s)
- C Bragard
- Earth & Life Institute, Université Catholique de Louvain, B-1348 Louvain-la-Neuve, Belgium.
| | | | | | | | | | | | | | | |
Collapse
|
243
|
Knorr E, Bingsohn L, Kanost MR, Vilcinskas A. Tribolium castaneum as a model for high-throughput RNAi screening. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2013; 136:163-78. [PMID: 23748349 DOI: 10.1007/10_2013_208] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Coleopteran insects are a highly diverse and successful order, and many beetle species are significant agricultural pests. New biorational strategies for managing populations of beetles and other insect species are needed as pests develop resistance to chemical insecticides and Bt toxins. There is now an opportunity to use genome sequence data to identify genes that are essential for insect growth, development, or survival as new targets for designing control technology. This goal requires a method for high-throughput in vivo screening of thousands of genes to identify candidate genes that, when their expression is disrupted, have a phenotype that may be useful in insect pest control. Tribolium castaneum, the red flour beetle, is a model organism that offers considerable advantages for such screening, including ease of rearing in large numbers, a sequenced genome, and a strong, systemic RNAi response for specific depletion of gene transcripts. The RNAi effect in T. castaneum can be elicited in any tissue and any stage by the injection of dsRNA into the hemocoel, and injection of dsRNA into adult females can even be used to identify phenotypes in offspring. A pilot RNAi screen (iBeetle) is underway. Several T. castaneum genes with promising RNAi phenotypes for further development as mechanisms for plant protection have been identified. These include heat shock protein 90, chitin synthase, the segmentation gene hairy, and a matrix metalloprotease. Candidate genes identified in T. castaneum screens can then be tested in agricultural pest species (in which screening is not feasible), to evaluate their effectiveness for use in potential plant-based RNAi control strategies. Delivery of dsRNA expressed by genetically modified crops to the midgut of phytophagous insects is under investigation as a new tool for very specific protection of plants from insect pest species. The T. castaneum screening platform offers a system for discovery of candidate genes with high potential benefit.
Collapse
Affiliation(s)
- Eileen Knorr
- Institute of Phytopathology and Applied Zoology, Justus-Liebig-University of Giessen, Heinrich-Buff-Ring 26-32, 39592, Giessen, Germany
| | | | | | | |
Collapse
|
244
|
Mirouze M. The Small RNA-Based Odyssey of Epigenetic Information in Plants: From Cells to Species. DNA Cell Biol 2012; 31:1650-6. [DOI: 10.1089/dna.2012.1681] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Marie Mirouze
- Institut de Recherche pour le Développement, UMR232, ERL5300 IRD UM2 CNRS, Montpellier, France
| |
Collapse
|
245
|
Feeding-based RNA interference of a gap gene is lethal to the pea aphid, Acyrthosiphon pisum. PLoS One 2012; 7:e48718. [PMID: 23144942 PMCID: PMC3492414 DOI: 10.1371/journal.pone.0048718] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2012] [Accepted: 09/28/2012] [Indexed: 01/26/2023] Open
Abstract
The gap gene hunchback (hb) is a key regulator in the anteroposterior patterning of insects. Loss-of-function of hb resulted in segmentation defects in the next generation. In this paper, hb expression level was investigated at different developmental stages of the pea aphid, Acyrthosiphon pisum (Ap). Aphb mRNA was most early detected at the first instar stage and showed an incontinuous increase in the whole life cycle. Ingested RNA interference was performed at the second instar stage to knockdown the Aphb expression. Continuous feeding of Aphb double-stranded RNA mixed in artificial diet led to reduction of Aphb transcripts and rise of insect lethality. These results indicated that hunchback was a good RNAi target in the management of insect pests.
Collapse
|
246
|
Bricchi I, Bertea CM, Occhipinti A, Paponov IA, Maffei ME. Dynamics of membrane potential variation and gene expression induced by Spodoptera littoralis, Myzus persicae, and Pseudomonas syringae in Arabidopsis. PLoS One 2012; 7:e46673. [PMID: 23118859 PMCID: PMC3484130 DOI: 10.1371/journal.pone.0046673] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Accepted: 09/06/2012] [Indexed: 12/25/2022] Open
Abstract
Background Biotic stress induced by various herbivores and pathogens invokes plant responses involving different defense mechanisms. However, we do not know whether different biotic stresses share a common response or which signaling pathways are involved in responses to different biotic stresses. We investigated the common and specific responses of Arabidopsis thaliana to three biotic stress agents: Spodoptera littoralis, Myzus persicae, and the pathogen Pseudomonas syringae. Methodology/Principal Findings We used electrophysiology to determine the plasma membrane potential (Vm) and we performed a gene microarray transcriptome analysis on Arabidopsis upon either herbivory or bacterial infection. Vm depolarization was induced by insect attack; however, the response was much more rapid to S. littoralis (30 min −2 h) than to M. persicae (4–6 h). M. persicae differentially regulated almost 10-fold more genes than by S. littoralis with an opposite regulation. M. persicae modulated genes involved in flavonoid, fatty acid, hormone, drug transport and chitin metabolism. S. littoralis regulated responses to heat, transcription and ion transport. The latest Vm depolarization (16 h) was found for P. syringae. The pathogen regulated responses to salicylate, jasmonate and to microorganisms. Despite this late response, the number of genes differentially regulated by P. syringae was closer to those regulated by S. littoralis than by M. persicae. Conclusions/Significance Arabidopsis plasma membranes respond with a Vm depolarization at times depending on the nature of biotic attack which allow setting a time point for comparative genome-wide analysis. A clear relationship between Vm depolarization and gene expression was found. At Vm depolarization timing, M. persicae regulates a wider array of Arabidopsis genes with a clear and distinct regulation than S. littoralis. An almost completely opposite regulation was observed between the aphid and the pathogen, with the former suppressing and the latter activating Arabidopsis defense responses.
Collapse
Affiliation(s)
- Irene Bricchi
- Plant Physiology Unit, Department of Life Sciences and Systems Biology, Innovation Centre, University of Turin, Turin, Italy
| | - Cinzia M. Bertea
- Plant Physiology Unit, Department of Life Sciences and Systems Biology, Innovation Centre, University of Turin, Turin, Italy
| | - Andrea Occhipinti
- Plant Physiology Unit, Department of Life Sciences and Systems Biology, Innovation Centre, University of Turin, Turin, Italy
| | - Ivan A. Paponov
- Institut für Biologie II/Molecular Plant Physiology, Faculty of Biology, Albert-Ludwigs University of Freiburg, Freiburg, Germany
| | - Massimo E. Maffei
- Plant Physiology Unit, Department of Life Sciences and Systems Biology, Innovation Centre, University of Turin, Turin, Italy
- * E-mail:
| |
Collapse
|
247
|
Bhatia V, Bhattacharya R, Uniyal PL, Singh R, Niranjan RS. Host generated siRNAs attenuate expression of serine protease gene in Myzus persicae. PLoS One 2012; 7:e46343. [PMID: 23071558 PMCID: PMC3468595 DOI: 10.1371/journal.pone.0046343] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2012] [Accepted: 08/31/2012] [Indexed: 11/19/2022] Open
Abstract
Background Sap sucking hemipteran aphids damage diverse crop species. Although delivery of ds-RNA or siRNA through microinjection/feeding has been demonstrated, the efficacy of host-mediated delivery of aphid-specific dsRNA in developing aphid resistance has been far from being elucidated. Methodology/Principal Findings Transgenic Arabidopsis expressing ds-RNA of Myzus persicae serine protease (MySP) was developed that triggered the generation of corresponding siRNAs amenable for delivery to the feeding aphids. M. persicae when fed on the transgenic plants for different time intervals under controlled growth conditions resulted in a significant attenuation of the expression of MySP and a commensurate decline in gut protease activity. Although the survivability of these aphids was not affected, there was a noticeable decline in their fecundity resulting in a significant reduction in parthenogenetic population. Conclusions/Significance The study highlighted the feasibility of developing host based RNAi-mediated resistance against hemipteran pest aphids.
Collapse
Affiliation(s)
- Varnika Bhatia
- National Research Centre on Plant Biotechnology, Indian Agricultural Research Institute Campus, New Delhi, India
| | - Ramcharan Bhattacharya
- National Research Centre on Plant Biotechnology, Indian Agricultural Research Institute Campus, New Delhi, India
- * E-mail:
| | | | - Rajendra Singh
- Phytotron Facility, Indian Agricultural Research Institute, New Delhi, India
| | - Rampal S. Niranjan
- National Research Centre on Plant Biotechnology, Indian Agricultural Research Institute Campus, New Delhi, India
| |
Collapse
|
248
|
Ozawa R, Nishimura O, Yazawa S, Muroi A, Takabayashi J, Arimura GI. Temperature-dependent, behavioural, and transcriptional variability of a tritrophic interaction consisting of bean, herbivorous mite, and predator. Mol Ecol 2012; 21:5624-35. [PMID: 23043221 DOI: 10.1111/mec.12052] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Revised: 08/10/2012] [Accepted: 08/20/2012] [Indexed: 12/16/2022]
Abstract
Different organisms compensate for, and adapt to, environmental changes in different ways. In this way, environmental changes affect animal-plant interactions. In this study, we assessed the effect of temperature on a tritrophic system of the lima bean, the herbivorous spider mite Tetranychus urticae and the predatory mite Phytoseiulus persimilis. In this system, the plant defends itself against T. urticae by emitting volatiles that attract P. persimilis. Over 20-40 °C, the emission of volatiles by infested plants and the subsequent attraction of P. persimilis peaked at 30 °C, but the number of eggs laid by T. urticae adults and the number of eggs consumed by P. persimilis peaked at 35 °C. This indicates that the spider mites and predatory mites performed best at a higher temperature than that at which most volatile attractants were produced. Our data from transcriptome pyrosequencing of the mites found that P. persimilis up-regulated gene families for heat shock proteins (HSPs) and ubiquitin-associated proteins, whereas T. urticae did not. RNA interference-mediated gene suppression in P. persimilis revealed differences in temperature responses. Predation on T. urticae eggs by P. persimilis that had been fed PpHsp70-1 dsRNA was low at 35 °C but not at 25 °C when PpHsp70-1 expression was very high. Overall, our molecular and behavioural approaches revealed that the mode and tolerance of lima bean, T. urticae and P. persimilis are distinctly affected by temperature variability, thereby making their tritrophic interactions temperature dependent.
Collapse
Affiliation(s)
- Rika Ozawa
- Center for Ecological Research, Kyoto University, Otsu 520-2113, Japan
| | | | | | | | | | | |
Collapse
|
249
|
Burand JP, Hunter WB. RNAi: future in insect management. J Invertebr Pathol 2012; 112 Suppl:S68-74. [PMID: 22841639 DOI: 10.1016/j.jip.2012.07.012] [Citation(s) in RCA: 138] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2012] [Revised: 05/10/2012] [Accepted: 05/13/2012] [Indexed: 12/21/2022]
Abstract
RNA interference is a post- transcriptional, gene regulation mechanism found in virtually all plants and animals including insects. The demonstration of RNAi in insects and its successful use as a tool in the study of functional genomics opened the door to the development of a variety of novel, environmentally sound approaches for insect pest management. Here the current understanding of the biogenesis of the two RNAi classes in insects is reviewed. These are microRNAs (miRNAs) and short interfering RNAs (siRNAs). Several other key approaches in RNAi -based for insect control, as well as for the prevention of diseases in insects are also reviewed. The problems and prospects for the future use of RNAi in insects are presented.
Collapse
Affiliation(s)
- John P Burand
- Department of Microbiology, University of Massachusetts - Amherst, Amherst, MA 01003, USA
| | | |
Collapse
|
250
|
Kamphuis LG, Gao L, Singh KB. Identification and characterization of resistance to cowpea aphid (Aphis craccivora Koch) in Medicago truncatula. BMC PLANT BIOLOGY 2012; 12:101. [PMID: 22759788 PMCID: PMC3464659 DOI: 10.1186/1471-2229-12-101] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Accepted: 06/25/2012] [Indexed: 05/21/2023]
Abstract
BACKGROUND Cowpea aphid (CPA; Aphis craccivora) is the most important insect pest of cowpea and also causes significant yield losses in other legume crops including alfalfa, beans, chickpea, lentils, lupins and peanuts. In many of these crops there is no natural genetic resistance to this sap-sucking insect or resistance genes have been overcome by newly emerged CPA biotypes. RESULTS In this study, we screened a subset of the Medicago truncatula core collection of the South Australian Research and Development Institute (SARDI) and identified strong resistance to CPA in a M. truncatula accession SA30199, compared to all other M. truncatula accessions tested. The biology of resistance to CPA in SA30199 plants was characterised compared to the highly susceptible accession Borung and showed that resistance occurred at the level of the phloem, required an intact plant and involved a combination of antixenosis and antibiosis. Quantitative trait loci (QTL) analysis using a F2 population (n = 150) from a cross between SA30199 and Borung revealed that resistance to CPA is controlled in part by a major quantitative trait locus (QTL) on chromosome 2, explaining 39% of the antibiosis resistance. CONCLUSIONS The identification of strong CPA resistance in M. truncatula allows for the identification of key regulators and genes important in this model legume to give effective CPA resistance that may have relevance for other legume crops. The identified locus will also facilitate marker assisted breeding of M. truncatula for increased resistance to CPA and potentially other closely related Medicago species such as alfalfa.
Collapse
Affiliation(s)
- Lars G Kamphuis
- CSIRO Plant Industry, Private Bag 5, Wembley, WA, 6913, Australia
- The UWA Institute of Agriculture, The University of Western Australia, Crawley, WA, 6009, Australia
| | - Lingling Gao
- CSIRO Plant Industry, Private Bag 5, Wembley, WA, 6913, Australia
| | - Karam B Singh
- CSIRO Plant Industry, Private Bag 5, Wembley, WA, 6913, Australia
- The UWA Institute of Agriculture, The University of Western Australia, Crawley, WA, 6009, Australia
| |
Collapse
|